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Abstract

We show that the 3d Born-Infeld theory can be generated via an irrelevant deformation
of the free Maxwell theory. The deforming operator is constructed from the energy-
momentum tensor and includes a novel non-analytic contribution that resembles root-
T T . We find that a similar operator deforms a free scalar into the scalar sector of the
Dirac-Born-Infeld action, which describes transverse fluctuations of a D-brane, in any
dimension. We also analyse trace flow equations and obtain flows for subtracted models
driven by a relevant operator. In 3d, the irrelevant deformation can be made manifestly
supersymmetric by presenting the flow equation in N = 1 superspace, where the de-
forming operator is built from supercurrents. We demonstrate that two supersymmetric
presentations of the D2-brane effective action, the Maxwell-Goldstone multiplet and the
tensor-Goldstone multiplet, satisfy superspace flow equations driven by this supercur-
rent combination. To do this, we derive expressions for the supercurrents in general
classes of vector and tensor/scalar models by directly solving the superspace conserva-
tion equations and also by coupling to N = 1 supergravity. As both of these multiplets
exhibit a second, spontaneously broken supersymmetry, this analysis provides further
evidence for a connection between current-squared deformations and nonlinearly real-
ized symmetries.
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1 Introduction

A very useful tool for the exploration of the space of theories within a specific theoretical
framework is that of flows. This tool has been used extensively in physics and mathematics
with enormous success. The most famous application of a flow in theoretical physics is the
renormalization group (RG) flow which is used to explore the space of field theories. In math-
ematics, a well-known example is that of Ricci flow [1]which explores the space of Riemannian
manifolds. Specifically, RG flows run from high energy (UV) theories to low energy (IR) the-
ories and determine the set of coupling constants of QFTs along the trajectory of the flow in a
manner controlled by the beta function. Similar in spirit, Ricci flows create a trajectory in the
space of Riemannian manifolds, dictated by the Ricci tensor, and determine the metric of the
manifolds along the trajectory. Both flows have interesting points. RG flows have fixed points
that correspond to conformal field theories and Ricci flows have attractors which correspond
to constant curvature manifolds.

The success of RG flows suggests further exploration of the space of QFTs using additional
flows triggered by operators that deform theories in new and interesting ways. A special
example is the T T operator, which is irrelevant in the sense of the RG.1 Ordinarily, turning
on an irrelevant operator subsequently requires the addition of infinitely many counterterms,
and thus leads to a loss of analytic control. Nonetheless it has been shown [2,3] that the T T

1The coupling constant that turns on and controls the contribution of this operator has negative mass dimension.
Such a coupling is irrelevant at low energies but grows more important at high energies.
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operator in two dimensions is an exception to this rule, and in fact the deformation is “solvable”
in the sense that several quantities in the deformed theory can be computed analytically in
terms of the data of the undeformed theory.

The definition of the T T operator is historically given (up to normalisation factors) as

T T := −det (Tmn) =
1
2

�

T mnTmn − T m
m T n

n

�

, (1)

where Tmn is the energy-momentum tensor of the system. In 2d, using the holomorphic and
anti-holomorphic coordinates, this operator takes the form T T ∼ Tzz T zz − T2

zz . For CFTs, the
trace part (Tzz) vanishes and we are left only with the Tzz and T zz term, hence the name T T .2

There are various viewpoints that provide intuition as to why T T deformations are not the
typical irrelevant operators and should be studied in more detail. One such viewpoint is its
property of being an integrable deformation. This means that if we start with an integrable
theory and follow its flow under T T , then the output will also be an integrable theory [8, 9].
In other words, the preservation of integrability by the flow makes T T very special. A different
viewpoint, not related to integrability, involves connections between the T T deformation and
gravity. For instance one can calculate the contribution of an infinitesimal T T -deformation to
the partition function of the theory and show that it is equivalent to an integration over random
variations of the underlying geometry [10]. A second connection involves coupling to flat space
JT gravity [11,12], which has more recently been understood as a special case of a topological
gauging procedure that can be applied to more general current-current deformations [13].
A third approach is to geometrize T T and related deformations via a dynamical change of
coordinates which couples the undeformed theory to a field-dependent background metric
[14–18].

Unlike RG flows, T T flows run towards higher energies. Nevertheless there are examples
of quantities that have been computed exactly using this flow. In this paper we will focus on
a specific quantity, the deformed classical Lagrangian. This means that we: (i) consider the
space of field theories that have a Lagrangian description L, (ii) assume a curve through this
space parametrized by some parameter λ such that the point on the curve corresponding to
value λ = λ0 is the field theory with Lagrangian L(λ0) and (iii) define the operator O(λ) that
triggers the flow from point λ to point λ+δλ as

L(λ+δλ) = L(λ) +δλ O(λ) . (2)

For the case of T T -flow of Lagrangians in 2d we consider the following deformation:

∂L(λ)

∂ λ
= det
�

T (λ)mn

�

. (3)

A well-known example of solving the T T -flow equation for the deformed Lagrangian is the
case of a free boson in two dimensions: L= ∂ φ∂ φ. In [3] it was shown that under a T T -flow
this theory is mapped to the 3d Nambu-Goto action in the static gauge:

L(0) = ∂ φ∂ φ → L(λ) = 1
2λ

�

q

4λ∂φ∂φ + 1− 1
�

= −
1

2λ
+LNG . (4)

An interesting feature of the above deformed Lagrangian is the square root. Usually this type
of nonlinearity (a) corresponds to the resummation of infinitely many terms, which in this case
can be thought of as being generated by iteratively adding and re-computing the controlled

2However, this name is somewhat misleading since a T T -deformed CFT at finite deformation parameter is
no longer conformally invariant and thus its stress tensor has non-vanishing trace. Interestingly, it appears that
T T -deformed CFTs exhibit an unconventional field-dependent conformal symmetry [4–7].
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T T combination along the flow, and (b) appears in many attractive theories. In this example,
the Nambu-Goto action describes the propagation of bosonic strings with the flow parameter
λ playing the role of inverse string tension.

A natural question to ask is whether other “square root” Lagrangians have a similar inter-
pretation: can they be obtained from a T T -like deformation of a free theory? Another well-
known and extensively studied member of the square root Lagrangians is the Born-Infeld (BI)
theory and its generalizations. The BI Lagrangian provides a nonlinear extension of Maxwell
theory, but most importantly it is the leading term in the low-energy effective description of
D-branes [19, 20]. Because of this, BI-type actions beautifully capture a solitonic realization
of the partial supersymmetry breaking phenomenon [21–26].

This can be understood using some basic properties of the theory. As solitonic solutions of
open string theory, D-branes introduce boundaries that break the translational symmetries in
their perpendicular directions. However, because translational symmetries are the source of
supersymmetry, fewer translational symmetries lead to less supersymmetry. In fact, based on
the size of spinors it is straightforward to see that for every translational symmetry lost, the
number of supercharges of the theory is cut in half.

Nevertheless, it is a fact of physics that the memory of broken symmetries is never lost. The
theory still realizes these symmetries but in a nonlinear manner. Hence, the nonlinearities of
BI Lagrangians may be interpreted as a manifestation of partial supersymmetry breaking and
the existence of a Goldstino mode. It would be very interesting to investigate whether the
same nonlinearities can also be generated by a T T -like flow. This has been shown to be true
for certain models in two dimensions up to N = (2,2) supersymmetry as well as N=1, 4d
theories, see [27–29]. This suggests that non-linearly realized (super)symmetries might also
arise from T T -like flow equations, at least when the seed theories possess extra symmetries
such as the shift-symmetries of free models.

In this paper, we consider the 3d, N=1 supersymmetric Born-Infeld theory [30–32]which
is related to the effective description of D2-branes in type IIA string theory. This theory was
obtained by partially breaking supersymmetry from N = 2 to N=1 in such a manner that
the supersymmetric multiplet which manifests the surviving, linearly realized, supersymmetry
remains massless (i.e. it is the Goldstone multiplet). It was found that the role of the Goldstone
multiplet can be played by either the 3d, N = 1 vector multiplet or its dual tensor multiplet.

This work aims to show that these results can also be obtained from a T T -like flow. The
deformation parameter which labels points along the flow trajectory is related to the scale of
supersymmetry breaking and more precisely to the VEV (κ) of the auxiliary N = 1 superfield
of the N = 2 supermultiplet. The flow relates the κ → ∞ limit of these theories, which
corresponds to the manifestly supersymmetric Lagrangians that describe the 3d, N = 1 free
Maxwell and free tensor multiplet, to theories at finite (but not zero) values of κ, which de-
scribe the 3d, N = 1 supersymmetric Born-Infeld theory in terms of the Maxwell-Goldstone
and tensor-Goldstone multiplets, respectively.

As a result, the 3d BI Lagrangian – which is the bosonic truncation of the above super-
symmetric theories – arises from a T T deformation. This may come as a surprise since it was
explicitly checked in [33] that a flow equation of the form

∂L
∂ λ
= c1T abTab + c2

�

T a
a

�2
, (5)

does not lead to Born-Infeld type solutions in any dimension other than d = 4, regardless
of the choice of coefficients c1 and c2. To evade this no-go result, one must introduce some
additional ingredient. We will find that the necessary addition is a new operator R which is
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non-analytic in the energy-momentum tensor:

R=

√

√1
d

T abTab −
1
d2

�

T a
a

�2
=

1
p

d

q

bT ab
bTab ,

bTab = Tab −
1
d

gabT c
c .

(6)

This operator R is constructed from the traceless part bTab of the stress tensor and is the d-
dimensional analogue of the root-T T operator whose two-dimensional version was studied
in [34] (see also [35–42]).3 A marginal flow driven by the operator R can be used to obtain
the Modified Maxwell (ModMax) theory, which was introduced in [44–46], in four spacetime
dimensions [47]. This root-T T -like flow can also be made manifestly supersymmetric [48],
and along with the 4d T T -like flow, forms a 2-parameter family of commuting deformations
which generate the ModMax-Born-Infeld theory (or its supersymmetric extension, in the su-
perspace case) [49]. In two dimensions, the analogous root-T T flow can be used to construct
a “Modified Scalar” theory, or combined with T T to yield a 2-parameter family of “Modified-
Nambu-Goto” theories [17, 34, 50]. Classical root-T T flows in 2d seem to enjoy some of the
special properties of the ordinary T T deformation, such as preserving integrability in certain
examples [51], although it is not yet known whether this deformation can be defined quantum-
mechanically.

In the present work, we will not consider such marginal flows driven by the root-T T -like
operator R. Instead, we will only use R as a tool to construct more general irrelevant flows.
More precisely, we will expand the class of T T -like flow equations (5) by including a third term
c3T a

a R on the right side. A deformation which includes this additional term will be sufficient
to generate the 3d Born-Infeld theory, or its dual scalar theory, via a T T -like flow, and likewise
to generate the supersymmetric extensions of these theories by appropriate flows driven by
supercurrents.4

The paper is organized as follows. In Section 2 we focus on the bosonic truncations of
the supersymmetric D2-brane actions of interest. We present a flow driven by an irrelevant
operator which deforms the 3d free Maxwell theory to the Born-Infeld theory, which is the
bosonic part of the Maxwell-Goldstone multiplet. We also show that a similar flow connects
the 3d free scalar to the scalar sector of the Dirac-Born-Infeld action, which is a truncation
of the tensor-Goldstone multiplet, and that an analogue of this result holds in any spacetime
dimension d. We then analyse and extend the trace flow equations presenting new classes of
3d relevant flows for subtracted Lagrangians. In Section 3 we turn to the supersymmetriza-
tion of these results. We view the results of [30] as a flow that connects 3d super-Maxwell
to supersymmetric Born-Infeld and we define the appropriate superspace operator Oκ2 trig-
gering the flow. Furthermore, we explicitly construct the supercurrent multiplet for these
theories by solving the corresponding superspace conservation equation. This is the multiplet
that contains the energy-momentum tensor and its superpartner, the supersymmetry current.
The supercurrent and supertrace superfields that define the supercurrent multiplet are then
used to establish appropriate T T -like superspace operators OT2 , OΘ2 , OΘR with the property
that their component expansion includes terms proportional to bT ab

bTab, (T a
a)2 and (T a

a)R
respectively. We show that for both descriptions of the 3d supersymmetric BI theory —i.e. the
Maxwell-Goldstone or the tensor-Goldstone multiplets— the superspace flow operator Oκ2

can be expressed uniquely as a linear combination of the superfields OT2 , OΘ2 , OΘR and thus
identify this flow as a T T -like flow. These flows are the manifestly supersymmetric extensions

3Although there have been some proposals [10,43] for T T -like deformations in higher dimensions which involve
roots of the determinant of the stress-energy tensor, such as [det(T )]1/(d−1), note that R is not proportional to any
power of the determinant of Tab.

4For other work on T T and supersymmetry, see [52–61].
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of those in Section 2. Indeed we check that the bosonic truncation of the superspace results of
this section is consistent with the bosonic flows of the previous section. In Section 4, we de-
rive the above-mentioned supercurrents by coupling a large class of vector and tensor/scalar
models to N = 1 supergravity. Finally, in Section 5 we summarize these results and identify
a few directions for future investigation. We have also collected our conventions and details
of some calculations in Appendices A and B. An alternate presentation of one of our bosonic
flows is presented in Appendix C.

2 Bosonic flows

In this section, we will truncate the D2-brane effective actions of interest to the bosonic degrees
of freedom and study stress tensor flows for the resulting theories in components. This analysis
provides a warm-up for the manifestly supersymmetric flow equations, which will be presented
in section 3, in a simpler context without the complications of fermions.

