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Abstract

The information flow in a quantum system is a fundamental feature of its dynamics. An
important class of dynamics are quantum cellular automata (QCA), systems with discrete
updates invariant in time and space, for which an index theory has been proposed for the
quantification of the net flow of quantum information across a boundary. While the index
is rigid in the sense of begin invariant under finite-depth local circuits, it is not defined
when the system is coupled to an environment, i.e. for non-unitary time evolution of
open quantum systems. We propose a new measure of information flow for non-unitary
QCA denoted the information current which is not rigid, but can be computed locally
based on the matrix-product operator representation of the map.
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1 Introduction

The essential physical principles of causality and conservation of information impose strong
constraints on the time evolution of physical systems. In particular, in the simplest setting
where space and time are discrete and causality is preserved, quantum many-body systems
can be described by quantum cellular automata (QCA) [1–3], which are systems with discrete
variables evolving under a local update rule (in analogy with classical cellular automata).
Despite these seemingly crude approximations for realistic many-body dynamics, QCA provide
useful models to study different aspects of non-equilibrium physics. Local quantum circuits, a
subclass of QCA, have recently received significant attention in connection to questions related
to quantum chaos and information scrambling [4–15].

In the past decade, a great deal of progress has been made in the comprehensive char-
acterization of QCA. A classification using index theory was first introduced in [16] for one-
dimensional systems and has recently been extended and generalized to higher dimensional
systems in [17–19]. In one dimension, the index (or GNVW index according to the acronym
of the authors) describes the net flow of quantum information along a chain of, say qubits;
while in higher dimensions it is given by the information flow between two subsystems of the
total quantum grid of logical qubits. For unitary one-dimensional systems it takes the form
of a positive rational fraction, ind ∈ Q+, which can be interpreted as the ratio of the number
of orthonormal states transferred to the right divided by the number transferred to the left
after each discrete time step. Besides its fundamental interest, the index theory has turned
out to have practical implications, allowing, for instance, for a classification of 2D Floquet
phases exhibiting bulk many-body localization (MBL) [2,20–26], where the index serves as a
topological invariant that measures the chirality of quantum information flow. Formally, the
GNVW index has been defined originally in terms of abstract observable algebras [16] which
were later argued to be “lacking an immediate physical interpretation” [27] and to be “both
physically opaque and not amenable to experimental measurement” [26].

Subsequently, an equivalent definition of the index has been found by taking the entan-
glement of the “vectorized” evolution operator, or operator-space entanglement entropy, into
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consideration. The Rényi-α entropy has been shown to be an appropriate alternative measure,
as it can be computed locally and closely reflects the intuitive interpretation of the index in
terms of quantum information flow. Using this quantity, any sub-linear entanglement-growth
behavior in nontrivial QCA could be ruled out, and a lower bound on quantum chaos has been
defined for any Rényi-α entropy of the evolution operator [27].

The original GNVW index has been rediscovered by taking the Rényi-2 entropy into ac-
count. This has the advantage that it is a quantity that can be measured directly using “SWAP”-
based many-body quantum interference measurements, realisable e.g. using hard-core bosonic
ultracold atoms in a shaken optical lattice [20]. The formulation of the index in terms of the
Rényi-2 entropy is notably equivalent to a previous derivation of the index in terms of the chi-
ral mutual information [26], as the latter can be constructed from any extensive entanglement
measure, including Rényi entropies.

Additionally, matrix product unitaries (MPUs) have turned out to provide a natural frame-
work for the index theory as they have been shown to in fact be QCA and vice versa; i.e. MPUs
feature a causal cone, strictly propagating information over a finite distance only. MPUs are
thereby guaranteed to preserve locality by mapping local operators to local operators while
at the same time all locality-preserving unitaries can be represented in a matrix product way.
The index theory implies that all locality-preserving 1D unitaries can be efficiently simulated
by MPUs, and that different MPU representations of the same unitary can be related through a
local gauge. The explicit computability of the GNVW index via MPUs has been demonstrated
in [20], and has led to further physical consequences in the framework of Floquet dynamics,
where bulk topology has been shown to enforce chaotic dynamics at the edge.

An equivalent expression of the GNVW index has been given by the “rank-ratio” index,
which is defined as the ratio between the ranks of the left and right singular value decomposi-
tions of the tensor representing the MPU [28,29]. Based on this definition, an index theorem
for generalized MPUs has been defined taking fermionic QCA into account, where a graded
canonical form has been introduced for fermionic matrix product states [30].

Further, Hamiltonian evolutions on the lattice satisfying Lieb-Robinson bounds, rather than
strict locality, have been described by approximately locality preserving unitaries (ALPUs). The
index theory has been shown to be robust to this generalization, and has been extended to one-
dimensional ALPUs classifying a wider class of natural systems with approximate causal cones
only. A converse to the Lieb-Robinson bounds has further been achieved, where any ALPU
of index zero can be exactly generated by some time-dependent, quasi-local Hamiltonian in
constant time. For the special case of finite chains with open boundaries, any unitary satisfying
the Lieb-Robinson bound may be generated by such a Hamiltonian [31].

While the aforementioned results provide a deep understanding of information flow in
unitary QCA, counterpart measures for discrete non-unitary systems representing more general
(irreversible) physical actions [32–34] are missing. In this work, we address this gap and
present a measure for the net information current for non-unitary QCA – a class of dynamics
which is described by one-dimensional matrix product operators (MPOs) and which can be
computed by examining local dynamics only.

To provide the reader with a first intuitive understanding of how the information flow in
a quantum system can be defined, we motivate the discussion with a simple example, the
reset-swap map, which is elaborated Sec. 3.2. Referring to Fig. 1, the pink vertical line in
the center represents the boundary across which the information flow shall be measured. The
QCA acts on two qubits at a time, updating nearest neighbor pairs of lattice sites at locations
{2 j, 2 j + 1} j∈Z, followed by the same update on pairs shifted by one lattice site. The compo-
sition of the two updates together constitutes a single time step of the QCA. Each two-qubit
update consists of three local operations: first, a quantum channel, indicated by a box, which
resets the qubit on the left hand site of the pair to the state |0〉; second, an identity opera-
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Figure 1: Illustration of one step of a local non-unitary QCA, the reset-swap map
described in Sec. 3.2, consisting of local reset onto the state |0〉〈0| on every second
site (indicated by boxes) followed by a pair-wise swap operation. Since only the |0〉〈0|
operator is propagated to the right while all single site operators are propagated to
the left there is a net flow of information to the left across the boundary (pink vertical
line) in distinction to local unitary QCA where there is none.

tion on the right cell, indicated by a straight line; and third, a swap operation, represented by
crossed lines, which swaps the locations of the neighboring qubits. One can see that only the
yellow and orange colored worldlines of the initial operators at sites -2 and 1 cross the bound-
ary after one QCA step. Operators on the yellow path are reset by the map and thus only the
operator {|0〉〈0|} is transported to the right, while on the orange path all four orthonormal
operators {|0〉〈0| , |0〉〈1| , |1〉〈0| , |1〉〈1|} are transported to the left. Thus, in distinction to the
unitary case in which no information flow is present for a local unitary rule, a net flow of
quantum information occurs to the left for this non-unitary local QCA.

In Sec. 2, we propose such a measure, the information current, and compare and contrast
it to the corresponding index for unitary QCA. The physics of the current is illustrated for a
variety of physically motivated examples in Sec. 3. Finally, we conclude with a summary of
results and open questions in Sec. 4.

2 Quantifying information flow

In the following, the mathematical background of the MPO description of QCA is presented
in Sec. 2.1, before providing a short summary of the on MPUs based index theory for unitary
QCAs in Sec. 2.2. Sec. 2.3 outlines the definition of the information current for non-unitary
QCA, whose properties are listed and discussed in the final Sec. 2.4.

2.1 MPO description of QCA

In this framework, a single time step of the QCA is modeled by an MPO in the most general
form, see Fig. 2(a), with the same local tensor M of the MPO distributed equally across the
lattice. These tensors represent superoperators acting on vectorized density matrices in a
doubled Hilbert space H×H∗.

The MPO in Fig. 2(a) represents the general form of the dynamical map. It can be repre-
sented by the circuit shown in Fig. 2(b) when the QCA is exclusively defined by local operation.
This class of QCA will be referred to as “local QCA” throughout this work. In the referred cir-
cuit, local operators V (framed in yellow) act on pairs of neighboring sites, after which the set
of operators W (marked with red) update the next pairs of neighboring sites, shifted by one
lattice site. This is the simplest, and most commonly used partitioning scheme of QCA with a
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Figure 2: (a) One time step of a QCA, written as an MPO with virtual bond dimension
D. It acts on a doubled Hilbert space H ×H∗, and is in (b), (c), and (d) assumed
to be locally generated. Its action on two qudits is represented as a vectorization of
operators with physical dimension (d2)2 = d4. (b) Partitioning scheme of the MPO
in (a) for local QCA (excluding e.g. the shift map). (c) Singular value decomposition
of the tensor operator V . Note that the horizontal bond dimension D is equal to
the rank of the operator singular value decomposition of V . (d) Definition of the
constituent local tensor M of the MPO.

two-cell neighborhood. Note that generality is provided nonetheless, as the sites of QCA with
larger interaction neighborhoods can be grouped together, such that it has the same structure
as a QCA with a two-cell neighborhood (analogous to a coarse-graining process). Further, the
singular value decomposition (SVD) is applied by rewriting one of the operators that acts on
two neighboring sites, e.g. V , into a single index sum of tensor products of operators B and
A which act on the associated left or right site, respectively, according to Fig. 2(c). Then the
local tensors M in Fig. 2(a) can be defined according to Fig. 2(d) – as constituent four-index
tensors, whose (vertical) physical indices have been grouped together.

