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Abstract

Statistical models serve as the cornerstone for hypothesis testing in empirical studies.
This paper introduces a new cross-platform Python-based package designed to utilize dif-
ferent likelihood prescriptions via a flexible plug-in system. This framework empowers
users to propose, examine, and publish new likelihood prescriptions without developing
software infrastructure, ultimately unifying and generalising different ways of construct-
ing likelihoods and employing them for hypothesis testing within a unified platform. We
propose a new simplified likelihood prescription, surpassing previous approximation ac-
curacies by incorporating asymmetric uncertainties. Moreover, our package facilitates
the integration of various likelihood combination routines, thereby broadening the scope
of independent studies through a meta-analysis. By remaining agnostic to the source of
the likelihood prescription and the signal hypothesis generator, our platform allows for
the seamless implementation of packages with different likelihood prescriptions, foster-
ing compatibility and interoperability.
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1 Introduction

Unraveling new physics beyond the Standard Model has been a pursuit driving scientists to
expand the boundaries of experimental analyses. The forefront of this exploration is the Large
Hadron Collider (LHC), where valuable analyses are conducted, specifically targeting phase
spaces to capture the signature of simplified models. These models, such as variations of the
minimal supersymmetric extension of the Standard Model (MSSM), often include fixed masses
and decay branching ratios, albeit unable to fully encapsulate the effects of a complete theory.
While these searches yield crucial insights, the ever-expanding theoretical landscape presents
scenarios beyond the reach of simplified models.

In response to this challenge, various methods have emerged to reinterpret and broaden
the application of experimental analyses. These strategies encompass the reinterpretation
of analyses using Monte-Carlo (MC) and detector simulations [1–10] as well as simplified
approaches utilising efficiency maps [11].

Analyzing the vast amounts of data from the LHC involves statistical modeling to distill
meaningful information from experimental results, enabling inferences about new physics.
While recent strides have been made in publishing complete statistical models, most analyses
offer limited information, prompting the emergence of approximated approaches to capture
the likelihood distribution of the original statistical models [12–16]. Particularly in cases with
limited correlation information, simplistic Gaussian toy model-based approaches have been
utilized (see ref. [17] for an example). Hence, inconsistencies arise in the publication of sta-
tistical models or data to construct them, leading to inaccurate inference of the new theories.
The recent efforts by the HS3 collaboration1 show promising advancements in standardization
of likelihoods. However, numerous applications continue to rely on statistical models that fall
outside the standardized prescriptions of the HS3 proposal, posing a significant challenge in
their utilization.

This study introduces a new cross-platform Python-based package, SPEY.2 This package
harnesses a versatile plug-in system supporting standardized likelihood prescriptions for sta-
tistical hypothesis testing; computing exclusion limits, assessing discovery significance, and
conducting parameter fitting. It accommodates various likelihood prescriptions, referred to as
“backend” implementations, seamlessly integrating existing inference packages or facilitating
the development of new ones. This design ensures agnosticism towards specific implemen-
tations, providing a flexible framework for likelihood inference, even for yet-to-be-proposed
prescriptions.

Leveraging this flexibility, SPEY offers default approximated likelihood approaches specif-
ically tailored for counting experiments such as those conducted at the LHC, i.e. simplified
likelihood framework [13, 14]. These approaches encompass both correlated and uncorre-
lated Poisson-based likelihood prescriptions. However, these approaches tend to over-exclude
certain parameter spaces. To mitigate this, we propose an alternative likelihood approximation
incorporating asymmetric background uncertainties, yielding a more precise approximation of
the original likelihood distribution.

While precise approximations improve exclusion limits, utilizing full statistical models
whenever possible is preferable. To address this, we introduce a backend plug-in for the widely
acclaimed pyhf package [18,19], integrating its functionality within SPEY for employing full
statistical models while retaining backend agnosticism.

One crucial aspect in statistical modeling is likelihood combination, facilitated by SPEY’s
backend agnostic infrastructure, enabling various likelihood combination techniques across
any backend implemented within SPEY. We showcase this capability by extending methodolo-

1Details can be found in this GitHub repository.
2The name of the package is inspired by the Spey River in the Scottish Highlands.
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gies from ref. [20] to enhance exclusion limits through the combination of full and approxi-
mated statistical models from different experiments, demonstrating the framework’s strength
in maximizing the potential of the experimental results.

This study is structured as follows: Section 2 summarizes inference through likelihoods and
illustrates SPEY’s application using a simple example. Section 2.1 delves into the implemen-
tation of default likelihood prescriptions for correlated histograms. Section 2.2 demonstrates
the utilization of full statistical models through SPEY. Likelihood combination techniques are
explored in Section 3. Finally, an example beyond LHC experiments is presented in Section 4.

2 Statistical models

This section briefly introduces statistical modelling and its applications within SPEY. A sta-
tistical model is based on the occurrence probability of a random variable n ∈ {ni}; P(n).3

This random variable n can be, for instance, observations at the LHC, which includes the ran-
domness of the detector effects such as resolution, reconstruction efficiency etc. In continuous
cases, the probability assigned to a specific value can be expressed as integration over the
probability density function (PDF) given by

P(S) =

∫

S
f (x i , · · · )dn x . (1)

Here, S represents the integration hyper-surface over variables x i ∈ X and f (x i , · · · ) represents
the PDF. The likelihood function is defined as the overall PDF, evaluated from the observations
x i with respect to some parameters θi; L= f (x i , · · · |θi). A statistical model proposes a certain
structure for the PDF, capturing the distribution of the variable X and its uncertainties. A
generic composite likelihood can be described as [22];

L (µ,θ ) =
∏

i∈bins

M(ni|λi(µ,θ |ns, nb))

︸ ︷︷ ︸

main

·
∏

j∈nui

C(θ j)

︸ ︷︷ ︸

constraint

. (2)

In this equation, λi is a function of signal (ns), and background (nb) yields,4 µ represents
the parameter of interest (POI) or signal strength, θ refers to the nuisance parameters, and C
represents the constraint terms associated with uncertainties.5 The first term, describing the
main model, accounts for the bins of the histogram (represented by i), while the constraint
term multiplies the constraint for each nuisance parameter. In the case of a counting exper-
iment like the LHC, the Poisson distribution is commonly used to compare observations with
the modelled expectations. In a simplified scenario, uncertainties can be captured using a
Gaussian constraint term. Therefore, a multi-bin histogram likelihood for a background yield
ni

b ±σ
i
b can be modelled as:

L (µ,θ ) =
∏

i∈bins

Poiss
�

ni|µni
s + ni

b + θ
iσi

b

�

·
∏

j∈nui

N
�

θ j|0,1
�

. (3)

Here, we have used a unit Gaussian as the constraint term since the nuisance parameters are
standardized. This simplifies the optimization process when computing the profiled likelihood.
The choice of Gaussian originates from the fact that many calibration observables, whose PDF

3A review can be found in ref. [21].
4Notice that λ does not need to be only a function of signal and background yields, as a matter of fact it can be

a function of any theory parameter, see section 4 for an example.
5For simplicity, we have excluded the additional product rule over channels in the main term.
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central limits to a Gaussian, are parametrised at zero nominal rates with one sigma deviation.
The specific form of the L (x i) is generally unknown and depends on the available information
from the experimental analyses. Therefore, it may be necessary to construct an approximate
PDF description in order to compare a theory hypothesis with experimental results.

Experimental analyses, particularly at the LHC, typically encompass the exploration of
simplified signal hypotheses. In order to broaden the scope of such analyses, several rein-
terpretation techniques have been developed, ranging from intricate detector simulations to
straightforward efficiency maps. These techniques enable the examination of new theoretical
hypotheses in light of existing experimental results. Reinterpretation platforms are specifically
designed to generate signal yields based on the chosen histograms defined by the experimen-
tal analysis, which are then subsequently incorporated into a likelihood distribution for setting
exclusion limits on the given signal hypothesis.