Nonetheless, even this simplified setting will reveal that new ingredients are required in
order to write such flow equations for brane actions in three spacetime dimensions. Unlike
the known examples in d = 2, where a stress tensor deformation of a free scalar yields the
Nambu-Goto Lagrangian [3], and in d = 4, where a flow equation deforms the Maxwell La-
grangian into the Born-Infeld theory [62], we will find that flow equations in d = 3 require
the introduction of a new Lorentz scalar constructed from the stress tensor. This new invariant
is the three-dimensional version of the root-T T operator [34].

2.1 Maxwell-Goldstone multiplet

We begin with the bosonic part of the spacetime action for the supersymmetric 3d Born-Infeld
theory, which reads

SB = κ
2

∫

d3 x

�

1−

√

√

1+
1

2κ2
f ab fab

�

. (7)

In this section, we follow the same conventions as in Section 4, which are laid out in Ap-
pendix B. In particular, spacetime indices are denoted with lowercase Latin letters a, b, etc.
which are raised and lowered with the flat Minkowski metric ηab = diag(−1,1, 1). We denote
spinorial indices with Greek letters α,β , etc. which are raised and lowered with ϵαβ where
ϵ12 = −1= −ϵ21.

It will first be convenient to develop some general results for an arbitrary theory of an
Abelian field strength fab in three spacetime dimensions before specializing to the Lagrangian
(7). Abelian gauge theories in d = 3 are considerably simpler than their counterparts in
d = 4 because of the smaller number of Lorentz scalars that can be constructed from the field
strength. We recall that, in d = 4, one can construct two independent Lorentz invariants from
the field strength fab, namely

−
1
4

fab f ab =
1
2

�
�

�E⃗
�

�

2 −
�

�B⃗
�

�

2�
, −

1
4

fab
ef ab = E⃗ · B⃗ (d = 4) , (8)

where efab =
1
2ε

abcd fcd is the Hodge dual of fab. A general Lagrangian constructed from the
field strength can therefore be written as a function of these two Lorentz scalars. However, in
d = 3, the analogue of efab is a scalar field, and one cannot construct a second independent
invariant from the field strength and its dual as in four dimensions. Therefore, a general
Lagrangian built from fab in three dimensions is a function of one variable. We will call this
variable t, not to be confused with the time coordinate t, since the combination t will be
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proportional to the lowest component of the superfield T considered5 in Sections 3 and 4:

L( fab) = L(t) , t= −
1
4

fab f ab (d = 3) . (9)

The Hilbert stress tensor Tab associated with such a general Lagrangian L(t) is

Tab = −2
∂L
∂ gab

+ gabL

=
∂L
∂ t

f c
a fbc + gabL , (10)

where we take gab = ηab to be the Minkowski metric.
We will need to compute various scalar contractions of the stress-energy tensor in order to

construct the operator which drives our flow. Using (10), one finds

T abTab = 3L2 − 8Lt∂L
∂ t
+ 8
�

∂L
∂ t

�2

t2 ,

T a
a = 3L− 4t

∂L
∂ t

.

(11)

We have simplified the first expression using the identity

f ac f b
c f d

a fd b =
1
2

�

fab f ab
�2

, (12)

which follows from the trace relations for a 3×3 matrix (see [33] or [49] for the computation
of the two scalars (11) for a field strength in d spacetime dimensions).

One can now see that there is a special combination of these two scalars:

T abTab −
1
3

�

T a
a

�2
=

8
3
t2
�

∂L
∂ t

�2

. (13)

This is an especially nice expression since it depends only on t and the derivative ∂L
∂ t , but not

on the bare Lagrangian L without any derivatives. Furthermore, since the combination is a
perfect square, it is sensible to take its square root so long as we are careful about our choice
of branch. To do this, we now lay out our assumptions about the signs of quantities appearing
in (13). Recall that

t=
1
2

�
�

�E⃗
�

�

2 −
�

�B⃗
�

�

2�
, (14)

and that the Maxwell Lagrangian in our conventions is LMaxwell = t, so that

∂LMaxwell

∂ t
= 1 . (15)

In particular, for the Maxwell theory we have ∂L
∂ t > 0. We will assume that this inequality is

true for all of the theories considered in this work. To fix the sign of t, we further assume that

�

�E⃗
�

�

2
<
�

�B⃗
�

�

2
=⇒ t< 0 . (16)

This can be justified, for instance, by focusing on the dynamics of small fluctuations around a
classical background with a fixed large magnetic field. In some sense, this is the more natural
choice from the perspective of the Born-Infeld theory, where the electric field must still satisfy

5See, for instance, equations (85) and (170), although note that the conventions for this superfield differ by a
factor of 2

κ2 between these sections.
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|E⃗|2 < κ2 so that the argument of the square root remains positive. However, the strength
of the magnetic field in the Born-Infeld theory is allowed to grow arbitrarily large without
affecting the reality of the Lagrangian.

Under the assumptions that t < 0 and ∂L
∂ t > 0, we are free to take the square root of the

combination (13) and define

R=

√

√3
8

�

T abTab −
1
3

�

T a
a

�2
�

=

√

√

√

t2
�

∂L
∂ t

�2

= −t
∂L
∂ t

. (17)

If we had instead assumed t > 0 and ∂L
∂ t > 0, our definition of R would have differed by an

overall minus sign, which changes some of the numerical coefficients in the flow equations
which follow. One could also have defined a piecewise flow equation, with one choice of
coefficients for t < 0 and another choice for t > 0, in order to deform the entire phase space
of the theory.

Flow equation

We are now ready to construct our deforming operator. Consider the flow equation

∂L
∂ λ
= Oλ ,

Oλ =
1
6

T abTab −
1
9

�

T a
a

�2
+

1
9

�

T a
a

�

R ,
(18)

with R as in (17). Note that we will later use calligraphic symbols like Oκ2 for superfield
operators, whereas the non-calligraphic symbols like Oλ denotes bosonic operators. Here λ is
an irrelevant coupling constant with length dimension 3.

In this paper, we will always assume that λ is positive. This is sometimes referred to as
the “good sign” of the deformation parameter because, in the context of T T deformations
in two spacetime dimensions where the operator is well-defined quantum mechanically, the
finite-volume spectrum of a deformed CFT remains real for some range of positive λ, whereas
for negative λ all but finitely many of the energy levels become complex.6 There have been
various proposed interpretations for these complex energies, including holographic pictures
such as a finite cutoff in AdS3 [64] or a change in spacetime signature [65]. The negative
sign of the deformation parameter has also been related to de Sitter constructions [66–68].
However, in the present work we will consider only classical good-sign flows, in part because
it is not known whether one can define a local T T -like operator from the stress tensor in d > 2
dimensions (see [69] for a discussion of this point).

Using the explicit expressions (11) for T abTab, T a
a and (17) for R, the flow equation (18)

can be written as
∂L
∂ λ
= Lt∂L

∂ t
−

1
2
L2 . (19)

6In some cases one can cure these complex energies by performing sequential flows, for instance deforming
a collection of theories by negative λ and then deforming their tensor product by a positive value of λ which is
sufficiently large [63].
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It is also sometimes convenient to change variables as λ = 1
κ2 , where κ2 has mass dimension

3, and write the flow equation as

κ4 ∂L
∂ κ2

= Oκ2 ,

Oκ2 = −
1
6

T abTab +
1
9

�

T a
a

�2 −
1
9

�

T a
a

�

R .
(20)

Because of the change of variables, the operator Oκ2 = −Oλ which drives the flow in equation
(20) differs by a sign from the corresponding operator in equation (18).

We now return to the Born-Infeld theory (7). In terms of the variable t, this Lagrangian
can be written as

LB(κ
2, t) = κ2

�

1−

√

√

1−
2
κ2

t

�

, (21)

or using the parameter λ= 1
κ2 ,

LB(λ, t) =
1
λ

�

1−
p

1− 2λt
�

. (22)

One can verify by direct computation that the Lagrangian (22) satisfies the differential equa-
tion (19), or equivalently that LB(κ2, t) of (21) solves the equation (20).

Modified trace flow equation

The free Maxwell theory in three spacetime dimensions is not a conformal field theory. There-
fore, deformations of the 3d Maxwell Lagrangian – such as the stress tensor flow which pro-
duces the Born-Infeld theory that was presented in the preceding subsection – do not exhibit
the usual properties for deformations of CFTs which are often used when studying perturba-
tions of this kind.

An especially useful example of such a property is the so-called trace flow equation, which
plays a role in many places in the T T literature, including in cutoff AdS3 holography [70–75]
and in 4d T T -like flows [48]. We now review and extend this result. Let L0 be a Lagrangian
which describes a classically conformal field theory in d spacetime dimensions (in particular,
the trace of the Hilbert stress tensor associated with L0 vanishes). Suppose that we deform
L0 according to the flow equation

∂Lλ
∂ λ

= O (Tab (λ)) , (23)

with the initial condition Lλ → L0 as λ → 0, and where O is an arbitrary scalar function of
the stress tensor Tab(λ) associated with Lλ. We assume that the deformation parameter λ
has length dimension ∆. Because L0 is conformally invariant, there is only a single energy
scale Λ = λ−1/∆ in the deformed theory Lλ. The response of Lλ to an infinitesimal scale
transformation is determined by the trace of the stress tensor as

Λ
dS
dΛ
=

∫

dd x T a
a (λ) . (24)

Comparing the expression (24) to (23), one concludes that

T a
a (λ) = −∆λO (Tab (λ)) + total derivative, (25)

where we have written “+ total derivative” because we are equating two spacetime integrals
and therefore cannot exclude the possibility that the integrands may differ by total derivative
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terms. We will omit such possible terms in the remainder of this subsection, for simplicity,
although we will see later around equation (64) that they can be important in some contexts.
This equation can also be written as

λ
∂Lλ
∂ λ

= −
1
∆

T a
a . (26)

Therefore, the trace of the stress tensor in the deformed theory Lλ is determined in terms
of the deforming operator O (Tab (λ)). The condition (25) applies, for instance, to the T T
deformation of a free scalar in two spacetime dimensions, or to the analogous four-dimensional
T2 deformation of the free 4d Maxwell Lagrangian.

Because the 3d Maxwell Lagrangian is not a CFT, the trace flow equation (25) does not
hold for the 3d Born-Infeld Lagrangian (22), which we have obtained as such a stress tensor
flow with ∆= d = 3 and where the operator O(Tab) is given by

O (Tab) = Oλ ≡
1
6

T abTab −
1
9

�

T a
a

�2
+

1
9

�

T a
a

�

R , (27)

as in equation (18). However, one might wonder whether the Born-Infeld theory satisfies a
modified version of such a trace flow equation. Besides the trace T a

a , another natural Lorentz
invariant built from Tab which has the same dimension is the operator

R=

√

√3
8

�

T abTab −
1
3

�

T a
a

�2
�

, (28)

which we used to construct the flow. In fact, the Born-Infeld Lagrangian LB satisfies

λ
∂LB

∂ λ
= −

1
3

�

T a
a (λ)− R(λ)
�

, (29)

which takes a similar form as equation (26) for a conformal seed theory except with an “ef-
fective trace” of T a

a −R rather than the usual trace T a
a . Equivalently, one finds that the trace

of the stress tensor associated with LB obeys

T a
a − R= −3λOλ (Tab(λ)) , (30)

for the function Oλ in (27). Again, comparing to the ordinary trace flow equation (25) which
holds for a deformed CFT, we find that the 3d Born-Infeld theory obeys a modified trace flow
equation where the role of the trace is played by the difference between the trace T a

a and the
root-T T -like operator R.

Relevant flow equation

In [48], it was pointed out that one version of the four-dimensional Born-Infeld Lagrangian
also satisfies a flow equation driven by a relevant operator constructed from the stress tensor,
as opposed to the usual irrelevant T T -like combination which deforms the 4d Maxwell theory
to Born-Infeld. This result relied upon the fact that one can construct a “subtracted” version of
the theory by adding an appropriate λ-dependent constant to the Lagrangian which causes the
T T -like operator, which usually drives the irrelevant flow, to become a constant. It is natural
to ask whether any analogue of these results also holds for the three-dimensional Born-Infeld
theory.

We will see that the answer is yes. We first define the “subtracted” 3d Born-Infeld La-
grangian as

eLB =
α

λ

p

1− 2λt , (31)
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where α is a dimensionless constant. We refer to this as a “subtracted” theory because the
usual Born-Infeld theory (22) is a sum of two terms, the constant term 1

λ and the square root
term, so one can simply subtract off the constant 1

λ term (and rescale by an overall factor) to
arrive at (31). We note that the equations of motion for this model are not affected by the
constant term so the dynamics of LB are identical to those of eLB (so long as we do not couple
the theory to dynamical gravity, in which case the 1

λ term plays the role of a cosmological
constant).