On the basis of the MPU description of QCA, an index theory has been formulated for
unitary QCA; it is summarized below including a reformulation of its definition.

2.2 Index theory for unitary QCA using MPUs

Following Refs. [28, 29], we define the matrices ML and MR with input and output Hilbert
spaces as indicated in Fig. 3. In [29] it is shown that for unitary one-dimensional QCA, one
can quantify the net flow of quantum information to the right via the so-called rank-ratio
index:1

ind=
1
2
(logRank(MR)− log Rank(ML))

=
1
2

log
�

Rank(MR)
Rank(ML)

�

. (1)

1Throughout we take logarithms base 2.
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Figure 3: Diagrammatic description of the matrix components of ML and MR ob-
tained by taking left and right partitionings of the local tensor M of the MPO that
describes the QCA. α and β are virtual indices, while j = ( j1, j2) and k = (k1, k2) rep-
resent the composed physical indices of the input or output state, respectively. The

adjoint matrix components
�

Mαβ

k j

�†

L,R
are obtained by reflecting the diagrams about

the horizontal axis and replacing the constituent tensors by their adjoints. Note the
equations on the furthest right site are only true if the QCA is local.

In anticipation of our alternative measure for information flow below, we note that because
Rank(A) = Rank(A†A) for any complex matrix A, the index can also be written as

ind=
1
2
(S0(σR)− S0(σL)) , (2)

where
σβ = M†

β
Mβ/Tr

�

M†
β

Mβ
�

, for β ∈ {L, R} , (3)

are trace one, positive, Hermitian operators. Here S0(ρ) = logRank(ρ), also known as the
Hartley entropy, is the α= 0 case of the Rényi-α entropy

Sα(ρ) =
1

1−α
logTr[ρα] . (4)

The index has been shown to be a rigid quantity in the sense that all locally equivalent
unitary QCA, i.e. those QCA that are obtainable from each other by a finite-depth sequence
of local QCA updates, have the same index. In particular, for locally generated unitary QCA,
ind = 0, while for non-locally generated unitary QCA the index is a logarithm of a positive
rational. The latter include for example the shift operation, for which the index is defined in
terms of the number of shifts to the right divided by the number of shifts to the left.

2.3 Information current in non-unitary QCA

For non-unitary QCA, the index is no longer a rigid quantity as it does not remain invariant
under local operations when coupling the system to the environment as shown by way of
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Figure 4: Tensor network representing the equality of the traces of the first moments
of M†

L ML and M†
R MR. The equation holds for all QCA, independent of it being unitary

or non-unitary.

several examples in Sec. 3. We seek a quantity which captures information flow in non-unitary
QCA, but which is zero for local unitary QCA. This quantity should be continuous with the
parameter that describes the coupling to the environment since non-unitary dynamics can be
continuously connected to unitary dynamics. A natural quantity to consider, extending Eq. (1),
is a continuous function on the singular values of ML and MR. Note the values and the total
number of non-zero singular values of ML and MR can change.

To motivate such a quantity we give a couple observations. First, the singular values of
ML and MR are equal for local unitary QCA; see proof in App. A. Second, the trace of the first
moments of M†

R MR and M†
L ML are equal for all QCA; see Fig. 4.

The lowest moment of the squared eigenvalues that can distinguish unitary and non-
unitary dynamics is the second. Hence, we propose a measure of the information current,
namely the information flow per update time increment, based on the Rényi-2 entropy of the
operators σβ defined in Eq. (3):

I =
1
2
(S2(σR)− S2(σL))

=
1
2

log





Tr
�

�

M†
L ML

�2�

Tr
�

�

M†
R MR

�2�



 . (5)

Thus, the current I differs from the index simply by taking difference of Rényi-2 entropies
rather than the Rényi-0 entropies. The tensor network description of the argument of the
logarithm is shown in Fig. 5. In App. B it is shown that the current can also be reformulated
in terms of the difference in Rényi-2 entropies of the inner product of the Choi-Jamiolkowski
state (CJS) associated with M†

L ML and M†
R MR, respectively.

In order to calculate the current we need to construct the matrices ML and MR from the
QCA rule. In the following we show how to do this for local QCA using the steps graphically
illustrated in Fig. 2(b-d). Here the QCA is a composition of nearest neighbour interactions
between disjoint pairs of sites with a map V followed by another map W of the same structure
but shifted by one lattice site. For the operator V we can write

V =
d2
∑

r,s=1

cr,s Ôr ⊗ Ôs , (6)

where {Ôr}d
2

r=1 is any orthonormal basis for operators on a qudit satisfying Tr
�

Ô†
r Ôr ′

�

= δr,r ′ .
Note when acting on vectorized density matrices, each operator Ôr acts on this doubled space
as Ôr ⊗ Ô∗r . A singular value decomposition can be performed on the matrix of coefficients

cr,s =
χ
∑

k=1

Yr,kDk,kX †
k,s , (7)
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Figure 5: A measure of information current in QCA. The tensors are as defined in
Fig. 2, where the shaded tensors represent the associated adjoints. Note that the
expression on the right-hand site is only valid for local QCA.

where Y and X are unitary, D is the diagonal matrix of singular values of c, and the rank of
the decomposition is χ with 1≤ χ ≤ d2.

Expanding we have

V =
χ
∑

k=1

d2
∑

r=1

Yr,k

Æ

Dk,k Ôr ⊗
d2
∑

s=1

Æ

Dk,k X †
k,s Ôs

=:
χ
∑

k=1

Bk ⊗ Ak , (8)

where

Ak =
d2
∑

s=1

Æ

Dk,k X †
k,s Ôs , Bk =

d2
∑

r=1

Æ

Dk,k Yr,k Ôr . (9)

Note the equally weighted symmetric distribution of the singular values on the two local ma-
trices A and B, with both exhibiting a factor of

p

Dk,k. This assures that the same magnitude of
the current is observed after a parity operation on the QCA rule - only the sign of the current
would be reversed.

Applying the singular value decomposition of V according to Eqs. (6) to (9), the current
can be calculated for local QCA explicitly in terms of the constituent tensors of ML and MR
(W , A, and B, see Fig. 2(b)):

I =
1
2

log





Tr
�

∑χ

a,b,c,d=1

�

A†
a ⊗ B†

b

�

W †W (Aa ⊗ Bd)
�

A†
c ⊗ B†

d

�

W †W (Ac ⊗ Bb)
�

Tr
�

∑χ

a′,b′,c′,d ′=1

�

A†
a′ ⊗ B†

b′
�

W †W (Ac′ ⊗ Bb′)
�

A†
c′ ⊗ B†

d ′
�

W †W (Aa′ ⊗ Bd ′)
�



 . (10)
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Figure 6: On property 2.4.2: Argument of I as in Fig. 5, but under the assumption
of local unitary QCA such that W †W = 1. For clarity the traces are here indicated
by “hooks” on the top and on the bottom of the four tensor chains, and the cyclic
property of the trace has been used for the B’s in the numerator and the A’s in the
denominator.

2.4 Properties of the information current

The main properties of the current are summarized in the points below and compared to the
index for unitary QCA.

2.4.1 I is locally computable.

As any QCA can be fully characterized by the locality-preserving operators M of an MPO, and I
is a function of M , it is locally computable. The same property has been shown for the GNVW
index [16].

2.4.2 I is vanishing for unitary finite-depth circuits.

No information flow is present in the case of unitary finite-depth circuits. Mathemati-
cally, this is shown for local unitary QCA in Fig 6, where I = 1

2 log(1) = 0 following
Eq. (5). The pictured equation is obtained by setting W †W = 1 ⊗ 1 = V †V and using
∑χ

k=1 AkA†
k =

∑χ

k=1 BkB†
k =

∑χ

k=1 A†
kAk =

∑χ

k=1 B†
kBk = c1; see derivation in App. A up to

Eq. (A.12). In addition, note that the singular values of ML and MR are in this case equal as
shown further in App. A.

The property has also been proven for the GNVW index [16].

2.4.3 I is not invariant under blocking.

The blocking procedure describes the regrouping of all physical sites of a QCA, where two or
more neighboring sites are grouped together to define a supercell. This can be viewed as a
coarse-graining procedure. Here, the blocking is described by taking the tensor product of two
or more local tensors of the associated MPO: M → M⊗

n
, where n ∈ N≥2. The corresponding

tensor network description is presented in Fig. 7.
Fig. 7 shows that I does not change under blocking if W †W is factorizable, see condition in

subfigure 7(c), while I is not necessarily invariant under blocking if W †W is non-factorizable.
The latter is in distinction to the dynamics of unitary QCA which have been shown to be
invariant under blocking.