SPEY serves as a convenient cross-platform Python-based interface that consolidates var-
ious PDF implementations in a unified framework for reinterpretation studies. It comes
equipped with various differentiable PDF prescriptions while maintaining a simplified like-
lihood methodology as the default approach. This means that the default PDFs included in
SPEY are designed to approximate the original likelihood based on the available information
regarding yields and uncertainties. It is important to note that there are multiple ways to
approximate a likelihood distribution, some better than others. To address this, the API is
constructed with an expandable plug-in structure at its core, allowing users to implement and
publish their own PDF prescriptions independently. Once SPEY is installed, it automatically
detects new plug-ins through the backend detection system and incorporates them into the
inference process without requiring modifications to the main code structure. For detailed
instructions on building a custom likelihood model and utilizing it within SPEY, we refer the
reader to Appendix A. Additionally, guidance on appropriately citing these independent plug-
ins is provided in Appendix B.

SPEY has been integrated within the Python package index and can be downloaded and
imported via

1 !pip install spey
2 import spey

commands.6 Afterwards, all available PDFs can be printed using spey.AvailableBackends()
function. This function will list all the default backends as well as third-party plug-ins, if

applicable. A list of backend constructors currently available through SPEY has been listed in
Table 1.

To represent a simple statistical model described by equation (3) for a counting experiment
with two bins, one can utilize the "default_pdf.uncorrelated_background" backend in SPEY.
The PDF backend can be accessed using the get_backend function, as demonstrated below:

1 pdf_wrapper = spey.get_backend("default_pdf.uncorrelated_background
")

The variable pdf_wrapper is a wrapper function that ensures proper integration of the PDF
prescription into SPEY by verifying various versioning and inheritance constraints.7

To exemplify the process, let’s construct a two-bin uncorrelated statistical model, as defined
by equation (3), using the following observed yields: 36 and 33. The expected background
yields are given as 50± 12 and 48± 16, while the signal model yields 12 and 15. The code
snippet below showcases this implementation:

1 statistical_model = pdf_wrapper(

6An online documentation can be found in this link.
7Refer to Table 1 for a list of accessors. The documentation of the pdf_wrapper function also specifies the

backend it wraps around.
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Table 1: List of available PDF accessors which summoned through spey.get_backend
("<accessor>") function. The usage of each accessor has been shown in the online
documentation of the package.

Accessor Explanation

"default_pdf.uncorrelated_background
", Arguments: signal yields, background
yields, data, background uncertainties

Constructs the likelihood distribution shown
in eq. (3) for one or multi-bin statistical mod-
els. The main model is defined as the product
of Poisson distributions across all bins, while
the constraint term is defined as the product
of unit-Gaussians per nuisance parameter.

"default_pdf.correlated_background",
Arguments: signal yields, background
yields, data, covariance matrix.

Expands upon the uncorrelated background
prescription by representing the constraint
term using a multivariate Gaussian with the
correlation matrix between bins. See eq. (7).

"default_pdf.third_moment_expansion"
, Arguments: signal yields, background
yields, data, covariance matrix, diagonal
elements of third moments.

Expands the likelihood prescription with
skewness information, as presented in ref.
[14]. Correlated constraint terms are cap-
tured using a multivariate unit-Gaussian dis-
tribution. See eq. (8).

"default_pdf.effective_sigma", Argu-
ments: signal yields, background yields,
data, correlation matrix, upper and
lower uncertainty envelops for the back-
ground.

Implements asymmetric background uncer-
tainty envelopes using the effective sigma ap-
proach, as described in ref. [12]. Correlated
constraint terms are captured using a multi-
variate unit Gaussian. See eq. (10).

"pyhf.uncorrelated_background", Argu-
ments: signal yields, background yields,
data, background uncertainties.

Constructs a simple likelihood using the un-
correlated background routine from pyhf.
See section 2.2 for installation details [18].

"pyhf", Arguments: background only
description of the likelihood and corre-
sponding signal patch.

Constructs full statistical model within the
pyhf interface [18]. See section 2.2 for de-
tails on installation.

2 signal_yields =[12.0 , 15.0],
3 background_yields =[50.0 , 48.0] ,
4 data =[36, 33],
5 absolute_uncertainties =[12.0 , 16.0],
6 analysis="example",
7 xsection =0.123 ,
8 )

The analysis keyword in line 6 is an optional unique name for the model, and xsection in
line 7 is the cross-section value of the signal used in the model, with the units determined by
the user.8

Once initialized, the statistical model inherits all the properties of the StatisticalModel
class, providing a backend-agnostic interface. The functions provided by the StatisticalModel
class are summarized in Table 2.

SPEY employs the asymptotic formulae for testing new physics, as outlined in ref. [23]. In

8Cross-section information is only used for excluded_cross_section function where the upper limit on
POI is multiplied with the cross-section value provided by the user; hence, the unit is directly propagated without
modification. Thus, for SPEY this is a unitless value.
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this framework, the test statistic is divided into three main classes: Discovery (q0),

q0 =

(

0 , if µ̂ < 0 ,

−2 log
L(µ,θµ)
L(µ̂,θ̂) , otherwise,

(4)

qµ test statistic,

qµ =

(

0 , if µ̂ > µ ,

−2 log
L(µ,θµ)
L(µ̂,θ̂) , otherwise,

(5)

and alternative test statistic q̃µ,

q̃µ =















0 , if µ̂ > µ ,

−2 log
L(µ,θµ)
L(µ̂,θ̂) , if 0< µ̂ < µ ,

−2 log
L(µ,θµ)
L(0,θ0)

, otherwise,

(6)

for upper limits. Each test statistic covers a specific domain defined by the interplay between
the profiled likelihood, L

�

µ,θµ
�

, background only profiled likelihood, L (0,θ0), and the max-
imum likelihood values, L

�

µ̂, θ̂
�

. Here µ̂ and θ̂ are the set of parameters that maximises the
likelihood, and θµ are the nuisance parameters that maximises the likelihood for a specific
POI.

For computing p-values with respect to the desired test statistic, SPEY offers two meth-
ods: using asymptotic formulae or generating samples from the PDF distribution. In the
aforementioned example, the exclusion confidence level, 1− CLs, can be computed using the
statistical_model.exclusion_confidence_level function, with q̃µ test statistic, yields a value
of 97% CL.

SPEY offers three distinct approaches for computing limits, which are designated by the
expected keyword. This keyword can be set using spey.ExpectationType.<XXX>, where <XXX>
can take on the values observed, aposteriori, or apriori.

The observed and aposteriori expectation types involve conducting a likelihood fit using
the provided observations during the initialisation of the statistical model. The distinction
between these two types becomes evident when computing the p-values.

For the observed expectation type, the functions statistical_model.exclusion_confidence
_level and statistical_model.poi_upper_limit provide observed results. In this scenario, the
cumulative distribution function (CDF) is computed using two asymptotic distributions: the
background-only distribution (CLb) and the signal-plus-background distribution (CLs+b). The
computation involves comparing the test statistic calculated using the observations to the data
generated by the background-only statistical model, also known as Asimov data. The observed
p-value is obtained by evaluating the ratio CLs = CLs+b/CLb (for more details, see ref. [23]).

For the aposteriori expectation type, one and two sigma fluctuations around the
background-only distribution are calculated.

On the other hand, the apriori approach involves fitting the expected background yields,
assuming the Standard Model as the truth, and subsequently computing expected p-values,
similar to aposteriori expectation type. This option is commonly utilised by theorists, such as
in the expected results presented in MADANALYSIS 5 [24] and SModelS [25,26], where fitting
is performed based on expected background yields.

To illustrate the distinction between the observed and apriori expectation types, one can
plot the likelihood distributions using the statistical_model.likelihood() function. This will
immediately reveal a shifted likelihood distribution: for the apriori case, the profiled likeli-
hood peaks at zero (µ̂ = 0), whereas for the observed case, it peaks at µ̂ = −1.08, computed
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Table 2: Functions provided by the StatisticalModel class.