One can compute the stress tensor eTab associated with the subtracted theory eLB, and then
assemble the combination Oλ(eTab), which turns out to be a constant:

Oλ(eTab) =
1
6
eT ab
eTab −

1
9

�

eT a
a

�2
+

1
9

�

eT a
a

�

R

= −
α2

2λ2
. (32)

If we assume that λ is positive, we can therefore write

λ=
|α|
q

2
�

�Oλ(eTab)
�

�

. (33)

This relation allows us to write a different flow equation for the Lagrangian eLB. It is most
convenient to express this flow in terms of the variable κ2 rather than λ = 1

κ2 . By first substi-
tuting the solution (33) into the modified trace flow equation (30), then using the resulting
expression for T a

a −R in equation (29), writing the equation in terms of the stress tensor eTab

for eLB, and finally changing variables from λ to κ2, one finds

∂ eLB

∂ κ2
=

|α|
�

eT a
a − eR
�

s

�

�

�3eT ab
eTab − 2
�

eT a
a

�2
+ 2
�

eT a
a

�

eR
�

�

�

, (34)

where eR is the root-T T -like combination constructed from eTab. We have therefore written a
flow equation for the subtracted Lagrangian eLB driven by a relevant operator constructed from
the stress tensor.

The non-trivial feature of this result is that the right side of (34) depends only on eTab
and not on the flow parameter κ2. One can always trivially rewrite a flow equation involving
an irrelevant deformation parameter λ = 1

κ2 by changing variables to κ2. However, such a
rewriting will generally produce an expression for ∂L

∂ κ2 which is a relevant combination of both
κ2 and the original deforming operator. In contrast, the flow (34) is driven by an operator
built solely from the stress tensor itself, which is a special feature of the Lagrangian eLB that is
possible because the combination f (eTab) is a constant.

2.2 Tensor multiplet

As explored in [30], one can also interpret the three-dimensional N = 1 tensor multiplet as
the Goldstone for a spontaneously broken second supersymmetry. In this section, we will study
stress tensor flows for the bosonic truncation of this multiplet.

The bosonic field content of the tensor-Goldstone multiplet is a scalar field φ and an aux-
iliary field H which can be assembled into a bispinor

f̂αβ = ∂αβφ + iϵαβH , (35)

where we remind the reader that in this section we use the notation of Appendix B for spinorial
indices α,β .
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One could have anticipated that this multiplet, for which the physical bosonic degree of
freedom is the scalar field φ, might have provided an equivalent description of the Maxwell-
Goldstone multiplet from Hodge duality. Indeed, in three spacetime dimensions a 2-form field
strength is equivalent to a scalar field through the duality relation

dφ = ⋆ f , (36)

where f = fab d xa ∧ d x b, d is the exterior derivative, and ⋆ is the Hodge star.
The undeformed Lagrangian for the bosonic truncation of this multiplet, which is the large-

κ2 or small-λ limit of the solution to the flow equation which we develop shortly, is propor-
tional to the combination

f̂ αβ f̂αβ = ∂αβφ∂
αβφ + 2H2

= −2∂ aφ∂aφ + 2H2 . (37)

Note that, for any Lagrangian L that depends on the field H only through the combination H2

(and which has no kinetic term for H), the equation of motion for H is

H
∂L
∂ H2

= 0 , (38)

which admits the solution H = 0. Therefore, if we are only interested in on-shell flows where
the equation of motion for H is imposed, then it suffices to eliminate the field H from the
Lagrangian and restrict attention to the physical degree of freedom φ. A common issue when
studying stress tensor flows for theories which include auxiliary fields is that it is often possible
to engineer a flow which reproduces a given Lagrangian on-shell, but not off-shell. We will
encounter precisely this issue in the analysis of this section and the same behavior arises in
the superspace flow of Section 3.

With a particular choice of normalization, the bosonic truncation of the Lagrangian for the
tensor-Goldstone multiplet can be written as

LTG =
1
λ

�

1−
Æ

1+ 2λ (∂ aφ∂aφ −H2)
�

= κ2

�

1−

√

√

1+
2
κ2
(∂ aφ∂aφ −H2)

�

, (39)

in terms of either the variable λ or κ2 = 1
λ . When the auxiliary field H is set to zero using its

equation of motion, this reduces to

LTG

�

�

H=0 =
1
λ

�

1−
Æ

1+ 2λ∂ aφ∂aφ
�

= κ2

�

1−

√

√

1+
2
κ2
∂ aφ∂aφ

�

, (40)

which is the scalar sector of the Dirac-Born-Infeld action. From this perspective, φ can be
thought of as a scalar field that describes the transverse fluctuations to a D2-brane, and the
parameter κ2 controls the tension of the brane.

Flow equation

For the moment, we will consider off-shell flows where we do not eliminate the auxiliary field
H using its equation of motion. We first compute the stress tensor for a general Lagrangian
L(x1, x2) which depends on the two Lorentz-invariant combinations

x1 = ∂
aφ∂aφ , x2 = H2 . (41)

As H does not couple to the metric, the Hilbert stress tensor is simply

Tab = ηabL− 2
∂L
∂ x1

∂aφ∂bφ . (42)
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A direct computation of the contractions of Tab needed to construct our flow gives

T abTab = 3L2 − 4Lx1
∂L
∂ x1

+ 4x2
1

�

∂L
∂ x1

�2

,

T a
a = 3L− 2x1

∂L
∂ x1

. (43)

As in the gauge theory analysis, there is a special combination of these contractions:

T abTab −
1
3

�

T a
a

�2
=

8
3

x2
1

�

∂L
∂ x1

�2

. (44)

Conveniently, this combination (44) is a perfect square which does not depend directly on L
but only on its derivative with respect to x1.

In order to consistently take square roots, we will again need to make certain assumptions
about the signs of quantities in the scalar context. The free Lagrangian is given by L = −x1,
where

x1 = ∂
aφ∂aφ = − (∂tφ)

2 + (∂xφ)
2 . (45)

We will assume that x1 < 0 and ∂L
∂ x1

< 0. Note that this is, in some sense, the opposite

convention as that chosen in section 2.1, where we assumed that
�

�E⃗
�

�

2
<
�

�B⃗
�

�

2
. Here we are

instead supposing that (∂tφ)
2 > (∂xφ)

2. We will see that this sign choice is convenient because
it will imply that the scalar theory satisfies the same flow equation, with the same relative
coefficients, as the Born-Infeld Lagrangian; with the opposite sign convention, the sign of one
of the terms would be reversed.

With this choice of sign, we may define the root-T T -like operator R via the square root of
(44),

R=

√

√3
8

�

T abTab −
1
3

�

T a
a

�2
�

= x1
∂ L
∂ x1

, (46)

where we choose the positive root because x1
∂ L
∂ x1
> 0 in these conventions.

It is worth pointing out that, with either choice of sign, the operator R is an on-shell total
derivative. The equation of motion associated with any Lagrangian L(x1) is

0= ∂a

�

∂L
∂ (∂aφ)

�

= 2∂ a
�

∂aφ
∂L
∂ x1

�

. (47)

On the other hand,

R= x1
∂L
∂ x1

= ∂ aφ∂aφ
∂L
∂ x1

= ∂ a
�

φ∂aφ
∂L
∂ x1

�

−φ∂ a
�

∂aφ
∂L
∂ x1

�

. (48)

Comparing the final expression of (48) to that of (47), we see that the second term of R
vanishes on-shell and thus R is a total derivative up to equations of motion as claimed.

We now propose the flow equation

∂L
∂ λ
=

1
6

T abTab −
1
9

�

T a
a

�2
+

1
9

T a
a · R

= Lx1
∂L
∂ x1
−

1
2
L2 , (49)

which takes the same form as the differential equation (18) which deformed the free Maxwell
theory to the Born-Infeld theory. The solution to the differential equation (49) with initial
condition

L0 = −x1 + x2 = −∂ aφ∂aφ +H2 , (50)
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is

L(λ) =
2+ 2λx2 − 2
p

1+λx1(2+λx2)
λ(2+λx2)

. (51)

This solution does not match the bosonic sector of the tensor multiplet (39) off-shell. However,
if we put the auxiliary on-shell by setting H = 0, (51) reduces to

L(λ)
�

�

x2=0 =
1
λ

�

1−
Æ

1+ 2λ∂ aφ∂aφ
�

, (52)

where we have replaced x1 = ∂ aφ∂aφ. This does match the expression (40) for the tensor-
Goldstone Lagrangian when the auxiliary field is set to zero. Therefore the differential equa-
tion (49) can be thought of as an on-shell flow which produces the tensor-Goldstone La-
grangian from the initial condition L0 = −∂ aφ∂aφ + H2, albeit only when the auxiliary field
is set to zero.

In a sense, the reason that this deformation only yields the desired solution on-shell
is because the two terms in L0 have different metric dependence: the scalar kinetic term
x1 = gab∂aφ∂bφ couples explicitly to the metric, whereas x2 = H2 is independent of the
metric and therefore contributes to the Hilbert stress tensor only through the variation of the
measure factor

p
−g. It is possible, though somewhat artificial, to write a Lagrangian which is

equivalent to L0 but where the two terms couple to the metric in a more symmetrical way by
introducing an auxiliary vector field va; this procedure is discussed in Appendix C and leads
to an off-shell flow that yields the tensor-Goldstone Lagrangian.

Let us also make a few comments about dimensional reduction. If we compactify one of
the spatial directions of our three-dimensional spacetime on a circle, and reduce the operator
driving the flow (49) to two dimensions, the resulting operator is not the same as the ordinary
two-dimensional T T operator. This is clear both because the numerical coefficients multiplying
the first two terms will differ from those of the 2d operator (1), and because the third term
will survive, which is not present in O(2d)

T T
. In particular, there is no reason to expect that this

dimensionally-reduced 3d operator will share any of the desirable properties of the usual 2d
T T operator, such as preserving integrability.

This observation is in agreement with the conclusions of [76], which studied the dimen-
sional reduction of the 3d membrane theory to 2d, and found that the S-matrix of the resulting
two-dimensional theory is not integrable. However, the same authors found that performing
a conventional 2d T T deformation of the free limit of this dimensionally reduced theory does
yield an integrable S-matrix, as it must. Because our flow equation (49) yields the 3d mem-
brane theory, it is therefore expected that its dimensional reduction differs from the 2d T T
deformation, since this dimensional reduction cannot preserve integrability in light of the re-
sults of [76].

Modified trace flow equation

For simplicity, in this section we restrict to on-shell flows where the auxiliary field H is set to
zero. We focus on the flow for the Lagrangian

L= 1
λ

�

1−
Æ

1+ 2λx1

�

, (53)

where x1 = ∂ aφ∂aφ, which we have seen satisfies the flow equation

∂ L
∂ λ
= Oλ =

1
6

T abTab −
1
9

�

T a
a

�2
+

1
9

T a
a R , (54)

where R=
r

3
8

�

T abTab −
1
3

�

T a
a

�2�
= x1

∂L
∂ x1

.
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The undeformed limit of (53) is the theory of a free scalar in three spacetime dimensions,
which is not scale invariant in the sense of having a stress tensor with vanishing trace. For
L0 = −∂ aφ∂aφ, one finds

T a
a = −∂

aφ∂aφ ̸= 0 . (55)

Although one can perform an improvement transformation to eliminate the trace (55) for
the free scalar theory (which is a consequence of the fact that ∂ aφ∂aφ is an on-shell to-
tal derivative), the standard Hilbert stress tensor without any improvement term is non-
vanishing. As a result, the deformed theory (53) cannot possibly satisfy the trace flow equation
T a

a (λ) = −3λ f (Tab(λ)) for a deformed conformal field theory, where f (Tab(λ)) is defined by
equation (54), since this requires T a

a = 0 when λ= 0.
However, as in the analysis of Section 2.1, one might ask whether the deformed Lagrangian

(53) satisfies a modified version of the usual trace flow equation as the flow parameter λ
is varied. Again we find that the answer is yes; one finds that this Lagrangian satisfies the
relations

λ
∂L
∂ λ
= −

1
3

�

T a
a − R
�

, (56)

or equivalently

λOλ (Tab(λ)) = −
1
3

�

T a
a − R
�

, (57)

where again Oλ (Tab(λ)) =
1
6 T abTab −

1
9

�

T a
a

�2
+ 1

9 T a
a R is the deforming operator. Thus we

see that this deformation of the three dimensional free scalar satisfies a modified trace flow
equation where the role of the trace is played by the combination T a

a − R.
Equations (56) and (57) hold as exact off-shell relations. However, we have noted before

around equation (48) that the operator R is an on-shell total derivative for any Lagrangian
L(x1). Thus the contribution from the R term drops out of the integrated expressions of these
modified trace flow equations. For instance, one has

∫

d3 x λ
∂L
∂ λ
= −

1
3

∫

d3 x
�

T a
a − R
�

≃ −
1
3

∫

d3 x T a
a , (58)

where in the last step we write ≃ to indicate equivalence up to any possible boundary terms
which arise from integrating a total spacetime derivative and equations of motion.