However, it is possible to specify certain conditions under which the current does stay
invariant under the blocking procedure. For example, if the tensor V is unitary, then I would
remain invariant when increasing the number of blocked sites from four to larger even sized
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Figure 7: On property 2.4.3: Tensor network description of the blocked version of the

information measure shown in Fig. 5. The expression on the left,
Tr

�

�

�

M⊗
n�†

L

�

M⊗
n�

L

�2�

Tr
�

�

(M⊗n)†
R
(M⊗n)

R

�2
� ,

holds for all QCA, whereas the one on the right, 〈N̂
l
L |N̂Bulk|N̂ r

L 〉
〈N̂ l

R |N̂Bulk|N̂ r
R 〉

, can only be applied to

local QCA. N̂ l
L and N̂ l

R (N̂ r
L and N̂ r

R ) label the grouped tensors in the numerator and
denominator, respectively - they act on the first (last) sites, including their associate
traces and sums over their virtual indices. The composition of all other tensors acting
on the physical sites in the middle are labeled by N̂Bulk. Note that this tensor is the
same for the numerator and the denominator, and cancel each other out if condition
(c) is fulfilled: W †W is factorizable (or equivalently if Rank(W †W ) = 1), such that
there is no virtual bond connection between N̂Bulk and the boundary tensors. In this
case the tensor diagram equals the one in Fig. 5, proving that I is invariant under
blocking if W †W is factorizable. (a) Definition used to illustrate the singular value
decomposition of the local gates W (top) and V (bottom). (b) Definition of the
composed local tensors M .

regions, i.e. six, eight, ten, etc. Further, I does not change by blocking for all unitary finite-
depth circuits as they are factorizable with W †W = 1 ⊗ 1, see Sec. 2.4.2. There are also
some unitary, not finite-depth circuits that are invariant under blocking, as for example the
shift map. This is in alignment with the GNVW index introduced in Ref. [16] which has been
shown to be independent of how we regroup or block sites of the unitary QCA.
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Figure 8: On property 2.4.4: Argument of the current for the composition of two QCA

updates including the blocking of two sites:
Tr
�

�

(M2⊗M2)†
L
(M2⊗M2)

L

�2
�

Tr
h
�

(M2⊗M2)†
R
(M2⊗M2)R

�2i . The light gray

dashed boxes in the diagram on the right-hand site indicate the constituent tensors
of M2 (or

�

M2
�†

if the tensors are shaded).

2.4.4 I is not additive under composition.

Similar to the blocking procedure, where physical cells are grouped together into supercells,
one can also compose two or more QCA updates: M →

�

M⊗
n�n

, where the M⊗
n

acts on n
physical sites n times. To compute the current for a composition of n time steps of the QCA,
one has to take n lattice sites into account. This can be understood by the causal cone structure
of QCA that establishes a spread of information in space that is linear in time with a slope
of one. Blocking insures that all sites that can contribute to the flow of information across a
boundary are accounted for. Considering the composition of n= 2 QCA updates, the dynamics
are captured in the corresponding tensor network description in Fig. 8.

The scaling of the current with the number of compositions depends on the class of QCA.
For unitary finite-depth circuits, for example, the information current remains vanishing inde-
pendent of the number of compositions. For the shift map, or the (classical) full-reset-SWAP
QCA with p = 1, however, it is shown that I is additive with the number of composed QCA
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Figure 9: On property 2.4.5: Proof of I = 0 for swap-symmetric quantum channels,

see condition on the bottom right. In the first step, the definition of Tr
�

�

M†
L ML

�2�
on

the top right in Fig. 5 is applied. In the second step, the swap-symmetry condition
is used. In the third step, the swap operators are applied onto the (blue and green
framed) tensors A and B, which swap the physical sites they act on. In the last step,

the definition of Tr
�

�

M†
R MR

�2�
on the bottom right in Fig. 5 is rediscovered. The

current is thus vanishing according to its definition in Eq. (5), I = 1
2 log(1) = 0.

updates; see Sec. 3. This additivity under composition has also been observed for the GNVW
index for all unitary QCA.2 Other instances of QCA feature either super- and subadditivity, as
discussed in Sec. 3, which show that there does not exist a general scaling of the current under
composition.

2.4.5 I is vanishing if W and V are swap symmetric.

Swap-symmetric QCA are described by maps whose action is the same on both the left and
the right side of the local neighborhood they act on. This means the local rule is parity sym-
metric and there is no preferred direction of information flow. Underpinning the intuition, the
information current is shown to be vanishing for swap-symmetric QCA by the pictorial proof
in Fig. 9.

2Note that in the original paper [16] it was stated that index was multiplicative (not additive) under tensoring,
which has been later corrected.
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Table 1: Overview of the properties of the presented exemplary maps: locality-
preservation, non-unitarity, and the presence of an information current I . Note that
example F comprises several (integrable) local and non-unitary maps which are spec-
ified in more detail in Tab. 2.

A B C D E F

local ✗ ✓ ✓ ✓ ✓ ✓

NU ✗ ✓ ✓ ✓ ✓ ✓

|I |> 0 ✓ ✓ ✓ ✓ ✗ cf. Tab. 2

3 Examples

In the following, the information flow in six different types of QCA is outlined. First, the shift
map in Sec. 3.1 serves as the standard example of non-local unitary QCA exhibiting non-zero
information flow. Subsequently, two examples of non-unitary QCA are shown for which W †W
is factorizable: the reset-swap map as well as the dephase-swap map in sections 3.2 and 3.3.
Next, the directed amplitude damping channel in Sec. 3.4 shows how the current behaves if
W †W is non-factorizable. An instance of the property 2.4.5 is provided by the asymmetric
swap map in Sec. 3.5. Finally, integrable models that satisfy the Yang-Baxter equations are
studied in Sec. 3.6.

All investigated maps are categorized in Tab. 1 according to whether they are local or non-
local, unitary or non-unitary, and whether they exhibit a zero or non-zero current. The shift
map serves as a unique example of a unitary map with non-zero current due to its non-locality
property. All other listed maps are non-unitary and local.

For the quantum channels in Sec. 3.2 to Sec. 3.6, only circuits as illustrated in Fig. 2(b)
are considered, where, for simplicity, the local tensors acting on the different neighborhoods
at consecutive time steps are set to be the same, i.e. W = V . They are formally defined
by superoperators which act on vectorized states |ρ〉, and exhibit an ordering of spaces
H1×H∗1×H2×H∗2. For this ordering of vector spaces, the map W is represented as a d4× d4

matrix as follows:

W → (1⊗ Σ̂⊗1) W (1⊗ Σ̂⊗1) , (11)

where

Σ̂=
∑

j,k=0,1

| j〉〈k| ⊗ |k〉〈 j| , (12)

is the swap operator which acts onto the vectorized Hilbert space.

3.1 Shift map (non-local unitary QCA)

The shift map is defined by a non-local unitary QCA rule that shifts the algebra uniformly to
the right by one lattice site. Using the MPO description, it is defined by the local tensors of
the MPO shown in Fig. 10, where the physical and virtual indices are regrouped according to
left/right partitioning scheme presented in Fig. 3.

As proved diagrammatically in Fig. 11(a), the current for this map is I = log d2, which is
the same as the index, ind = log d2, since on the vectorized space Rank(MR) = d2 · d2 = d4

while Rank(ML) = 1.3 Under coarse-graining, where two lattice sites become one, the current
3Note that the index differs from the originally defined index by a factor of two as we are working in the doubled

Hilbert space.
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Figure 10: The non-local shift-right QCA. Left: definitions of the relevant tensor com-
ponents of ML,R. Right: respective adjoints of the same tensor components. Super-
scripts define the virtual bond dimensions while subscripts represent physical bond
dimensions.

does not change, see right-hand site of Fig. 11(a), whereas it is shown to be additive under an
additional composition of two QCA updates, see Fig. 11(b).

3.2 Reset-swap map

The reset-swap map has been constructed to serve as a simple one parameter family of QCA
which exhibits information flow due to its interaction with the environment which results
in spatially asymmetric loss of information. Formally, it is a non-unitary quantum channel
which acts on two sites: it (partially) resets either the left or the right cell, and swaps the two
cells. The corresponding tensor network description for the reset-left-swap map is illustrated
in Fig. 12, where, as discussed in the introduction around Fig. 1, one could already suspect
that there is a directional information flow present in the system by considering the “flow”
of the basis operators of the algebras which describe the input states at the individual lattice
sites. One can see that there will be more operators “moving” across one side of a partition
than the other.

The constituent tensors (or transfer matrices) which determine the local tensors W of the
associated MPO are defined in the following. The reset operation is given by the two Kraus
operators

K0 =

�

1 0
0

p

1− p

�

, K1 =

�

0
p

p
0 0

�

, (13)

which reset an input state to the |0〉〈0| state with probability p ∈ [0, 1]. In order to describe the
corresponding action of the map onto operator algebras, the vectorization formalism in [35]
is used. In this formalism, the reset gate is defined by4

R=
∑

µ=0,1

Kµ ⊗ K∗µ , (14)

while the swap superoperator is given by

SWAP= Σ̂⊗ Σ̂∗ . (15)

4The vectorization follows from Eq. (70) in [35]. The conjugation of the tensors on the right-hand side of the
tensor product is omitted as {Kµ}µ=1,2 and Σ̂ are real, Σ̂ ∈ R(2×2).
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Figure 11: (a) Derivation of the current for the shift-right QCA:
I = 1

2 log
�

d2
�2
= log

�

d2
�

remains invariant under course-graining (blocking),
where two lattice sites become one. Note we work in a doubled space where
each line represents the space H ×H∗, hence closed loops represent a trace which
evaluates to d2. Note that all the diagrams reduce to a number of closed loops. (b)
Proof that under composition of n= 2 shifts, including the blocking of two sites, the
current increases by a factor of two: I = 1

2 log
�

d2
�4
= 2 log

�

d2
�

.
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Then,

W1,2 = SWAP1,2 R1 , (16)

represents the total reset-left-swap gate, where the subscripts define the physical sites on which
the associated superoperators act on. In the tensor network description used, this is the red
framed tensor in Fig. 2(d). The single-site tensors A and B framed in blue and green are
obtained by applying the SVD onto the swap superoperator as follows:

