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Abstract

We identify the microstates of the non-supersymmetric, asymptotically flat 2d black hole
in the dual ¢ = 1 matrix quantum mechanics (MQM). We calculate the partition function
of the theory using Hamiltonian methods and reproduce one of two conflicting results
found by Kazakov and Tseytlin. We find the entropy by counting states and the energy
by approximately solving the Schrodinger equation. The dominant contribution to the
partition function in the double-scaling limit is a novel bound state that can be consid-
ered an explicit dual of the black hole microstates. This bound state is long-lived and
evaporates slowly, exactly like a black hole in asymptotically flat space.
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1 Introduction

The fact that black holes have entropy has been one of the most significant discoveries in
the study of quantum gravity. It is a piece of UV physics that we can observe in the IR. In
the 40 years since this discovery, however, there are vanishingly few examples in which we
understand the microstates that make up this entropy. Examples in which they are understood
in the bulk description are extremal maximally supersymmetric black holes — see [1] and its
many follow-ups. There are also a larger class of examples where there is some handle in a
holographic description, e.g. BTZ black holes (via the Cardy formula) [2], theories that admit
quantum mechanical descriptions [3-5], 4d #/ = 4 SYM [6-8], 3d holographic theories [9],
etc. Even in this second list, many examples are supersymmetric and extremal.

This paper explores one of the examples from the second list. This is a two-dimensional
black hole [10] with no supersymmetry and at finite temperature; however, this black hole
is non-standard in that the physics in this background is ‘stringy’ and its temperature cannot
be varied. A lot is known about this solution — this two-dimensional black hole is dual to a
one-dimensional matrix quantum mechanics (MQM) system. The finite-temperature partition
function of this MQM has been calculated [11,12] in the path integral formulation, and two
candidates for the entropy and energy were found based on this path integral result in [13].
We review the salient features of this model in §2.

In this paper, we aim to go a step further than reproducing the Euclidean partition function
in this example — from a mere reproduction of the entropy (a count of the microstates) to a
list of the microstates. By this, we mean the following. The partition function can of course
be reproduced from a trace over a Hilbert space,’

Zyou(B) =tre PH = Z e PE. D

E espec(H)

!t should be noted that the relevant ensemble in our case is grand canonical rather than canonical, and so (1)
and (2) are only schematic.
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This partition sum, in the thermodynamic limit, is typically dominated by states of approxi-
mately equal energy and can be written in the thermodynamic form,

Znom(B) ~ SEePE = tr(y=F) e PE, (2)

where S(E) is the entropy of the black hole. We have also rewritten this as a trace over a
restricted Hilbert space. ‘Listing’ the microstates of the black hole is tantamount to describing
this restricted Hilbert space in a way that does not amount to “all states with the right energy
and other charges.” There is also a subtlety that these are really microstates of black hole
spacetimes rather than black holes themselves; as we will see, we must be careful to disam-
biguate the microstates of the black hole from states of exterior degrees of freedom. It should
be noted that by this standard, only in some extremal supersymmetric cases like [1] (and its
follow-ups) have the microstates been listed; in the .#" = 4 case, this has been done in [14].

One caveat is that the 2d black hole is in a phase where the canonical ensemble is not
well-defined, and so we have to use a grand-canonical ensemble. In higher-dimensional black
holes where the canonical ensemble is well-defined the mass of the black hole is specified by
the boundary temperature; in the case we consider, the temperature is fixed but the mass is
specified by the chemical potential.

In this paper, we describe this restricted Hilbert space in the MQM system. The MQM has
a PU(N) global symmetry, and the restricted Hilbert space turns out to be a certain set of
non-singlet irreps of this symmetry, as first pointed out in [15] (see [16-18] for other explicit
investigations of the importance of these non-singlet irreps). The set of irreps is determined by
the mass of the black hole which, as just mentioned, is related to the chemical potential. As we
show in §3, the dimension of this restricted Hilbert space matches one of the two candidates
for the entropy found in [13]. However, we also find that this entropy is the count of IR degrees
of freedom that decouple from bulk dynamics in the double-scaling limit. We argue that this
decoupling can be thought of as a ‘renormalisation’ in the double-scaling limit in §5.1, and
provide a (speculative) pictorial description in §6.3. We thus argue that the actual entropy of
the black hole is a value much smaller than found in [13].

To actually describe the microstates of the black hole, we have to find the state of the
degrees of freedom that do participate in the bulk dynamics. We analyse the Schrodinger
equation to find this state, and find explicitly the state that dominates the grand canonical
partition function. It is a novel bound state that we call the ‘hole-in-the-world’ solution, and
we discuss this in §4.2. We argue that the properties of this state within quantum mechanics
match properties expected from the bulk dual in §6.1.

The plan of the paper is as follows:

1. In §2, we review the duality between the black hole and the MQM system and what is
known about the free energy of the black hole.

2. In §3, we show that the degeneracy due to the PU(N) symmetry of the MQM exactly
reproduces one of the two candidates for the entropy found in [13].

3. The main section of our paper, §4, reproduces the energetic term in the partition function
corresponding to the entropy we find in §3.

In §4.2, we identify an interesting state, which we call the ‘hole-in-the-world’ state, with
the right energy. We argue that it dominates the fixed-charge partition function in the
double-scaling limit in §4.3.

4. The contents of §5 deal with the grand canonical partition function calculated in [11,12].
In §5.1, we address whether the PU(N) symmetry should be gauged or not, and argue
that the passage from the ungauged to the gauged quantum mechanics can be thought
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Figure 1: The cigar background.

of as renormalisation in the double-scaling limit. Finally, we comment on the entropy
of the black hole in §5.2, and argue that its entropy is much smaller than that found
in [13].

5. We conclude with some speculations and discussion in §6. After a broad overview of
our results and their limitations, we discuss how the hole-in-the-world state matches
expectations about bulk physics in §6.1. §6.2 talks about the implications on the phase
structure of the theory. Then, we provide a stringy picture for our analysis in terms of
the stretched strings of [16] in §6.3 and discuss a connection between our counting of
states and Motzkin walks in §6.4.

Some notation: We will use i, j,k,I, etc. exclusively to denote elements of {1...N}. The
imaginary unit is ¢.

Note added: During the final stages of the preparation of this manuscript, we became aware
of the related work [19] which appeared on the arXiv concurrently. Our results, specifically
those in §3, have partial overlap with theirs and agree when comparable. Our approaches are
complementary.

2 Review

The system we work with is the two-dimensional black hole with asymptotically flat boundary
conditions [10,20]. It was argued in [11,12] that this is dual to a quantum mechanical system
with a single matrix degree of freedom. Some introductions to this set of dualities that we
have found useful are [21-27]; a relatively short review is [11]. In this section, we outline the
various models in this chain of dualities and summarise the main results of [13].

The cigar is the two-dimensional Euclidean black hole geometry specified by the metric
and dilaton,

ds? =ka’dp? +tanh? p dT?, T~T+2nvka,

and @ =¢®&;—logcoshp. 3)
As a manifold, this is the group coset SSLE,Z(’S) / U(1). The inverse temperature and mass of this
black hole are 1
B =2nR=2nVvkd, M:Te_z%. 4
a

Henceforth, apart from some crucial equations, we will set a’ = 1.
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Consider a string propagating on this background,? with worldsheet action

1 -

Lys = py— J A0 [G,,(X) 3X* 30X + Rx(X) @(X) | + Iz - (5)
by

Here, G, is the metric of the cigar, and Iy is a Wess-Zumino-Witten term. Ry, is the Ricci

scalar of the worldsheet. The constant k is fixed by the requirement that the central charge of

this CFT be 26,

3k 9
Cc1gar k—2 4 (6)

This means that the 2d string theory has a black hole with a fixed temperature given by
p=3nVa, R=>Va. )

However, its mass can be varied freely.

An important caveat here is that the worldsheet theory is strongly coupled. Since the
target space curvature is O (1 /o ), the G, (X)9X HOX" term is not approximately quadratic
in the fields. As a result, the interpretation of this theory as a string theory on a black hole
background is not sharp. Calculations are still possible, since the full theory has the properties
of a WZW theory. But it is much easier to work in a dual description, which we now describe.

2.1 From the cigar to MQM via ER=EPR

This black hole can be described by a matrix quantum mechanics (MQM) through a series of
dualities.

1. By FZZ duality [11,12,16], the cigar CFT is dual to the sine-Liouville model.

2. The sine-Liouville model is the zero cosmological constant limit of the sine-Gordon
model coupled to Liouville gravity.

3. The sine-Gordon model coupled to Liouville gravity is dual to an MQM with twisted
boundary conditions in a double-scaling limit.

The sine-Liouville model is the string theory with worldsheet action

1
4o’

Iq J [(8T)2+(8¢)2+Q<%2¢+5eb¢ cosRT] , T~T+21—. (8
5

The FZZ duality provides an identification between the fields and parameters in the sine-
Liouville and cigar CFTs. The fields ® and ¢ can be identified in the region ®, ¢ > 1 (where
the background is approximately just flat space with a linear dilaton, i.e. the weak-coupling
region). The fields T and T are T-duals of each other; ; is a chemical potential for momentum
+1 excitations in the T direction, and therefore winding +1 excitations in the T direction —
its value is set by the mass 3 oc M(3™R)/4_ The central charge of this theory is [29]

Cg1, — 2+ 6Q2 . (9)

The Liouville-field dressing of any operator in the action with conformal dimension A satisfies

b(Q—b)+A=1. (10)

2It is clear that the cigar and the Lorentzian black hole as metric manifolds are related by an analytic continu-
ation. However, the relation between the string theories defined on the two backgrounds is rather more subtle, as
explained for example in [28].
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Figure 2: An illustration of the series of dualities that relate the cigar to the MQM.

The undressed sine-Liouville operator cosRT has conformal dimension A = R?. Matching
central charges across the FZZ duality then gives

1 1 R=3

— 2. (11

Unlike the cigar, the target manifold in this case is an infinite cylinder, implying an ER =
EPR duality [27]. The entanglement is carried by a long string condensate, which is included
in the last term in (8). We will see this in greater detail through the course of this work.

An important and non-obvious point about the sine-Liouville theory is that it cannot be
studied in perturbation theory in 3. This is because any non-zero 3 can be rescaled to an 0(1)
number by shifting the dilaton ¢,

3eP8=90) =300 3= obdo, (12)

This shift also acts on the Q # ¢ term, and produces a topological term that can be thought
of as the string coupling. Thus, the sine-Liouville CFT is not perturbatively related to Liouville
theory — this makes it hard to study.

There are two important differences between the sine-Liouville and cigar CFTs. Firstly, the
sine-Liouville CFT is on-shell (has ¢y, = 26) for all R as long as Q = 2. Secondly, k = 2 is a
strong-coupling limit in the cigar CFT but a weak-coupling limit in the sine-Liouville (since the
dressing parameter b — 0 in this limit). Since k = 9/4, we henceforth stick to the sine-Liouville
side of the duality.

The sine-Gordon model coupled to gravity defines a string theory given by the worldsheet

action
1

G =
s 4ma’

f [(BT) +(0¢)* +QRs. ¢ +ue2? +3eF2% cosRT ] . (13)
>

6
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Q A sine-Liouville model
dual to the cigar string theory
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Figure 3: The sine-Liouville theories dual to the cigar and the sine-Gordon theory
that can non-anomalously be a worldsheet theory only intersect at R = 3/2, when
the cigar is on-shell.

Here, we have T-dualised again to the T field in the kinetic part of the action, and added
a cosmological constant for the Liouville sector. The yu — 0 limit of this theory is the sine-
Liouville model.> The 3 — 0 limit of this theory is known as ¢ = 1 string theory. Once again,
because of the presence of the dilaton, the manner in which we take these perturbative limits
is subtle. In sine-Gordon string theory, perturbation theory in 3 is valid where 3 < u, since the
zero-mode of ¢ can’t be shifted while keeping u constant. We are interested in the opposite
limit, where perturbation theory in u is valid.

The sine-Gordon model is dual to a quantum mechanical model with one Hermitian matrix
degree of freedom,

4

Iviom = f de u[X2-v(X)], VX)= —%Xz + ﬁx‘*. (14)

Much of the literature uses a potential V(X) = —X2/2 + g/+/NX3; we use this potential fol-
lowing [26], see also [30,31] for the supersymmetric version.
This action has a PU(N) = U(N)/U(1) = SU(N)/Zy global symmetry given by

X(t)-»UX(U. (15)

Notice that the above transformation is the same for U and e¢'®U, meaning that the symme-
try group is not the unitary group U(N) but the projective unitary group PU(N) — as indi-
cated, this is nothing but U(N) quotiented by the overall phase mode. In terms of SU(N),
PU(N) is the quotient of SU(N) by its Zy centre, which exists because a phase rotation by
e2m/N i =0,1...N —1 has determinant 1. As an example, PU(2) = SU(2)/Z, = SO(3).

Some authors, like [16,18,19], gauge this symmetry while others, like [11,32], don’t. We
will keep this symmetry global for the bulk of this paper; in §5.1 and §6.3, we argue that there
is nevertheless a sense in which the gauging ‘emerges.’

3Up to the fact that the dilaton dressing for the vortex term is now exp[ (R —2)¢ ] instead of exp[—«/R2 - 2¢>].
It is easily checked that they agree at R = 3/2. The two different expressions correspond to plugging in either
Q=2o0rQ=1/vk—2into (10).
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(a) A double-line Feynman diagram appropriate (b) The Fermi sea is made by filling up the
to the MQM becomes a string worldsheet in the phase space up to a Fermi level. In the double-
double-scaling limit. scaling limit, the bottom of the well is at co.