This is in accord with the fact that, despite the non-zero trace of the Hilbert stress tensor
for the theory of a free scalar field in d > 2 dimensions, one can define an improved stress
tensor whose trace vanishes. Let us briefly review this simple observation. In any spacetime
dimension d, the Lagrangian L = ∂ aφ∂aφ for a single massless scalar has the Hilbert stress
tensor

Tab = −2∂aφ∂bφ + gµν∂
cφ∂cφ , (59)

whose trace is T a
a = (d − 2)∂ cφ∂cφ. One can always improve the stress tensor as

Tab −→ T ′ab = Tab + (∂a∂b −ηab∂
c∂c)u , (60)

for any function u, without affecting the symmetry or conservation of the stress tensor. In
particular, we may choose

u=
d − 2

2(d − 1)
φ2 , (61)

so that the improved stress tensor is

T ′ab = −2∂aφ∂bφ + gµν∂
cφ∂cφ +

d − 2
2(d − 1)

(∂a∂b −ηab∂
c∂c)φ

2 . (62)
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The trace of the stress tensor, after dropping all terms proportional to ∂ c∂cφ which vanish
on-shell, is then

T ′aa =
�

−2+ d +
d − 2

2(d − 1)
· 2 (1− d)
�

∂ cφ∂cφ = 0 . (63)

Now consider deforming this d-dimensional free scalar theory by any function f
�

T ′ab

�

. Since
the improved stress tensor T ′ab agrees with the Hilbert stress tensor Tab up to on-shell total
derivatives, it can also be used to generate scale transformations inside of spacetime integrals.
Further, the trace of the improved stress tensor vanishes at λ= 0 by construction. Thus by the
general arguments presented around equation (25), one has

λ

∫

d3 x
∂Lλ
∂ λ

= −
1
d

∫

d3 x T ′aa . (64)

If one were to strip off the integrals in (64), equating the integrands and neglecting total
derivatives, one would conclude that λ ∂Lλ∂ λ = −

1
d T ′aa , which seems to contradict the result

(56) because it is missing the term proportional to R. However we now see that the two
equations are consistent inside of a total spacetime integral, because the term R is an on-shell
total derivative, as is the difference between T ′aa and T a

a .

Relevant flow equation

For completeness, we now repeat the relevant flow analysis of Section 2.1 for the case of the
deformed scalar theory. We will find that a subtracted version of this Lagrangian also satisfies
a flow equation driven by a relevant combination of stress tensors, exactly like in the gauge
theory case. As in the preceding analysis, for simplicity we will use the auxiliary field equation
of motion to set H = 0 and focus purely on the scalar φ.

We first define the subtracted version of the deformed scalar Lagrangian as

eL= α
λ

Æ

1+ 2λx1 , (65)

where α is a dimensionless constant. Again, the constant term that we have removed does
not affect the dynamics of the theory. However, we note that for the 2d T T deformation of
free scalars, the corresponding 1

λ term can be interpreted as arising from a coupling between
the Nambu-Goto string and a constant target-space B field [77]. A related observation is that
the 2d T T deformation can be obtained by considering the uniform light-cone gauge for the
string, as discussed in [52, 78–80]. In our case, since we may interpret the scalar φ as a
transverse fluctuation of a D2-brane, it is natural to instead view the 1

λ term as a coupling to
a constant target-space Ramond-Ramond field C3. It would be interesting to explore whether
an analogue of the uniform-light cone gauge for a D2-brane yields the deformation considered
in this work.

Computing the stress tensor eTab associated with the subtracted Lagrangian eL, one finds
that it satisfies

Oλ
�

eTab(λ)
�

=
1
6
eT ab
eTab −

1
9

�

eT a
a

�2
+

1
9
eT a

a
eR= −

α2

2λ
, (66)

where eR is the root-T T -like operator for the subtracted theory eL. In particular, the deforming
operator Oλ
�

eTab(λ)
�

of equation (66) is a constant, independent of fields.
By an argument analogous to that of section 2.1, one can then show that the subtracted

scalar Lagrangian satisfies

∂ eL
∂ κ2

=
|α|
�

eT a
a − eR
�

s

�

�

�3T abTab − 2
�

T a
a

�2
+ 2T a

a R
�

�

�

, (67)

which is again a flow equation driven by a relevant combination of stress tensors.
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General dimension

To conclude this section, we point out that the possibility of engineering a square-root solution
to the flow equation for a single free scalar field is not special to three spacetime dimensions.
A straightforward generalization of the above argument applies in any spacetime dimension
d.

Let φ be a scalar field in d dimensions and consider a general Lagrangian which depends
on the Lorentz invariant x1 = ∂ aφ∂aφ. The Hilbert stress tensor is identical to the one we
considered in d = 3, namely

Tab = ηabL− 2
∂L
∂ x1

∂aφ∂bφ , (68)

and the contractions we need are

T abTab = dL2 − 4Lx1
∂L
∂ x1

+ 4x2
1

�

∂L
∂ x1

�2

,

T a
a = dL− 2x1

∂L
∂ x1

. (69)

Now the special combination of these invariants is

T abTab −
1
d

�

T a
a

�2
=

4(d − 1)
d

x2
1

�

∂L
∂ x1

�2

. (70)

If we again assume x1 < 0 and ∂L
∂ x1
< 0 then we may take the square root to define

R=

√

√ d
4(d − 1)

�

T abTab −
1
d

�

T a
a

�2
�

= x1
∂L
∂ x1

. (71)

Next we consider the flow equation

∂L
∂ λ
= O(d)

λ
,

O(d)
λ
=

1
2d

T abTab −
1
d2

�

T a
a

�2
+

d − 2
d2

T a
a R ,

(72)

which simplifies to
∂L
∂ λ
= −

1
2
L2 +Lx1

∂L
∂ x1

. (73)

The solution to this differential equation with initial condition L0 = −x1 = −∂ aφ∂aφ is

L(λ) = 1
λ

�

1−
Æ

1+ 2λx1

�

. (74)

As in the three-dimensional case, this d-dimensional Lagrangian satisfies a modified trace flow
equation

λ
∂L
∂ λ
= −

1
d

�

T a
a − (d − 2)R
�

, (75)

or equivalently

λO(d)
λ
(Tab(λ)) = −

1
d

�

T a
a − (d − 2)R
�

. (76)

By an argument identical to that in equations (47) and (48), the operator R is an on-shell total
derivative in the d-dimensional setting, so this modified trace flow equation is consistent with
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the fact that the stress tensor for the undeformed theory L0 = −∂ aφ∂aφ can be improved in
such a way to make it traceless.

Finally, one can repeat the analysis of the subtracted version of the scalar Lagrangian in d
spacetime dimensions, letting

eL= α
λ

Æ

1+ 2λx1 , (77)

which satisfies

O(d)
λ

�

eTab(λ)
�

=
1

2d
T abTab −

1
d2

�

T a
a

�2
+

d − 2
d2

T a
a R= −

α2

2λ
, (78)

As a consequence, when written in terms of the variable κ2 = 1
λ , the subtracted Lagrangian

(77) also satisfies a relevant stress tensor flow:

∂ eL
∂ κ2

=
|α|
�

eT a
a − (d − 2)eR
�

s

�

�

�dT abTab − 2
�

T a
a

�2
+ 2(d − 2)T a

a R
�

�

�

. (79)

3 Supersymmetric flows

In this section, we consider the N = 1 supersymmetric extension of the 3d Born-Infeld ac-
tion and investigate its interpretation as a flow that deforms the free super-Maxwell theory.
We begin with the 3d N = 1 Maxwell-Goldstone (MG) multiplet [30]. Recall that in three
dimensions, the N = 1 vector multiplet is described by the following superspace action7

SVM ∼
∫

d3 x d2θ W 2 , W 2 :=
1
2

WαWα , (80)

where the superfield strength Wα is constrained by the Bianchi identity

DαWα = 0 ⇒ D2 Wα = i∂α
β Wβ , DαWβ = Dβ Wα . (81)

This Bianchi identity can be solved by expressing Wα in terms of an unconstrained prepotential
superfield Γβ

Wα =
1
2

Dβ Dα Γβ . (82)

Γβ is not uniquely determined and is defined modulo the following gauge transformation

δ Γα = Dα K , (83)

where K is an arbitrary scalar superfield. This vector supermultiplet will play the role of the
Goldstone multiplet associated with the spontaneous supersymmetry breaking N =2→N =1.
The dynamics of MG are determined by requiring the surviving supersymmetry be manifest
and the broken one realized nonlinearly. The resulting Lagrangian is

Lκ2 =W 2 f (T ) , (84)

where

f (T ) = 1+
T

1− T +
p

1− 2T
, T =

2
κ2

D2 W 2 . (85)

7In this section, we follow the conventions of [30] and Superspace [81] – see Appendix A for details.
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The dimensionful parameter κ ([κ] = 3/2) corresponds to the VEV of the superfield F , which
is one of the partners of Wα under the second supersymmetry transformation δ∗ [30]:

δ∗εWα = εα F + · · · ,



F
�

∼ κ . (86)

In other words, κ parametrizes by how much we break the second supersymmetry. In partic-
ular, at the κ → ∞ limit, the theory reduces to the N = 1 free Maxwell theory (80). The
dependence of the Lagrangian (84) on κ defines a curve in the space of supersymmetric field
theories. This curve can be interpreted as a flow. The operator that triggers this flow is defined
as

Oκ2 :=
∂Lκ2

∂ κ2
=W 2 ∂ f (T )

∂ κ2
=W 2 f ′(T )

∂ T
∂ κ2

= −
1
κ2

W 2 T f ′(T ) . (87)

In Section 2, it was shown that the 3d Born-Infeld theory, which is the bosonic truncation
of the MG theory, can be obtained by a flow driven by the (stress tensor)2-type operator. We
would like to investigate whether this statement holds true for its supersymmetric extension
given by (84). Namely, can the flow operator (87) be written in terms of the supersymmetric
extension of the stress tensor?

We will show explicitly that the answer to the above question is positive. The proof is or-
ganized in the following way. In section 3.1, we introduce the supercurrent multiplet and give
its explicit component field expansion which includes the stress tensor and its supersymmetric
partner. Section 3.2 is devoted to the derivation of the supercurrent multiplet superfields for
the Maxwell-Goldstone theory and in section 3.3 we explicitly check that the flow operator
(87) is indeed a linear combination of (supercurrent)2 terms. We also check that the bosonic
truncation of this result matches with section 2.1. As discussed in [30], the role of the Gold-
stone multiplet can also be played by the three dimensional projection of the tensor multiplet
which is dual to the vector multiplet. In section 3.4, we repeat the above calculations for the
tensor-Goldstone (TG) description. We confirm that for this case, the flow operator also takes
the (supercurrent)2 form and is consistent with section 2.2.

3.1 Supercurrent multiplet and stress tensor

For any field theory, one can use the standard formula for the Hilbert stress tensor to find Tab,
as we did in section 2. However, in supersymmetric theories the physical degrees of freedom
are organized into supersymmetric multiplets, and therefore the stress tensor Tab becomes a
member of such a multiplet which we call the supercurrent multiplet.8

The stress tensor of a field theory, by definition, couples the theory to gravity at cubic level.
Similarly, the supercurrent multiplet of a supersymmetric theory L0[W ] defines the coupling
of the theory with linearized supergravity in the following manner:

L0[W ] 7→ L[W,Ψαβγ,ϕ] = L0[W ] +Ψ
αβγ Jαβγ[W ] +ϕ J[W ] +LLinearized

SG [Ψαβγ,ϕ] . (88)

The superfield Ψαβγ is a completely symmetric spinor and serves as the linearized prepotential
for 3d, N = 1 conformal supergravity and ϕ is the linearized compensator. The superfields
Jαβγ[W ] and J[W ] define the supercurrent multiplet of the theory L0[W ] and they are called
the supercurrent and supertrace, respectively.

The supergravity superfields Ψαβγ, ϕ enjoy the following gauge transformations

δΨαβγ ∼ D(α ξβγ) ,

δϕ ∼ ∂αβ ξαβ ,
(89)

8Famous examples of 4d supercurrent multiplets are the Ferrara-Zumino multiplet [82], the R-multiplet (see
section 7 of [81]) and their generalization the S-multiplet [83,84]. Also see [85] and related constructions in [86].
For 3d, which is relevant for our paper, the N = 2 supercurrents were discussed in [87] while the N = 1 case is
directly related to the 2d N = (1, 1) case of [52,53].
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where ξαβ is an arbitrary, symmetric, superfield parameter for the above linearized superdif-
feomorphism.9

The gauge invariance of (88) requires the following superspace conservation equation of
the supercurrent multiplet — modulo equations of motion —

DαJαβγ(x ,θ ) = 2i ∂βγ J(x ,θ ) . (90)

This is the supersymmetric extension of the stress tensor conservation equation.

Improvement terms It is important to emphasize that the above conservation equation does
not uniquely define the supercurrent and supertrace superfields. In fact there is an infinite
family of them. This is understood by the so-called improvement terms. These are the de-
formations that identically satisfy (90). It is straightforward to check that the supercurrent
multiplet (J̃αβγ, J̃) defined as follows

J̃αβγ = Jαβγ +D(α∂βγ)Λ ,

J̃ = J − 4i D2Λ ,
(91)

where Λ is an arbitrary superfield also satisfies conservation equation (90). These are the
supersymmetric extension of (60).

Components of supercurrent multiplet The θ -expansions for the superfields Jαβγ(x ,θ )
and J(x ,θ ) are the following

Jαβγ(x ,θ ) = sαβγ(x) + θ
ρ

�

tραβγ(x)−
i
4

Cρ(α ∂βγ) j(x)

�

+ θ2

�

2i
3!
∂(αβ sγ)(x)−

i
3!
∂(α

ρsβγ)ρ(x)

�

,

J(x ,θ ) = j(x) + θα sα(x)−
1
3
θ2Θ(x) .