SWAP1,2 =
1
4

3
∑

a,b=0

(σa ⊗σb)1 ⊗ (σa ⊗σb)2 , (17)

where {σa}3a=0 = {I , X , Y, Z} is the set of Pauli operators. Then one can write

Ã(a,b)
1 =

1
2
(σa ⊗σb)1 , B̃(c,d)

2 =
1
2
(σc ⊗σd)2 R2 , (18)

where the superscripts (a, b) and (c, d) are the virtual indices of Ã1 and B̃2, respectively, which
arise from the SVD described above. The operators are distinguished from the above tensors
A and B in Eq. (9) by a normalization factor that accounts for a symmetric distribution of the
singular values on the two operators. This factor is henceforth ignored because it does not
affect the derived result below. In total, substituting Eqs. (16) and (18) in the definition of M ,
one obtains for the local MPO tensors:

M (a,b,c,d)
1,2 =W1,2 ,

�

Ã(a,b)
1 ⊗ B̃(c,d)

2

�

=
1
4

SWAP1,2 R1 (σ
a ⊗σb)1 ⊗ (σc ⊗σd)2 R2 , (19a)

�

M (a,b,c,d)
�†
=

1
4

R†
2 (σ

a ⊗σb)1 ⊗ (σc ⊗σd)2 R†
1 SWAP1,2 . (19b)

Using these definitions, the derivation of the current is presented in two different ways:
first, diagrammatically using the tensor network description in Fig. 13, and second, alge-
braically as a function of R and {σa}3a=0 in App. D.
The invariance of I under the blocking process is confirmed as W †W is factorizable:
W †W = R†

1R1 due to the swap operation of the map and the fact that R1 acts only non trivially
(with implicit identity on the second system), see Fig. 13(a). Figure 14 shows the diagram-
matic proof.

Next, Fig. 15 illustrates the non-additivity of the current under composition of two updates

of the reset-swap QCA. It is shown that the argument of I without composition,
Tr
h

�

M†
L ML

�2
i

Tr
h

�

M†
R MR

�2
i ,

is a factor of the argument of I with composition. The current of the reset-swap map thus
exhibits a recursive behavior under the composition of several updates of the QCA.

A question arises regarding how the composition of the reset-swap map with a unitary
finite-depth circuit would change the current. Intuitively, the information flow of the system
should not change, as the current is vanishing for local unitary QCA, as proved in 2.4.2. In-
deed, the current for this non-unitary QCA does not change under composition, or conjugation
with a unitary, with a formal derivation presented in App. D. However, I does change under
composition with a unitary finite-depth circuit if two or more time steps of the QCA are com-
posed. This is not surprising since the unitary operation can change the amount of information
loss per time step.
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Figure 12: Illustration of the reset-swap QCA. (a) Circuit representation of one time
step of the QCA. (b) Definition of the constituent local tensors W, W †, R, R†, and
SWAP=

∑15
k=0 Ak ⊗ Bk. (c) Definition of the total local tensors M and M†. Note that

in the representation of M† the single-site tensors A and B are not shaded as the Pauli
operators that define the swap operation are self-adjoint; σa = (σa)† ∀a ∈ [0, 3].

Using the definitions in Eqs. (13) to (19), a closed form expression for the current as a
function of p can be derived:

I = 2 log

� 1
2 p2 − p+ 1

p2 − p+ 1

�

, (20a)

Ic = 2I + 2 log (ξ) , (20b)

with ξ=
(p2 − p+ 1) (p4 − 4p3 + 5p2 − 2p+ 1)

p6 − 6p5 + 15p4 − 19p3 + 12p2 − 3p+ 1
.

The second expression Ic corresponds to the current of the composition of two QCA updates.
Note the current is only additive at the extremal points p = 0 and p = 1 when ξ= 1.

The plot of the currents I and Ic in Eq. (20) are shown in Fig. 16 as functions of the reset-
rate p. One can see that the information currents for the reset-right swap and reset-left swap
maps are equal and opposite. The current saturates at the same value as the index at p = 1.
For the reset-right swap map, for 0 ≤ p < 1, Rank(ML) = Rank(MR) = 16, however, at p = 1,
Rank(ML) = 1 and Rank(MR) = 16. This gives witness to the fact that the aforementioned
index experiences a jump discontinuity from ind = 0 for 0 ≤ p < 1 to ind = 2 at p = 1.
Similar behavior occurs for the reset-left swap map but where at p = 1, Rank(ML) = 16
and Rank(MR) = 1 and ind = −2. A way to interpret this is that at p = 1 four linearly
independent operators are transported across a boundary in one direction, while only one, the
|0〉〈0| operator, is transported in the other direction.

3.3 Dephase-swap map

The dephase-swap map is similar to the reset-swap map, where the local reset gate is replaced
by a dephase gate, or equivalently exchanging local amplitude damping with phase damping.
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Figure 13: Computation of the current for the reset-swap QCA. The deriva-
tion follows the identities illustrated in the items below: (a) The prod-
ucts of two-site tensors, W †W = R†

1 · SWAP1,2 · SWAP1,2 · R1 = R†
1R1 and

W †W = R†
1 · SWAP1,2 · SWAP1,2 · R1 = R2R†

2, are separable because of the two
arising consecutive swap operations. (b) The summed product of the tensors
A, B are trivial as these are here given by a linear combination of Pauli operators
1
4

∑3
a,b=0(σ

a ⊗ σb)(σa ⊗ σb) = 41. (c) The cyclic property of the trace is used,

Tr
�

R†RR†R
�

= Tr
�

RR†RR†
�

.

The Kraus operators describing the dephase operation are:

K0 =

�p

1− p/2 0
0

p

1− p/2

�

,

K1 =

�p

p/2 0
0 −

p

p/2

�

, (21)

with p ∈ [0, 1]. For this map, when acting on the left site for 0 ≤ p < 1,
Rank(ML) = Rank(MR) = 16, while for p = 1, Rank(ML) = 4 and Rank(MR) = 16. Hence,
similar to the case for this reset-swap map, the index experiences a jump discontinuity from
ind= 0 for 0≤ p < 1 to ind= 1 at p = 1. Similar behavior occurs for the reset-left swap map
but where at p = 1, Rank(ML) = 16 and Rank(MR) = 4 and ind = −1. Like the reset-swap
map, at p = 1, in one direction four linearly independent operators are transported across a
boundary, but in contrast, two operators, |0〉〈0| and |1〉〈1|, are transported in the other direc-
tion.
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Figure 14: Invariance of the current under blocking for the coarse-grained reset-swap
QCA, shown by the tensor network description of the argument of I . Note the marked
terms N̂Bulk are the same for the numerator and the denominator and cancel out. The
terms on the very left and right sites of the supercell, {N̂ l

L , N̂ r
L , N̂ l

R, N̂ r
R} including the

prefactor, equal the expression for the argument of I associated with the non-coarse-
grained QCA, see right-hand site in Fig. 13.

The solution of I for the dephase-left swap map without and with composition (and block-
ing) of two QCA updates:

I = log

 

2
�1

2 p2 − p+ 1
�2

(p4 − 4p3 + 6p2 − 4p+ 2)

!

, (22a)

Ic = 2I + 2 log (ξ) , (22b)

with ξ=
(p4 − 4p3 + 5p2 − 2p+ 1)2

p8 − 8p7 + 28p6 − 56p5 + 69p4 − 52p3 + 22p2 − 4p+ 1
,

where the corresponding plots are presented in Fig. 16. Again, the current is only additive
at the points p = 0, 1. The information currents for the dephase-right swap and dephase-left
swap maps are equal and opposite, whereby the current saturates at the same value as the
index at p = 1.

3.4 Directed amplitude damping map

In this section, the information flow of a QCA is investigated whose local tensors do not sepa-
rate like W †W = W̃1 ⊗ ˜̃W2, where W̃1, ˜̃W2 are arbitrary tensors acting on the associated left or
the right site of a two-cell subsystem.
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Figure 15: Argument of the current for two updates of the reset-swap QCA, including
the blocking of two physical sites. The derivation is analogous to the derivation of
the current without composition in Fig. 13, but shows the swap operations in the first
step (which are in Fig. 13 omitted for clarity).
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Figure 16: Information current I for the reset-left-swap (blue), reset-right-swap
(cyan), dephase-left-swap (red), and dephase-right-swap (orange) map as a func-
tion of the reset- or dephase rate p, where dashed lines indicate the composition of
two time steps of the associated QCA.

The quantum channel is described by a directed amplitude damping map from the |01〉 to
the |00〉 state with probability p ∈ [0, 1]:

|00〉S |0〉E → |00〉S |0〉E ,

|01〉S |0〉E →
p

1− p |01〉S |0〉E +
p

p |00〉S |1〉E ,

|10〉S |0〉E → |10〉S |0〉E ,

|11〉S |0〉E → |11〉S |0〉E ,

where the subscripts S and E indicate the system or the environmental subsystem, respectively.
Tracing out the environment E results in a quantum channel acting on (solely) the system S
defined by the Kraus operators

K0 =







1 0 0 0
0

p

1− p 0 0
0 0 1 0
0 0 0 1






, K1 =







0
p

p 0 0
0 0 0 0
0 0 0 0
0 0 0 0






, (23)

that describe discrete-time dynamics and define the CPTP map in the considered vectorization
formalism.5

The channel could alternatively be generated by the continuous-time Lindblad dynamics
described by the Master equation

ρ(t +τ) = eLτ[ρ(t)] , (25)

which is defined by the Liouvillian

L[ρ] =
�

LρL† −
1
2

�

L† Lρ +ρL† L
�

�

, (26)

5The definition of the map in its vectorized form follows from Eq. (70) in [35]. The conjugation of the tensors
on the right-hand side of the tensor product can be omitted because {Kµ}µ=1,2 are in this case real.