Functions and Properties Functionality

exclusion_confidence_level() Computes the exclusion confidence level (1−C Ls) for an ob-
served or expected results. Can be computed for eq. (5) or
eq. (6).

excluded_cross_section() Computes the upper limit on the cross-section, with the unit
depending on the input unit of xsection.

likelihood() Computes the profiled likelihood for a given POI.
maximize_likelihood() Computes the maximum likelihood by fitting the likelihood

to observed data or background yields.
generate_asimov_data() Generates Asimov data.
asimov_likelihood() Computes the profiled likelihood for a given POI by fitting the

likelihood to the Asimov data.
maximize_asimov_likelihood() Computes the maximum likelihood by fitting the likelihood

to the Asimov data.
poi_upper_limit() Computes the upper limit on the parameter of interest (POI).

Can be computed for eq. (5) or eq. (6).
sigma_mu() Computes the variance on the POI using Asimov likelihood,

where σ2µ≈ µ2/qµ,A (see ref. [23] for details).
sigma_mu_from_hessian() Computes the variance on the POI via the Hessian of the neg-

ative log-likelihood.
significance() Computes the significance of the signal yields using eq. (4).
fixed_poi_sampler() Samples from the statistical model by profiling the likelihood

with a fixed POI.
chi2() Computes the likelihood ratio of the profiled likeli-

hood at a fixed POI to the maximum likelihood, i.e.,
χ2(µ) = −2 log

�

L
�

µ,θµ
�

/L
�

µ̂, θ̂
��

.
combine() If a backend-specific combination routine has been imple-

mented, it combines two statistical models.
available_calculators Retrieves information on which calculator is available for up-

per limit computations, i.e., asymptotic or toy-based.

via the statistical_model.maximize_likelihood() function. This difference diminishes as the
observed data approaches the background yields.

Utilizing the same statistical model, the significance function is employed to assess the
discovery significance of this model. By utilizing eq. (4), the function computes significance
(Z), represented as

p

q0,A = 5×10−4, alongside determining
p

q0 and expected and observed
p-values relative to eq. (4). Consistent with the earlier presented exclusion limit, the signifi-
cance of this signal yield is notably low.

2.1 Correlated histograms with simplified likelihoods

Under the assumption that the uncertainties are modelled as Gaussian distributions, one can
employ several methods to incorporate this information into PDF distribution. The simplest
approach would be extending the constraint term with the correlation matrix (or covariance
matrix) provided by the experiment,

L (µ,θ ) =

�

∏

i∈bins

Poiss
�

ni|µni
s + ni

b + θ
iσi

b

�

�

·N (θ |0,ρ) , (7)
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where ρ represents the correlation matrix between each nuisance parameter. In such a sim-
plified scenario, various uncertainty sources are contracted into a single uncertainty for each
histogram bin. This PDF can be accessed via "default_pdf.correlated_background".

Despite its efficiency, such models do not capture asymmetric uncertainties, which skew
the likelihood distribution. In order to address this issue, ref. [14] proposed an expansion
procedure to eq. (7) via the third moments of the background uncertainty where likelihood
distribution has been expanded as

L (µ,θ ) =

�

∏

i∈bins

Poiss
�

ni|µni
s + n̄i

b + Aiθi + Ciθ
2
i

�

�

·N (θ |0, ρ̄) . (8)

Here n̄b are the central values of the expected background yields, A are the effective sigma
within the symmetric covariance matrix approximation, and C represents the skewness of the
distribution, which are given as;

Ci = −sign(m(3)i )
Ç

2 diag (Σ)2i × cos





4π
3
+

1
3

arctan





√

√

√

√

8(diag (Σ)2i )3

(m(3)i )
2
− 1







 ,

Ai =
q

diag (Σ)i − 2C2
i , (9)

n̄i
b = ni

b − Ci ,

ρ̄i j =
1

4CiC j

�q

(AiA j)2 + 8CiC jΣi j − AiA j

�

,

where m(3) are the diagonal elements of the third moments and Σ is the covariance ma-
trix. Notice that A and C also modifies the correlation matrix, ρ̄, which enters the eq. (8).
Such expansion provides a more accurate representation of the original likelihood distribu-
tion by integrating the skewness into the PDF. This PDF can be accessed via "default_pdf.
third_moment_expansion" accessor.9 Notice that when skewness is zero, C = 0, the expansion
reduces to eq. (7).

The skewness of the PDF distribution can also be captured by building an effective vari-
ance from the upper (σ+) and lower (σ−) uncertainty envelops as a function of nuisance
parameters,

σi
eff(θ

i) =
Ç

σ+i σ
−
i + (σ

+
i −σ

−
i )(θ

i − ni
b) .

This method has been proposed in ref. [12] for Gaussian models which can be generalised for
eq. (7) by reparametrising the likelihood distribution,

L (µ,θ ) =

�

∏

i∈bins

Poiss
�

ni|µni
s + ni

b + θ
iσi

eff(θ
i)
�

�

·N (θ |0,ρ) , (10)

effectively implementing the skewness into the Poisson distribution.10 This PDF can be ac-
cessed via "default_pdf.effective_sigma" accessor.11 Notice that if σ+ = σ−, eq. (10) re-
duces to eq. (7).

9The implementation of the third moment expansion has been validated against the code provided by ref. [14]
which can be found in the dedicated GitLab repository.

10In the context of reinterpretation, this method has also been employed by ref. [27], without the Poisson term,
as defined in ref. [12], i.e. variable Gaussian.

11It is also possible to incorporate variable Gaussian directly into the constraint term as presented in ref. [12];
however, we observed that the optimisation landscape becomes highly complicated to ensure a reliable outcome.
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Going beyond background-only uncertainties, eq. (3) can be expanded to accommodate
signal uncertainties and employ the aforementioned methodologies. To achieve this, the con-
straint term has been extended with a signal-specific constraint term

C(θ ) ⊂N µ(θs|0,ρs) , (11)

where θs are the nuisance parameters dedicated for signal uncertainties and ρs is the correla-
tion matrix between nuisance parameters. In case ρs is not known, constraint terms reduces
to N µ(θs|0,1), as before. Notice that the constraint term has been scaled with POI, which
is necessary to capture the scaling on signal yields. Similarly, depending on the information
provided, λi(µ,θ ) can be modified with third-moment expansion or effective sigma. Signal
uncertainties have been integrated via signal_uncertainty_configuration keyword for each
default_pdf backend. Note that this implementation assumes signal uncertainties are not cor-
related with background uncertainties.

2.1.1 Comparing simplified approaches

To test the accuracy of these frameworks presented above against a realistic experimental
analysis, we used CMS-SUS-20-004 [28], which searches for four jet and large missing energy
phase-space at a centre-of-mass energy of 13 TeV and 137 fb−1 integrated luminosity. It focuses
on the production of two Higgs decaying into bb̄ alongside with two lightest neutralino, χ̃0

1
through two degenerate heavy neutralino mediators, χ̃0

2,3,

pp→ χ̃0
2 χ̃

0
3 → H(→ bb̄)H(→ bb̄) χ̃0

1 χ̃
0
1 .

The analysis provides yields, covariance matrix and asymmetric uncertainties for 22 signal
regions which can be found from the dedicated HEPData entry [29].

Utilising the signal yields provided by the collaboration, we constructed three different
statistical models within SPEY, referring to correlated backgrounds, third-moment expansion
(we refer the reader to Appendix C for the computation of third moments) and a model with
effective sigma method (eq. (10)). Fig. 1 shows the expected limits within heavy (χ̃0

2,3) and
light (χ̃0

1 ) neutralino mass plane, provided by these three likelihood prescriptions where the
black curve is the original CMS expected limit within ±1σ window, presented with dotted
lines. Red, blue and green curves represent the result computed with correlated background,
third-moment expansion and effective sigma model. As before, dotted lines represent each
curve’s ±1σ window.