(92)

Here the component fields sαβγ(x) and tαβγδ(x) are completely symmetric on their spinorial
indices. Moreover, (90) implies that the following fields

Tαβγδ(x) := tαβγδ(x)−
1
3

Cγ(αCβ)δΘ(x) , (93a)

Sαβγ(x) := sαβγ(x)− Cγ(α sβ)(x) , (93b)

satisfy the conservation equations

∂ αβ Sαβγ(x) = 0 , ∂ ρα Tραβγ(x) = 0 . (94)

The field Tαβγδ(x) corresponds to the stress tensor and its spinor indices have the follow-
ing symmetry properties: Tαβγδ(x) = Tβαγδ(x) = Tγδαβ(x). Using (A.28), the conversion
between spacetime indices and spinorial indices is:

Tab := −
1
4
(γa)

αβ(γb)
γδTαβγδ , Tαβγδ = Tγδαβ = − (γa)αβ(γ

b)γδ Tab . (95)

9The superfield Ψαβγ is the linearized super-vielbein, hence∇α = Ψαβγ ∂ βγ+· · · This determines the engineering
dimensions [Ψαβγ] = −1/2 and via (88) [Jαβγ] = 5/2. The conservation equation (90) fixes [J] = 2.
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Note that tαβγδ(x) is the completely symmetric part of the Tαβγδ(x) and it appears only in
the supercurrent superfield Jαβγ, while Θ(x) is the trace part of Tab and it appears only in the
supertrace superfield J .

tαβγδ(x) =
1
4!

T(αβγδ)(x) =
1
4!

D(α Jβγδ)(x ,θ )| ,

Θ(x) = Ta
a =

1
2

Tαβ
αβ = 3 D2 J(x ,θ )| .

(96)

One can also check that the traceless part bTab of the stress tensor only depends on tαβγδ(x),

bTab = Tab −
1
3
ηabΘ = −

1
4
(γa)

αβ(γb)
γδ tαβγδ(x) , (97)

and using (A.15) the square of the traceless part becomes

bT ab
bTab = T abTab −

1
3
Θ2 =

1
4

tαβγδ tαβγδ . (98)

The operator Sαβγ(x) = Sαγβ(x) is the supersymmetric partner of Tαβγδ(x) and it corresponds
to Noether’s conserved current associated with supersymmetry. Its completely symmetric part
sαβγ(x) is embedded in the supercurrent, while its trace sα(x) is embedded in the supertrace.

sαβγ(x) =
1
3!

S(αβγ)(x) = Jαβγ(x ,θ )| ,

sα(x) =
1
3

Sαβ
β(x) = Dα J(x ,θ )| .

(99)

3.2 Supercurrent and supertrace of 3d Maxwell-Goldstone multiplet

The explicit calculation of the supercurrent multiplet (Jαβγ, J) for a particular theory can be
carried out in various ways. The typical method, as suggested by (88), is to couple the theory
to supergravity and then take the linearized limit in order to read off the supercurrent Jαβγ and
the supertrace J . This approach will be followed in section 4. A different methodology is to use
the superspace conservation equation (90) as a consistency condition which can be solved in
order to determine the supercurrent multiplet. This latter approach will be used in this section
for MG theory (84). The calculation has two parts. First note that for f (T ) = 1 (κ →∞),
equation (84) reduces to the free super-Maxwell theory (80). Therefore we start with a warm-
up calculation of the supercurrent multiplet corresponding to the free vector supermultiplet
in order to build our intuition about the structure of the supercurrent and supertrace. In the
second part, we generalize these results to arbitrary f (T ) (finite κ ̸= 0).

3.2.1 Warm up: Supercurrent multiplet of super-Maxwell

For the free super-Maxwell theory, the supercurrent multiplet {Jαβγ, J} must be quadratic in
Wα.10 Moreover, due to the engineering dimensions [Jαβγ] = 5/2, [J] = 2, and [Wα] = 1, the
supercurrent will include exactly one spinorial derivative and the supertrace will have zero
spinorial derivatives. Finally, the index structure of Jαβγ and J suggests the following ansatz11

Jαβγ =W(αDβWγ) , J=W 2 . (100)

10The use of bare prepotential superfield Γα (82) is not allowed due to the invariance of the cubic vertex (88)
under the gauge transformation (83).

11The corresponding supercurrent of the 4d vector multiplet was derived in [82], see also [88]. Extensions to
higher spin gauge theories are found in [89,90].

21

https://scipost.org
https://scipost.org/SciPostPhys.16.1.038


SciPost Phys. 16, 038 (2024)

We will now show that (100) indeed satisfies the conservation equation (90) up to the equa-
tions of motion:

DβDαWβ = 0
(81)
⇒ ∂αβ Wβ = 0= D2 Wα . (101)

Direct computation yields

Dα Jαβγ = (D
αWα) (D(βWγ)) + (D

αWβ) (D(γWα)) + (D
αWγ) (D(αWβ))

−WαDαD(βWγ) −Wβ DαD(γWα) −WγDαD(αWβ) .
(102)

Note that (1.) by using (81), the first term vanishes; (2.) terms two and three cancel; (3.)
terms five and six vanish independently on-shell by (101); (4.) the fourth term can be simpli-
fied in the following way via (A.21) and (101)

Dα Jαβγ =WαDαD(βWγ) = i Wα ∂α(βWγ) = i ∂α(βWαWγ) = 2i ∂βγW
2 . (103)

This is the conservation equation (90).

3.2.2 Supercurrent multiplet of Maxwell-Goldstone

For the Maxwell-Goldstone theory

SMG =

∫

d3 x d2θW 2 f (T ) , (104)

f (T ) (85) is no longer a constant and therefore its supercurrent multiplet {Jαβγ, J } will
generalize the super-Maxwell theory results (100) with additional terms depending on the
derivatives of f (T ), such that in the f (T )→ 1 limit we restore the results of section 3.2.1.

Jαβγ ∼ f (T )Jαβγ + f ′(T )O(1)
αβγ
+ f ′′(T )O(2)

αβγ
+ · · · ,

J ∼ f (T )J+ f ′(T )O(1) + f ′′(T )O(2) + · · ·
(105)

This is also reflected in the fact that the equations of motion of MG theory include factors of
f (T ) and its derivatives.

EOM Indeed, by varying the action (104) with respect to the prepotential superfield Γβ , it is
straightforward to find the following equation of motion

Dρ Dα
�

Wρ g
�

= 0 , (106)

where the factor g is defined as

g := f (T ) +
2
κ2

D2
�

W 2 f ′(T )
�

= f (T ) + T f ′(T ) +
2
κ2

W 2D2 f ′(T ) +
2
κ2
(DδW 2)(Dδ f ′(T )) .

(107)

Equivalently, using (A.21) the equation of motion can also take the form

D2
¦

Wα g
©

= −i ∂α
β
¦

Wβ g
©

. (108)

As expected, (106) reduces to (101) when we take f → 1.
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Supercurrents The results of section 3.2.1 in combination with the MG equations of motion
suggest the following ansatz for the MG supercurrent

J (1)
αβγ
=W(α
�

DβWγ)

�

g =W(αDβ
�

Wγ) g
�

, (109)

where the second equal sign comes from W(βWγ) = 0. After some algebra using properties of
supersymmetric covariant derivatives and the spinorial superfield Wα, we find that

DαJ (1)
αβγ
= 2i ∂βγ
�

W 2 g
�

+ 4i W 2 (∂βγ g)− (D(βW 2)(Dγ)g) . (110)

It is evident that this equation is not consistent with the expected conservation equation. In
particular, the last two terms measure the failure of J (1)

αβγ
to satisfy (90). In order to eliminate

these two terms, we consider additional contributions to the supercurrent as illustrated in
(105). In particular, we examine the following term

J (2)
αβγ
=W 2 ∂(αβDγ)
�

W 2 h
�

=W 2
�

∂(αβDγ)W
2
�

h . (111)

The structure of this term is motivated by the fact that the last two terms of (110) depend
only on W 2 and its derivatives. One factor of W 2 is written explicitly and the second factor
resides inside derivatives of g. Moreover, notice that J (2)

αβγ
has two equivalent representations

due to the nilpotency condition of Wα (i.e. WαWβWγ ≡ 0). The factor h will be determined by
demanding the cancellation of the last two terms in (110).

Direct calculation using (A.25) and (A.26) gives

DαJ (2)
αβγ
= 2i (D(βW 2)Dγ)D2

�

W 2h
�

+ 8 W 2 ∂βγD2
�

W 2h
�

+ 6 (DαW 2)∂βγDα
�

W 2h
�

. (112)

The last two terms are not independent; in fact they are related by the following identity

W 2 ∂βγD
2
�

W 2h
�

+ (DαW 2)∂βγDα
�

W 2h
�

= − (D2W 2)∂βγ
�

W 2h
�

, (113)

which follows from the nilpotency of Wα (see proof in A.2). Observe that if we choose

h= f ′(T ) ⇒
2
κ2

D2(W 2h) = g − f (T ) , (114)

then the first two terms in (112) have a similar structure as the anomalous terms in (110).
With these substitutions, we find

2
κ2

DαJ (2)
αβγ
= −6∂βγ
�

T W 2 f ′(T )
�

+ 4 W 2 ∂βγ f (T ) + 2 W 2 ∂βγ g

+ 2i (D(βW 2)
�

Dγ)g
�

− 2i (D(βW 2)
�

Dγ) f (T )
�

.
(115)

Surprisingly, most of these terms are associated with each other via the following identity

(D(βW 2)(Dγ)g) = −2i W 2 ∂βγg + 4i W 2 ∂βγ f (T )− 2
�

D(β f (T )
��

Dγ)W
2
�

. (116)

We leave this derivation in Appendix A.2. Using (116), (115) can be rewritten as follows:

2
κ2

DαJ (2)
αβγ
= −6∂βγ
�

T W 2 f ′(T )
�

+ 4 W 2 ∂βγ g + i (D(βW 2)
�

Dγ)g
�

. (117)

Finally, we combine (110) and (117) and we find the following conservation equation

Dα
�

J (1)
αβγ
− i

2
κ2

J (2)
αβγ

�

= 2i ∂βγ
�

W 2 f (T ) + 4 W 2 T f ′(T )
�

. (118)

From this we can immediately identify the supercurrent multiplet of the Maxwell-Goldstone
multiplet,

Jαβγ =W(αDβ
�

Wγ) g
�

− i
2
κ2

W 2 ∂(αβDγ)
�

W 2 f ′(T )
�

, (119a)

J =W 2 f (T ) + 4 W 2 T f ′(T ) . (119b)
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3.3 Flow operator as supercurrent-squared operator

The supercurrent multiplet (119a, 119b) calculated above allows us to answer the question
we asked at the beginning of section 3. In particular, if we view the MG theory as the result of
a flow triggered by the operator Oκ2 of (87), then can we give a T2-like interpretation to this
flow? In other words, can Oκ2 be expressed as a linear combination of “supercurrent-squared”
terms?

Supercurrent-squared scalars To answer this question, we search for superspace opera-
tors defined in terms of the supercurrent and supertrace and their derivatives such that their
bosonic truncations will produce T2 terms. In general, there are three types of T2 terms: (1.)
the square of the traceless part of the stress tensor bT ab

bTab; (2.) the square of the trace Θ2;
(3.) the mixed term formed from the product of the trace with the “strength” of the traceless

part Θ
Ç

bT ab
bTab. Recall that the traceless part is a component of the supercurrent, whereas the

trace resides in supertrace (96). Therefore, a natural proposal for the superspace operators in
question is the following:

OT2 = JαβγJαβγ ,

OΘ2 = J D2 J ,

OΘR = J
q

D(αJβγδ)D(αJβγδ) .

(120)

These operators are certainly not unique, however they are computationally convenient.
They partition the three types of contributions mentioned above based on the fact that the
traceless and trace parts of the energy-momentum tensor reside in different superfields. By
integrating these operators over the fermionic directions and using (92), we find their corre-
sponding spacetime components to be

∫

d2θ OT2 = − tραβγ(x)tραβγ(x) + fermions,

∫

d2θ OΘ2 =
1
9
Θ(x)2 + fermions,

∫

d2θ OΘR =
4!
3
Θ(x)
q

tαβγδ(x)tαβγδ(x) + fermions.

(121)

Flow operator Now we evaluate these operators for MG theory. In (120) we plug in (119a)
and (119b) to find

OT2= −4!2κ2 W 2 T
�

f (T ) + T f ′(T )
�2

, (122a)

OΘ2=
κ2

2
W 2 T
�

f (T ) + 4 T f ′(T )
�2

, (122b)

OΘR= 4!2
p

6κ2 T W 2
�

f (T ) + 4 T f ′(T )
��

f (T ) + T f ′(T )
�

, (122c)

where we have used the nilpotency condition W 3 ≡ 0 repeatedly. It is straightforward to check
that f (T ) defined as (85) satisfies the following constraint

f ′(T ) =
1
2

f (T )2 + T f (T ) f ′(T ) . (123)

With that in mind, we can show that the flow operator can be written as

Oκ2 = −
1
κ2

W 2 T f ′(T )

=
1
κ4

� 1
108

OT2 +
1
9
OΘ2 −

1

432
p

6
OΘR

�

.
(124)
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This concludes the proof that the supersymmetric Maxwell-Goldstone theory satisfies a
supercurrent-square like flow given by

κ4 ∂Lκ2

∂ κ2
=

1
108

OT2 +
1
9
OΘ2 −

1

432
p

6
OΘR . (125)

It is important to emphasize that this superspace flow equation holds off-shell. In other words,
equations (122) and (124) do not require the use of equations of motion.

Bosonic truncation Oκ2 is a superspace operator that drives the flow in the space of mani-
festly N = 1 supersymmetric theories. We can use it to define the operator that controls the
flow of the bosonic truncation of the theory12

OMG
κ2 := κ4 9

2

�∫

d2θ Oκ2

�

fermions→0

. (126)

Using (121) and converting the pairs of spinorial indices to spacetime indices (98) we find

OMG
κ2 = −

1
6

T abTab +
1
9
Θ2 −

1
9
Θ

√

√3
8
bT ab
bTab , (127)

which matches the operator Oκ2 defined in (20).