Figure 4: The double-scaling limit.

Precisely, the duality can be written as

oo

e Zs6(Roit3) — Z eanNFNJ dQ eNav Re[trﬂ]f e—ff dt L(X.X)
N=0 PU(N) X(B)=27X(0)Q

double-scaling limit
(16)
Z is the vacuum partition function of the sine-Gordon model and e is the partition func-
tion of the corresponding string field theory. uy is a chemical potential for the size of the
matrix, and 3, for the non-trivial representations of PU(N). At 3, = 0, the £ integral localises
the MQM to the singlet sector of this symmetry — this is dual to ¢ = 1 string theory, which is
just the sine-Gordon theory at 3 = 0. uy is related to the Liouville cosmological constant, u, in
(13), and 3, to the fugacity for vortices, 3; the precise relations involve some renormalisations.
Importantly, the duality only emerges in the double-scaling limit, which can be thought
of as a specific way of taking N — oo. There are two different but equivalent pictures for
this limit, one based on Feynman diagrams and the other based on the Fermi statistics of the
eigenvalues of these matrices. We outline the main points of how this is to be understood;
more details can be found in the reviews listed at the beginning of this section.
In classic large N fashion, each Feynman diagram can be interpreted as the triangulation
of a 2d Riemann surface. Since the expansion in the coupling constant g has zero radius of

_ZsG

convergence,”* the series is asymptotic; near a critical value g, diagrams with O (&L_g) vertices
dominate the sum. The double-scaling limit is the limit g — g.,N — oo, with N (g. — g) kept
finite. In this limit, each diagram becomes a worldsheet and the sum over diagrams becomes
a sum over worldsheets; the constant parameter (after renormalisation) becomes the Liouville
cosmological constant y. This is illustrated in figure 4a.

The other equivalent picture for the double-scaling limit is as follows. In the ground state,
because of the PU(N) symmetry, we can focus on only the eigenvalues of the matrix X. As
we explain in §4.1, because of a Vandermonde determinant, these eigenvalues are fermions.
In the vacuum, the N fermions fill up the potential up to a Fermi level, see figure 4b. The
Fermi level grows monotonically with g up to a value g. where it becomes equal to the local
maximum at 0. We take the g — g.,N — 00 keeping the Fermi level at some finite value
—up~0O (N 0). This py is the same as the chemical potential in (16), by standard free fermion
arguments. This free fermion theory becomes the dual string field theory, with the direction

“This is most easily seen by considering the case g < 0.
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given by the log of the eigenvalue being identified with the target space spatial direction ¢
(i.e. dilaton), up to a non-local transformation that won’t be important to us [25].

The renormalisation is controlled by Khnizhnik-Polyakov-Zamolodchikov (KPZ) [33] di-
mensions; in particular, the sine-Liouville fugacity and the MQM fugacity are related as

2—-R

3= N2 . a”n

The relation between u and up, which are both renormalised quantities, is a non-universal
0(1) factor. Since we will carry out an MQM calculation, an important consistency check for
us will be that, along with this renormalisation, the sine-Liouville answer be independent of
N.

2.2 Free energy and thermodynamics

The matrix partition function can be calculated explicitly [11, 12], and the piece in the free
energy corresponding to the genus 0 partition function of the sine-Liouville model for R < 2 is

1
FO =~ (2-R7377. (18)

Here, the mass is M ~ ;,ﬁ — it is taken to be large to suppress higher genus effects. On the
face of it, this is surprising, since it is a non-zero sphere partition function in string theory.
Usually, this vanishes because of the infinite volume of the conformal Killing group, SL(2,C),
on the sphere. In the cigar case, however, this result indicates that this volume cancels with
the volume of the SL(2, C) factor in the quotient [12].°

There are two different approaches to using this result to understand the thermodynamics,
as Kazakov and Tseytlin (henceforth, KT) argue [13]. Following their conventions, we will
refer to them as the first and second interpretations.

First interpretation

1. The MQM free energy is the free energy corresponding to a grand canonical ensemble
for a dilaton current. The non-zero value of the free energy to corresponds entirely to
the charge term [34] and is proportional to R —3/2.°

2. R is varied while keeping the mass constant (i.e. varying 3 as a function of R).
This approach gives a free energy,

R+R1

—BF,(R,M) =21 (%—R)M— logM . (19)

The entropy-energy relation is then,
S=3nM. (20)

The vanishing of the leading term in the free energy is attributed to a Hagedorn phase transi-
tion at this temperature, that exists for reasons similar to [35].

SThis is not the only way in which the sphere partition function can be non-zero.
®Equivalently, we can subtract off the vacuum free energy as in [13].
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Second interpretation

1. The free energy is given by (18), without any subtractions.

2. The parameter 3 in the sine-Liouville model is interpreted as a chemical potential for
vortices. Thus R is varied while keeping 3 fixed, letting M vary as it wills. This is a
Gibbons-Hawking-type variation.

Performing an inverse Legendre transform to replace 3 with a vortex number kK, the free energy

is
—BF5(R,K) = (2 — 2/5

Ad’
klo
) 8K

Here, A is a UV cutoff on the worldsheet with dimensions of inverse length, and K is related
to 3 and the mass (at leading order) as

+0(K). (21

v

ka 378 o< M. (22)

This is finite but large in the sine-Liouville theory, and so we have 1 < k < N in the dual
MQM. For the energy and entropy (setting a’ = 1 again), this gives,

1 A
o klog 7K’
We also note that we can identify Aa’ ~ N based on the arguments of [36,37].”

The authors of [13] concluded with the remark that the best way to decide between the
two interpretations would be to perform a microscopic calculation in the MQM. Note that the
difference between the two interpretations is not just a matter of convention or ensemble; the
relation between entropy and energy is a statement about the Hilbert space that is either true
or not, and we can check which one agrees with the Hilbert space structure. This is what we
set out to do — we find that the Hamiltonian analysis suggests the second interpretation is
correct.

M= S=4nM. (23)

3 Entropy in the ungauged model

In this section, we reproduce the entropy in the KT result (21) by assuming that the PU(N)
symmetry is a global symmetry rather than a gauge symmetry. This entropy was originally
calculated in [38], but we clarify some points and fill in some details. We present two calcu-
lations, one in §3.1 and the other in §3.2, and find that they agree. The calculation in §3.1 is
quick and direct but badly motivated; the calculation presented in §3.2, which is a version of
the calculation in [38], is slightly longer but better motivated. A novel calculation of entropy
in a phase with k > N? is presented in Appendix A; we have not studied the Hamiltonian in
this phase.

The entropy we calculate in the ungauged model reproduces the proposed black hole en-
tropy Kazakov and Tseytlin identify in [13]. We find that the entropy is entirely due to the
large degeneracy dictated by the PU(N) symmetry, and not due to a large number of interest-
ing interacting degrees of freedom. We will therefore propose an interpretation in §5.2 and
§6.3 that it is better to think of the KT entropy not counting the black hole degrees of freedom,
but of some IR degrees of freedom that decouple in the double-scaling limit. In particular, we
will argue in §5.1 that in the double-scaling limit this symmetry is effectively gauged and the

7 [36,37] find an expression very similar to this for the free energy, with A being a worldsheet cutoff. In this
case, the worldsheet cutoff is controlled by N.

10
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large entropy we calculate here is therefore not relevant to bulk physics. An important inter-
mediate result in this section that retains its importance in the gauged model is the fact that
a single irrep, illustrated in figure 5, dominates the subspace with a large number of adjoints.
This result has also been found in [19].

3.1 Direct calculation

The direct calculation proceeds based on the simple observation that K is the charge conjugate
to the fugacity for singlets and non-singlets, 3,. Since the basic representation of the symmetry
in the model is an adjoint representation (15), the subspace with fixed K is the one constructed
out of k copies of the adjoint representation. The dimension of this reducible representation,
remembering to quotient by the symmetric group Sy because the adjoints are indistinguishable,
is
N2K
logdim (%ﬁ;‘/s ) log —— ~ 2klog j/vﬁ (24)

This is exactly the entropy in (21).

3.2 Calculation using irreps

While we seem to have reproduced the KT entropy, we have no reason to believe that the sub-
space whose dimension we just counted above is even approximately degenerate. Exact de-
generacy is, however, guaranteed within each irreducible representation of the PU(N) group.
We now proceed break up the fixed k subspace into irreps of PU(N) and compute their dimen-
sions — we will see that we find the same answer. Further, we show that the mistake in [38]
that was pointed out by [32] is subleading. Substantial parts of this section are a re-iteration
of the work in [38], as well as [32,39], so that the calculation may be presented as a unified
whole.

The irreps of U(N) are usually given by Young diagrams (YDs) with at most N rows. Each
box corresponds to a copy of the fundamental representation #;; boxes in the same row are
symmetrised and those in the same column are anti-symmetrised. We modify this prescription,
following [38,40,41], to also allow for ‘anti-boxes,” which correspond to copies of the anti-
fundamental representation #7. An example irrep, using green to denote the anti-boxes, is

Teg = (25)

With these anti-boxes included, the conjugate representation is constructed by mirroring the
diagram along the horizontal axis. We can ensure that we are not over- or under-counting by
restricting the maximum number of rows to N /2.8

The irreps of PU(N) are then given by Young diagrams with an equal number of boxes
and anti-boxes. This equality ensures that the overall phase mode of U(N) acts trivially in this
irrep. So, for example, (25) has 3 extra anti-boxes compared to boxes — meaning that it has
charge (—3) under the phase mode. A valid irrep of PU(N) is

[ |

relt = (26)

8More precisely, we have to restrict the sum of the number of rows and the number of anti-rows to be at most
N. The precise specification then depends on whether N is even or odd in an obvious way.
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As pointed out by [32], the authors of [38] erroneously imposed the stronger condition that
the irrep be self-conjugate, i.e. that the YD be symmetric under reflection.

Once again, the group PU(2) = SU(2)/Z. makes for a simple example. In this case, the
fundamental is its own conjugate and so anti-boxes and boxes are identical. That there are an
equal number of boxes and anti-boxes is simply the requirement that there are an even number
of boxes; these are just the integer spin representations of SU(2), which are well known to be
the representations of SO(3).

States in the irrep are given by Young tableaux (YTs) — this is a filling in of the boxes with
numbers taken from {1,..., N} following a set of rules detailed in [40,41]. Thus,

Balia il i [ i | is | ]
%reg = span Js | Ja | is | ig jariq € {1,...N} following the rules below.
Js |
(27)

The number in the (anti-)box denotes the corresponding basis element in the (anti-)
fundamental representation. The rules can be found in [40, 41]; they follow more or less
directly from the fact that two boxes in the same row are symmetrised and two boxes in the
same column are anti-symmetrised, along with the requirement that every basis element in
the irrep have only one associated YT. The two most important rules are

* R;: The entries in both boxes and anti-boxes increase from top to bottom.

* R,: The entries for boxes (anti-boxes) increase from right to left (left to right).

These follow from the fact that different YTs, e.g. ‘ 1 | 2 ‘ and ‘ 2 | 1 |, would represent the
same state due to the (anti-)symmetrisation rules. Note that these two rules apply separately
to the boxes and the anti-boxes.

The new complication due to the presence of both boxes as well as anti-boxes is as follows.

The state N
Z ‘ > € singlet. (28)
i=1

Any fundamental and any anti-fundamental can pair up into such a ‘trace.” To define a true
irrep then, we need to project out such possibilities; [40,41] use a third rule stating that “If
r(i) and r(i) are the lowest rows containing the indices i and i, r(i) + r(i) < i” to deal with
this subtlety; they exclude enough possible YTs that a trace is never possible but keep enough
so that the irrep space has the right dimension. We will not impose this rule, and deal with
the possibility of traces explicitly, aided by the fact that we are working in the limit of large N.

With all of this in place, let us return to the tensor product of k adjoints that we considered
in the previous section — this can be broken up into a direct sum of irreps of PU(N) with at
most K boxes and k anti-boxes. For the moment, let us focus on the YDs with exactly k boxes
and anti-boxes. In the large N limit, each of these irreps, in turn, can be written as a product
of an irrep r; with K boxes, and r, with k anti-boxes. Let us first calculate the dimension,
i.e. the number of YTs, corresponding to the YD r;. A useful trick to do this counting follows
from a simple observation [38]: since the number of potential labels is much larger than the
number of boxes, repetitions are non-generic. Thus the number of ways to choose the labels
is just (Jl\([) Such a Young tableau, constructed out of numbers with a total ordering, is called a
standard Young tableau (sYT) and labels a state in an irrep of the symmetric group Sy. Letting

drs1 ¥ denote the dimension of this irrep of S, we have

N
dim %, = (k) dx. (29)
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O(v2k) O(VZk)
O(v2k)

/

Figure 5: The shape of the YD that dominates the counting of states in the K < N
phase.

Of course, the dimension drslk depends on the particular shape of the irrep of Si. An explicit
verification of this trick can be found in [42]. Using the same argument for the anti-boxes, we
find
. NY? Sk 1Sk
dim #,. o7, = (k) drlk d:x. (30)

T2

Summing over all such irreps with k boxes, we find

2
> dim %, o7, = (1:)2 (Z dfk) : 31)

r,7o | K rlk

The sum is a standard result in combinatorics (e.g. see Theorem 8.26b in [43]) and the result
is called the k" telephone number. At large K, it is approximated by [44]

> dS = vkl (32)

rlk

The sum of dimensions of all PU(N) irreps with k boxes and k anti-boxes is thus

2 2k
(=)

reproducing again the result of §3.1.