As can be seen, for a large number of signal yields, mχ̃0
2,3
< 450 GeV, all likelihood prescrip-

tions provide accurate results in terms of reproducing the exclusion curve supplied by CMS.
However, for the regions with low signal yields, mχ̃0

2,3
> 450 GeV, the correlated background

approach overestimates the exclusion limit by approximately 80 GeV. The model with third-
moment expansion reduces this difference to about 40 GeV. On the other hand, the model with
effective sigma slightly underestimates the expected exclusion limit by only a few GeV. Sim-
ilarly, this approach reproduces the uncertainty bands much more accurately than the other
two for a low number of signal yields.

To have a closer look, we have chosen a point in Fig. 1 where correlated background and
third-moment expansion is the closest to the CMS limit where the effective sigma model is
further away. Using the χ2 distribution for the full statistical model, provided by the CMS
collaboration (see the corresponding HEPData entry), we chose mχ̃0

2,3
= 300 GeV, mχ̃0

1
= 50

GeV point to compare all three PDF prescription against the full statistical model where the
χ2 distribution is given as,

χ2(µ) = −2 log

�

L
�

µ,θµ
�

L
�

µ̂, θ̂
�

�

. (12)

9

https://scipost.org
https://scipost.org/SciPostPhys.16.1.032
https://doi.org/10.17182/hepdata.114414


SciPost Phys. 16, 032 (2024)
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0
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0
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3
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Figure 1: Expected exclusion limits at 95% CL presented for CMS-SUS-20-004 analysis.
Black, red, blue and green curves represent CMS expected limit, and expected limits com-
puted using correlated background model (eq. (7)), third-moment expansion (eq. (8))
and effective sigma (eq. (10)) methods, respectively. The dotted lines for each curve
represent ±1σ fluctuation from the background. The dashed black line is plotted as a
reference where mχ̃0

2,3
becomes lighter than the mass combination of Higgs and the light-

est neutralino.

Here denominator shows the maximum likelihood value where µ̂, θ̂ are the values that max-
imize the likelihood, and the nominator shows the profiled likelihood for a given µ where
θµ are the nuisance parameters that maximize the likelihood at a given µ. This value can be
computed via chi2 function as shown in Table 2. Fig. 2 shows the χ2 distribution for all three
curves compared against CMS full statistical model presented as black. The red, blue and green
lines represent correlated background, third-moment expansion and effective sigma models.
We additionally provided observed POI upper limits for each model, which are colour coded
where the effective sigma model underestimates µobs

95%C L by 18% and third-moment expansion
overestimates it by only 3%. This value can be computed via poi_upper_limit function as
shown in Table 2. The upper limit on the expected cross section at this mass grid has been
given as 36.06 fb where correlated background, third-moment expansion and effective sigma
models set this limit to 38.32+15.15

−10.07 fb, 41.66+14.95
−10.02 fb and 34.11+13.09

−8.74 fb, respectively where
each value is computed with 1σ deviation.

Asymmetric background uncertainties have also been provided by CMS-SUS-19-006 anal-
ysis [30] through its dedicated HEPData record [31] which is conducted at 13 TeV centre-of-
mass energy with 137 fb−1 luminosity. This analysis is designed to investigate new physics
signatures through multi-jet and missing energy final states through gluino production, which
consequently decays into a t t̄ pair and lightest neutralino,

pp→ g̃(→ t t̄χ̃0
1 ) g̃(→ t t̄χ̃0

1 ) .

The analysis includes 174 non-overlapping signal regions12 classified with respect to jet and b-
jet multiplicity, hadronic transverse momentum and missing energy. The events are required
to have minimum 300 GeV hadronic activity (HT ) and Hmiss

T . At least two jets have been

12Aggregated regions are not considered in this study since the correlation matrix does not include those regions.
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Figure 2: χ2(µ) distribution versus parameter of interest shown for CMS full statistical
model (black), correlated background (red), third-moment expansion (blue) and effec-
tive sigma (green). The dashed black line shows the χ2 value that CMS excludes, and
colour-coded values represent excluded POI value at 95% CL by each PDF.

required in each bin with pT > 30 GeV. Additionally, events including isolated high pT leptons
or photons are removed.

For this analysis, we used MADANALYSIS 5 implementation [32] where the hard scatter-
ing process, pp → g̃ g̃, has been simulated via MADGRAPH5_AMC@NLO version 3.2.0 with
MSSM_SLHA2 UFO model [33] where BR( g̃ → t t̄χ̃0

1 ) has been set to 100%. We used the lead-
ing order set of NNPDF 2.3 parton distribution function [34,35] and showered hard scattering
events via PYTHIA version 8.240 [36]. Finally, the leading-order cross section has been scaled
to next-to-next-to-leading-logarithmic accuracy [37]. To perform detector simulation, the re-
cast employs Delphes, for which we used version 3.5 [38].

Fig. 3 shows the comparison between the official exclusion limit (black),
"default_pdf.correlated_background" (red), "default_pdf.third_moment_expansion" (blue)
and "default_pdf.effective_sigma" (green) models. Provided uncertainties are separated
into systematic and statistical uncertainties, which we combined in quadrature. Note that
we scaled the third moments, computed by eq. (C.1), by 0.9 to achieve numeric stability
and satisfy the constraints in eq. (9). The left panel presents a comparison between ob-
served exclusion limits in the (m g̃ , mχ̃0

1
) plane. However, we only observe a small improve-

ment over "default_pdf.correlated_background" for both expansions. Conversely, the right
panel compares the aposteriori (spey.ExpectationType.aposteriori) expectation limit pro-
duced by each model. We observe over 50 GeV improvement for the expected exclusion limit
when "default_pdf.effective_sigma" model is used, and a minor but noticeable refinement
by "default_pdf.third_moment_expansion". Although we still observed slight over-exclusion,
both models produce significantly more accurate results than the correlated background ap-
proach.13

Although the effective sigma method managed to reproduce the exclusion curve in Figures
1 and 3 better than the other approaches for low signal yield regions, it is essential to empha-
sise that this is only an approximation; hence its case-dependent. As shown in Fig. 2, it can

13One can observe significant differences between the results presented in Fig. 3 and ref. [24], this is due to
various important bug fixes in the implementation and the usage of aposteriori versus apriori expectation limits.
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Figure 3: 95% CL exclusion contours for the process pp → g̃ g̃, g̃ → t t̄χ̃0
1 in the

(m g̃ , mχ̃0
1
) plane using the MADANALYSIS 5 recast of the CMS-SUS-19-006 analy-

sis. The left panel shows observed limits, and the right panel shows the expected
limits with one standard deviation from the background hypothesis. The official lim-
its from the CMS collaboration have been shown with black curves for each plot.
The exclusion limits that are obtained by "default_pdf.correlated_background", "
default_pdf.third_moment_expansion" and "default_pdf.effective_sigma" models
have been shown in red, blue and green, respectively.

vastly underestimate the exclusion limit even when signal yield is adequate. PDF distributions
with a larger third moment or an assumption beyond purely Gaussian uncertainties might be
more suitable to exclude low signal yield regions. Thus, one should always be aware of the
limitations of each approach and test the results accordingly.

2.2 Full statistical models

As mentioned in Sec. 2, SPEY has been built to be expandable to exploit other packages that
are designed to provide specific PDF prescriptions. pyhf [18] is a Python package designed
based on HistFactory [39], which allows publication and usage of full statistical models
through a JSON sterilised format.