3.4 Flow interpretations for tensor-Goldstone

The 3d, N = 1 vector multiplet has a variant description in terms of a dual superfield Uα. This
is demonstrated in [30]where this dual supermultiplet was used to provide an equivalent Gold-
stone multiplet corresponding to a nonlinear realization of the second broken supersymmetry.
Therefore, the question of interpreting the nonlinear theory as the flow of a T2-like operator
could also be asked for this dual tensor-Goldstone description. In this section, we repeat the
previous analysis in order to: (1.) find the appropriate supercurrent multiplet {Jαβγ, J } cor-
responding to the TG; (2.) use it to define the deformations of the theory that include T2-like
terms; (3.) show that the TG theory defines a flow operator Oκ̃2 which can be expressed as a
linear combination of the above deformations; (4.) extract the bosonic truncation of this flow
operator.

Preliminaries We start with a brief reminder of the 3d variant description. The superspace
action takes the following form.

STM ∼ −
∫

d3 x d2θ U2 , (128)

where the superfield Uα is constrained by the following Bianchi Identity:

DαDβUα = 0 ⇒ D2 Uα = −i ∂α
β Uβ . (129)

This can be solved by expressing Uα in terms of an unconstrained scalar superfield G.

Uα = Dα G . (130)

In [30] we promoted this tensor multiplet to a tensor-Goldstone multiplet, consistent with the
spontaneous breaking of N = 2→N = 1, described by the following action:

STG = −
∫

d3 x d2θ U2 h(T̃ ) , (131)

12The prefactor κ4 provides the correct engineering dimensions for a T 2 deformation, while the numerical factor
is a normalization choice.
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where

h(x) = 1−
x

1+ x +
p

1+ 2x
= f (−x) , T̃ :=

2
κ̃2

D2U2 . (132)

The dimensionful parameter κ̃ has the same engineering dimension as κ ([κ̃] = 3/2) and
describes the scale at which we break the second supersymmetry. Similar to the MG, the κ̃
dependence of the TG Lagrangian defines a curve which can be intepreted as a flow. This flow
is triggered by the following operator

Oκ̃2 =
∂LT G

∂ κ̃2
=

1
κ̃2

U2 T̃ h′(T̃ ) . (133)

Varying the action (131) with respect to the superfield G yields the following equation of
motion and its variants:

Dρ
¦

Uρ g̃
©

= 0 ⇔ Dα
¦

Uβ g̃
©

= Dβ
¦

Uα g̃
©

⇒ D2
�

Uα g̃
�

= i ∂ αβ
�

Uβ g̃
�

,
(134)

where the factor g̃ is defined as

g̃ := h(T̃ ) +
2
κ̃2

D2
�

U2 h′(T̃ )
�

. (135)

Moreover, using properties of superspace covariant derivatives and Uα nilpotency condition
(U3 ≡ 0), we find the following identity:

(D(βU2)(Dγ) g̃) = −2i U2 ∂βγ g̃ + 4i U2 ∂βγh(T̃ )− 2
�

D(βh(T̃ )
��

Dγ)U
2
�

. (136)

This is an analog of (116) for the TG.

Comparison between MG and TG Notice that the Lagrangians of the MG and TG have
similar structures (Wα 7→ Uα, T 7→ T̃ , f (T ) 7→ h(T̃ )). However, we would like to emphasize
the following differences (see table 1).

In the free theory limit κ, κ̃→∞ (g, g̃ → 1), the Bianchi identity of one becomes the EoM
of the other. This is another way to demonstrate the duality between these two theories. But
for the interacting theories (g, g̃ ̸= 1), there is a mismatch. The conservation of the MG super-
current multiplet relies on the Bianchi identity of Wα and EoM (left column). However, these
identities are modified in the TG case (right column). In order to compute the supercurrent-
squared operators {OT2 ,OΘ2 ,OΘR} for the TG multiplet using similar arguments as those in
section 3.3, we use the following property

U2 g̃
�

DαUβ
�

= U2 Dα
�

Uβ g̃
�

= U2 Dβ
�

Uα g̃
�

= U2 g̃
�

DβUα
�

. (137)

Namely, in the presence of an additional U2 factor, g̃ can move in and out of the spinorial
derivative in the EoM (134), due to the nilpotency property of Uα.

Table 1: Comparisons of MG and TG Bianchi identities and EoMs.

MG TG

Bianchi: DαWβ = DβWα EoM: Dα
�

Uβ g̃
�

= Dβ
�

Uα g̃
�

EoM: DαDβ
�

Wα g
�

= 0 Bianchi: DαDβUα = 0
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Supercurrents Motivated by (109) and (111), we consider the following ansatz13

J (1)
αβγ
= U(α g̃
�

DβUγ)
� U(βUγ)=0

= U(αDβ
�

Uγ) g̃
�

, (138)

J (2)
αβγ
= U2 ∂(αβDγ)
�

U2 h′(T̃ )
� U3≡0
= U2
�

∂(αβDγ)U
2
�

h′(T̃ ) . (139)

Using the various properties of Uα (129, 134, 136, A.31, A.32) and the supersymmetric covari-
ant derivative algebra (A.25, A.26), we find the following superspace conservation equation

Dα
�

J (1)
αβγ
+ i

2
κ̃2
J (2)
αβγ

�

= 2i ∂βγ

�

U2 h(T̃ )− 2 T̃ U2h′(T̃ )

�

. (140)

From this, we identify the supercurrent multiplet for tensor-Goldstone theory as follows:

Jαβγ = U(α g̃
�

DβUγ)
�

+ i
2
κ̃2

U2 ∂(αβDγ)
�

U2 h′(T̃ )
�

, (141a)

J = U2
�

h(T̃ )− 2 T̃ h′(T̃ )
�

. (141b)

Supercurrent-squared operator Using the above supercurrent and supertrace, we evaluate
the supercurrent-squared operators (120)

OT2≈ −4!2 κ̃2 U2 T̃
�

h(T̃ ) + T̃ h′(T̃ )
�2

, (142a)

OΘ2=
κ̃2

2
T̃ U2
�

h(T̃ )− 2 T̃ h′(T̃ )
�2

, (142b)

OΘR≈ 4!2
p

6 κ̃2 U2 T̃
�

h(T̃ )− 2 T̃ h′(T̃ )
��

h(T̃ ) + T̃ h′(T̃ )
�

. (142c)

The ‘≈’ symbol signifies that the equality holds only on-shell. This is because equation (137)
was used in the derivation of (142). Again, this is a consequence of the duality between the
MG and TG descriptions. What was a Bianchi identity for Wα now becomes an equation of
motion for Uα. Off-shell, the expressions for OT2 and OΘR acquire corrections proportional
to H := Dγ Uγ (for details see section A.3). It is straightforward to see that the equation of
motion of Uα [ Dα(Uαg) = 0 ] is equivalent to U2 g̃ H = 0 ⇒ H = 0. As a consequence all
these corrections vanish on-shell and also the auxiliary component H :=H| vanishes. This is
in agreement with the use of the on-shell equation H = 0 in section 2.2. Similar conditions
were used in the analysis of supersymmetric flows in other dimensions; see, for example, [29].

Note that h(T̃ ) defined in (132) satisfies the following relation

−h′(T̃ ) =
1
2

h2(T̃ ) + T̃ h(T̃ )h′(T̃ ) . (143)

Therefore, the superspace flow operator Oκ̃2 defined in (133) can be written on-shell as

Oκ̃2 ≈
1
κ̃4

� 1
108

OT2 +
1
9
OΘ2 −

1

432
p

6
OΘR

�

. (144)

This expression confirms that the TG action (131) which describes the partial N = 2→N = 1
supersymmetry breaking can be understood as the result of a supercurrent-squared flow. We
also stress that the operator above coincides precisely with the second line of (124) up to
exchanging κ̃2 with κ2. However, unlike the MG case, this flow is an on-shell one.

13One can also motivate this ansatz by starting with (88) and performing the duality procedure described in [30].
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Bosonic truncation As mentioned previously, the tensor-Goldstone multiplet is a variant
description, and hence its bosonic truncation will be similar in form to the truncation of the
Maxwell-Goldstone multiplet. In other words, the bosonic sectors of both Lagrangians take
the form of 3d Born-Infeld. As a result, we expect the operators that trigger the corresponding
flows to take identical forms. Indeed, if we define the spacetime flow operator corresponding
to the TG analogously to (126), we find

OT G
κ2 := κ̃4 9

2

�∫

d2θ Oκ̃2

�

fermions→0

= −
1
6

T abTab +
1
9
Θ2 −

1
9
Θ

√

√3
8
bT ab
bTab .

(145)

As a function of the energy-momentum tensor, OT G
κ2 is identical to OMG

κ2 . However, we remind
the reader that the evaluation of Tab differs for the two theories.

4 Derivation of supercurrents from N = 1 supergravity

In this section, we repeat the derivation of the supercurrents for the models analysed in the
previous section by using the superspace supergravity results of [91] and [92]. We stress that
the notations in this section are the ones of [91] and differ from the ones employed in the
previous section. For the reader’s convenience, the conventions used in this section together
with a map between the notation in this and the previous section is given in Appendix B. The
analysis in this section is a manifestly supersymmetric extension of the definition of the Hilbert
stress-energy tensor for a matter system. The reader can find standard background material
on the subject in [81, 93]. Before describing the calculation of the supercurrents for vector
and scalar models, we introduce in the next subsection the necessary building blocks.

4.1 Building blocks from superspace supergravity

We are interested in coupling matter systems to 3d N = 1 Poincaré supergravity. The latter can
be described as 3d N = 1 conformal supergravity coupled to a conformal compensator scalar
multiplet. In superspace, the conformal supergravity multiplet can efficiently be described by
a curved superspace geometry with the torsion and curvature satisfying an appropriate set of
constraints. In this paper, we will employ the so-called SO(1) geometry for conformal super-
gravity – see [81, 91] and also [92, 94, 95] for related approaches. The superspace geometry
is described in terms of covariant derivatives taking the following form

DA = (Da,Dα) = EA−ΩA , (146)

where EA = EA
M∂ /∂ zM defines the inverse vielbein, and14

ΩA =
1
2
ΩA

bc Mbc = −ΩA
bMb =

1
2
ΩA
βγMβγ , (147)

is the Lorentz connection. The Lorentz generators act on the covariant derivatives as follows:

[Mαβ ,Dγ] = ϵγ(αDβ) , [Mab,Dc] = 2ηc[aDb] . (148)

14The Lorentz generators with two vector indices (Mab = −Mba), with one vector index (Ma) and with two spinor
indices (Mαβ = Mβα) are related to each other by the rules: Ma =

1
2ϵabc M bc and Mαβ = (γa)αβMa. We will also

use Dαβ = (γa)αβDa for the vector covariant derivative.
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The torsions and curvatures associated with the geometry arising from (anti-)commutation
relations of the covariant derivatives satisfy an appropriate set of conventional constraints as
described in [91]. The resulting algebra is:

{Dα,Dβ}= 2iDαβ − 4iSMαβ , (149a)
�

Dαβ ,Dγ
�

= −2ϵγ(αSDβ) + 2ϵγ(αCβ)δρMδρ +
2
3
(DγS)Mαβ −

8
3
(D(αS)Mβ)γ , (149b)

[Da,Db] = −
i
2
ϵabc(γ

c)αβ
§

CαβγDγ+
4
3
(DαS)Dβ − (D(αCβγδ))Mγδ +

2
3
(D2S − 6iS2)Mαβ

ª

,

(149c)

where the torsion superfields S and Cαβγ satisfy the Bianchi identity

DγCαβγ = −
4i
3
DαβS . (150)

The gauge group of conformal supergravity consists of (i) superspace general coordinate and
local Lorentz transformations; (ii) super-Weyl transformations. Covariant general coordinate
transformations and local structure group transformations act on the covariant derivatives and
on a generic tensor superfield U belonging to some representation of the Lorentz groups as

δKDA = [K,DA] , K = ξB(z)DB +
1
2

K bc(z)Mbc , δKU =KU , (151)

with the gauge parameters ξB and K bc obeying natural reality conditions but otherwise arbi-
trary. Super-Weyl transformations, which are related to local dilatation and special conformal
transformations, arise as an invariance of the superspace geometry’s conventional constraints.
In particular, the algebra (149) is invariant under the following super-Weyl transformations of
the covariant derivatives and torsion superfields

δσDα =
1
2
σDα + (Dβσ)Mαβ , (152a)

δσDa = σDa +
i
2
(γa)

αβ(Dασ)Dβ + ϵabc(Dbσ)M c , (152b)

δσS = σS −
i
4
D2σ , δσCαβγ =

3
2
σCαβγ −

1
2
D(αβDγ)σ , (152c)

with the parameter σ being a real but otherwise unconstrained scalar superfield.
Among tensor superfields U , a special role is played by primary ones. A primary superfield

of weight w transforms homogenously under super-Weyl transformations:

δσU = wσU . (153)

As mentioned before, Poincaré supergravity can be defined as conformal supergravity coupled
to a Lorentz scalar compensating multiplet. For 3d N = 1 this can be chosen to be a nowhere
vanishing real primary scalar superfield ϕ such that

δσϕ =
1
2
σϕ , ϕ ̸= 0 . (154)

Another key ingredient in the formulation of general 3d N = 1 supergravity-matter systems
is the full superspace action principle. This is given by15

S = i

∫

d3|2z EL , E−1 = Ber(EA
M ) . (155)

15In the notation of [91] that we employ in this section, the superspace measure d3|2z := d3 xd2θ is purely
imaginary. For this reason, we use a factor of i in (155).
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The superspace Lagrangian L is chosen to be a primary, weight 2 real scalar superfield,
δσL = 2σL. Thanks to the fact that δσE = −2σE, the action in eq. (155) is invariant un-
der super-Weyl transformations. As we will see in the examples of the coming subsections, in
general, the Lagrangian L will be constructed out of matter fields, their covariant derivatives,
and, for non-conformal models, the compensator ϕ.