Of course, it is not correct to sum over all irreps — degeneracy is only guaranteed within
an irrep of PU(N ), whereas we have counted the dimension of a reducible representation. This
is in fact the same unjustified step we took in §3.1. However, let us note something simple:

2
(Z dfk) Akl =[S =D (d%)". (34)

rlk rlk

In other words, at large K, the dimension of the irrep of Sy has zero variance, indicating that
the sum is dominated by a single YD. This is an old result [45]; they found that the dominant
irrep is roughly a right isosceles triangle with somewhat concave sides i.e., the longest column,
row and anti-row have approximately v2k boxes each. This irrep is shown schematically in
figure 5. This domination by a single diagram is why we were able to sum over all irreps and
still reproduce the entropy of (21). Another interesting consequence is that our counting is
actually valid in the regime 1 < k < N2 and not just 1 < k < N as originally claimed.
Finally, let us deal with the possibility of traces; naively, the count above includes states
in smaller irreps since we didn’t project out traces. Since a trace causes the number of (anti-)
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boxes in the YD to reduce by one, the counting above shows that the number of these states
is approximately (N /vK)*=2 which is a factor of N2 smaller. Further, the leading corrections
in the count just given (from corrections to Stirling’s formula and the approximation we made
for the telephone number) is a factor of e*¥, which is a correction of ©(Kk) in the entropy.
Thus, the uncertainty from the shape of the YD (comparable to the correction in the telephone
number) dominates the uncertainty from the possibility of traces.

Since both the boxes and anti-boxes are dominated by the same irrep, the dominant irrep
in the full counting is self-conjugate. This is why our result agrees with the counting in [38]
even though they restricted their count to only self-conjugate representations. It is interesting
to note that in a very different context, the authors of [46] also found that the microstates of
an incipient black hole are related to YDs that are almost an isosceles triangle.

4 Energy

Having found that the dominant degenerate space with k boxes reproduces the entropy of KT,
we now calculate its energy. In 84.1, we decompose the Hilbert space in a useful way and set
up the Schrodinger equation problem that we will attempt to solve. To reproduce the fixed-
charge partition function (21), we proceed in two steps. First, in §4.2, assuming that within
a fixed k sector the canonical and microcanonical ensembles are equivalent, we construct a
state whose energy matches the KT energy; the construction of this state is the central result
of our paper. In §4.3, we justify this assumption, arguing that the two ensembles are indeed
equivalent within the sector.

Section 4.2.3 contains the central new result of our paper: the construction of a state when
1 € k € N in the irrep that dominates the counting above whose energy matches that from
(21) on the nose. This state is a new, interesting bound state that is reminiscent of a black
hole. We explore this facet, and argue that the dominance of such a bound state is exactly
what is needed for the MQM to be dual to the sine-Liouville string theory, in §6.1.

4.1 Decomposition of the Hilbert space

The Hilbert space of the MQM is
oM = span{lX) ‘XT =X} . (35)

We will first decompose this Hilbert space into its eigenvalue and angular directions and then
“Fourier transform” the angular directions using the Peter-Weyl theorem. This has the nice
benefit of isolating the action of the PU(N) symmetry.

We decompose the matrix X as

X(t)=U"()A)U(L), st Ajj=2A;6ij, LieR,i>j=>A2=2A;, Ue UN\UN).

(36)
The conditions on the diagonal and unitary matrices are required to make the decomposi-
tion uniquely defined — we explain each of them in turn. First, the eigenvalues need to be
ordered since we can always rearrange them without changing X by absorbing an element

P, €Sy € U(N) into U,

ij>

UTAU = (P, U)'(P,AP])(P,U). (37)

Thus, denoting the space of N x N diagonal matrices by D(N), we require A € D(N)/Sy.’
Similarly, the U(N) needs to be left-quotiented by U(1)" to account for the gauge symmetry,

X=U'AU=U"e"®Ae®U, ©,;=6,5;. (38)

°As we will clarify below, D(N)/S,, is not a strictly correct description of the space of As.
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The global symmetry (15) is given by a right-action on U, U — UV. There is also a left-
action, U — VU, which doesn’t commute with the Hamiltonian. The measure over the space
decomposes into

dVa du

dNXNX: ~
N![vol U(1)]

A2, AW =]J-2). (39)

i<j

The two terms in the denominator are the size of Sy and the volume of U(1)" in the Haar
measure; we will henceforth absorb them into normalisation factors. A(A) is the Vandermonde
determinant, whose square is the Jacobian for this change of basis. Thus, finally, we have

Toiom = ZpNy /sy ® FUN\UN) » (40)

where the two factors are spaces of normalisable functions over the respective spaces.

#pn)/s, can be thought of as the space of wavefunctions on the subspace of RN satisfying
the ordering conditions. To extend it to all of RY, we need to contend with the fact that
permutation of eigenvalues also requires absorbing a left-action into the unitary, meaning that
the extension is therefore not independent of the state in the angular directions. However,
since we are interested in the case 1 < k < N, we can forget about this subtlety and extend
it to RN as a symmetric wavefunction [17]. Furthermore, because the inner product on these
wavefunctions is

(P1l,) = J d¥2A A Y1) o), (41)

it is conventional to absorb a factor of A(A) into the wavefunction to get completely anti-
symmetric wavefunctions (ignoring the angular directions) and a conventional measure for
the inner product.

We will largely be concerned with the angular part of the Hilbert space, #{;(1)v\y(y)- This
Hilbert space can be thought of as simply #;(y) specified by a gauge constraint. To do so, we
first parametrise the algebra u(N) in the weight basis {Hi, Tij, Tij i,je{l,...N}, i< j}. In
the fundamental representation, these basis elements have the matrix representations

(Hi)ig = 61 6xi»
(Tij)yy = Bk 615 + 611 6kj »
(Tij)q = —t (61i 61— 811 65) - (42)

The generators T;; and T j can respectively be thought of as the Pauli matrices o, and o,

acting on the two-dimensional subspace corresponding to i,j. To each of these generators
correspond two operators on #;(y), the left and right actions,

oL T Ty ] |U)

eL[aifTij+ﬁifTij+y"Hi]U> ,
eb[afffgwff%g;wfﬁ?] U) = ‘U e—L[aijTij+[5ijTij+yiHi]> ' (43)
Now, the subspace Hyayw\u s given by
Toyomum) = {lv) = f au v V) | v (V) = ’U(U)}
= {|v) € Xy ‘ I—AIIL lv) = 0} . (44)

The second equation arises from the fact that the change U — ¢‘®U is implemented by the
exponential of ©' H;. We will refer to the gauge constraint as the zero-weight condition.

15


https://scipost.org
https://scipost.org/SciPostPhys.16.1.020

Scil SciPost Phys. 16, 020 (2024)

To implement this constraint, it is useful to use the Peter-Weyl theorem to go to the “Fourier
transformed” basis

Ir,a,B) = \/_JdUDr (UM vy,
)= /d, D) Ir,a,B) . (45)
roa,p

Here, r is an irrep of U(N), usually represented by a YD. a, 3 are two different, unrelated
YTs filling in the YD corresponding to r.'° In the N = 2 case, with standard SU(2) notation,
the states are |j,m,m’ > and the coefficients are matrix elements of Wigner D-matrices. The
change of basis is unitary because of the orthogonality relations

de D, (U)D! (U)— 5” 8urBps, .2 ,dr Dh (UNDLL(U)=56(UU)). (46)
r a,[j

The most useful fact about these states is that they ‘decouple’ the right and left actions;
denoting by V£, VR the left and right multiplications by V respectively, we have

Ut 1ra, ) =1r7, B) Dl,(V),

VR|r,a,B) = Dys(V)Ir,a,5) . (47)
Indeed, we see that the left and right actions act on the two indices (i.e. YTs) separately. We
remind the reader that the right action is a symmetry of the theory, and therefore the YTs
denoted by the 8 index here are the ones we counted in §3 (more correctly, in that case r was

an irrep of PU(N) — a restriction that we will impose presently).
In the Fourier-transformed basis, the zero-weight condition is

Hf |r,a,B) = Ir,y,B) D], (H;) =0 (48)

We can simultaneously diagonalise all the weights in %, and then just pick the zero-weight
subspace %r(o) as the span of all a(®) that have all weights vanishing. Thus, we have

© p)}. (49)

Ty =P xO @ % =
r

We emphasise that the zero-weight condition is a condition on the irreps of U(N) as well as the
states within the representations. In particular, there are irreps of U(N), like the fundamental
representation, that don’t contain any zero-weight states.

The set of irreps that contain zero-weight states are exactly the irreps of PU(N). We can see
this as follows: H; annihilates every basis vector of the fundamental (anti-fundamental) except
the i'" one where it takes the value 1(—1). Thus, the zero-weight condition is simply [40,41]

vi, ALy ={#[i|-#[i]}vT)=0. (50)

This cannot vanish for all i unless the number of boxes and anti-boxes agree in the YD, as was
pointed out in [32]. This is an alternative way of deriving the restriction to irreps of PU(N).
This condition is actually stronger, and says that the boxes and the anti-boxes have to carry
the same set of labels.

193 should actually be considered a basis element in the conjugate irrep, but there is a canonical map and so it
can also be considered a YT of the same shape.
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To calculate the energy, we first decompose the Hamiltonian according to (36). Plugging
in the decomposition (36) of X into the action (14), we find

Iyom = f dt tr[%/\z —V(A)+ % [UUT,A]Z] . (51)

Notice that the action contains UU" but not UTU. The operator UU" generates a change from
the left — (1 +dt UUT) U = U +dt U — whereas U'U generates a change from the right; the
fact that the latter doesn’t appear in the action but the former does is indicative of the fact that
only the latter is a symmetry. The Hamiltonian is

2
+TL1]

1 Ll]
H= Z[ 2A(1) 312 A(l)+V(7L )] ZPOWt 2,2 Pyt - (52)

l<]

Once again there are only left-action generators in the Hamiltonian, and the weight operators
don’t appear at all, since the weights are fixed by the gauge condition Py, is an explicit
projector onto the zero-weight subspace; this is necessary because T L ij doesn’t commute with
it in arbitrary representations. We will drop the L subscript henceforth since the right-acting
operators don’t play a role at all. We will also drop the hats since only the quantum operators
appear in the following discussion. In what follows, we will find it useful to define

HnsEZHija Hij

i<j (A — %’)2 ’

where H, is the Hamiltonian of the non-singlet sector. It has precisely the form of a spin-
Calogero model (see [47] for a discussion in the context of MQM), an integrable system that
has been extensively studied in condensed matter, MQM, and mathematics literature.

The singlet sector, which is annihilated by H,, is just N non-interacting fermions. Denoting
the ground state of this sector by |0)n, its energy is is obtained by filling up N levels of a
Fermi sea of eigenvalues,'!

2, 2
Tl.j+Tl.j

I

(53)

E, ~ O(N?). (54)

In comparison, H, scales with k < N2 and can thus be treated as a perturbation [39]. With
H,, turned off, the Hamiltonian does not act on the angular directions at all, and there is a
huge degenerate subspace, given (after dropping the right-action index) by

%degen = |0) sing ® Span { | T, a(0)>} . (55)

H,, breaks this degeneracy, and we have to use the techniques of degenerate perturbation
theory. The perturbed energy levels are the eigenvalues of the operator Pyegen Hyg Paegen, Where
Pyegen is the projector onto the degenerate subspace (55). Below, we will find that this will
not be enough to reproduce the KT partition function — the non-singlets will backreact on the
eigenvalue distribution in the dominant state. This is nonetheless a useful starting point.

The eigenvalue ground state is characterised by a phase space density function

1 p;
p(A,py) = by 0 (EF -2 V(l)) . (56)
T 2

Integrating over momenta gives the eigenvalue density function

p(A) = % V2Ep —2V(A) ~ \/—2uF +22 ——— A>>‘/m A (57)

'We subtract off this zero-point energy in the double-scaling limit.
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where Ep = —uy is the Fermi energy we mentioned in §2; the double scaling limit of interest
involves keeping ur ~ 0(1) as N — oo. Here, we have replaced the quartic part of the
potential by a wall at A, ~ O («/N ), since the precise form of the cutoff doesn’t matter in the

large N limit. The number of eigenvalues between A, and A, is f fl > p(1)dA — the eigenvalue

density is then normalised as'?

Ac
J p(A)dA=N. (58)
2urp
We will for many purposes drop the uz-dependence in what follows, reinstating it only when
necessary. Any expectation value in the ground state |0),, is controlled by this eigenvalue
density — thus, the projector Pyeg, ensures that the part of Hs acting on the eigenvalues is
determined by this eigenvalue density.

Clearly then, the eigenvectors of Pyegen Hps Pdegen have the form [39] (dropping the right-
action indices)

|0, 7, {W}> = |0>sing ® Z W q(0)

The distribution over zero-weight states has to be found by solving the eigenvalue equation

T, a(0)> . (59)

Hns |0) T', {W}) = AE |O) r: {W}> . (60)

We proceed to do (approximately) this.

4.2 A state with the KT energy

We construct the state of interest in three steps. First, in §4.2.1 we review the calculation of the
energy in the adjoint sector [16,32,38,39]. We then argue that, at finite N, a straightforward
extension of these methods to a state with a gas of 1 € k < N weakly-interacting adjoints
gives an energy much higher than the KT value (21). This failure to reproduce the KT energy
arises from a trade-off between keeping the momenta of each adjoint low and minimising
the interactions between them; we find that reducing one in a straightforward way increases
the other. An important peculiarity of our approach is that we keep N finite for much of the
discussion, taking it to oo only at the end; the state of interest is more clearly isolated at
finite N.