The spey-pyhf plug-in enables SPEY to exploit the PDF constructed by pyhf interface and
describe it within StatisticalModel class. This provides a completely backend-agnostic inter-
face where no matter the PDF function’s origin, it can be executed through the same functions,
presented in Table 2. spey-pyhf plug-in can be installed via

1 pip install spey -pyhf

command,14 and once installed, SPEY can automatically detect it. The bottom section of Ta-
ble 1 shows available accessors for pyhf plug-in where "pyhf" accessor will allow the user
to input full statistical model prescriptions as defined in pyhf’s online manual. Uncorrelated
background samples can also be studied using "pyhf.uncorrelated_background" accessor. As
shown before, the spey.get_backend function will enable the usage of these accessors.15

The usage of a full statistical model can be demonstrated using ATLAS-SUSY-2018-31 [40]
analysis where we used the recast of the study implemented within MADANALYSIS 5 [41, 42]

14Dedicated online documentation can be found in this link.
15Certain functionalities of pyhf package are limited to the choice of its backend. The gradient of the nega-

tive log-likelihood function is only available through Jax or Tensorflow, and the computation of the variance via
sigma_mu_from_hessian function is currently only available with pyhf’s Jax backend.
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package through SFS interface [9, 43].16 This analysis is designed to search for new physics
for multi-jet final state scenarios where it’s looking for sbottom production with

pp→ b̃1(→ bχ̃0
2 ) b̃∗1(→ bχ̃0

2 ), χ̃
0
2 → bHχ̃0

1 ,

decay pattern where b̃1 and χ̃0
2 decay branching ratios are set to 100%. The analysis includes

eight signal regions grouped into three super regions called A, B and C, designed to capture
different levels of mass spectra compression. The HEPData entries for this analysis can be
found in ref. [44].

The hard scattering process, pp→ b̃1 b̃1, has been simulated with MADGRAPH5_AMC@NLO
version 3.2.0 [45] using MSSM_SLHA2 model [33]. The leading order set of NNPDF 2.3 has
been used as a parton distribution function [34, 35], and events are showered as well as de-
cayed via PYTHIA version 8.240 [36]. The leading-order signal cross section has been scaled to
approximate next-to-next-to-leading-order matched with soft-gluon resummation at the next-
to-next-to-leading-logarithmic accuracy [37].

The left panel of Fig. 4 shows the observed exclusion limits in (mb̃1
, mχ̃0

2
) plane where

official limits published by ATLAS have been shown in blue. This analysis has been shipped
with three different background-only statistical model descriptions allowing three distinct sub-
sets of the signal regions to be used to create different statistical models. For the red curve,
we choose the most sensitive statistical model for each mass grid by selecting the statistical
model that produces the lowest POI upper limit at 95% CL. For mχ̃0

2
< 1 TeV, we observed

that the best statistical model is dominated by so-called region A, which requires the highest
jet and b-tagged jet multiplicity along with boosted leading b-jet. Since it is possible to com-
bine statistical models by matching their modifiers, we combined all three statistical models
for the orange curve. This has been achieved by combine() function implemented through
StatisticalModel class. This function employs the workspace combiner routine implemented
in pyhf interface and modifies the signal input to be accommodated into the new background-
only model. We observe that the difference between red and orange curves is only visible when
the difference between POI upper limits for each subregion (regions A, B and C) is significantly
closer to each other.

The right panel of Fig. 4 shows the same for expected exclusion limits along with one
standard deviation from the background hypothesis, displayed with dotted lines. We observed
the exact difference between the red and orange curves once the phase space is not statistically
dominated by one sub-region. This deviation from the red curve has been observed to fit the
official limits better in the region where the mass spectra are highly compressed.

Whilst such a combination enables one to merge multiple full statistical models by properly
taking care of the common nuisance parameters, it only applies to a full likelihood scenario
where all the nuisance parameters are properly identified. Needless to say, this assumes that
there is a fixed naming convention in place within the experimental collaboration. In the
next section, we will discuss the possibility of combining statistical models which do not in-
clude complete information but have been formed using approximation techniques discussed
in Sec. 2.1.

3 Combination of statistical models

The versatile modular interface of SPEY facilitates the comprehensive study of various PDF de-
scriptions within a single package. This advantageous feature empowers researchers to employ

16Our implementation has been validated against ref. [24]. Validation note of the recast can be found in this
link.
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Figure 4: 95% CL exclusion contours for the process pp → b̃1 b̃1, b̃1 → bHχ̃0
1 at

mχ̃0
1
= 60 GeV plotted in the (mb̃1

, mχ̃0
2
) plane using the MADANALYSIS 5 recast of

ATLAS-SUSY-2018-31 analysis. The left panel shows observed limits, and the right
shows the expected limits with one standard deviation from the background model. The
official limits from the ATLAS collaboration have been shown with blue curves for each
plot. The exclusion limits were obtained via "pyhf" plug-in. The red curve shows the
most sensitive statistical model among three different background-only models shipped
with this analysis. The orange curve shows the results produced by combining these three
models.

various PDF combination methodologies, thereby harnessing the full potential of experimental
analyses. Specifically, the combination methodology outlined in Sec. 2.2 is applicable when
complete knowledge of uncertainty sources enables the matching of nuisance parameters asso-
ciated with the same uncertainties. Consequently, this statistical model expansion introduces
a correlation term that characterizes any existing interdependencies among nuisance param-
eters. A generic combination of different statistical models can be formulated as

L′(µ,θ ) =
∏

i∈models

Li(µ,θi) ·
∏

i, j∈nui

Ci, j(θi ,θ j) . (13)

Here, i represents the statistical models, and θi corresponds to the independent nuisance pa-
rameters associated with each model. The combined likelihood in eq. (13) encompasses two
key components. The first term involves multiplying the constituent PDFs obtained from dif-
ferent statistical models, while the second term introduces constraints that account for corre-
lations among the associated nuisance parameters. Common nuisance parameters have been
identified and appropriately addressed to avoid double counting. However, in the case of inde-
pendent experiments, it is reasonable to assume negligible correlations between the nuisance
parameters. This assumption leads to a simplified form of the likelihood, expressed as:

L′indep.(µ) =
∏

i∈models

Li(µ,θi) . (14)

Notably, the combined likelihood solely relies on the parameter of interest (POI) since each sta-
tistical model can be independently profiled with respect to the given POI value. It is crucial to
emphasize that constructing a constraint term between two experiments is highly challenging
due to limited information about the sources of uncertainties and overlapping regions. Fur-
thermore, even if the sources of uncertainties are known, such as the jet energy scale or muon
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tracking efficiencies, the techniques employed to quantify these uncertainties may vary over
time or between different collaborations. This variation leads to uncorrelated uncertainties,
further validating the validity of eq. (14).17

An alternative approach worth exploring is the combination of different non-overlapping
regions, as demonstrated in [20]. This technique eliminates the correlations between statisti-
cal models, further bolstering the validity of equation (14). However, it is important to note
that this approach has some limitations. The construction of the overlap matrix is based on
the phase space populated by signal events, and thus it may not fully capture the effects of
background contributions. Additionally, the success of this method heavily relies on the re-
casting procedure, as control and validation regions are typically excluded from the recast.
Consequently, the algorithm remains blind to those regions, potentially resulting in overlaps
between signal regions in one analysis and control or validation regions in another analysis.
Despite these limitations, this approach offers a semi-conservative strategy for combining re-
gions and analyses when likelihood information is significantly constrained.

To evaluate the impact of combining likelihoods, we adopt a realistic MSSM scenario as
outlined in ref. [24]. In this scenario, the production of the lightest sbottoms and stops,

pp→ b̃1
¯̃b1 and t̃1

¯̃t1 ,

typically leads to decays involving charginos, top and bottom quarks, respectively. These de-
cays give rise to a final state with multiple jets and significant missing energy due to the pro-
duction of a bino-like lightest neutralino through chargino interactions. ATLAS-SUSY-2018-31
and CMS-SUS-19-006 analyses are ideal for this particular final state configuration, which is
discussed above.

To ensure the validity of the theory on the electroweakino side, we additionally employed
a comprehensive electroweakino production channel,

pp→ χ̃±1 χ̃
0
2 , χ̃±1 χ̃

∓
1 , and χ̃0

2 χ̃
0
2 , (15)

using the same configurations mentioned above. We used the MADANALYSIS 5 recasts of
ATLAS-SUSY-2018-32 [47, 48],18 ATLAS-SUSY-2019-08 [49, 50], and CMS-SUS-16-039 [51,
52] to study the exclusion limits on the MSSM scenario, which revealed a lower limit of
M2 > 650 GeV for our entire analysis. This lower limit will be included in the below results as
a shaded area.