As discussed in [81,92], the constraints associated with the conformal supergravity geome-
try of (149) and (150) can be solved in terms of a single conformal real prepotential superfield
Ψαβγ = Ψ(αβγ). For the scope of our paper, it suffices to know the covariant derivatives and
torsion superfields at first order in Ψ about a flat Minkowski superspace geometry. Such results
can be readily read off from the analysis given in Appendix B of [92]. One has

Dα = Dα + iΨαγδ∂
γδ −

1
4
(D2Ψαβγ)M

βγ −
i
2
(∂(α

δΨβγ)δ)M
βγ −

2i
3
(∂βγΨ

βγδ)Mδα +O(Ψ2) ,

(156a)

Dαβ = ∂αβ + (D(αΨβγδ))∂ γδ +
1
2
(DδΨδρ(α)∂β)

ρ

+
�

−
i
4

D2Ψαβγ +
1
2
∂(α

δΨβγ)δ −
1
3
∂ ρδΨρδ(αϵβ)γ

�

Dγ

+
�

−
5
4
∂(α

ρDβΨγδρ) +
1
4
∂(αβDτΨγδ)τ +

1
4
∂ ρτ
�

D(τΨγρα)ϵβδ + D(τΨγρβ)ϵαδ
�

−
1

12
ϵγ(αϵβ)δ∂

ρεDτΨρτε +
1
8

�

∂(α
ρϵβ)(γDτΨδ)ρτ − ∂(γρϵδ)(αDτΨβ)ρτ

��

Mγδ

+O(Ψ2) , (156b)

S = −1
8

D(α∂ βγ)Ψαβγ +O(Ψ2) , (156c)

Cαβγ =
1
4
∂(α

δD2Ψβγ)δ +
i
2
∂(α

δ∂β
ρΨγ)δρ +O(Ψ2) . (156d)

Here DA = (∂a, Dα) denote the flat Minkowski superspace covariant derivatives satisfying the
algebra

{Dα, Dβ}= 2i∂αβ , [∂a, Dβ] = [∂a,∂b] = 0 . (157)

Note that the value of the compensator in the flat background is chosen to be a constant; in
particular, we will choose ϕ = 1. Another useful result, which is implied by (156), is that the
Berezinian around a flat background satisfies

E = 1+O(Ψ2) . (158)

As discussed in [92], to obtain the previous representation, part of the supergravity gauge
group, including super-Weyl transformations, has to be used and it is fixed. The residual gauge
freedom of DA, S, and Cαβγ in (156) is described by transformations of the form

δDA := [K,DA] +δσDA , (159)

where the parameters ξα, K bc and σ of (151) and (152) should be functions of ξa and its
covariant derivatives:

ξα = −
i
6

Dβξβα +O(Ψ) , (160a)

Kαβ = 2D(αξβ) +O(Ψ) , (160b)

σ = Dαξ
α +O(Ψ) = 1

3
∂ aξa +O(Ψ) . (160c)
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The prepotential superfield then transforms as

δΨαβγ =
1
2

D(αξβγ) +O(Ψ) , (161)

while the compensator ϕ satisfies

δϕ = −
1

12
∂ αβξαβ +O(Ψ) . (162)

Consider now a supergravity-matter system described by the full superspace action
S[U ,DA,ϕ], and depending in general upon matter multiplets (that we denote by U), the
conformal geometry, and the conformal compensator ϕ. Assuming the equations of motion
for the matter superfields U are satisfied, δS/δU = 0, the variation of the action induced by an
infinitesimal deformation of the gravitational superfields Ψαβγ and the compensator ϕ gives

δS[U ,DA,ϕ] = i

∫

d3|2z
�

δΨαβγJαβγ +δϕJ
�

, (163)

where we are taking a variation around a flat background, and hence we are dropping the E
factor in the final expression.

The superfields Jαβγ and J define the supercurrent multiplet and, as we will see in examples
in the coming subsections, can be computed explicitly by using the building blocks described
above. The variation (163) must vanish if δΨαβγ and δϕ are the gauge transformations (161)
and (162). Since the gauge parameter ξβγ = (γa)βγξa in (161) and (162) is an arbitrary
superfield, one concludes that the following supercurrent conservation equation must hold

DγJαβγ =
i
6
∂αβ J , (164)

provided the equations of motion for the matter multiplets U derived from the action
S[U ,DA,ϕ] are satisfied. Note that if the model described by S is superconformal, then the
dependence upon the compensator ϕ should disappear, S = S[U ,DA]. In this case, the trace
multiplet superfield vanishes, J = 0, and (164) simplifies to DγJαβγ = 0.

4.2 Calculation of supercurrents for vector models

In this subsection we are going to use the supergravity building block of the previous subsection
to compute the supercurrent multiplet for vector multiplet models taking the following form

S = −
1
2

∫

d3|2z W 2 f (T ) , W 2 =WαWα , T :=
1
8

D2W 2 , D2 = DαDα , (165)

for any function f (T ). Here Wα is the field strength of an Abelian vector multiplet. In our nota-
tions, an Abelian vector multiplet can be described by a closed super 2-form F (2) = 1

2 EB∧EAFAB,
dF (2) = 0, with components

Fαβ = 0 , (166a)

Faβ = −i(γa)βγW
γ = −Fβa , (166b)

Fab =
1
2
ϵabc(γ

c)αβDαWβ = −Fba , (166c)

where the field strength Wα is real and satisfies

DαWα = 0 , (Wα)
∗ =Wα . (167)
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We can write the θ -components of Wα as

Wα = λα + θ
β fαβ +

i
2
θ2∂αβλ

β , (168a)

λα :=Wα|θ=0 , fαβ := DβWα|θ=0 =
1
2
ϵabc(γa)αβ fbc , ∂[a fbc] = 0 , (168b)

where note that fab = Fab|θ=0 with Fab being the top component of the closed superform F (2)

in eq. (166). The free supersymmetric Maxwell theory is described by the following action

S = −
1
2

∫

d3|2z WαWα =

∫

d3 x
�

−
1
4

f ab fab −
i
2
λα∂αβλ

β

�

, (169)

which corresponds to (165) with f (T ) = 1. Note also that the definition of the superfield T is
such that its lowest component coincides with the free Maxwell Lagrangian:

T |θ=0 = −
1
4

f ab fab −
i
2
λα∂αβλ

β . (170)

The first step to compute the supercurrent for the previous models is to couple them to
Poincaré supergravity. The covariant vector multiplet is defined by a weight-3/2 primary real
spinor superfield strength Wα satisfying

DαWα = 0 , δσWα =
3
2
σWα , (171)

which represents the curved extension of Wα. To lift the model (165) to supergravity we would
also like to have a primary version of T and f (T ). A straightforward calculation shows that
the following superfield is primary and weight zero:

T = 1
8

�

ϕ−3(D2ϕ−5W2)− 2iϕ−8SW2
�

, δσT = 0 , (172)

where D2 := DαDα and W2 :=WαWα. This expression for T can be obtained by using the
fact that, given a weight-1/2 scalar primary superfield, as for example ϕ, the combination
(D2 − 2iS)ϕ transforms homogenously with weight 3/2 under super-Weyl transformations,
see [92]. Then any function f (T ) is also a weight-zero primary superfield which reduces to
f (T ) when taking the flat superspace limit, DA = DA and ϕ = 1. Since δσW2 = 3σW2, it is
clear that the following action is an appropriate curved extension of (165)

S = −
1
2

∫

d3|2z Eϕ−2W2 f (T ) . (173)

By noticing that the nilpotency condition W2Wα = 0 holds, it follows that the previous action
can be written in the following simplified form

S = −
1
2

∫

d3|2z Eϕ−2W2 f (T) , T :=
1
8
ϕ−8D2W2 . (174)

This is our starting point to compute the supercurrent for (165).
It is simple to compute the supertrace, J . It suffices to take the variation of the compensator

ϕ about the flat Minkowski background (DA = DA, ϕ = 1). We will denote this variation as
δϕ where the compensator should be thought as ϕ = 1+δϕ. By using the following result

δϕ f (T) = −8δϕ T f ′(T ) , (175)
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one obtains

δϕS = −
1
2

∫

d3|2zδϕW 2
¦

− 2 f (T )− 8T f ′(T )
©

. (176)

By comparing with the compensator variation in (163), we obtain

J = −iW 2
�

f (T ) + 4T f ′(T )
�

. (177)

The variation with respect to Ψαβγ is slightly more involved. First of all, we need to obtain
the expression of the covariant field strength Wα in terms of Wα and the conformal prepoten-
tial. A natural candidate is given by the following ansatz

Wα =Wα + a(DβΨαβγ)W
γ + bΨαβγDβW γ +O(Ψ2) . (178)

By imposing DαWα = 0 up to linear order in Ψ with Dα given by (156a), and by using
DαWα = 0, one can check that the constant parameters in (178) are uniquely fixed to be

a = −b = 1 =⇒ Wα =Wα + (D
βΨαβγ)W

γ −ΨαβγDβW γ +O(Ψ2) . (179)

This, together with (156a), implies

W2 =W 2 − 2ΨαβγWαDβWγ +O(Ψ2) , (180a)

T= ϕ−8
�

T −
1
4

D2
�

ΨαβγWαDβWγ

�

−
i
8

Dα
�

Ψαβγ∂βγW
2
�

+
i
8
∂αβ
�

ΨαβγDγW
2
�

+O(Ψ2)
�

.

(180b)

At this point, by using the results above together with (158), it is straightforward to take the
variation of (174) with respect to Ψαβγ around DA = DA and ϕ = 1, which we denote as δΨ .
After some integration by parts, one obtains

δΨS =

∫

d3|2zδΨαβγ
�

i
�

f (T )+
1
8

D2
�

W 2 f ′(T )
�

�

W(αDβWγ)−
i
8

W 2 f ′(T )∂(αβDγ)W
2

�

. (181)

From this one can readily read off the expression for Jαβγ. Summarising, the supergravity
analysis leads to the following supercurrent multiplet for the model (165)

Jαβγ = −i g(T )W(αDβWγ) −
1
8

W 2 f ′(T )∂(αβDγ)W
2 , (182a)

J = −iW 2
�

f (T ) + 4T f ′(T )
�

, (182b)

with the superfield g(T ) defined by

g(T ) = f (T ) +
1
8

D2
�

W 2 f ′(T )
�

. (183)

Up to mapping notations according to Appendix B, and inserting factors of κ2 by field redefi-
nitions, the supercurrent coincides with the result of the previous section, eqs. (119).

4.3 Calculation of supercurrents for tensor/scalar multiplet models

We conclude this section by looking at the calculation of the supercurrent for models based on
tensor multiplets. In the notation of this section, we look at models described by the following
action principle

S = −
1
2

∫

d3|2z U2h(T̃ ) , (184)
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where the superfields Uα and T̃ satisfy

DαDβUα = 0 , (Uα)
∗ = Uα , U2 := UαUα , T̃ =

1
8

D2U2 . (185)

The solution of the constraint for the tensor multiplet is given in terms of a spinor derivative
of a real scalar superfield ρ: Uα = iDαρ. We will use this decomposition as the starting point
to couple the multiplet to supergravity. In fact, we promote the scalar superfield ρ to be a
primary of weight zero. This implies that the curved version of Uα, which we denote as Uα, is
a primary of weight-1/2. More specifically, we use

ρ , δσρ = 0 , Uα := iDαρ , δUα =
1
2
σUα . (186)

A locally supersymmetric and super-Weyl invariant version of the model (184) is described by
the action

S = −
1
2

∫

d3|2z Eϕ2 U2 h(T̃) , (187)

where U2 := UαUα and

T̃=
1
8
ϕ−4D2U2 . (188)

Note that T̃ is not a primary superfield, as it transforms inhomogeneously under super-Weyl
transformations. However, it is simple to show that, due to the nilpotency U2Uα = 0, it satisfies
U2δσT̃= 0 which suffices to make (187) super-Weyl invariant.