We then show that a ‘liquid’ state in which we ‘clump’ these k adjoints together has a much
lower energy in §4.2.2; however, its energy is still higher than the KT value. We describe this as
a liquid state because although the adjoints have condensed together, there is no appreciable
barrier for one or more adjoints to ‘spill’ out and leave the clump.

To get the KT energy, it turns out that we need to ‘solidify’ this clump, i.e. make it so
that there is a large barrier for an adjoint to leave. We solidify it by modifying the eigenvalue
distribution in a radical way by creating a large © (kl/ 4) hole in it; since the Fermi surface
of the eigenvalue distribution is the spatial direction in the string theory, and since we are
positing breaking it up into two disconnected pieces, we call this a “hole-in-the-world state.”
This is a solid because any adjoint that wants to leave has to tunnel across the hole in the
world — this has a large cost and thus prevents adjoints from spilling out. This is the content
of §4.2.3.

4.2.1 A gas of adjoints

A single adjoint
We begin by reviewing the calculation in the adjoint (k = 1) sector [16, 32, 38,39]. The

12The RHS should really be N /2, since the potential we have written down has two wells; this fact will not
matter in our discussion.
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zero-weight states are given by >, wy ’ >, with >}, wi = 0. The action of the algebra
generators on this state are (i < j)

>:(5ik_5jk)‘>+(i‘—’j),
j >:L(5ik_5jk)‘>_(i‘_’j);
> >:2(6ik_5jk)’>+(i<—’j). (61)

Thus, the eigenvalue equation becomes

> Gy O[] ) = 5E 10,005 () (62

i#]

This can be rewritten as the integral equation

Ac

/ lc
AEw(}) = g»J Py WA ZWAT) o f dr p(M)w() =0,  (63)
2uF (A a A/)Z 2uF

where the & means that the integral is evaluated using a principal value prescription (which
follows from the i # j in the sum). As pointed out in [16], it is useful to shift to the following
variables,

A>4/2
R = p(Aw(h), and 7= cosh™! 2 22V e AL (64)

2‘U,F \/W

Matching the normalization condition (58) in these variables then gives, 7. ~ %log (N/ug).
The eigenvalue equation then becomes [16]

1 N
AEh(7t)==|log— —27cotht |h(7)—— P dt’
2 ur

1
1 3 log(N /ur) h(T/)
Ty (65)
AT J Logvjuy  sinh® 5=

This last term can be thought of as a kinetic term, whereas the rest can be thought of as a

This eigenvalue equation was explicitly solved in [48]; we will not use the details of this
solution.

Taking A > ,/up, all the coths can be approximated by 1 and this Hamiltonian becomes
just

1 N

Hyp = log PR «/__ 11,
where p is the momentum operator that we defined implicitly by the Fourier transform of the
last term in (65), and we have gone back from 7 to A.
A gas of adjoints
We first consider states where the distribution of matrix eigenvalues is perturbatively close
to the singlet sector ground state, and where the adjoints are well-spread out and weakly
interacting, as in figure 6. To be more explicit about what we mean by interaction, consider
the effect of Tl%. + Tl%. on a state with multiple fundamentals and anti-fundamentals. Because
the Hamiltonian comes with projectors onto the zero-weight subspace, we only consider the
branches of the action that result in terms within the zero-weight subspace.

We take YTs of size 2 as an example. Suppose we take the YT

(66)

‘an
J

(67)
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Y

2/J,F 27N

Figure 6: A gas of adjoints. We have drawn an adjoint at eigenvalue A as a purple dot
in the position in the Fermi sea where the corresponding eigenvalue is. By a gas, we
mean that the wavefunction approximately factorises into a product of wavefunctions
of individual adjoints. The wavefunction above each dot is placed to remind the
reader that the adjoints are not localised.

Defining
2+ 72
T = = (68)
when k # i, j we have
W oEl ool on))
(69)

- I

We notice that the action of any generator that rotates an index appearing within the YT
to one not appearing within the YT decouples into independent action on each box-antibox
pair that share an index. We can therefore treat these terms as K copies of Hyp, in (66).

We now analyze the action of |T;; |2 where both indices i, j appear in the YT. For simplicity,
we first consider a YT where the boxes labeled i and j share neither a row nor a column.

"))
) [T
1) o)

Taking apart this equation, we see that the first two lines on the RHS correspond to the Hy,
action we would expect from |T; j|2 on the i boxes and the j boxes respectively. The third line
contains a new action — one that exchanges the i and j anti-boxes in the first term and the
i and j boxes in the second term. Thus, the last line is generated by an exchange operator,
which we denote 4;;, and suggests that the interaction term between boxes is given by the

2
|T;;1

j>
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‘cross’ term

He=Y. i (71)
T L — A2
i,j (z’l A’])
We now check that this works for states where i and j share either a row or a column.
Returning to two-box representations for simplicity, we find

F F ——
|Tij|2.l.=0=.l.—J.J.
J | J J|J J|J
1|1 1|1
EE) -
j|j i|i
—— -
B )+ B
il il i

The LHS is equal to zero because the columns comprising the boxes and antiboxes are singlets
under rotations from i to j. The RHS is equal to zero due to the antisymmetry properties of
the YT states. States corresponding to YTs with two i’s/j’s in the same column vanish, and the
states appearing in the third row on the RHS cancel the first two states of the first two lines
due to the anti-symmetrisation. We may again decompose this action into the sum of the Hyp,
action and an exchange operator, neither of which vanishes separately. A similar analysis can
be done for the other possible combinations we can have of boxes sharing rows and columns,
and we find that we may decompose the non-singlet Hamiltonian into

Hns :Hdir+Hx’ (73)

where Hg;, is the sum of k copies of Hy,, and H, is given by (71).

With this decomposition of the Hamiltonian in hand, we now search for wavefunctions of
the labels of the dominant representation (figure 5) that match the KT prediction for the energy.
We first present several general types of non-singlet excitation configurations on the singlet
saddle point eigenvalue distribution and demonstrate why they fail. Then, we will resolve
these confusions by showing that a certain class of states introduces a violent deformation of
the eigenvalue configuration which precisely lowers the energy enough to match the KT result.

We first consider wavefunctions where the labels are taken to be well-separated, i.e., the
maximum label that is allowed to appear in the YT is i, > K — this allows us to neglect
the cross-term to leading order. This state can be likened to a gas of adjoints. Due to the
antisymmetrisation rules of the YT, we need at least ©O(+/K) different labels for its construction.
Since T takes values in a range of width logN, the spectrum of the momentum operator p
has a spacing of ©(1/logN). Pauli exclusion then pushes labels up into states with a typical

1/2 . .
momentum of at least p ~ I'SW. The energy of such a configuration then scales as

K k2
E,=—logN+0 . 74
K™ on & logN 74
The leading term in the above expression comes from the o< logN term in Hy; (66). The
o< log A2 term can be ignored because of a subtlety in the order with which we take limits—for
a fixed N, we populate the gas by choosing k (< N?2) eigenvalues to label the adjoints. We
then take the large N limit, whilst keeping these labels fixed. Thus the contribution from the
o< log A2 term does not scale with N and can be ignored to leading order.
If we assume k'/2 < 6(logN) we can certainly find states with the KT energy where the
non-singlet excitations are spread out as described above.!'®> However, once k crosses this

3The minimum spreading required goes to the entire eigenvalue distribution as vk — logN.

21


https://scipost.org
https://scipost.org/SciPostPhys.16.1.020

Scil SciPost Phys. 16, 020 (2024)

Y

26ir A 2N

Figure 7: We can reduce the energy. at finite N, by clumping the adjoints together
inside the Fermi sea as shown here.

bound, the kinetic energy on its own is much higher than the KT energy. Indeed, in the the
double-scaling limit of interest, k = O(N°) and so such a state likely exists. However, there
is nothing special about the state with energy (27) 'klogN/+vk and we have no reason to
believe it will dominate the partition function.

As a result, we are forced to look for other classes of states where the momentum and
interaction cancel each other (the potential energy is strictly positive and can’t cancel the
kinetic energy). This is what we turn to now.

4.2.2 Condensing the adjoints into a liquid

We now show how to use the interactions to cancel the large momentum contributions and
achieve a state with a much lower energy. Our strategy to do this is to kill significant subsets
of the U(N) generators by considering states that are singlets under subgroups of U(N). In
analogy with the ‘gas’ of adjoints that we described described earlier, we think of this as a ‘lig-
uid’ solution, where the adjoints are clumped together as in Figure 7 but there is no significant
barrier against them ‘spilling out’ of the clump.'* This is an intermediate step in our analysis
— as we will see, this reduces the energy but still gives a larger value than the KT energy (21);
this ‘liquid’ state never dominates the partition function and should not be regarded as an
intermediate phase.

The interaction term between a box-antibox pair with index i and one with index j is the
positive operator |T; j|2 / (Ai —A j). Thus the way we minimisNe its contributions is to construct
a state that is annihilated by as many of the operators T, T as possible. As a start, we first
consider YTs with all indices taken from the set {1, ..., v} — this ensures that all the generators
with both indices larger than v kill the state. Further, as we explain below, we can ensure this
state is an U(v) singlet — this results in all the generators with both indices in {1,..., v} also
annihilating it. Thus, the state that we are after is a singlet of the subgroup U(v) x U(N — v).
We note that if we are interested in the approximately isosceles YD that dominates the entropy,
we need

v> V2K, (75)

since this is the size of the largest (anti-)column (see figure 5) and different boxes in a column
must have distinct indices (otherwise they can’t be anti-symmetrised).

140Only a few adjoints can spill out without a high energy cost.
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Now we turn to constructing a U(v) singlet. Such a singlet in the adjoint sector is simply
a trace over the subset of indices,

1 - o . 1 ]]‘VXV O_VXV
1= 52l < Sl an): 7

YXN—v ON—va—v

where the matrix on the right is the wavefunction written as a two-index tensor.'> The state
we are interested in is K copies of this U(v) singlet (76), projected into the irrep of interest.

That the state remains a U(v) singlet after the projection is clear by the fact that the genera-
tors act irreducibly within each irrep, and so the state can only be annihilated by any generator
if each projection is; schematically, for any generator T we have

(™)™ )= @ eTly)=1 = T,Ply)=0. 77

r €adj®

Further, the projection is unnecessary, since we know from the discussion in §3.2 that a single
irrep dominates the tensor product of k adjoints. One can check using the same techniques
that the dimension of the zero-weight subspace of the dominant irrep is (ﬁ) . («/W)z = NK,
which is the dimension of k zero-weight adjoints. Thus, the the U(v) x U(N — ») singlet of

interest is merely,
v,K) = ) ( Z]-) (78)

and the liquid state is therefore given by,
10;) = lp(Q)) @ |7, K) . (79

Written in terms of YTs in the dominant irrep, this state is a uniform superposition over all
reflection-symmetric (i.e. self-conjugate) YTs with indices in {1,..., v}.1°

We can also check this last point explicitly by calculating the value of the second Casimir
and its standard deviation in the state. The second Casimir is

T2+ T2

Cp=> " ”+ZH2 (80)

i<j

The only generators that don’t annihilate the state are those with i < v,j > »; and each of
these can act on any of the 2k (anti-)boxes. Its expectation value in the state above is

(0,1 C, |0}) = Z 1~ 2KN +0(k »), (81)

i<y, j>v

which can easily be checked to be the value of the Casimir in the dominant irrep of Figure 5,
using standard formulae found in e.g. [49]. However, this is not enough; we must also check
the variance to make sure that it has a small spread in irreps. By a similar logic as above, we
find

(C)~(C), (82)

15This state isn’t exactly in the addjoint irrep — for instance, it has a non-zero inner product with the state
1y.n/vN, which is a U(N) singlet. However this inner product is /v/N < 1, and so we can safely ignore this
subtlety.

16A zero-weight state in any fixed irrep can also be written as a tensor T where o is a permutation in

(1) o(k)
Sy and the symmetry properties of the upper (lower) indices are dictated by the shape of the YD (anti-YD). This
tensor is the wavefunction on the space of YTs. The wavefunction of |v,K) is zero if any of the indices i; - - - i) is

bigger than v or if the permutation o is not the identity element of S,, and 1 (up to a normalisation) otherwise.
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and the variance is therefore subleading. All of this is concomitant with our result in §3 that
one irrep dominates the product of many adjoints.
The expectation value of the non-singlet Hamiltonian in this state is

(Hos)y = (01/Hy10)) = ( D ( it )(Z\)

j<k (A )Lk i’=1

(83)
We need only consider the case when j < v, k > v, because the state is annihilated by all the
other generators. The action that contributes to this expectation value is the one where both
operators in each T2 act on the same (anti-)box. This gives

k< / pP(A)p(A)
(Hog) =~ 2 Z( RSy JO dkf e (84)

) 1 k=v+1

Here, A, is the value of the i‘" eigenvalue, which is the solution of the equation

Ai
J p(M)dA=i. (85)
0

Let us plug in now the vacuum eigenvalue density p(1) = A/7. We find

_ k / 2 /2 e L
(Hpo)p = 2n2v[[u + (A% +22)log I — | L
NS pr1 A2 log A, — (A2 + 22, )log(A,41 —A,) + A2, log A,y } . (86)

To simplify this further, we have to use the facts that A; = v2niand A, — A, ~ ﬁ in the
vacuum eigenvalue density. Thus we find

(Hyo)t = (logN +310g k) +6(K). (87)
27 2

The UV divergence coming from A,,; approaching A, while of the same magnitude as the
subleading term in the KT energy, causes the subleading term to have the wrong sign. The UV
divergent term is the penultimate one — (AZ + A% +1) log(A,,1 —A,); this is a positive quantity
because the argument of logarithm is small. This divergence is the last remnant of the large
kinetic energy discussed in the previous section, and it seems we cannot push this contribution
lower without drastically modifying the structure of the UV cutoff in the emergent geometry.