V =
∑

µ=0,1

Kµ ⊗ K∗
µ

. (24)
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Figure 17: Information current I for a QCA that describes directed amplitude damp-
ing as labeled, where p is the amplitude damping rate. Dashed lines correspond to
the composition two time steps of the QCA.

with jump operator

L =

√

√

−
1
τ

ln(1− p) |00〉〈01| , (27)

where the time of the action of the channel is set to τ = 1 for simulating one corresponding
discrete time step.

Similarly, the map that describes directed amplitude damping in the opposite direction,
from the |10〉 to the |00〉 state, is:

|00〉S |0〉E → |00〉S |0〉E ,

|01〉S |0〉E → |01〉S |0〉E ,

|10〉S |0〉E →
p

1− p |10〉S |0〉E +
p

p |00〉S |1〉E ,

|11〉S |0〉E → |11〉S |0〉E ,

where Kraus operators are given by

K0 =







1 0 0 0
0 1 0 0
0 0

p

1− p 0
0 0 0 1






, K1 =







0 0
p

p 0
0 0 0 0
0 0 0 0
0 0 0 0






, (28)

with corresponding jump operator

L =

√

√

−
1
τ

ln(1− p) |00〉〈10| . (29)

The resulting current is in Fig. 17 plotted as a function of the damping rate p ∈ [0, 1].
As expected, the current increases monotonically with the damping rate, and no additivity
under composition is observed. Additionally, this is a first example we have described so far
where W †W is not separable, see proof in App. E. The current is therefore not invariant under
blocking.
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3.5 Asymmetric swap map

An asymmetric swap operation acting on two physical sites is investigated next. The asym-
metry is realized by considering a partial swap gate: the |01〉 state is mapped to the swapped
|10〉 state with a certain probability p01 ∈ [0, 1], where the latter is not necessarily equal to
the transition probability p10 ∈ [0, 1] for the reverse process from the |10〉 to the |01〉 state:

|00〉S |0〉E → |00〉S |0〉E ,

|01〉S |0〉E →
p

1− p01 |01〉S |0〉E +
p

p01 |10〉S |1〉E ,

|10〉S |0〉E →
p

1− p10 |10〉S |0〉E +
p

p10 |01〉S |1〉E ,

|11〉S |0〉E → |11〉S |0〉E .

By tracing out the environmental subsystem, a quantum channel acting on the system is de-
fined by the Kraus operators

K0 =









1 0 0 0
0

p

1− p01 0 0
0 0

p

1− p10 0
0 0 0 1









,

K1 =







0 0 0 0
0 0

p
p10 0

0
p

p01 0 0
0 0 0 0






. (30)

The continuous-time version of this map is generated by the Liouvillian

L[ρ] =
∑

k=1,2

�

L(k)ρL(k)
†
−

1
2

�

L(k)
†
L(k)ρ +ρL(k)

†
L(k)

�

�

, (31)

which includes two jump operators

L(1) =

√

√

−
1
τ

ln(1− p01) |10〉〈01| ,

L(2) =

√

√

−
1
τ

ln(1− p10) |01〉〈10| , (32)

that are each associated with the damping of the |01〉 or the |10〉 state, respectively.
In total, no information flow is observed, I = 0, despite the asymmetry of the mapping

when p01 ̸= p10. This meets expectations nonetheless because of the swap-symmetry of the
map. Namely, we observe: (1) conjugation of the map with a unitary can be applied w.l.o.g. as
it does not change the current, and (2) choosing to conjugate with the unitary X1X2, the jump
operators satisfy ∀ p01 ̸= p10:

SWAP1,2 (X1X2) L(1) (X1X2)SWAP1,2 = L(1) ,

SWAP1,2 (X1X2) L(2) (X1X2)SWAP1,2 = L(2) , (33)

which establishes the swap symmetry. The proof of the invariance of the current under the
swap operation is given in Fig. 9.
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Table 2: Overview of the properties of the integrable models A1, A2, B1, B2, and B3
presented in [37]. The CPTP maps have been formulated and categorized in [37]
according to whether they are unital, lower triangular and/or conserve Sz . Three
out of the five models are in this work shown to have a non-zero information current
I and notably this feature is independent of the unital property, the conservation of
Sz , and whether the superoperator is lower triangular.

A1 A2 B1 B2 B3

unital ✗ ✗ ✓ ✓ ✗

∆Sz = 0 ✗ ✗ ✓ ✓ ✓

lower triangular ✓ ✓ ✗ ✗ ✗

|I |> 0 ✓ ✓ ✗ ✓ ✗

3.6 Integrable non-unitary maps

Recently there has been an investigation of one-dimensional integrable non-unitary QCA [36,
37]. These are models where the open systems dynamics are of Lindblad type and the maps
generated by each Lindblad summand define a non-unitary map that is a solution to the Yang-
Baxter equation.

A classification of integrable Lindbladians are given in [36] and their corresponding CPTP
maps are presented in [37]. All their listed models (A1, A2, B1, B2, B3) are specified below
in terms of their CPTP map representation, and the corresponding information currents I are
inspected.

The models studied in 2 come in two classes. The models of A type have Lindblad jump
operators which are lower triangular with at most two elements below the diagonal in the
logical basis, and they are non-unital maps. Model A1 has one element below the diagonal,
and model A2 has two elements below the diagonal. The models of B type conserve total spin
projection along the ẑ axis, Sz = 1

2

∑

j Z j , and only models B1 and B2 are unital. A summary
of the properties of these models is give in Table 2.

3.6.1 Models A1 and A2

The CPTP maps of models A1 and A2 in [37] are investigated at first. Model A1 is in the Kraus
representation given by the two Kraus operators

K0 = e−u/2









1 0 0 0
0 e−u/2 0 0
0 0 eu/2 0
0 0 0 1









, (34a)

K1 =
p

1− e−u









1 0 0 0
0 e−u/2 0 0
0 −ieiφ 0 0
0 0 0 1









, (34b)

where 0 ≤ u ∈ R and φ ∈ R represents an arbitrary phase factor. Due to the phase factor in
K1 this is the first map we encounter that includes complex numbers.
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Figure 18: Information current I corresponding to the integrable channels given in
models A1 (blue) and A2 (red) in [37], see Kraus operators in Eqs. (34) and (35),
respectively. Note that in calculations of map A1, the choice of the phase factorφ ∈ R
does not change I , while for model A2, the current does analogously turn out to be
independent of the choice of the sign of τ = ±1. The current Ic associated with the
composition of two time steps of the corresponding QCA is represented by dashed
lines in the same color as the model.

Model A2 is defined by the Kraus operators

K0 = e−u









1 0 0 0
0 e−u/2 0 0
0 −τ(eu − 1) eu/2 0
0 0 0 eu









, (35a)

K1 =
p

eu − 1 e−u









1 0 0 0
0 0 0 0
0 τ eu/2 0

eu/2 0 0 0









, (35b)

where τ= ±1.
The associated currents I are plotted as a function of u≥ 0 in Fig. 18. One can see that for

both maps |I | is monotonically increasing with u and saturates at about u = 3 to a constant
value: I = −1.68 and Ic = −3.61 for model A1, and I = 1.50 and Ic = 3.49 for model A2.

3.6.2 Model B1

The CPTP map of model B1 in [37] is expressed by

K0 =

√

√ 1
u+ 1

14×4 , K1 =
s

u
u+ 1







1 0 0 0
0 0 τ 0
0 τ 0 0
0 0 0 κτ






, (36)

where u≥ 0, τ,κ= ±1, and 14×4 represents the identity channel acting on two qubits.
Because of the swap symmetry of this channel (36), the current is vanishing, I = 0; see

proof in Sec. 2.4.5.
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Figure 19: Information current I for the integrable CPTP map given in model B2
in [37]. The map is given by the Kraus operators in Eq. (37), where for the pre-
sented calculations the parameters v = 0.1 and φ = 0 are chosen. Due to the above
condition u≥ v, the plot starts at u= v = 0.1.

3.6.3 Model B2

Model B2 is defined by the Kraus operators

K0 =
Æ

β G(u− v), K1 =
p
αG(u+ v) (Z ⊗12×2) , (37)

where

G(u) =
1

cosh(u)









cosh(u) 0 0 0
0 1 −i sinh(u)eiφ 0
0 −i sinh(u)e−iφ 1 0
0 0 0 cosh(u)









, (38)

φ ∈ [0, 2π) is an arbitrary phase, and 12×2 labels the identity channel acting on one qubit.
The normalization constants

p

β and
p
α of each, K0 or K1, respectively, are given by

β =
cosh(u− v) cosh(ξ−η)

cosh(u− v) cosh(ξ−η) + cosh(u+ v) sinh(ξ−η)
, (39)

and α= 1− β under the conditions that u≥ v and

sinh(2ξ)
sinh(2u)

=
sinh(2η)
sinh(2v)

. (40)

The associated current is shown below in Fig. 19.
Note that I = 0 if u= v = 0.1 due to the unitarity of the map is in this case. For all u≥ v, I

is decreasing (monotonically for small ξ) and saturates to a constant value for all about u≥ 3:
I = −0.095 for ξ = 0.1, I = −0.97 for ξ = 1.25, and I = −0.87 for ξ = 10. The constant
ξ= 1.25 has been chosen because the absolute value of the current is for this value maximum,
given v = 0.1.