The hard scattering process for both squark and electriweakino production has been sim-
ulated with MADGRAPH5_AMC@NLO version 3.2.0 [45] using MSSM_SLHA2 model [33]. All
model parameters, masses, and decay widths are computed using the SoftSusy package [53,
54]. The leading order set of NNPDF 2.3 has been used as a parton distribution function [34,
35]. Finally, events are showered and decayed via PYTHIA version 8.240 [36].

We follow the same grid scan employed in the reference, where the parameters b̃1, t̃1, χ̃±1 ,
and χ̃0

1,2 are allowed to vary within the sub-TeV range. At the same time, the other supersym-
metric partners have heavier masses. To achieve this, we fix the bino mass (M1) at 60 GeV
and set the ratio of the Higgs vacuum expectation values (tanβ = v2/v1) to 10. The trilinear
couplings (At,b), µ, and other soft masses are assigned values of −3.5 TeV, 1.6 TeV, and 5 TeV,
respectively. The remaining parameters are scanned in the order 2M1 < M2 < MQ̃3

. This
arrangement ensures that the sbottom and stop masses are approximately equal to MQ̃3

, the
lightest chargino and the second lightest neutralino have a mass equal to M2, and the bino-like
lightest neutralino has a mass fixed at 60 GeV.

17For a comprehensive discussion on likelihood combinations, we recommend referring to ref. [46].
18The metadata has been updated during this study to include full statistical model information.
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Figure 5: 95% confidence level exclusion limits on pp → b̃1
¯̃b1 and t̃1

¯̃t1 production
channels in MSSM scenario presented in (MQ̃3

,M2) mass plane. The orange line rep-
resents the exclusion limit computed by using the most sensitive signal region, and the
cyan line is computed by combining signal regions via the pathfinder algorithm. Other
colours represent the most sensitive signal region per grid point. The hashed area is
excluded by the electroweakino searches.

For the recasts of ATLAS-SUSY-2018-31 and CMS-SUS-19-006, we utilized the same con-
figurations as described previously. Specifically, we generated a dataset comprising 200,000
events for the pp→ b̃1

¯̃b1 and t̃1
¯̃t1 production channels.

Figure 5 illustrates the anticipated limits and identifies the most sensitive signal regions
established using the "default_pdf.uncorrelated_background" model. Determining the most
sensitive region was based on the statistical model that yielded the lowest expected upper limit
on the parameter of interest. Notably, our analysis reveals the prominence of four distinct
regions.

In the ATLAS-SUSY-2018-31 analysis, the SRA (Signal Region A) is characterized by specific
selection criteria. Firstly, it necessitates a jet multiplicity exceeding 6 and a minimum of 4 b-
tagged jets. Moreover, the transverse momentum of a b-tagged jet is expected to surpass 200
GeV. To accommodate the Higgs mass, a restriction on the ∆R separation between two b-jets
has been imposed, alongside a loose mass requirement of 80 GeV.

Additionally, the H variant of the SRA requires the highest effective mass in the analysis,
surpassing 2 TeV. Notably, within the blue mass grid region, there exists a greater mass sepa-
ration between squarks and charginos, which consequently leads to an increased multiplicity
of boosted jets in this particular region.

In the ATLAS-SUSY-2018-31 analysis, the SRC (Signal Region C) imposes a lower jet mul-
tiplicity requirement compared to SRA. Specifically, it necessitates a minimum of 4 jets and
3 B-tagged jets. Additionally, SRC includes a minimum missing energy threshold of 250 GeV.
Notably, SRC 28, which is a specific region within SRC, further demands a high missing en-
ergy significance of Emiss

T /
p

HT > 28
p

GeV. These two regions, SRC and SRC 28, have been
observed to dominate in scenarios with compressed spectra. As the squark mass increases, the
significance of high missing energy also becomes more pronounced.

Furthermore, within the context of the CMS-SUS-19-006 analysis, only a single grid point
is observed. This region specifically targets a low jet multiplicity requirement (N j ≥ 2 and
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Nb ≥ 2) while also ensuring significant hadronic activity (HT ) and a minimum level of missing
hadronic activity (Hmiss

T > 600 GeV).
In Fig. 5, the orange curve represents the expected exclusion limit, highlighting the most

sensitive region. The dotted lines indicate the ±1σ deviation from the background hypothesis.
To perform the combination of likelihoods, we employed the pathfinder algorithm proposed
in ref. [20], visualized with the cyan color.19

To construct the overlap matrix, we utilized information regarding the regions populated
by specific events generated by MADANALYSIS 5. Each region was weighted by

wi = − log
Li(1,θ1)
Li(0,θ0)

.

These weights for each region can be computed using the likelihood() function within the
StatisticalModel class. Once the statistical models to be combined are determined, the
UnCorrStatisticsCombiner class can be utilized to combine them. It accepts StatisticalModel
as input, leaving the validation of the combination to the user’s discretion. It is worth noting
that the StatisticalModel.combine() function is designed for backends with specific combina-
tion algorithms, whereas the UnCorrStatisticsCombiner does not interact with the statistical
models directly but rather multiplies the PDFs as shown in equation (14). It provides the same
functionality as the StatisticalModel, and once initialized, it can be used as an independent
statistical model for computing exclusion and upper limits.

Despite the ongoing dominance of the ATLAS-SUSY-2018-31 analysis in the most sensitive
regions, we observed a slight improvement in the cyan curve due to the combination of regions
from both analyses. This improvement primarily stems from the inclusion of ATLAS-SUSY-
2018-31 SRA-H and two floating regions from the CMS-SUS-19-006 analysis, which fluctuates
for different grid points due to insufficient yields. The reason for this modest enhancement
over the orange curve lies in the fact that the combined signal regions do not exhibit close
µ95%C L values. In particular, the µ95%C L values for different regions are maximally close in the
compressed spectra region. Thus, the combination of these regions contributes to the observed
improvement over the baseline orange curve. This means that the contributions from different
signal regions only affect if their sensitivity is comparable.

To leverage the statistical model information provided by the analyses, we generated Fig-
ure 6, presenting the observed exclusion limits on the left panel and the expected exclusion
limits on the right panel. In both panels, the ATLAS-SUSY-2018-31 analysis employed the "pyhf
" model, indicated by the green curve which includes combination of all three super-regions
A, B and C. For the CMS-SUS-19-006 analysis, we utilized the "default_pdf.effective_sigma"
model as discussed in Section 2.1, represented by the blue curve.

Assuming complete independence between the two experiments, we combined their sta-
tistical models using equation (14). This combination was achieved by inputting both models
into the UnCorrStatisticsCombiner, which combines them regardless of their backend. The
combined analysis is shown as the red curve in Figure 6. However, it is important to note that
complete independence may not hold in practice. Although the experiments are distinct, they
might share uncertainties such as jet energy scaling or luminosity. Consequently, this com-
bination should be regarded as the maximum information that can be extracted from these
analyses based on the available statistical model information. Any correlations between the
analyses would reduce the exclusion limit.

Furthermore, the range covered by these analyses differs significantly due to requirements
in terms of multiplicity and transverse energy. We observe an improvement of up to 100 GeV
with this combination, particularly when constituent regions yield similar exclusion limits.
Thus, the red curve represents a highly conservative exclusion limit by utilizing both analyses.

19The pathfinder algorithm can be accessed from this GitHub repository.
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Figure 6: Left panel shows the observed exclusion limit generated by correlated back-
ground model in CMS-SUS-19-006 analysis (blue) and full statistical model in ATLAS-
SUSY-2018-31 analysis (green). The red curve represents the new limit that can be
achieved by combining these PDF distributions. The right panel shows the same for ex-
pected exclusion limits along with one standard deviation, which is captured via dotted
lines. The grey area has been excluded by electroweakino searches.