In summary, in our efforts to use the interaction between the non-singlet excitations to
eliminate as many of the |T; j|2’s in the Hamiltonian as possible, we were forced to introduce
a sharp cutoff in the non-singlet distribution. This sharp cutoff functions as a domain wall
between a region dense with boxes and a region with no boxes, and the UV divergence can
then be thought of as a domain wall energy.

We have not been able to conclusively prove that there is no state in the unperturbed
eigenvalue distribution that matches the KT energy in the regime where k > log N. There may
still be room for careful interplay between the cross term and direct term in the non-singlet
Hamiltonian to cancel the large kinetic energies seemingly forced on us by Pauli exclusion.
However, the methods we have considered have not yielded a way past this obstruction. In the
next section we show how allowing the domain wall described above to violently backreact on
the background eigenvalue distribution, ripping a hole in the emergent geometry, eliminates
the UV divergences and lowers the energy to precisely match the KT result.
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4.2.3 Freezing the liquid by blowing up a hole in the world

We now show that there is always a bound state for 1 < k < N2 — the same regime where the
entropy calculation is valid — whose energy matches the KT value (21). This state is one where
the non-singlet excitations have backreacted strongly on the eigenvalues, creating a large gap
in the eigenvalue distribution. Since the bulk spacetime on which the string theory lives is
formed by the eigenvalue Fermi sea (up to a non-local integral transform), this configuration
is like a hole in the world; we call it the hole-in-the-world state.!” Blowing up a hole in the
world naively seems to be in contradiction with the string theory, but we argue that this hole
is exactly what is needed for a duality with sine-Liouville string theory in §6.1.1.

The hole-in-the-world solution can be motivated by the following numerological observa-
tion. Rearrange the terms of (86) as

k

A
Ep = CP {—)Lv)tvﬂ + }L% log A, —)\% log (2,41 _Av)_kfﬁl 108(1 - Avil )} . (88)

The last term here gave a large positive contribution to (87) because A,,;—A, < 1 in a smooth
eigenvalue distribution, and this made the energy exceed the KT value (21). Numerologically,
these terms can add up to the KT energy if we allow the eigenvalues A, ; and A, to differ by
a large amount,

k N
A'v+1_2ﬂ/:Av'@(1): k1/4@(1) = (Hns)l _ —10g—+@(k) (89)

27 VK
Here we've again taken v = @(«/E) and A,, A,,, =0 (kl/ 4). This is a radical change in the
eigenvalue distribution, demanding that there are no eigenvalues for an O(k'/#) region of

eigenvalue space, as shown in figure 8. Denoting the new eigenvalue distribution by p,(2),
the hole-in-the-world state is given by

10) = [p, (1)) ®|v,k) . (90)

The remainder of this section is devoted to arguing that there is indeed an approximate
eigenstate of the form (90) that satisfies (89). Since this state differs radically from other
considered previously in the literature, we should treat it with care. We begin with a more
general variational ansatz and show that the variational principle leads to the hole-in-the-
world state we described above. This is a rather technical exercise and readers interested only
in the main physics points may safely skip to §4.3.

We now modify the eigenvalue density to

) A+n'(A), 0<A<Aq,
pn()\) = ; 0, )(.1 <A< Az, (91)
A+n(d), A>2A,.

The functions n,n’ are constrained by
A2 -2

Ac Al Ac
J p,(A)dA=N = 2 "1 J n’'(A)dA + f n(A)dA. (92)
0 2 0 A,

We will minimise the energy over the parameters A, A, and the functions n, n’. We assume
that the maximum value of the eigenvalue A, = v27tN is not modified.

17This might not be precisely a hole in the string theory, due to the non-local integral transformation relating the
eigenvalue and dilaton directions. However, as we discuss in §6.1.1, there are indications of hole-like behaviour
in the string side as well. We argue that the scattering and bound states of sine-Liouville theory are excitations to
the right and left of the hole respectively.
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Figure 8: A visual representation of the hole-in-the-world state, showing the new
eigenvalue density (91). The coloured eigenvalue are host to non-singlet excitations
and the uncoloured ones are unoccupied. A,, A,,1, and A,,; — A, are all 6(k*/*).
Here, we have taken the double-scaling limit N — co.

To calculate the energy of these contributions, we first review the calculation of the energy
in the singlet vacuum, using the phase space density as in (56). The eigenvalue density is given
by integrating over the momentum, and the energy by integrating the Hamiltonian against
this phase space density. Setting ur = 0, which we are now allowed to do, the integral is over

Ip| < A.
The energy difference between the new and the old eigenvalue distributions is
Ac np,(A) 2_ 42
1 -2
AEq, = _f da - ZJ dp P . (93)
21 0 mp(A) 2

The factor of 2 comes from the fact that we have to sum over both positive as well as negative
momenta. We find
4 A4 Ac

1 (M n’ As—A7 1 n
AEeig:Z—f da n’z(—+/1)+ +— | an nz(—+7t). (94)
T Jo 3 127 27 2y 3
The term in the middle is the cost of scooping out the eigenvalues to create the hole — it is a
positive term because the original energy of these eigenvalues was negative.
The non-singlet energy with this new density of states is found by plugging in the new
density of states into (84). This gives

M (A’ +n’ (l +n) M
E, = (0|H,|0) = dx’ dx R y = pn(A)dA.  (95)
Ay A—=29) 0

The n, n’-independent part was discussed in (89), modulo the fact that the scalings taken there
have not yet been justified. The n-dependent part of this is

A A
Kk ([ A 1 n(x) ()
Ens|n = E J; dA n(A) [log(l — 71) + T 7(,1 f dx’ J; dA —5~ )2 , (96)
2 2

and its n’-dependent part is

2 A 2
k ! A A k ! < nA)n’'V)
By === | dVn'A)|log—— +—— |+ 5 | da =5
=Y J, Ag—A" Ay—A 2y J, 2 (A=A
97)
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Because of the large log A. ~logN term in (97), minimisation requires that we set

M
f n'(A)dA’ =o0. (98)
0

In other words, all the eigenvalues we scooped out between A; and A, get sent to larger
eigenvalues — this makes sense since the repulsion wants to send them far away and there’s
a lot more space at larger eigenvalues. The ones to the left of the hole can move around but
stay to the left of the hole. In particular, this means that

A=A, =v21y, (99)

as was the case even in the old eigenvalue distribution.
To minimise the energy, we have to minimise the ‘action’

a Ac k2 _AZ C‘/ Ay
E = ABgg +Eps— 5 U n(A)da — =2 5 ! ) -5 J n'(A)dA!, (100)
Ay 0

where a, a’ are Lagrange multipliers. Setting 6E/&n,5E/5n’ to 0 gives

nA)=+4y/A2+a—pBA)—A,

(M) = /A2 +a/ — /(M) =L, (101)
where
B _ k. (_ﬁ) (M 0
2 _nzv{k’g )t aen ), Y asae|
A
B _ k| Ly A ‘ n(A)
o _nzv{ log (2, A)+AZ_W+JM dl—()\—iv)z}' (102)

Now we have to plug in these solutions into the constraints to solve for the Lagrange
multipliers. The constraint for n is easier to deal with, because the integral has a large IR region
A>> Aq,. Atlarge A, the n’-dependent term in 3 is effectively proportional to f dA’'n'(A) =0,
up to corrections that scale with A% /A%, and the 1/A contributions from the first two terms
cancel each other, giving f(A) ~ k/ v'lf /A2. Thus, atlarge A, we find that n ~ a/2A. Plugging
this back into the constraint to solve for a gives'®

A2 —22
a=-—2—"1 = n%/l{ 1—

103
log A, (103)
Close to the hole, this quantity is negative and we have thus found that the non-singlet inter-

action pushes the eigenvalues away from the hole. Far away from the hole, it vanishes. Since
A1/A9 < 1, we expand in A, /A to find

2m | 2m2v A2’ 4m2y A3 2mA3’
Plugging this into (102) and expanding in 1A'/, gives
! k klog A
B X oga,, n’N\JA’2+a’+ %872 . (105)
21 m2y 2y

18Here, we are assuming that logN > vk, consistent with our interest in the double-scaling limit. It can be
checked, by not dropping the a term in this equation, that this is not necessary for the main result of this section
to hold. We will use this fact in the discussion to follow.
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The constraint (98) can only be satisfied if

n’=0. (106)
It is straightforward to plug (103) and (106) back into the energy (100) to find

A3 —A% K2 AT K
E= om +aﬁﬁ+2n2 [Alkz+klog

— 22 log(l - ;—)} ) (107)

lll 2

Here, a is an O(1) factor. To minimise with respect to A,, we set the derivative with respect to
A4 to 0, giving the equation (setting A% = 27y and not keeping track of coefficients)?
k2 k k

0=a;<+a A +ag— +a

=0(k'/*) = Vv, =0(kY4). (108)

With this scaling the last three terms are all ©(k®/#) and the first term is smaller. We can now
check with this scaling that the energy is

k N
E= oy log 7K + 0(K). (109)
Fluctuations in the energy
Since this is not an exact eigenstate, we should also check that it is an approximate eigenstate
of the Hamiltonian by calculating the standard deviation of the energy. Since the eigenvalue
sector is in a classical limit (which is why we could use the language of eigenvalue densities),
it doesn’t contribute to the variance at leading order.

To calculate the variance due to the non-singlets, we first consider the action of the non-
singlet Hamiltonian on one copy of the U(v) singlet, |v),

a1 [E])- )
Hnslv>:|v>:ﬁ Z

j<v,k>v (Aj_kk)2

Aoz i) -2 |E) - ao

]<vk>v(A Ak) >v]<v
~—_—— %,_/
=a; =By

Converting the a; and f3 to integrals give,

A
‘ A A A
ajzf dAL)zzl{log <+ ! },
()L—Aj) T Ayt _Aj A’v+1_lj

A%Ll
Ay a1 A 1
ﬂk=J da Pl 5 == log(1——”)+ ——1r. ain
0 A—A) = M) 11— T
Acting on the hole-in-the-world state |0), the Hamiltonian gives
K
His10) = p(2)) ® (Z ) Velv)e |v>®<k—”) : (112)
r=1

We have dropped terms arising from the derivatives of the logarithms for brevity. Because we are only inter-
ested in the scaling of A,, it is easily checked that the addition of these terms don’t change the result.
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The expectation value of the Hamiltonian is

Z =ka. (113)
j

Now we can calculate the two-point function of H

(0]HZ,|0) = ||Hys |0)]1> = (Za +Z/3k)+2( ) (114)

The first term proportional to k/v is from the terms where both copies of H,; act on the same
adjoint, and the term proportional to (S) comes from the case when the two H,’s act on
different adjoints. The variance is

(H2) — (Hps)? = K (a—@)* + ~ Z B2, (115)

k r+1

where the overline means the average over the first v eigenvalues. The two terms can be
calculated, as always, by converting the sum into an integral

AZ
k(a—a)* ~ k—v =0(k), (116)
N
K Z = 0(k), (117)
V k=v+
= (H2) — (Hys)* = 0(K). (118)

Thus, the standard deviation is © (x/R), which is significantly smaller than both the energy
and the corrections to it that we have not kept track of. We can then safely conclude that the
hole-in-the-world state is an approximate eigenstate whose energy matches the energy found
by KT (21).

4.3 The fixed-charge partition function

We have isolated a particular bound-state within the dominant PU(N) irrep, so we have picked
one state out of a possible N k20 Fyrther the considerations in §4.2.1 and §4.2.2 together
provide some (inconclusive) evidence that this is more or less the lowest energy state in the
sector. However, our Hamiltonian derivation of the KT partition function is not yet complete.
This is because this state may not dominate the partition function, since in general the interplay
of energy and entropy can cause a higher energy state to dominate the partition function.

The hole-in-the-world state has two free parameters that the analysis in §4.2.3 did not fix,
the position of the hole’s edges A;, A, and the modification of the eigenvalue distribution to
its right n(A). All we found was that the former is © (kl/ 4) and the latter has the asymptotic
form (103). Thus, the number of orthogonal hole-in-the-world states grows polynomially with
k, giving an entropy ~ logk (apart from the large entropy discussed in §3). Thus, we have to
check if there are any other states such that

S—27nRE > —Rklog%+@(k), 1<R<2. (119

20We have factored out the degeneracy discussed in §3. The number N¥ can be derived by the argument above
(78).
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The condition on R comes from the string theory [11,12]. Since R is an @®(1) number, all we
need to check is that the energy cost of excitations outweighs the entropy cost. There are two
sorts of states to check, excitations of the solid itself and states where we let all or part of the
solid evaporate into the large eigenvalue region.

There are roughly \/Ek states that are excitations of the solid. The count of states is the
dimension of k zero-weight U(v) adjoints. Thus the entropic advantage here is ~ klogk.
To calculate the energy cost, we use the result (106) that the eigenvalue distribution doesn’t
get modified within the solid. We start with the observation that compressing Kk vortices into a
region of size %r logk in T-space will lead to kinetic energies of order %. We now evaluate the
variance due to the interactions around this large kinetic energy by noting that the exchange
operators appearing in the numerators in the cross-term have precisely one positive and one
negative eigenvalue of unit magnitude. We therefore model a generic contribution from the
cross term as a random walk — each pair of boxes located at eigenvalues i, j will randomly
contribute either (A;—2; )2 or —(A;—A ; )2 to the energy. The number of steps in the random
walk will be the number of pairs of boxes — k?/2. The mean square of the step size is evaluated

AdA f VAV —L & ok (120)
0

as
1
kJ, (A=A

Here the 1/k factor comes from averaging over K pairs of eigenvalues inside the solid. The
random walk approximation therefore implies that the standard deviation in the cross-term
energy goes like

k1/4 k1/4

AE, ~k-kY& ~ 0(K®). (121)

Thus, we have determined that the typical energy in this class of states is O (li;sg/f() +06(k%/®).
This dominates the entropic contribution to the free energy of ©(klogk), showing the ground
state we have picked out indeed dominates the partition function.