For u→∞ the current is observed to be vanishing due to the unitarity of the map in this
limit. If one were to set ξ= 0, then one would find with Eq. (40) that ξ= η, leading to β = 1
with Eq. (39) and α= 1−β = 0, such that K0 = G(u− v) and K1 = 0 according to Eq. (37) —
the channel is therefore unitary and I vanishes for ξ= 0.

It is notable that the computational complexity of calculating the current for this model
is drastically increased in comparison to the previously presented models. Here, the ranks
of the considered local tensors are equal to 16 for one time step, or 162 = 256 for two
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times steps, in comparison to 4 or 16, respectively, in models A1 and A2. Multiplying the
rank, which is the dimension of the virtual degree of freedom of the MPO tensors, with the
dimension of the (vectorized) physical degree of freedom, 42 = 16 for two lattice sites or
44 = 256 for four lattice sites, one obtains the size of the matrices ML and MR: (256× 256)
for a single time step, or (65536 × 65536), i.e. squared, for two composed updates of the
associated QCA. Because the calculation of the information current I involves more complex
matrix transformations that are computationally more costly for matrices of the latter size,
additional plots for the current Ic of two QCA time steps are not performed here. However,
the value Ic(u = 5, v = 0.1,ξ = 1.25,φ = 0) = −1.949669 has been calculated, which, inter-
estingly, is very close (up to an error of 10−5) to twice the current without the composition:
2I(u = 5, v = 0.1,ξ = 1.25,φ = 0) = −1.949698.6 Whether this near additivity occurs for
other parameter regimes would require further study.

3.6.4 Model B3

Model B3 is given by the Kraus operators

K0 =
1
η









η 0 0 0
0 1 −i(1− γ) sinh(α)eiφ 0
0 −i(1+ γ) sinh(α)e−iφ 1 0
0 0 0 η









, (41a)

K1 =
ξ

η









0 0 0 0
0 −eα(1− γ) i(1− γ)eiφ 0
0 i(1+ γ)e−iφ eα(1+ γ) 0
0 0 0 0









, (41b)

where γ≥0, α=(γ2+1)u/2, η=γ sinh(α)+cosh(α), and ξ=
p

γ sinh(α)/[(1+ γ2) cosh(α)+2γ sinh(α)].
The corresponding current has been found to be vanishing for all u≥ 0 and γ≥ 0.

4 Conclusion

We have introduced a measure of information flow for open quantum system dynamics which
captures features that are not obtained from the unitary case. Considering the MPO repre-
sentation of QCA, the information current has been constructed using the left or right parti-
tionings of the local tensors of the MPO, similar to the description of the index theory using
MPUs [28, 29]. While the prior studied index can be expressed in terms of the difference of
Rényi-0 entropies of the singular values associated with the left and right partitionings of these
tensors, the current, is defined by the difference in Rényi-2 entropies of the corresponding sin-
gular values.

The current is locally computable, vanishing for finite-depth unitary circuits and SWAP-
symmetric QCA, and is continuous in the noise parameters defining the maps. It has been
shown to exhibit the same value as the index for the shift map, the standard example of a non-
local unitary QCA. In contrast to the index, the information current is not generically invariant
under blocking of lattice sites, nor is it additive under composition of QCA updates. Failure to
be additive under composition is not surprising given the nonlinearity of the function we are
evaluating. The general lack of invariance under blocking indicates that bulk properties of the
(blocked) supercells can change the information flow at the edges of the cell, though there is

6The scaling factor could be a result of I not being fully saturated for u = 5, see plot in Fig. 19, but where we
leave this question for further research.
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a large class of open systems dynamics we have identified (when W †W is factorizable) where
the information current is invariant under blocking.

A particularly interesting use case for our measure are the integrable models in Sec. 3.6,
which have been shown to exhibit a particle flow in certain cases; see Eq. (20) in [36]. As
the information current I is independent of the type of particle and the choice of basis, our
measure provides a generalization to the notion of a particle flow in [36].

One might ask whether the information current for non-unitary QCA has a thermodynamic
interpretation wherein a spatially periodic heat exchange between the environment and the
system generates a net information current. For example, in the case of the reset-swap map, by
Landauer’s principle, the reset map necessarily involves a heat exchange of kB T ln 2 between
every second site and the environment, where kB is the Boltzmann constant and T is the
temperature of the environment. We leave this matter to future work.

Lastly, it is noted that the implementation of non-unitary QCA can be realized using lat-
tices of ultracold atoms excited to Rydberg states [38]. Radius one rules in this implementation
can be used for a variety of tasks including dissipative entangled resource state preparation
and the study of non-equilibrium phase transitions [39–41]. The information current could
be indirectly measured in such a setup by performing process tomography using a quorum
of properly prepared input states and measurements on output states of spins in neighbor-
hood of the QCA rule. This would enable determination of the positive Hermitian operators
σβ = M†

β
Mβ/Tr

�

M†
β

Mβ
�

∀β ∈ {L, R} in Eq. (3) from which the current could be calculated.
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A Singular values of ML and MR of local unitary QCA

It is proved that the singular values of ML an MR are equal for local unitary QCA. The contrac-
tions giving the traces of the second moments of M†

L ML and M†
R MR are shown in Fig. 6. If the

QCA rule is unitary, then W †W = 1, and as is apparent from the diagram,

Tr
�

�

M†
L ML

�2�
= Tr





� χ
∑

k=1

A†
kAk

�2


Tr





� χ
∑

k=1

BkB†
k

�2


 , (A.1a)

Tr
�

�

M†
R M

R

�2�
= Tr





� χ
∑

k=1

AkA†
k

�2


Tr





� χ
∑

k=1

B†
kBk

�2


 . (A.1b)

For unitary QCA, the tensor V is also unitary. From Eq. (9), the local tensors are

Bk =
d2
∑

r=1

Æ

Dk,kYr,kÔr , Ak =
d2
∑

s=1

Æ

Dk,kX †
k,sÔs . (A.2)
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Using the fact that V †V = 1⊗1 we have

1⊗1=
χ
∑

k,k′=1

B†
kBk′ ⊗ A†

kAk′

=
χ
∑

k,k′=1

Dk,kDk′,k′

� d2
∑

r,r ′=1

Y ∗r,kYr ′,k′O
†
r Or ′ ⊗

d2
∑

s,s′=1

(X †)∗k,sX
†
k′,s′O

†
s Os′

�

. (A.3)

Taking a partial trace over the second factor, i.e. on Hilbert space H2 ×H∗2, gives

d21=
χ
∑

k,k′=1

Dk,kDk′,k′

d2
∑

r,r ′=1

Y ∗r,kYr ′,k′O
†
r Or ′

d2
∑

s,s′=1

(X †)∗k,sX
†
k′,s′ Tr

�

O†
s Os′

�

=
χ
∑

k,k′=1

Dk,kDk′,k′

d2
∑

r,r ′=1

Y ∗r,kYr ′,k′O
†
r Or ′

d2
∑

s,s′=1

X †
k′,s′Xs,kδs,s′

=
χ
∑

k=1

D2
k,k

d2
∑

r,r ′=1

Y ∗r,kYr ′,kO†
r Or ′

=
χ
∑

k=1

Dk,kB†
kBk . (A.4)

Taking a second trace gives

χ
∑

k=1

D2
k,k = d4 . (A.5)

Similarly, taking the partial trace on the first factor, i.e. on Hilbert space H1 ×H∗1, gives

d21=
χ
∑

k=1

Dk,kA†
kAk . (A.6)

An analogous argument using V V † = 1 shows that

χ
∑

k=1

Dk,kBkB†
k =

χ
∑

k=1

Dk,kAkA†
k = d21 . (A.7)

Additionally,

Tr

� χ
∑

k=1

A†
kAk

�

=
χ
∑

k=1

d2
∑

s,s′=1

Dk,k(X
†)∗k,sX

†
k,s′ Tr

�

Ô†
s Ôs′

�

=
χ
∑

k=1

Dk,k

d2
∑

s=1

X †
k,sXs,k

= Tr[D] , (A.8)

and similarly,

Tr

� χ
∑

k=1

B†
kBk

�

= Tr

� χ
∑

k=1

AkA†
k

�

= Tr

� χ
∑

k=1

BkB†
k

�

= Tr[D] . (A.9)
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Now we can rewrite Eq. (A.3) based on V †V = 1⊗1 as

χ
∑

k,k′=1

B†
kBk′ ⊗ A†

kAk′ =
χ
∑

k=1

Dk,k

d2
B†

kBk ⊗
χ
∑

k=1

Dk,k

d2
A†

kAk = 1⊗1 . (A.10)

This can be viewed as a rank one operator singular value decomposition of the identity. We
could have just as well defined local tensors B̃k =

p

Dk,kBk, Ãk = Ak/
p

Dk,k, which also has a
rank one singular value decomposition

χ
∑

k,k′=1

B̃†
k B̃k′ ⊗ Ã†

kÃk′ =
χ
∑

k=1

D2
k,k

d4
B†

kBk ⊗
χ
∑

k=1

A†
kAk =

1
c
1⊗ c1 , (A.11)

where the constant c = Tr[D]/d2 is determined by Eq. (A.8). This implies
∑χ

k=1 A†
kAk = c1.