A closer examination of the profiled likelihood distributions in three different scenarios can
be achieved by analyzing the χ2(µ) distribution defined in equation (12). Figure 7 provides
a visualization of the χ2(µ) distribution for µ ∈ [0,2.2], utilizing the same color scheme as in
Figure 6. The dashed red line represents the χ2(µ) value corresponding to the upper limit of
the parameter of interest (POI) in the combined scenario. The exclusion cross-section, indi-
cated by the same colour code, demonstrates that the combined scenario reduces the expected
upper limit on the cross-section by 26%. Additionally, the shaded yellow area represents the
±1σ deviation from the background hypothesis.

4 An example beyond LHC: Neutrino mass ordering problem

The capabilities of SPEY have predominantly been demonstrated within the confines of the
LHC experiments. However, it is crucial to highlight that any empirical study necessitates
hypothesis testing. In order to showcase the versatility of SPEY, we aim to partially reproduce
the findings presented in ref. [55], which addresses the issue of neutrino mass ordering.

The neutrino mass ordering problem pertains to the arrangement of neutrino mass eigen-
states, specifically whether they follow a normal ordering (mν1

< mν2
< mν3

) or an inverted
ordering (mν3

< mν1
< mν2

). In ref. [55], the authors analyze the latest data from the T2K
and NOvA experiments, which measure the oscillation probabilities of muon and electron neu-
trinos and antineutrinos. Their analysis reveals a significant reduction in the preference for
normal ordering compared to previous results, indicating that the mass ordering problem re-
mains unresolved. The study also explores the implications of these findings for other neutrino
physics investigations, including the JUNO, DUNE, and T2HK experiments, which are expected
to provide a high-confidence determination of the mass ordering problem.

In this study, we reproduce their results based on the T2K experiment, which requires
extensive computation based on energy flux, where details can be found in refs. [55,56]. The
expected number of events has been computed by considering different parameters related to
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Figure 7: χ2(µ) versus POI distribution for a benchmark point at M2 = 600 GeV,
MQ̃3

= 1.25 TeV and mχ̃0
1
= 60 GeV. ATLAS-SUSY-2018-31 results are plotted with

the full statistical model (green), and CMS-SUS-19-006 results are computed with a
correlated background model (blue). The red curve represents combined likelihood. The
dashed red line represents the χ2 value at the 95% CL upper limit of POI, and the
shaded area within dotted lines shows 1σ deviation from the expected background for
the combined scenario.

the degree of the CP violation (δC P), mixing angle (φ23),20 and the mass difference between
neutrino flavours (∆m2

31). The range for δC P was set to [−π,π], while sin2φ23 varied between
0.35 and 0.64, and∆m2

31 fell within the interval [2.4, 2.7]×10−3 eV2 for normal ordering and
[−2.7,−2.4] × 10−3 eV2 for inverse ordering. The observed data and expected background
yields for the T2K experiment were obtained from ref. [57].

Based on the information provided, we formed a likelihood backend for SPEY interface
following the guidelines presented in Appendix A with the following functional form:

L (µ,θ ) =





∏

i∈channels

∏

ji∈bins

Poiss
�

n j
�

�

�(µn j
s + n j

b)(1+ θ
jσ

j
b)
�



 ·
∏

k∈nuis

N
�

θ k
�

�0,1
�

, (16)

where signal yields is a function of ns ≡ ns(δC P , sin2φ23,∆m2
31). The likelihood function

used in this study is defined as the product of bins within a set of channels. The provided
dataset consists of 5 distinct channels, with each channel containing 40 bins. While the original
implementation employs N

�

θ k|0,σb

�

, we introduced a reparameterization of the likelihood
to enhance the optimization process and achieve a constraint term that follows a unit-Gaussian
distribution.

The results of the ∆χ2 fit are illustrated in Fig. 8. ∆χ2 is defined as

∆χ2 = −2 log
L
�

1,θ |δC P , sin2φ23,∆m2
31

�

Lmax

�

1,θ |δC P , sin2φ23,∆m2
31

� ,

20Note that usually the mixing angle is shown with θ23 but in order to not confuse the mixing angle with the
nuisance parameters, we will stick with φ23 notation.
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Figure 8: Left panel shows ∆χ2 distribution versus δC P for normal mass ordering
(red) and inverse mass ordering (blue). The middle panel shows ∆χ2 contour for the
marginalised likelihood for normal mass ordering in (sin2φ23,δC P)-plane, and the right
panel shows the same for inverse mass ordering. The cross in the middle and right panels
indicates the best-fit point.

where L
�

µ,θ |δC P , sin2φ23,∆m2
31

�

is marginalised over sin2φ23 or∆m2
31; hence POI has been

set to one for both terms. In the left panel, the ∆χ2 distribution is presented with respect to
δC P , obtained by marginalizing the likelihood with respect to sin2φ23 and ∆m2

31 for a fixed
δC P . In order to slightly favour the normal order, the maximum likelihood of the inverse
ordering distribution was adjusted to equation with the maximum likelihood of the normal
ordering scenario. The middle (right) panel displays the ∆χ2 contours at significance levels
of 2.3 and 4.61 for the normal ordering (inverse ordering) case. The marginalization was
carried out solely over ∆m2

31 by fixing δC P and sin2φ23. The cross depicted in each plot
represents the best-fit location for the respective scenario.

Our findings equation closely with the results reported in ref. [55] (refer to Fig. 3 in
the reference), thus validating the performance of SPEY interface across a broad spectrum of
applications. The implementation for eq. (16) can be accessed from this GitHub repository.

5 Conclusion & future directions

SPEY is a modular, cross-platform Python package for building statistical models for reinter-
pretation studies. It allows the integration of likelihood prescriptions to be used through a
global inference system without the need to alter the structure of the package. This has been
achieved through an auto plug-in detection system, which searches through Python packages
to find plug-in entry points. Such construction allows for a likelihood prescription agnostic in-
terface which can be extended to cover any future likelihood constructions, which may enable
a more accurate approximation of the full likelihood.

Whilst the publication of full statistical models reincarnates the experimental analysis, it
can be computationally highly complex for fast inference. To improve computational limita-
tions of full statistical models, machine-learned likelihood prescriptions have emerged [58,59].
Additionally, methodologies such as simplified likelihoods using linearised systematic uncer-
tainties [60] have significantly improved the computational cost of the full statistical mod-
els. SPEY’s modular construction enables the usage of such likelihood prescriptions, allowing
highly efficient full likelihood estimations to be used for reinterpretation studies through one
package. Such plug-in integrations are currently in the making.

Combining different statistical models provides a valuable meta-analysis framework de-
spite the challenges. Using overlap removal techniques [20] are highly effective despite their
limitations. Application of methodologies used in Higgs physics, such as Simplified Template
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Cross Sections [61] (STXS), can allow for more robust likelihood combinations due to non-
overlapping phase spaces. SPEY’s backend agnostic structure enables the combination of any
likelihood prescription, originating from dedicated packages, seamlessly, and we will continue
the development of new approaches for combinations.

SPEY is currently being implemented into SMODELS [11] and MADANALYSIS 5 [5–9] pack-
ages to be used for inference which will be available in the future releases. In the future, we
are planning to include tools like CONTUR [62], Rivet [1] and CheckMATE [10] to achieve a
reinterpretation software agnostic platform. This will allow searches and measurements to be
used together across multiple platforms to enhance the limits of meta-analysis.

In this study, we have demonstrated the diverse range of use cases and applications of the
SPEY package, spanning from LHC to neutrino experiments. Our contributions include the
introduction of a novel simplified likelihood scenario, leveraging an effective variance that
surpasses the performance of previous simplified likelihood approaches. Moreover, we have
developed a user-friendly likelihood combination interface capable of seamlessly integrating
full statistical models while ensuring compatibility with their respective properties. Addition-
ally, we have devised a method to effectively combine statistical models lacking sufficient in-
formation regarding the source of nuisance parameters.
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A Building a backend plug-in

To create a new PDF prescription for SPEY to use, one needs to import a few tools first. The
first step in creating your own SPEY plug-in is to create a statistical model interface. This is
as simple as importing abstract base class BackendBase from SPEY and inheriting it. Let us
implement an example of

L (µ) =
∏

i∈bins

Poiss
�

ni|µni
s + ni

b

�

,

which is a simple likelihood prescription described by Poisson distribution without any uncer-
tainties. As before, n, ns, and nb refers to data, signal and background yields, respectively.