We can perform a similar analysis if we allow the box labels to range over the entirety of

K
the eigenvalue range, from A = 0 to A = v2nN. There will be (%() such states, with a

. 3/2 . . . .
typical energy of order IEW' The energy will again suppress the contribution from these states

provided klog N < %, i.e. when
k> logN. (122)

We saw a similar but stronger condition in §4.2.1 as the condition that there are no gas of
adjoints states with the KT value of the energy. Thus, we have found that the bound state
above genuinely dominates the partition function at k > logN.

Unfortunately, however, (122) is not satisfied in the double-scaling limit, where we expect
k ~ 5ﬁ = O(N°). This is natural, since in the double-scaling limit the black hole is not in
a finite-volume box and so should evaporate, whereas when (122) is satisfied there is a box
with finite size relative to the black hole. However, as we argue in the following section, the
hole-in-the-world state is nevertheless metastable when k = @ (N 0), with a lifetime that grows
polynomially in k.

This leaves the question of why this state should dominate the partition function in the
double-scaling limit. We have not been able to reach a definitive understanding of this ques-
tion. If we calculate the partition function after taking the double-scaling limit, the partition
function is dominated by state where A, | ~ O(N), since in these states the non-singlet term
in the Hamiltonian is suppressed. However, these are states in which the adjoints are infinitely
far away, and the bulk theory is the same as in the singlet sector. Thus, we conjecture that the
correct way to do this calculation is to first calculate the partition function at finite N and then
take the double-scaling limit in the final answer. In this order of limits, the dominance of the
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Figure 9: The evaporation process of the solid — an adjoint jumps out of the solid
and into the rest of the Fermi sea.

hole-in-the-world state is clearer. It would be interesting to return to this question in future
work.

4.3.1 Evaporation rate and page time

Let us now calculate the lifetime of the state above in the double-scaling limit 1 < k ~ N©.
We will find that it grows polynomially in k, which, as we discuss in §5, we may consider to
be a renormalised mass .

The action of an infinitesimal amount of time-evolution on the state yields just a phase
with high probability, since it is an eigenstate, and with a small probability, a state where one
adjoint escapes, i.e.,

ens€ |y k) = eFns€ /T —r|v,K) + Lev/r|v,k—1) ® |free adjoint) . (123)

There is also a slight rearranging of the adjoints within the solid, as given by the a; term in
(112); the branch where the adjoint escapes is the one proportional to the f3;s in the same
equation. We ignore the a; branch for simplicity of exposition, but the following discusion is
not modified by its inclusion.

The second branch in (123), where a single adjoint escapes, is illustrated in Figure 9.
Because the hole-in-the-world state is an approximate eigenstate, the second branch has a
much smaller amplitude that we have denoted by 4/r. r, which we may call an escape rate,
can be estimated straightforwardly to be?!

r=(H%)— (Hy)?* ~ k. (124)

The log of this escape rate can also be thought of as the imaginary part of the energy of the
state, and the lifetime of the state can be calculated using formulas for that of a resonance.
We adopt a more direct method here. Upon n steps of time-evolution, we find

(e‘HﬂSe)n |, k) = e'Ens€ (1 — r)/2 [v,K) + tney/r|v,k—1) ® |free adjoint) + O(e?).  (125)

a

21Consider a Hamiltonian H = (c* ) After time-evolution by an infinitesimal time e, the state |0) evolves

b
to e |0) = e'¢ (1 — §|c|2) |0) + tec |1). Comparing with (123), we see that r = |c|?. It is also easy to verify that
(0|H?|0) — (0|H|0)* = |c|? in this two-state system.
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Thus, we see that the branch where a single adjoint has escaped has an ©(1) amplitude after
time

1 1
toge YN NE~N — ~ — (126)

Y

The inverse of this quantity is the evaporation rate of the black hole.
Since there are k adjoints, the time for most of them to evaporate is

k
tpage N f dK’ tee(K) ~ VK. (127)
1

We may consider this the Page time of this black hole.
The inclusion of a third branch in (123) corresponding to the a jsin (112) doesn’t modify
this discussion because it contributes to the variance at the same order, and so that rearrange-

ment of the adjoint distribution becomes important on the same time-scale.

5 From the fixed-charge ensemble to the grand canonical ensem-
ble

The partition function that [11] calculate isn’t in the fixed-charge ensemble but in a grand
canonical ensemble,

Z(3p) = f da eNolrorr @l z(q), (128)
U(N)

where Z(2) is the partition function with twisted boundary conditions X(8) = Q7X(0)Q. In
this section, we verify that our results are consistent with theirs and attempt to shed some light
on the question of whether the PU(N) symmetry is gauged or not.??

Let us first assume that the PU(N) is a global symmetry and show that our results are
consistent with those of [11,12]. Since the twisted partition function is a class function [32],
we can decompose it into fixed PU(N) irrep sectors as

1 (2)
Z(Q)= Z,. (129
@)= )
Here, the characters are normalised so that
1) =d,, f dQ x,. () x,, () =6, ,- (130)

The factors d, of the dimension of the irreps ensures that

Z(1)= er = Z:tr%r e PH =try, (GB e‘ﬁH) =try e PH, (131)
r r 7,

meaning that Z(1) is the trace over the entire Hilbert space and Z, is the trace over the fixed-
irrep Hilbert space %,. Here, unlike in some earlier section, %, is not the irrep Hilbert space
but the space of all states that transform in the irrep r — in a hydrogen atom where the
irreps are labelled by [, %] is spanned by states with all n, m indices consistent with [. This

22We thank Juan Maldacena for sharing some unpublished notes which directly inspired this section. Some
of the statements were sharpened due to discussion during and after a talk at the Tata Institute of Fundamental
Research, and we thank the audience there for the discussion.
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justification for the factor of d, is only sensible in the case that PU(N) is a global symmetry.
We now show that the fixed irrep partition function we have found results in the partition
function of [11] after the convolution (128) and a crucial renormalisation.

The first step is to expand the exponent

. O (N1, KK / R
eN;,b{trQ+tr§2 } — Z %(k ':;k ) (tr Q)k (trﬂf)k . (132)
k,k'=0 )

Using the fact that Z(Q2) is independent of the global phase mode of Q (by definition), we can
integrate over it to find

s (N5)% k \K
J eNgb{trQ+trQ } = Z :72 (trQ’) (trQ’T) ’ (133)
U(l)centre k=0 (k)

where Q0 is valued in PU(N). The integral over the phase mode is proportional to &y /. So
we have, renaming Q' — Q,

N 2k ik 9)
Z(;,b):Z( ifz) (r ) (rr Q") Z”d( )Zr. (134)
K : PU(N) T r
The next step is to do the Q integral
1
d. d- f Xf@’k@f@k(ﬂ) Xrlr'z(ﬂ)' (135)
r-ry JU(N)

Notice that we are integrating over all of U(N) and not just PU(N) — because the integrand
is invariant and we aren’t keeping track of normalisations, this makes no difference. We have
also written the irrep r as the symmetrisation of an irrep r; of the boxes and an irrep 75, of the
anti-boxes. At leading order in large N, we can forget about the symmetrisation and take the
full irrep to be simply r; ®7,.2% Now, Schur-Weyl duality states that k copies of the fundamental
decomposes into irreps with k boxes in the YD with multiplicity dﬁsk) equal to the dimension
of the corresponding irrep of Sy. For the characters, this implies®*

R =Pro®rs, = zpe= d%p,. (136)
rlk

The symbol r | k denotes the restriction to representations with exactly k boxes. Thus, for rq, 1,
with k boxes each, we find

Sk 35k ) 2

1 J drdr, N (k1)
A rokg ok () ¥, = () ~ ~ ( ) N . (137)

d’”ldfz U(N) reees v d"ldrz K N2k

Here, we've used (130) and (136) in the first equality and (29) in the second equality. The
first equality is only approximately true because we’re ignoring the possibility that some pairs
of fundamentals and anti-fundamentals could fuse to a singlet state.

The final partition function, plugging (137) into (134) and using the KT free energy, is

(2-R)k - o
26)= 2.5 2, mefzzik(%)z B O (1 1) IR CE™
k k

r,ro |k k

B At finite N, r; ® 7, contains irreps with fewer than k boxes as well.
24The fact that each irrep appears with such a multiplicity can be rephrased as the statement that we are summing
over irreps with a ‘Poissonised-Plancherel’ measure [19].
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The quantity within the brackets is exactly the renormalised fugacity (17).?° Evaluating the
sum by saddle-point, we find exactly the answer (18) from [11] with 3 being the renormalised
fugacity.

Let us observe that we can define a renormalised fixed-charge partition function®

6

(2+R)k K
Zren,k = (\/E) > Sren = 2klog \/E: Eren= _E log \/E; (139)

which is dual to the renormalised fugacity ; rather than the bare fugacity 3,

2k

Z(ﬁ) = Z %Zren,k . (140)
— K

Comparing this with (134), it seems that Z.., i is a renormalised version of the fixed K partition
function IPU(N) (tr Q)k (tr QT)k Z(€2). We will return to this point in §5.1 and §6.4.

5.1 Gauging as renormalisation

We finally address the difference between our approach and that of [ 16], which is the question
of whether the PU(N) symmetry should be gauged or not. We find that, even if we start with
the ungauged theory, a gauged description might still emerge after renormalisation in the
double-scaling limit.

To begin, we note that we can rewrite the twisted partition function Z(2) as the path
integral of a gauged theory,?’

Z(Q) = MG—S[X,A] ) (141)
peifa—q Vol (gauge)

The integral over A excludes the zero-mode, which is fixed. This is the same as the ungauged
twisted partition function, since for every A degree of freedom, i.e., the non-zero modes of
A, that we include in [2A], we introduce a corresponding constraint. The zero-mode of the
gauge field is just the twist.

Where the gauged and ungauged partition function differ is in the definition of the fixed-
irrep partition function. In the ungauged theory, it can naturally be defined as the trace over
a Hilbert space as in (131). In the gauged theory, however, the most sensible definition is

2 _ f foxjioAl, (Peif#) stxa, (142)
r vol (gauge)

We have reintroduced the integral over the zero-mode of A here. This was how the adjoint
partition function was defined in [16]. Comparing this with (129), we find that

Z;g) _ ? dominant YD e_RkIOngR . (143)

r

The partition function of [11,12] is then

7 _ S (N??b)ZK ~ —Rklog‘l/vf
() =D, | 992 Zroxaror() D 21,7, () € < (144)
k=0 ’

15T

25We thank Juan Maldacena for pointing this out.
26This quantity was originally defined by Juan Maldacena in unpublished notes.
27We thank Shiraz Minwalla for emphasising this fact to us.
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Table 1: The entropy of different ensembles in the gauged and ungauged models.

[ Entropy | Source of Entropy | Discussion in paper
Ungauged MQM
Fixed irrep r || logd, ~ 2klog % Degeneracy due to symmetry 83
Fixed charge k 2klogN Dimension of dominant irrep and its multiplicity Around (136)
Gauged MQM
Fixed irrep r 0 (logk) Fluctuations of the hole-in-the-world state Above (119)
Fixed charge k klogk Multiplicity of dominant irrep Around (145)

The Q integral gives, as in (137),

> f A ¥ expfer (@) 11,7, () & D0 dS) ~ ki (145)
1 T2

ri,T2

The sums are done as in §3.2, and we know from there that they are dominated by one irrep.
Thus, we see that the fixed K partition function has extra entropy of 2klog v’k compared to
the fixed-irrep partition function, and that this entropy is entirely from the multiplicity of the
dominant irrep in the product of k adjoints.

Absorbing the powers of N to renormalise 3, we see that the fixed-k partition function in

the gauged interpretation is
(2+R)k
78 =(VK) T = Zienks (146)

i.e. we get exactly the renormalised partition function defined in (139).

So we see that we can reproduce the result of [11,12] from both the gauged as well as
the ungauged interpretations. Since the gauged entropy agrees with the renormalised entropy
defined in (139), we speculate that the passage from the ungauged theory to the gauged one
corresponds to a renormalisation in the double-scaling limit. We give pictorial evidence for
this speculation in §6.3. We leave further analysis of this difference to future work.

5.2 Entropy of the black hole

Now, for the sake of clarity, we collect our results on the entropy. There are three important
partition functions: the fixed-irrep partition function, the fixed-charge partition function, and
the grand canonical partition function. We summarise the main points in table 1.

There are two versions of the fixed-irrep partition function: the gauged and the ungauged.
The ungauged model has an entropy given by the log of the dimension of the irrep dimension,
as we found in §3; for the dominant irrep at a given k this entropy is 2klog N/vk+ @ (k). The
gauged fixed-irrep partition function (142), which is really the expectation value of a Wilson
line wrapping the thermal circle, is the number of excitations of the hole-in-the-world state
that change the energy only at 0 (k). As discussed above (119), this entropy is 0 (logk).2®

For the fixed-charge partition function, there is a new contribution to the entropy from
the dominant irrep appearing with a certain multiplicity in the product of K adjoints. This
contribution is klogk, as we discuss around (145). The grand canonical ensemble is at leading
order equivalent to the fixed-k ensemble and so there is nothing new in this case.