A similar result is found when weighting the local tensors the other way B̃k = Bk/
p

Dk,k,
Ãk = Ak

p

Dk,k implying
∑χ

k=1 B†
kBk = c1. Using the same argument but with V V † = 1⊗1 we

find
χ
∑

k=1

AkA†
k =

χ
∑

k=1

BkB†
k =

χ
∑

k=1

A†
kAk =

χ
∑

k=1

B†
kBk = c1 . (A.12)

Returning to Eq. (A.1), for local unitary QCA, the relevant terms are

Tr
�

(M†
L ML)

m
�

= Tr

�

(
∑

k

A†
kAk)

m

�

Tr

�

(
∑

k

BkB†
k)

m

�

= Tr[(c1)m]Tr[(c1)m]

= d4(Tr[D]/d2)2m

= Tr
�

(M†
R MR)

m
�

. (A.13)

This fact assures that the singular values of ML and MR are equal. The argument follows
from the trace Cayley Hamilton theorem [42] which states that for a complex n× n matrix A,
the characteristic function can be written as

χA(λ) = det(λ1− A)

= λn + P1λ
n−1 + P2λ

n−2 + · · ·+ Pn−1λ+ Pn , (A.14)

where

Pk =
∑

(p1,p2,...,pk)∈Sk

k
∏

m=1

1
pm!

�

−Tr[Am]
m

�pm

, (A.15)

and Sk = {(p1, p2, . . . , pk)} is the set of non-negative integer solutions to the equation
∑k

r=1 rpr = k. When Tr
�

(M†
L ML)k

�

= Tr
�

(M†
R MR)k

�

∀ k ∈ N, then the singular values of
M†

L ML and M†
R MR must be equal. These singular values are the squares of the singular values

of ML , and MR, which themselves are non negative, hence the singular values of ML and MR
are equal.

B Reformulation of the current in terms of the Choi-Jamiolkowski
state

It is shown that the information current can be rewritten in terms of the difference in Rényi-2
entropies of the inner product of the Choi-Jamiolkowski state (CJS) associated with M†

L ML and
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Figure 20: Tensor network description of (a) M†
L ML , and (b)

M†
R MR, both rewritten in terms of the non-vectorized operators M̃β ;

M†
β

Mβ =
�

∑

µ M̃†
βµ
⊗ M̃ T

βµ

�
�

∑

ν M̃βν ⊗ M̃∗
βν

�

. The subscript β ∈ {L, R} in the

tensor labels is omitted for clarity, as the associated left or right partitioning is given
by the regrouping of virtual indices as defined in Fig. 3.

M†
R MR, respectively. We introduce {M̃βµ}µ, β ∈ {L, R}, as the set of (left or right partitioned)

non-vectorized local tensor of the MPO corresponding to Mβ =
∑

µ M̃βµ ⊗ M̃∗
βµ

, see Fig. 20.

(Note that repeated indices are summed over, here and in subsequent figures in this section.)
Given the map

ϵβ(ρ) =
∑

µ,ν

�

M̃†
βµ

M̃βν

�

ρ
�

M̃†
βν

M̃βµ
�

, (B.1)

the CJS is defined by
ρβ =

�

11,2,3 ⊗ ϵβ4,5,6

�

�

ρ|Φ+〉
�

, (B.2)

acting on
ρ|Φ+〉 =

�

�Φ+d
�


Φ+d

�

�

1,6 ⊗
�

�Φ+d
�


Φ+d

�

�

2,5 ⊗
�

�Φ+D
�


Φ+D

�

�

3,4 , (B.3)

where
�

�Φ+d

�

= 1p
d

∑d−1
j=0 | j〉| j〉 are maximally entangled quantum states of two d-dimensional

qudits; see Fig. 21.
�

�Φ+2
�

would represent a Bell pair of two qubits in case of d = 2. Considering
a QCA with a two-cell neighborhood, the two qudits on sites 5 and 6 represent the physical
input states of the QCA on which the MPO, or here the map ϵ, acts on. They are d-dimensional
and are each maximally entangled with the qudit at site 1 or 2, respectively. Since the local
tensors of the MPO have a virtual degree of freedom of bond dimension D, see Fig. 3, we have
introduced the D-dimensional qudit pair

�

�Φ+D
�


Φ+D

�

�

3,4 on which the virtual degree of freedom
of ϵβ acts on.

Using the Rényi-2 entropy S2(ρ) = − log Tr
�

ρ2
�

and the identity Tr
�

ρ2
�

= 〈ρ|ρ〉, where
|ρ〉 is the vectorized state of ρ, see Fig. 22, the current in Eq. (5) can then be rewritten in
terms of the inner product of the CJS in Eq. (B.2):

I =
1
2

log

�

Tr
�

ρ2
L

�

Tr
�

ρ2
R

�

�

=
1
2

log
�〈ρL|ρL〉
〈ρR|ρR〉

�

, (B.4)

as shown in Fig. 23. State tomography of
�

�ρβ
�

could then determine the current.

C Proof of the invariance of I under local unitary conjugation of
the gates V and W

It is derived that I is invariant under conjugation of the local gates V and W with (the same)
one-site unitaries U; writing I (V, W ) = I ((U† ⊗ U†)V (U ⊗ U), (U† ⊗ U†)W (U ⊗ U)).
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Figure 21: Tensor network description of the CJS associated with the quantum chan-
nels (a) ϵL(ρ) and (b) ϵR(ρ) shown in Eq. (B.1). d is the physical dimension of each
input state, while D represents the bond dimension of the local MPO tensors M̃µ.

The invariance follows straight forward from the definition of a unitary matrix, UU† = 1,
and the cyclic property of the trace:

Tr
�

�

M†
L ML

�2�
= Tr

χ
∑

a,b,c,d=1

(U ⊗ U)†
�

A†
a ⊗ B†

b

�

(U ⊗ U)(U ⊗ U)† W †W (U ⊗ U)

× (U ⊗ U)† (Aa ⊗ Bc) (U ⊗ U)(U ⊗ U)†
�

A†
d ⊗ B†

c

�

(U ⊗ U)

× (U ⊗ U)† W †W (U ⊗ U)(U ⊗ U)† (Ad ⊗ Bb) (U ⊗ U)

= Tr
χ
∑

a,b,c,d=1

�

A†
a ⊗ B†

b

�

W †W (Aa ⊗ Bc)
�

A†
d ⊗ B†

c

�

W †W (Ad ⊗ Bb) , (C.1)

and analogously for Tr
�

�

M†
R M

R

�2�
.

D Derivation of the current for the reset-swap QCA

The current of the reset-swap QCA is derived as a function of the reset gate R and the set of
Pauli operators {σa}3a=0. It is further shown that the current for this map does not change if
one would add a local unitary U; i.e. I is invariant under “transformations” R→ RU , R→ UR,
or R→ U†RU .
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Figure 22: Vectorized version of the CJS of (a) M†
L ML and (b) M†

R MR.

First, the traces of the second moments of
�

M†
L,RML,R

�

are simplified as illustrated in
Fig. 24: the left-hand sites in subfigures (a) and (b) are

Tr
�

�

M†
L ML

�2�
=

1
28

Tr
�

3
∑

a,b,c,d,e, f ,g,h=0

R†
2 (σ

a ⊗σb)1 ⊗ (σc ⊗σd)2 R†
1

× R1 (σ
a ⊗σb)1 ⊗ (σe ⊗σ f )2 R2R†

2 (σ
h ⊗σh)1 ⊗ (σe ⊗σ f )2 R†

1

× R1 (σ
g ⊗σh)1 ⊗ (σc ⊗σd)2 R2

�

, (D.1a)

Tr
�

�

M†
R MR

�2�
=

1
28

Tr
�

3
∑

a,b,c,d,e, f ,g,h=0

R†
2 (σ

a ⊗σb)1 ⊗ (σc ⊗σd)2 R†
1

× R1 (σ
g ⊗σh)1 ⊗ (σc ⊗σd)2 R2R†

2 (σ
g ⊗σh)1 ⊗ (σe ⊗σ f )2 R†

1

× R1 (σ
a ⊗σb)1 ⊗ (σe ⊗σ f )2 R2

�

, (D.1b)

respectively. Separating the operators acting on both, site 1 and site 2, leads to the expressions
on the right-hand site of Fig. 24:

Tr
�

�

M†
L ML

�2�
=

1
28

Tr
�

3
∑

a,b,g,h=0

(σg ⊗σh)(σa ⊗σb)R†R(σa ⊗σb)(σg ⊗σh)R†R
�

1

× Tr
�

3
∑

c,d,e, f=0

(σc ⊗σd)(σe ⊗σ f )RR†(σe ⊗σ f )(σc ⊗σd)RR†
�

2
, (D.2a)

Tr
�

�

M†
R MR

�2�
=

1
28

Tr
�

3
∑

a,b=0

(σa ⊗σb)(σa ⊗σb)R†R
3
∑

g,h=0

(σg ⊗σh)(σg ⊗σh)R†R
�

1

× Tr
�

3
∑

c,d=0

(σc ⊗σd)(σc ⊗σd)RR†
3
∑

e, f=0

(σe ⊗σ f )(σe ⊗σ f )RR†
�

2

= 28 Tr
�

R†RR†R
�

1 Tr
�

RR†RR†
�

2

= 28
�

Tr
�

R†RR†R
��2

, (D.2b)

where the subscripts 1 and 2 indicate the site all operators in the arguments of the respec-
tive traces are acting on. The last two simplifications follow from the identities presented in
Fig. 13(b) and (c).
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Figure 23: Argument of the current in Fig. 5 rewritten in terms of the inner products
of the CJS of M†

L ML and M†
R MR, respectively, shown in Fig. 21 and 22.