1 from scipy.stats import Poisson
2 import numpy as np
3 from spey import BackendBase , ExpectationType
4 from spey.base.model_config import ModelConfig
5

6 class PoissonPDF(BackendBase):
7 """ Example Poisson plug -in"""
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8

9 name = "example.poisson"
10 version = "1.0.0"
11 author = "Tom Bombadil <tom@bombadil.com >"
12 spey_requires = " >=0.0.1 , <0.1.0"
13 arXiv = ["abcd.xyzw"]
14 doi = ["doi/address"]
15

16 def __init__(
17 self , signal_yields , background_yields , data
18 ):
19 self.signal_yields = signal_yields
20 self.background_yields = background_yields
21 self.data = data

Before writing the initialisation routine, we included metadata that SPEY needs in order to
correctly identify the module, and then we simply initialise it with signal, background and data
yields. The first three metadata sections indicates the name of the plugin (name), its version
(version), and author information (author). Is followed by spey_requires which informs SPEY

to execute this particular example only between SPEY versions 0.0.1 and 0.1.0 which protects
other users in case of significant changes within SPEY interface which might affect the usage
of our new plug-in. Following metadata for arXiv and doi is to ensure that our new plug-in is
cited properly. For details on how SPEY reports on metadata information, see App. B.

In the following, we add two functions to inform SPEY about the structure of the statistical
model data

1 @property
2 def is_alive(self) -> bool:
3 return np.any(self.signal_yields > 0.0)
4

5 def config(
6 self ,
7 allow_negative_signal=True ,
8 poi_upper_bound =10.0
9 ):

10 min_poi = -np.min(
11 self.background_yields[self.signal_yields > 0]
12 / self.signal_yields[self.signal_yields > 0]
13 )
14

15 return ModelConfig(
16 0, # poi index location
17 min_poi ,
18 [0.0], # initialisation suggestion for the optimiser
19 [( min_poi if allow_negative_signal else 0.0,

poi_upper_bound)], # bound suggestion for the
optimiser

20 )

The first function serves to provide SPEY with essential information regarding the signal, al-
lowing it to bypass unnecessary computations. On the other hand, the second function in-
volves configuring the statistical model. This configuration entails defining the minimum
value the parameter of interest (POI) can assume without resulting in negative expected yields
(µmin = −min(nb/ns)). Additionally, it specifies the index of the POI within the parameter list
(for simplicity, we assume µ to be the first parameter), initialization values for both the POI and
nuisance parameters, as well as their respective bounds to be used during the minimization
of the negative log-likelihood. Incorporating a maximum allowable value for the POI aids the
optimization process by avoiding regions where the likelihood is undefined, thus significantly
improving execution time. It is worth noting that, while this specific example does not involve
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multiple parameters (i.e., nuisance parameters), the location index of the POI becomes crucial
when nuisance parameters are present.

In the following, we implement the accessor to the expected data
1 def expected_data(self , pars , ** kwargs):
2 return pars [0] * self.signal_yields + self.background_yields

which returns the mean value of the Poisson distribution for a given POI.
Finally one needs to define the function to compute log-probability distribution (logL (µ))

which is defined using get_logpdf_func function.
1 def get_logpdf_func(
2 self ,
3 expected = ExpectationType.observed ,
4 data = None ,
5 ):
6 current_data = (
7 self.background_yields if expected == ExpectationType.

apriori else self.data
8 )
9 data = current_data if data is None else data

10

11 return lambda pars: np.sum(
12 poisson.logpmf(data , pars [0] * self.signal_yields + self

.background_yields)
13 )

Notice that we always modify the data with respect to the expected input to make sure that
output is computed accordingly. The data input is to ensure that computation has been done
correctly in case of computing the exclusion limits by sampling through the likelihood or while
computing the Asimov likelihoods.

Once the implementation is complete one needs to write setup.py including
1 from setuptools import setup
2 setup(
3 entry_points ={
4 "spey.backend.plugins": [
5 "example.poisson = example_poisson:PoissonPDF"
6 ]
7 }
8 )

where setup function creates an entry point within "spey.backend.plugins" collection and
it informs SPEY about the location of the implementation which lives in example_poisson.py
file with the class name PoissonPDF. Once the package is installed using pip install -e .
command in the terminal, SPEY can automatically detect and use it. A simple test then can be
done via following

1 import spey
2 import numpy as np
3

4 stat_wrapper = spey.get_backend("example.poisson")
5 stat_model = stat_wrapper(
6 signal_yields= np.array ([12 ,15]),
7 background_yields = np.array ([50. ,48.]) ,
8 data=np.array ([36 ,33])
9 )

10 print(stat_model.exclusion_confidence_level ())

should return [0.9999807105228611]. The code for the full implementation can be found in
this GitHub repository.

Note that this implementation shows only a fraction of the possible functionalities. A full
list of functions can be found in Table 3.
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Table 3: List of available functions that can be implemented for SPEY to use the new
PDF prescription.

Functions and Properties Explanation

is_alive (property) Is any of the regions provided within the sta-
tistical model is non-zero.

config Configuration of the statistical model, in-
forming SPEY about the boundaries, initial
values and the location of the parameter in-
dices.

expected_data (optional) The mean value of the likelihood
for given parameters.

get_logpdf_func The definition of the log-probability distribu-
tion.

get_objective_function (optional) If the objective function is differ-
ent than negative log-likelihood or gradients
can be computed for the optimisation pro-
cess, this function allows SPEY to pass that
information to the optimiser.

get_hessian_logpdf_func (optional) This function provides the neces-
sary computing tools to SPEY to compute the
Hessian of the log-probability distribution.

get_sampler (optional) Generates a function to sample
from the likelihood distribution.

B Citing backends

SPEY ensures that the proper citation information for each backend has been included within
the class metadata. In order to access metadata information for each backend, one can use spey
.get_backend_metadata function, which for instance will return the following for "default_pdf
.third_moment_expansion"

1 spey.get_backend_metadata("default_pdf.third_moment_expansion")
2 {"name": "default_pdf.third_moment_expansion",
3 "author": "SpeysideHEP",
4 "version": "0.0.1",
5 "spey_requires": "0.0.1",
6 "doi": ["10.1007/ JHEP04 (2019) 064"],
7 "arXiv": ["1809.05548"]}

This provides the information from top to bottom, name of the backend, author of the backend,
version of the backend, the SPEY version that the backend requires, list of DOI and arXiv
numbers.

C Third moments from asymmetric uncertainties

Assuming that the uncertainties are modelled as Gaussian (which is a fair assumption since
all the uncertainties presented in eq. (3) are Gaussian), third moments of the asymmetric
uncertainties can be computed by integrating over Bifurcated Gaussian
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m(3) =
2

σ+ +σ−

�

σ−
∫ 0

−∞
x3N (x |0,σ−)d x +σ+

∫ ∞

0

x3N (x |0,σ+)d x

�

, (C.1)

where σ± represents upper and lower uncertainty envelops and N (x |0,σ) is the normal dis-
tribution. This computation can be achieved by importing compute_third_moments function

1 from spey.backends.simplifiedlikelihood_backend.third_moment import
compute_third_moments

2 third_moments = compute_third_moments(upper_envelops ,
lower_envelops)

where upper_envelops and lower_envelops are NumPy arrays with same shape as background.
Note that third-moment expansion presented in simplified likelihood framework is only valid
if 8diag (Σ)3i ≥ (m

(3)
i )

2 where Σ is the covariance matrix. For the terms that this inequality
does not hold SPEY will warn the user and set such terms to zero.

Notice that eq. (C.1) has been derived from the expectation value of n-th moment

E[(X − c)n] =

∫ ∞

−∞
(x − c)n f (x)d x ,

where c is the shift from the central value and f (x) is the model.
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