As we have argued in sections 5.1 and 6.3, the ungauged entropy is dominated by IR
degrees of freedom that decouple from the bulk theory and thus shouldn’t count towards the
entropy of the black hole. The actual entropy of the black hole should be the log of the number
of states in the gauged theory in the sector with Kk adjoints,

28This is in agreement with unpublished results of Juan Maldacena.
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We prefer this answer over the number of states in the dominant irrep because to actually
see this state we would need to collapse k adjoints; we would see e distinct bound states,
corresponding to the different permutations of the k adjoints that we collapsed.

6 Discussion

In this work, we have found a Hamiltonian derivation of the free energy of the two-dimensional
black hole. The microstates of the black hole are dual to the subspace of k adjoints of the
PU(N) symmetry. The entropy can be calculated either directly in terms of k indistinguishable
adjoints or by counting the dimension of the irrep that dominates this tensor product. The
energy was calculated by a direct analysis of the Schrodinger equation, and finding a non-
trivial bound state that dominates the fixed-charge partition function. Since [13] had two
interpretations that resulted in different free energies, the final outcome is not only that we
have reproduced the free energy but that we have picked out one of these two prescriptions.

Our main result, however, is the existence of a novel, long-lived bound state — the hole-
in-the-world state — that has properties very reminiscent of a black hole. We will discuss
further the ways in which the properties of this state match the two-dimensional bulk de-
scription in §6.1, but we may also wonder about higher-dimensional black holes. The purely
two-dimensional black hole has the unsatisfactory property that, because k—2 is small, strings
on this background are strongly coupled, because of which its black hole-like nature is un-
clear. However, as discussed recently in [50] among others, the SL(2,R),/U(1) CFT when
considered as a two-dimensional sector of a higher-dimensional string theory can have k > 3
where it is weakly coupled. Further, the WZW model is believed to be exactly dual to a sine-
Liouville CFT at arbitrary k and so sine-Liouville theory is relevant for the description of higher-
dimensional black holes. While we have not verified that the MQM description is relevant in
this higher-dimensional setting, our result indicates that the Lorentzian description of the mi-
crostates in the sine-Liouville CFT might be a condensate of stretched strings similar to our
hole-in-the-world state. In other words, we speculate that this hole-in-the-world state points
the way to a more general Lorentzian description of the winding condensate that is believed
to carry all the entropy of a black hole, see e.g. [51].

Another important avenue to explore in the future is to obtain the stringy counterparts of
the black hole microstates we found in this paper on the bulk side, specifically on the cigar,
using the off-shell formulation of string theory presented in [52,53].

In the rest of this section, we speculate on what our results might imply for the string-
theoretic interpretation of this system. First, in §6.1 we discuss aspects of our central result
— the hole-in-the-world state. We heuristically sketch out ways in which it behaves like a
black hole and the sine-Liouville string theory. We go on in §6.2 with a short summary of the
thermal phase structure of string theory, and what our results seem to imply for the phase
structure of the ¢ = 1 theory. In §6.3, we present a natural extension of the string theory
construction of [16] that seems consistent with our results; it also provides some motivation
for thinking of the passage from the ungauged MQM to the gauged one as renormalisation in
the double-scaling limit. Finally, in §6.4, we point out that our count of states is related to a
random walk model called the Motzkin walk model; we speculate on the interpretation of this
in string-theoretic terms.
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6.1 Bulk properties of the hole-in-the-world state

6.1.1 Stringy justification for the bound state (or) how we learned to stop worrying and
love the hole in the world

Since the spatial direction of the string theory target space is identified with the Fermi surface,
one might worry that a hole in the eigenvalue distribution shouldn’t be allowed because it
would cause a radical change on the string theory side. In this section, we argue heuristically
that the formation of the hole is dual to the passage from sine-Gordon theory to sine-Liouville
theory in the bulk.

In the usual duality between the singlet sector of the MQM and ¢ = 1 string theory, a
probe closed string is dual to a particle-hole pair in the Fermi sea. In the bulk, such a string
scatters off the tachyon wall — the pe 2? term in the worldsheet action — and in the MQM
the particle-hole pair scatters off the edge of the Fermi sea at A = 4/2u. Thus, the reflection
amplitudes in both the bulk and the boundary are non-analytic in u.

In the hole-in-the-world state, a particle-hole pair now scatters off the new edge of the

Fermi sea at k/% ~ 3% — note that the j scaling is that found in (22). In sine-Gordon theory,
2
the worldsheet action contains a term (z,ﬁ e_2¢) , much as it contains a term pe 2?. We see

that the coefficient of e 2% is exactly the square of the position of the edge of the Fermi sea in
both cases. Thus, it is plausible that scattering of closed strings at large 3 and the scattering
of particle-hole pairs in the hole state are non-analytic in the same parameter 35 and are
further exactly dual. For example, the leading non-analyticity of the susceptibility at large 3
calculated in [12] is precisely log 5%. Such similarities between u and ;,ﬁ can also be seen
in the reflection coefficients, see e.g. [54,55]. We leave a detailed check of such a duality to
future work.

More evidence of the duality with sine-Liouville can be seen in the excitations of the solid
itself. Since it is a compact region in the double-scaling limit, we expect that the spectrum of
these excitations is quantised. Further, we should not be able to excite the eigenvalues without
‘carrying around’ the adjoints, since the adjoint index is associated with the corresponding
eigenvalue.

Sine-Liouville theory also has a spectrum of bound states in which momentum and winding
modes are excited together,

klw| — 1 k—1
N:M—Ne(——), NeN,

__JG=D (k)

Pime = =74 5 4k e k2 4k
Here, n counts momentum modes and w winding modes. The constraint on jy ensures that
momentum modes can’t be excited without winding modes. We can associate a momentum
mode with the eigenvalue and the winding mode with an adjoint. Thus, the constraint is
entirely analogous to what we expect from the solid.
Checking this duality by making the preceding statements precise is a promising avenue
of future work.

__JU=1, (n+kw?

=

(148)

6.1.2 The hole-in-the-world and black holes

The hole-in-the-world state bears several qualitative resemblances to black holes. The state
radiates into free particles — because the interaction between adjoints falls off like 1/(AA)?,
an adjoint far away from the solid will behave to first order as a free particle.

As discussed in §4.3.1, the state radiates like a black hole at a slow rate, with a lifetime poly-
nomially large in K. When considering the bound state in 7-space, which is perhaps more natu-
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Figure 10: A depiction of the eigenvalue distribution shown in Fig. 8, this time
with respect to T ~ logA. We note that in 7-space, the hole-in-the-world’s size
does not scale with K. The disconnected solid of non-singlets is of size O(k), and
its Schwarzschild radius is of size O(k).

ral from the perspective of the free adjoints, the size of the hole is always © (A,,;/A,) = 0(1),
while the size of the bound solid itself is ®(logk). We can see from the discussion in §4.2.1
that a configuration of free adjoints will only be energetically favored when they are spread
over a region A of size log AA ~ AT ~ 6(k'/?), which we can interpret as a Schwarzschild
radius. We note that both the evaporation time and this effective radius are polynomial in the
mass of the black hole. This distribution of scales in T-space is shown in Fig. 10:

This radiation can furthermore be mined as the black hole radiates entirely. It would be
interesting to compare the resulting entanglement curve between the solid and the collected
radiation with the semiclassical Liouville calculation [56].

The bound state of eigenvalues further bears resemblance to bound DO-brane models
of black holes in BFSS, whose evaporation processes were considered in [57]. However,
in such models the bound states radiate due to a supersymmetry-induced cancellation of
strong attractive forces due to open strings stretching between the branes. Despite being non-
supersymmetric, this model reproduces similar behavior.

6.2 Thermal phase transitions in string theory

In this subsection, we begin with a review of some of the classic results about the canonical
ensemble in string theory [36,37,58] and try to put the story reviewed in §2 into the context
of this literature. Finally, we attempt to physically interpret the fact that our calculation picked
out the second prescription of [13].

One of the first conclusions one can reach from the spectrum of closed string states is that
there’s a Hagedorn divergence in the one-loop partition function. This is because the log of the
density of states has the same asymptotic behaviour as the energy spectrum at large dimension
— both grow as /A where A is the conformal dimension of the oscillators (that of the full
vertex operator must be 2). As a result, the partition function looks like

Z(p) ~ f dE ePrfe=PE (149)
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Figure 11: A vortex is a hole that winds around the thermal circle.

where the first piece is the density of states and 3 = 47+/a’ is the reciprocal of the Hagedorn
temperature Ty; at T > Ty the exponent grows at large energies and the integral diverges.
Naively then, it appears as if string theory has a limiting temperature.

Further progress was made by [36, 37], who made a remarkable observation about this
temperature. The observation was that Ty is exactly the temperature at which two things
happen:

1. The lowest winding mode of the string becomes massless. In the expansion of the world-
sheet field T(7, o) where T is the target space Euclidean time and 7, o are worldsheet
coordinates,

n .
T=Ty+ }—37 + mRo + oscillators, (150)

the mode with no oscillators excited and n = 0, m = 1 is the lowest winding mode, since
it is the lowest mass-squared mode where a spatial circle of the string winds around
the cylinder. The corresponding vertex operator is e'*("t="®)_ Its mass depends on R; at
lower temperatures, it has m? > 0 and at higher temperatures it has m? < 0.

This means that this mode becomes a winding tachyon at T > Ty and so one should think
of the Hagedorn temperature as the location of a phase transition where this tachyon
condenses.

Of course, there is the question of whether the winding tachyon potential has a stable
minimum.

2. The worldsheet undergoes a Berezinskii-Kousterlitz-Thouless (BKT) transition, see e.g.
[59] for an introduction, in which vortices get deconfined and proliferate.

From the stringy point-of-view, a vortex is just a hole that winds around the thermal
circle, see figure 11. Interestingly enough, since a vortex needs to have a core where the
derivatives diverge, this proliferation also introduces a worldsheet UV cutoff — mean-
ing that conformal invariance is broken on the worldsheet. Since conformal invariance
was the main reason that the S? partition function of string theory vanished, this phase
transition also causes the genus 0 partition function® to become non-zero.

The fact that these happen at the same temperature is not terribly surprising, since the
insertion of a winding mode operator can equivalently be thought of as that of a vortex.? The
condensation of the winding tachyon, then, is just the proliferation of vortices.

% As a pedantic point, we note that introducing holes causes the Euler characteristic to change but not the genus.

30To see this, consider a small disc around a winding mode operator. Using the state-operator correspondence
and the fact that the state looks like (150) with n = 0, m = 1, the boundary of this disc winds around the thermal
circle. This is the same property that characterises a vortex.
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(a) The Landau-Ginzburg  potentials

m?¢? + u¢p* for u > 0. There is only
one minimum for positive m? (T < Ty) and
two minima at negative m? (T > Ty) with a
smooth transition.

—01

— T < T, < Ty

(b) The potential m?¢?2

Y

— T =T, <Ty

— u¢p* + vo® for

0.5 Lo

T=Tyg>T,

u,v > 0. The non-trivial minimum becomes
the true vacuum at positive m? (T < Ty). The
bottom-most line is the m?> = 0 (T = Ty)
graph; we can see that there is nothing special
about the erstwhile Hagedorn temperature in
this model. [58] argue that this is the model
that more closely describes string theory in flat
space, except that the transition is to an unsta-
ble phase — we have chosen to make the new
phase stable in this cartoon for simplicity.

Figure 12: A cartoon of how a first-order transition happens at a lower than expected
temperature. In both cases, increasing the temperature takes m? from positive to
negative.

Despite their equivalence, the BKT point of view has an important advantage: the question
of whether the winding tachyon potential has a stable minimum becomes the question of
whether the worldsheet theory above the BKT transition flows to a non-trivial CFT when you
add a fugacity for the winding mode operator, see figure 1 and subsequent discussion in [36]
for an exceptionally clear exposition. In R?® x S!, the answer is no; there is a Jeans instability
where, because of the infinite volume of space, the matter starts “clumping” together.

In the ¢ = 1 case, however, the answer is yes — the sine-Liouville theory is a non-trivial
CFT at a non-zero value of the fugacity 3 for R < 2. An important point here is that the sine-
Liouville theory cannot be studied perturbatively in 3, see the discussion around (12), which
can be thought of as the fact that adding this term triggers a non-trivial RG flow to a new fixed
point. This new fixed point, in turn, can be thought of as being dual to our hole-in-the-world
state. The fact that the arguments of [36,37] predict the location of the transition at R = 2+v/a’
in the ¢ = 1 model was noted in [38].

An important point added by [58] was about the order of the transition. Since the mass-
squared of the winding mode goes smoothly to 0 and then negative values as temperature is
increased, the above discussion might lead one to conclude that the Hagedorn transition is
second or higher order.>! However, it turns out that the coupling between the winding mode
and the dilaton modifies the effective Landau-Ginzburg potential and the transition is first
order and, more importantly, it occurs at a lower temperature T, < Ty. A simple cartoon for
this can be seen in figure 12.

How do the two interpretations mentioned in §2 tie in to this discussion? Firstly, both
interpretations agree on the fact that there is an actual transition of ¢ = 1 string theory at
the Hagedorn value R = 2.2 This is similar to figure 12a. The first interpretation, however,

311t should be noted that BKT transitions are generically of infinite order.
328ee [11] for a discussion of this transition in the context of the first interpretation.
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Xij = Uj AU

(a) The simplest Feynman diagram with
one vortex (blue) and one anti-vortex
(red). The point (¢t = 0) on the thermal
circle where we cut the diagram has been
indicated by a dashed line. The corre-
sponding propagator X;; has been shown
in black.