The argument of the current is then in total:

Tr
�

�

M†
L ML

�2�

Tr
�

�

M†
R MR

�2� =
1

(Tr[R†RR†R])2
Tr
�

3
∑

a,b,g,h=0

(σg ⊗σh)(σa ⊗σb)R†R(σa ⊗σb)(σg ⊗σh)R†R
�

× Tr
�

3
∑

c,d,e, f=0

(σc ⊗σd)(σe ⊗σ f )RR†(σe ⊗σ f )(σc ⊗σd)RR†
�

.

(D.3)
This expression does not change under composition with a unitary U , where UU† = 1,

because the three terms

(i) Tr
�

R†RR†R
�

,

(ii)
3
∑

a,b=0

(σa ⊗σb)R†R(σa ⊗σb) ,

(iii)
3
∑

a,b=0

(σa ⊗σb)RR†(σa ⊗σb) ,

are invariant under the substitutions R → RU , R → UR, and R → URU . The proof is shown
below, where for each substitution the invariance of all three terms in (i) to (iii) is listed.
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Figure 24: Tensor network description of (a) Tr
�

�

M†
L ML

�2�
, (b) Tr

�

�

M†
R MR

�2�
, with

added summation indices (a, b), (c, d), (e, f ), (g, h) used for the derivation of the cur-
rent of the reset-swap QCA; see Eqs. (D.1) and (D.2).
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• R→ RU ,

(i) Tr
�

R†RR†R
�

= Tr
�

RR†RR†
�

→ Tr
�

(RU)(U†R†)(RU)(U†R†)
�

= Tr
�

R†RR†R
�

,

(ii)
3
∑

a,b=0

(σa ⊗σb)R†R(σa ⊗σb)→
3
∑

a,b=0

(σa ⊗σb)(U†R†)(RU)(σa ⊗σb)

=
3
∑

a,b=0

(σa ⊗σb)R†R(σa ⊗σb) ,

(iii) RR†→ (RU)(U†R†) = RR† . (D.4)

• R→ UR,

(i) Tr
�

R†RR†R
�

→ Tr
�

(R†U†)(UR)(R†U†)(UR)
�

= Tr
�

R†RR†R
�

,

(ii) R†R→ (R†U†)(UR) = R†R ,

(iii)
3
∑

a,b=0

(σa ⊗σb)RR†(σa ⊗σb)→
3
∑

a,b=0

(σa ⊗σb)(UR)(R†U†)(σa ⊗σb)

=
3
∑

a,b=0

(σa ⊗σb)RR†(σa ⊗σb) . (D.5)

• R→ URU ,

(i) Tr
�

R†RR†R
�

→ Tr
�

(U†R†U†)(URU)(U†R†U†)(URU)
�

= Tr
�

R†RR†R
�

,

(ii)
3
∑

a,b=0

(σa ⊗σb)R†R(σa ⊗σb)→
3
∑

a,b=0

(σa ⊗σb)(U†R†U†)(URU)(σa ⊗σb)

=
3
∑

a,b=0

(σa ⊗σb)U†(R†R)U(σa ⊗σb)

=
3
∑

a,b=0

(σa ⊗σb)R†R(σa ⊗σb) ,

(iii)
3
∑

a,b=0

(σa ⊗σb)RR†(σa ⊗σb)→
3
∑

a,b=0

(σa ⊗σb)(U†R†U†)(URU)(σa ⊗σb)

=
3
∑

a,b=0

(σa ⊗σb)U†(R†R)U(σa ⊗σb)

=
3
∑

a,b=0

(σa ⊗σb)R†R(σa ⊗σb) . (D.6)

Note that in Eqs. (i) the unitary condition is used, U†U = 1 = UU†, while in Eqs. (ii) the
unitary U does not change the result, because it acts as a change of basis on the constituent
evolution operators {σa}3a=0 of the swap operators.

The current is therefore invariant under composition with a unitary finite-depth circuit,
and independent of the ordering of the composition with the reset gate.

Nonetheless, an additional local unitary gate would change the current if the QCA is coarse-
grained and composed of two or more single time steps. The proof is captured by below
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arguments of the current under composition in Eqs. (D.7) to (D.9), and pictured in Fig. 25.

Tr
�

�

(M n)⊗
n�†

L

�

(M n)⊗
n�

L

�

= Tr
�

3
∑

a,b,g,h=0

(σg ⊗σh)(σa ⊗σb)
�

U†R†
�2n−1

× (RU)2n−1(σa ⊗σb)(σg ⊗σh)
�

U†R†
�2n−1

(RU)2n−1
�

1

× Tr
�

3
∑

c,d,e, f=0

(σc ⊗σd)(σe ⊗σ f ) (RU)2n−1

×
�

U†R†
�2n−1

(σe ⊗σ f )(σc ⊗σd) (RU)2n−1
�

U†R†
�2n−1 �

2

× Tr
h
�

(M n−1)⊗
n−1
�†

L

�

(M n−1)⊗
n−1
�

L

i

, (D.7)

Tr
�

�

(M n)⊗
n�†

R

�

(M n)⊗
n�

R

�

=
�

Tr
�

(U†R†)2n−1(RU)2n−1
��2

Tr
h
�

(M n−1)⊗
n−1
�†

R

�

(M n−1)⊗
n−1
�

R

i

,

(D.8)

Tr
�

�

(M n)⊗
n�†

L

�

(M n)⊗
n�

L

�

Tr
�

((M n)⊗n)†
R
((M n)⊗n)

R

� =
1

(Tr [(U†R†)2n−1(RU)2n−1])2

× Tr
�

3
∑

a,b,g,h=0

(σg ⊗σh)(σa ⊗σb)
�

U†R†
�2n−1

(RU)2n−1

× (σa ⊗σb)(σg ⊗σh)
�

U†R†
�2n−1

(RU)2n−1
�

1

× Tr
�

3
∑

c,d,e, f=0

(σc ⊗σd)(σe ⊗σ f ) (RU)2n−1(U†R†)2n−1

× (σe ⊗σ f )(σc ⊗σd) (RU)2n−1
�

U†R†
�2n−1 �

2

×
Tr
h
�

(M n−1)⊗
n−1
�†

L

�

(M n−1)⊗
n−1
�

L

i

Tr
�

�

(M n−1)⊗n−1
�†

R

�

(M n−1)⊗n−1
�

R

� . (D.9)

E Derivation of W †W for the directed amplitude damping map

It is shown that for the directed amplitude damping channel discussed in Sec. 3.4, W †W is not
separable when p > 0.

The map is defined by the Kraus operators

K0 =







1 0 0 0
0 1 0 0
0 0

p

1− p 0
0 0 0 1






, K1 =







0 0
p

p 0
0 0 0 0
0 0 0 0
0 0 0 0






, (E.1)
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Figure 25: Tensor network description of Tr
�

�

(M n)⊗
n�†

L

�

(M n)⊗
n�

L

�

in Eq. (D.9) for
the unitary-reset-swap QCA (SWAP1,2 R1 U1) under composition of n = 3 time steps.
The same notation as is Figs. 12, and 13 is used, where the brown tensors represent
the unitary superoperator, (U ⊗ U∗).

which determine the vectorized transfer matrix:

W = K0 ⊗ K0 + K1 ⊗ K1

= (|0〉〈0| ⊗ |0〉〈0|+ |0〉〈0| ⊗ |1〉〈1|+
p

1− p |1〉〈1| ⊗ |0〉〈0|+ |1〉〈1| ⊗ |1〉〈1|)

⊗ (|0〉〈0| ⊗ |0〉〈0|+ |0〉〈0| ⊗ |1〉〈1|+
p

1− p |1〉〈1| ⊗ |0〉〈0|+ |1〉〈1| ⊗ |1〉〈1|)
+ p (|0〉〈1| ⊗ |0〉〈0|)⊗ (|0〉〈1| ⊗ |0〉〈0|) . (E.2)

Applying the basis-change transformation from Eq. (11),

W → (1⊗ Σ̂⊗1) W (1⊗ Σ̂⊗1) , (E.3)

rearranges the order of subsystems in the tensor product, such that the operators can be com-
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bined which act on the same physical site, indicated by subscripts 1 and 2:

W = |00〉〈00|1 ⊗12 + |01〉〈01|1 ⊗ (
p

1− p |00〉〈00|

+ |01〉〈01|+
p

1− p |10〉〈10|+ |11〉〈11|)2
+ |10〉〈10|1 ⊗ (

p

1− p |00〉〈00|+
p

1− p |01〉〈01|
+ |10〉〈10|+ |11〉〈11|)2 + |11〉〈11|1 ⊗ ((1− p) |00〉〈00|

+
p

1− p |01〉〈01| +
p

1− p |10〉〈10|+ |11〉〈11|)2
+ p |00〉〈11|1 ⊗ |00〉〈00|2 . (E.4)

Now one can write

W †W =
16
∑

r,s=1

cr,sP(r)1 ⊗ P(s)2 , (E.5)

where {P(a)}16
a=1 is an orthonormal basis for two qubits. By explicit calculation one finds that

for p > 0, the matrix c has four singular values whereas for p = 0 there is only one as expected
for the unitary case. Hence W †W is not separable for p > 0.
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