(b) A slightly more complicated Feynman
diagram with one vortex and one anti-
vortex. It has topologically trivial faces
that don’t wrap the thermal circle. The
face in the middle carries the index k and
the propagators adjoining it correspond
to the matrix elements X;; and X;; re-
spectively.

Ai

A
k .)\j

(c) Our speculation for the stretched string interpretation of the previous
Feynman diagrams at t = 0.

Figure 13: Feynman diagrams with one vortex and one anti-vortex.

posits a second Hagedorn transition at the black hole temperature R = 3/2 and that is why the
sphere free energy vanishes [11]. The free energy in the second interpretation is completely
analytic at the black hole temperature and so under this interpretation there is only one phase
transition for R > 3/2.

Thus, our results imply that two-dimensional string theory has only one Hagedorn-type
phase transition, at the naive Hagedorn temperature. Various arguments suggest another
phase transition at R = 1, and our results have no bearing on this question. The entropy
calculation presented in Appendix A is likely relevant for this highest temperature phase.

6.3 A stringy picture for the entropy

In this section, we attempt to understand the relation between the MQM and the stretched
strings of [16]. We will also find a natural picture for the renormalisation from the ungauged
MQM to the gauged one we noted in §5.1. This section is entirely speculative and we hope to
return to some of these ideas in more detail in future work.

We begin by going to the deep UV of the worldsheet, which is a Feynman diagram for the
MQM, as emphasised in §2. A Feynman diagram that corresponds to the genus 0 partition
function in the adjoint sector is one with the topology of $? and with two faces that wind
around the thermal circle in opposite ways. These two faces are the vortex and the anti-vortex
respectively, see figure 14a. For simplicity, we consider the case where the vortices are the
only non-trivial faces. The vortex and the anti-vortex have an index each, which we call i, j
respectively.

This is a cylinder diagram corresponding to the propagation of the matrix element X;;
around the circle. Using the eigenvalue decomposition, this matrix element can be written as
(U T)ik Ai Ugj. The i, j indices are the right-action indices that carry the PU(N) symmetry and
the k index is the left-action index whose wavefunction is given by the eigenvalue equation.
In the double-scaling limit, k is kept at ®(1) inside the solid, while i, j are unconstrained and
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(a) A simple Feynman diagram with two vor-
tices and two anti-vortices. It has two faces
with no winding (one not visible), two with
winding 1 and two with winding —1.

Aky )

’\jz
(b) A stretched string interpretation of the
Feynman diagram to the left, at t = 0. There
is a similar situation on the other side of the
thermofield double, but the strings stretch be-
tween different pairs of eigenvalues there as

can be read off from the dotted lines in figure
14a.

Figure 14: Feynman diagrams with two vortices and two anti-vortices.

therefore typically of O(N).

Now, to give this Feynman diagram a Hamiltonian interpretation, we cut it at t = 0. Re-
membering that the eigenvalue corresponds to the spatial direction in the string theory, we
can associate the cut loop at t = 0 to a string that goes from A; to A, and comes back to A,
see figure 13c. In the double-scaling limit, this is an open string that comes in from oo to A
and goes back out — similar to the stretched string of [16].

In [16], the stretched string is anchored to an FZZT brane at co. However, in our picture,
the open string has two endpoints at different eigenvalues A;, A;, which one might naively
associate to two different branes. One way to make our picture consistent with that of [16]
would be to remember that i, j are summed over all O(N) values, which could be consistent
with the fact that an FZZT brane ranges over all values of the dilaton from some ¢ ;, to co.
We caution the reader that this is a departure from the precise solution in [16], were the two
ends of the stretched string were at the same dilaton value (which is the same eigenvalue, up
to an integral transformation). Since the entropy count was a sum over the different values
that i, j could take, this suggests that the stringy picture for the entropy is related to the length
of the FZZT brane. The fact that the latter diverges is nothing but the fact that the entropy
depends on N and also diverges in the double-scaling limit.

Before moving on to the k = 2 case with two vortices, let us address how to think about
this when there are ny topologically trivial faces between the vortex and the anti-vortex, as in
figure 13b. In this case the matrix we have to diagonalise is (X;);;, (Xz)izig"'(XnF+1)inFi' The
rest of the discussion carries through at the low level of precision we have maintained in this
section.

Let us now look at the case of two vortices, which we can draw as in figure 14a. At t =0
we see two stretched strings; and two corresponding stretched strings at t = mR. The entire
discussion carries through for each string, with the small caveat that we can exchange the two
strings by shuffling the indices on the vortices. Therefore the number of states passing through
t = 0 is a factor of 2 less than what one might expect from two stretched strings.

More generally, at arbitrary k, each stretched string should be thought of as an adjoint, and
the different stretched strings as indistinguishable. The number of states is therefore counted
by the number of states in K indistinguishable copies of the adjoint — which was exactly the
counting we did in §3.1. Thus, the sine-Liouville model seems to directly realise one of the
two countings we have presented. We hope to return to these ideas and make them precise in
future work.
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Figure 15: A valid example (red) and an invalid example (gray) of an uncoloured
Motzkin walk.

Further, the renormalised partition function (139), which we saw in §5.1 to be natural for
the gauged theory, has a natural interpretation here. This is because the entropy we calculated
in §3 corresponds to the number of places the open string can end, and the indices at the edge of
the open strings are infinitely far away in the double-scaling limit. These indices thus shouldn’t
matter very much for dynamics at finite distance, and so the renormalisation associated to the
double-scaling limit could be regarded as decoupling the PU(N) global symmetry from the bulk
dynamics by sending the objects charged under the symmetry (the ends of the open strings)
infinitely far away.

Finally, the major caveat about the pictures in this section is that, in this interpretation, the
stretched string seems to ‘jump’ across the hole in the world. This suggests that there might
be a more useful picture in the black hole phase. This is what we turn to now.

6.4 Motzkin walks

We end our discussion by describing another equivalent way of performing the entropy calcu-
lation in 3.2 using a class of discrete random walks called Motzkin walks. As we will explain,
this allows us to draw a speculative but tantalizing connection between the solutions of the
cigar string theory and these random walks.

First, some definitions. Let {e;, e,} be the standard basis of RR?. A Motzkin walk (or path)
of length n is a continuous lattice path from (0,0) to (n,0) that never dips below the x-axis
created out of the following unit steps:

{e;}u{e; + ey e —ey}. (151)

For obvious reasons, the above are often referred to as ‘flat’ steps, ‘up’ steps and ‘down’ steps
respectively. An example of a valid and an invalid Motzkin walks are illustrated in figure 15.
The number of Motzkin walks of length n are counted by the n™ Motzkin number, 7,. These
numbers appear while enumerating a host of other combinatorial objects — amongst other
things, 7, counts the number of non-intersecting chords that can be drawn between n points on
a circle, the number of grammatically allowed ways of placing left and right parentheses, and
spaces in a sentence and the number of configurations of a spin-1 chain satisfying Z:nzl S§7=0
for m < n and 2?21 S* = 0. Given their prevalence then, it is no surprise that these numbers
have been quite extensively studied in the combinatorics literature. For a more complete list of
the different manifestations of Motzkin numbers and a thorough discussion of their properties
and relations, see [60].
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Figure 16: A valid (red) and an invalid (gray) example of a 2-coloured Motzkin walk.

In what follows, we will be interested in a higher dimensional generalization of the Motzkin
walk — for historical reasons, these extra dimensions are often referred to as colours, and these
generalized walks are called coloured Motzkin walks [61].3® Once again, let {e;,...e, €.}
be the standard basis of R*"!. An s-coloured Motzkin walk is a lattice path from (0,...,0) to
(n,0,...,0) that always remains in the positive ‘quadrant’ of R**!, created out of the following
unit steps,

S
{ej}ufe; +ey, e —e}u (U {ey—ei+ej,e+e— ei+1}) . (152)
i=2

An example of a valid and an invalid 2-coloured Motzkin walks with ten steps are illustrated
in figure 16. We will denote the number of Motzkin walks of length n with at most s colours by
. The constraint that the walker stay in the positive quadrant bounds the maximum number
of colours s by half the number of steps n/2.

The relevance of these walks to our story begins with the highly non-trivial observation
that the number of sYTs with n boxes and at most 2s + 1 rows is also given by 9”:.34 Indeed,
the authors of [61] take this a step further and construct a bijection between the two sets,
assigning each Motzkin walk to a specific sYT. The complete bijection is rather involved and
will not be necessary for our present discussion. However, the mere existence of such a map
implies that we can reproduce everything we that have derived about the string theory from
the counting of the sYTs using these walks. In particular, the following picture emerges:

1. Every state in the Hilbert space is assigned to two independent Motzkin walks — one
corresponding to the sYT for the boxes, and the other for the anti-boxes. Because the
symmetry group is PU(N), these two Motzkin walks have the same number of steps. In
the gauged model, we may think of these two Motzkin walks as corresponding to the
state in the irrep of the Sy that permutes the adjoints.

2. Given a state with K steps, each of the two Motzkin walkers can explore any number
of the available dimensions. However, in strict analogy with what happens with the

33Rather unhelpfully, there are two separate notions of a Motzkin walk with colour degrees of freedom that
appear in the literature. Unfortunately, despite sharing the same name, these two generalizations of the Motzkin
walk have very different properties and it is therefore important that a distinction is made for our discussion. We
will not describe the other generalization of the walk or the differences between the two here, but only provide
references for the interested reader. The generalization of the Motzkin walk that we use is defined in [61]. The
other generalisation of the coloured Motzkin walk appears in [62-64].

34A slightly smaller set of walks can be associated to sYTs with 2s rows. As elsewhere in this paper, we ignore
all even-odd effects.
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sYTs, the dominant contribution to the entropy arises from the walks that explore G(+/k)
dimensions.

3. If we now calculate the entropy of all the doubled Motzkin walks traversing K steps, we
see that this is exactly equal to the renormalized entropy (139), i.e.

Sren.k = 2klog VK. (153)

In other words, the Motzkin walks appear to directly compute quantities associated with
the fixed-charge partition function in the gauged model, Z, k.

Bolstered by this last observation, it is extremely tempting to ‘forget’ about the sYTs entirely
and attempt to draw a deeper and more direct connection between these Motzkin walks and
the string theory on the cigar background. This idea is not new — beginning with the work of
Horowitz and Polchinski [65], a common motif in various investigations of string theory near
the Hagedorn transition have involved drawing parallels with various random walk models
(see [66-68] and references therein). The Horowitz-Polchinski solution (see [69] for a recent
review) describes a self-gravitating gas of strings that then condense into a single stretched
string near the Hagedorn transition. The Euclidean picture of this computation involves a
condensate that winds around the thermal circle that grows massless at the Hagedorn tem-
perature — in a first quantized description, the path integral for this field is just a sum over
random walks.

A similar cartoon emerges while studying the Euclidean cigar. Near the Hagedorn tran-
sition there is a winding condensate that is concentrated at the tip of the geometry. More
precisely, the profile of this winding mode is described by the Nambu-Goto action of a string
stretching from the tip of the cigar up to a particular radial distance. As the work of [51]
emphasize, it is this condensate that carries the entropy of this system. We suspect that the
Motzkin walks can provide a direct Hamiltonian realization of this entropy.

If this picture is true, it has two neat consequences. First, [70] draws a connection between
the cigar random walks and ‘string bits’. These are fundamental point-like objects first intro-
duced in [71] in order to make the causality and stability of string theory manifest — strings
are then regarded as composite ‘multi-bit’ objects with a particular linear arrangement [72].
This would allows us to interpret each step of the Motzkin walk as an individual bit. Secondly,
the picture that we have drawn describes a repackaging of the dynamics of a gas of strings
(akin to dealing with multiple adjoints) into Motzkin walks (which, like the sYTs are simply
irreps with the correct number of boxes). In other words, Schur-Weyl duality reorganises the
physics of the system in a manner very reminiscent of ER=EPR duality!

Of course, there is much work to be done before we can make this picture precise. To begin
with, here are some simple questions:

1. Why are there two Motzkin walks for each state?

2. What does the restriction of the walk to the positive quadrant of the R**! mean from
the perspective of the string theory?

3. What do the dimensions (colours) correspond to in the string theory?

We don’t have satisfactory answers to these questions yet — we leave them here as launching
pads for future exploration.
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A Entropy count with k > N2 boxes

In this case, we have not been able to calculate the value of the energy; however, the PU(N)
symmetry guarantees a large degenerate subspace and so we might simply count its dimension
as an exercise.

Focusing on just the boxes for now, a typical Young diagram r has N /2 rows with row

lengths
2k 2k

o= +6ha, >N, Za:mazo. (A1)
Let us calculate the dimension of this irrep. The formula for the dimension is [49]
1 (N—=(a—1)+2,)!
[ager.n, ill@al) tt (N=(a=1) ~
where hl(a, a) is the hook length of the a'* box on the a' row.

Because the length of the tableau is much bigger than its height, we can approximate the
hook length by ignoring the boxes below any given box,

hi(a,a)~A,—a, = l_[hl(a,a)wl_[la!. (A.3)

dim %, = (A.2)

So, the dimension is

_ _
dim 7, ~ l_[(N ;H_A“) A (%) dim 7, ~ l_[(N ;H_Aa) R (%) , (A9
a a

To include the anti-boxes, we merely need to square this. So, we find that

N2

Blw

3N2
k 2
dim 7, = dim %, g, ~ (%) . (A.5)
So, our conjecture for the entropy in this phase is
3 k
Sk = ENzlogg ) (A.6)

Note that the growth slows down from linear to logarithmic in K.
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