By following the same analysis of the previous subsection, it is now simple to obtain the
supercurrent for (184) by taking the variation of (187) with respect to the conformal prepo-
tential Ψαβγ and the conformal compensator ϕ. First of all, the Uα superfield is independent
of the compensator ϕ and it is simple to show that, around the flat Minkowski superspace
background (DA = DA, ϕ = 1) one has δϕT̃ = −4δϕ T̃ . Next, by using (156a), the fact that ρ
is a scalar superfield, and ∂ αβ = −iD(αDβ), one can immediately obtain the following results

Uα = i
�

Dα + iΨαγδ∂
γδ
�

ρ +O(Ψ2) , (189a)

δΨUα = δΨαβγDβUγ , (189b)

δΨU2 = 2δΨαβγUαDβUγ , (189c)

δΨ T̃=
i
8
δΨαβγ∂αβDγU

2 +
i
8

�

∂αβδΨ
αβγ
�

DγU
2 −

i
8

Dα
�

δΨαβγ∂βγU
2
�

+
1
4

D2
�

δΨαβγUαDβUγ
�

. (189d)

By using the equations above, together with δΨE = 0, it is straightforward to take an arbi-
trary variation of (187) with respect of Ψαβγ and ϕ which, after performing some superspace
integration by parts to bring the result in the form (163), leads to the following supercurrent

Jαβγ = iU(α
�

DβUγ)
�

�

h(T̃ ) +
1
8

D2
�

U2h′(T̃ )
�

�

−
1
8

U2
�

∂(αβDγ)U
2
�

h′(T̃ ) , (190a)

J = iU2
�

h(T̃ )− 2T̃h′(T̃ )
�

. (190b)

Up to mapping notations according to Appendix B, and inserting factors of κ̃2 by field redefi-
nitions, the supercurrent coincides with the result of the previous section, eq. (141).
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5 Conclusion

In this work, we have realized the effective description of a D2-brane via an irrelevant defor-
mation of a free theory. The flow connecting this nonlinear description to the free point can
be realized either in gauge theory variables or in the tensor-Goldstone presentation, where
the bosonic field content is a scalar field that can be interpreted as the Hodge dual of the
Born-Infeld gauge field.

When restricting to the bosonic truncation of these theories, the operator driving our flow is
a dimension-6 combination of stress tensors which is similar to the T T -like deformations which
are known to produce string and brane actions in d = 2 and d = 4, respectively. However,
we have found that in d = 3 we must introduce a new ingredient which is a non-analytic

combination of energy-momentum tensors, R=
r

3
8

�

T abTab −
1
3

�

T a
a

�2�
.

We have shown that this flow can be made manifestly supersymmetric by constructing
the deforming operator directly from supercurrents in N = 1 superspace, including a super-
field version of the non-analytic operator R. For the deformation associated to the Maxwell-
Goldstone multiplet, the flow equation holds fully off-shell, which is only known to occur in a
handful of other cases [27, 52, 53]. More generally, both the Maxwell-Goldstone and tensor-
Goldstone flows provide new examples, besides the known results in d = 2 and d = 4, where a
deformation by a quadratic combination of supercurrents produces a theory with an additional
non-linearly realized supersymmetry. We have also developed technology for computing the
supercurrents in a fairly general class of vector and tensor models using two approaches: by
solving the consistency conditions provided by the superspace conservation equations, and by
coupling to N = 1 supergravity then taking the linearized limit.

These observations provide further evidence for a deeper connection between deforma-
tions by conserved currents, theories of strings and branes, and spontaneously broken symme-
tries (including supersymmetries). The full scope of this connection remains to be explored,
and there remain several interesting avenues for future research. Perhaps the most natural
extension is to consider versions of the analysis in this work for theories with more supersym-
metry and different symmetry breaking patterns. Below we outline some other directions, and
we hope to return to some of these questions in future work.

ModMax-like extensions and DBI

Although this manuscript has focused on irrelevant deformations of free seed theories, there
are also examples in d = 2 and d = 4 of stress tensor flows driven by marginal combinations.
In the four-dimensional setting, a flow driven by the root-T T -like combination

∂L
∂ γ
=

1
2

√

√

T abTab −
1
4

�

T a
a

�2
, (191)

produces the ModMax theory [44–46] when the initial condition is the ordinary Maxwell the-
ory [47]. As we have mentioned in Section 1, this flow commutes with the irrelevant T T -like
flow which deforms the Maxwell Lagrangian into the Born-Infeld theory, and this pair of com-
muting flows can be used to construct a two-parameter family of ModMax-Born-Infeld theories
(and their supersymmetrix extensions) [48,49]. A similar pair of flows defines a collection of
Modified-Nambu-Goto theories in two dimensions [17,34,50].

It would be interesting to investigate whether some analogue of these marginal flows exist
for three-dimensional theories. It is straightforward to see that no such flow exists in d = 3 if
the seed theory describes a single free gauge field or a single free scalar, since in both of these
cases the deformed Lagrangian can depend on only a single Lorentz invariant (proportional
to f ab fab or ∂ aφ∂aφ, respectively). As a consequence, the 3d analogue of the marginal flow
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(191) simply re-scales the kinetic term for either of these theories, exactly as in the 2d case
of [34].

One might evade this issue by beginning with a seed theory L0 = −
1
4 f ab fab − ∂ aφ i∂aφ

i

which contains both a gauge field and a collection of scalars φ i . This is natural from the
perspective of a physical D2-brane, which supports both a gauge field on its worldvolume
and several scalar fields which describe the transverse fluctuations of the brane, and whose
dynamics are jointly described by the Dirac-Born-Infeld (DBI) theory. It is interesting to ask
whether the full DBI Lagrangian can be obtained from a flow beginning with this seed theory,
which would generalize the flows for a single scalar or gauge field which we considered in this
work. Further, one could attempt to construct a two-parameter family of commuting flows to
produce a Modified-Dirac-Born-Infeld theory which depends on both an irrelevant parameter λ
and a marginal parameter γ. It would be especially exciting if one could argue that this theory
emerges as an effective description of a brane along with some other string theory ingredients
which have the effect of turning on the marginal coupling γ. This could potentially provide
deeper insight into the nature of ModMax-like interactions by allowing us to directly engineer
such couplings in string theory.

Connections to soft behavior

We have seen around equation (72) that the Dirac action – by which we mean the scalar sector
of the Dirac-Born-Infeld theory – can be obtained as an irrelevant deformation of a free scalar
theory in any spacetime dimension d. On the other hand, there is a different characterization
which completely determines this theory in the context of scattering amplitudes. It was shown
in [96] that requiring a general theory L(∂ aφ∂aφ) for a scalar field to exhibit enhanced soft
behavior, in the sense that tree amplitudes vanish as A(p) =O(p2) as the momentum p of any
external leg is taken to zero, uniquely fixes the Lagrangian to take the square-root form of the
Dirac theory.

The property that a scalar theory exhibit this enhanced soft behavior is therefore equivalent
to the statement that the theory is obtained as an irrelevant deformation of a free scalar by the
operator appearing in (72). It would be intriguing to explore whether there is a physical reason
why this operator, in particular, is connected to soft limits. Because the soft behavior of the
Dirac Lagrangian is a consequence of the non-linearly realized symmetry of this theory, which
arises because embedding a brane in spacetime spontaneously breaks some of the ambient
Poincaré symmetry, this question is another way of asking why exactly a deformation by an
irrelevant combination of stress tensors causes a theory to develop an additional non-linearly
realized symmetry.

It is also interesting to ask what principle replaces this enhanced soft behavior in the gauge
theory case, where amplitudes are actually singular in the soft limit due to the Weinberg soft
photon theorem. One possibility is to use multi-chiral soft limits or a combination of single soft
limits and dimensional reduction, as in [97], which appears to also single out the Born-Infeld
Lagrangian and thus may have a relationship with the T T -like deformations which produce
this theory in d = 3 and d = 4. Another possibility is that a generalization of the requirement
that a stress tensor deformation preserve the absence of birefringence, which uniquely picks
out the appropriate T T -like deformation of gauge theories in four dimensions [48], will iden-
tify the appropriate operator in other contexts. There is no notion of birefringence in three
spacetime dimensions because photons have only a single physical polarization, but one might
hope that preserving a version of the zero-birefringence condition in higher dimensions or for
p-form electrodynamics with p > 2 may pinpoint a distinguished stress tensor deformation in
those contexts.
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Potential applications to holography

Part of the motivation for the present work is the observation that a T T deformation of a
2d free scalar yields the Nambu-Goto Lagrangian [3], which hints at connections between
stress tensor deformations and theories of strings and branes. Another such connection comes
from the “single trace” version of the T T deformation whose holographic interpretation was
proposed in [98–100] and whose further elucidated in [101–105].

This correspondence involves a solution of type IIB supergravity with a collection of fun-
damental strings and NS5-branes. In the near horizon region of both the strings and the
five-branes, this spacetime approaches AdS3 × S3 × T4, which admits a holographic descrip-
tion in terms of a two-dimensional conformal field theory. As one moves away from the deep
bulk region, the gravity solution interpolates from an asymptotically AdS3 spacetime to a lin-
ear dilaton spacetime. From the CFT2 perspective, the procedure which recouples this linear
dilaton region can be interpreted as an irrelevant deformation that is similar to T T . In this
context, a stress tensor deformation of a CFT2 can be viewed holographically as “undoing” the
process of taking a near-horizon limit, i.e. as “zooming out” from the deep bulk of a spacetime
involving F1-strings.

It would be very interesting if this interpretation could be generalized to other gravity solu-
tions. For instance, it might be that a “single-trace” version of the 3d stress tensor deformation
considered in the present work might recouple the asymptotic region of some supergravity so-
lution involving a stack of D2-branes, just as the single-trace 2d T T operator recouples an
asymptotic region of a gravity solution involving F1-strings.
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A Conventions and identities for section 3

A.1 Conventions

Indices In three dimensions, we use underlined Latin letters to denote spacetime indices:
a = 0,1, 2; and we use Greek letters for spinorial indices: α= 1,2.
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Gamma matrix We choose 3d Gamma matrices as

(γ0) βα = (iσ
2) βα ,

(γ1) βα = (σ
3) βα ,

(γ2) βα = (σ
1) βα ,

(A.1)

which satisfy the Clifford algebra:

{γa,γb}= 2ηabI , (A.2)

where the Minkowski metric is

ηab = η
ab =





−1 0 0
0 1 0
0 0 1



 . (A.3)

The gamma matrix has the following trace identity,

(γa) βα (γb)
α
β = 2δ

a
b . (A.4)

We use the spinor metric to raise and lower spinor indices:

ψα =ψ
βCβα , ψα = Cαβψβ , (A.5)

where the definition of the spinor metric is

Cαβ = −Cβα = −Cαβ =

�

0 −i
i 0

�

, (A.6)

with the following identities

CαβCγδ = δ γ[αδ
δ
β] , (A.7)

CαβCαδ = δ δβ . (A.8)

For every spinorial field, we define

ψ2 =
1
2
ψαψα = iψ+ψ− , ψαψα = −ψαψα . (A.9)

By using the spinor metric, we know that the gamma matrices are symmetric, namely,

(γa)αβ = (γa)βα , (γa)
αβ = (γa)

βα . (A.10)

Below, we list some useful identities of gamma matrices.

γaγa = 3I , (A.11)

γaγb = −εabcγ
c +ηabI , (A.12)

γbγaγb = −γa , (A.13)

(γa)αβ(γa)
γδ = −

3
2
δ γα δ

δ
β −

1
2
(γa) γα (γa)

δ
β , (A.14)

(γa)αβ(γa)
γδ = −δ γ(αδ

δ
β) = −(γ

a) γ(α(γa)
δ
β) , (A.15)

where ε012 = 1.
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Symmetrization/anti-symmetrization The symmetrization of indices is denoted by the
round bracket; the antisymmetrization of indices is denoted by the square bracket:

A(α Bβ) := Aα Bβ + Aβ Bα , (A.16)

A[α Bβ] := Aα Bβ − Aβ Bα = −CαβAγBγ . (A.17)

Covariant derivatives The superspace covariant derivatives are defined as DA = (∂αβ , Dα ),
where

∂αβ = i (γa)αβ ∂a ,

Dα = ∂α + i θβ ∂αβ .
(A.18)

They satisfy the algebra

{Dα , Dβ }= 2i ∂αβ ,

[∂αβ , Dγ ] = 0 .
(A.19)

Below, we list some identities for covariant derivatives, which are useful in the calculations we
have encountered throughout this paper.

∂αβ∂γ
α = Cβγ□ , (A.20)

DαDβ = i ∂αβ − Cαβ D2 , (A.21)

D2 Dα = −DαD2 = i ∂αβ Dβ , (A.22)

Dβ DαDβ = 0 , (A.23)

(D2)2 = □ , (A.24)

∂α(βDγ) = 2∂βγDα + iCα(βDγ)D
2 , (A.25)

DαD(α∂βγ) = 8∂βγD
2 , (A.26)

where

□= 1
2 ∂

αβ ∂αβ = ∂
a ∂a ,

D2 = 1
2 DαDα .

(A.27)

Map between vector and spinorial representation Here we summarize the mapping be-
tween vector and spinorial representations.

For fields: Aa =
i
2
(γa)

αβAαβ , Aαβ = i (γa)αβ Aa ,

For derivatives: ∂a =
i
2
(γa)

αβ∂αβ , ∂αβ = i (γa)αβ ∂a ,

For coordinates: xa = i (γa)
αβ xαβ , xαβ =

i
2
(γa)αβ xa .

(A.28)

A.2 Identities

In this section, we collect identities that we have used in the derivations in section 3.
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Identity 1 The first identity is a consequence of the nilpotency condition for Wα. Notice that
W 2∂βγ(W 2h) is identically zero due to W 3 ≡ 0, therefore D2

�

W 2∂βγ(W 2h)
�

is also identically
zero.

0= D2
�

W 2∂βγ(W
2h)
�

= (D2W 2)∂βγ(W
2h)+W 2 ∂βγD

2(W 2h)+(DαW 2)∂βγDα
�

W 2h
�

. (A.29)

The second equal sign comes from distributing the covariant derivative D. A simple rewriting
yields

(DαW 2)∂βγDα
�

W 2h
�

= − (D2W 2)∂βγ(W
2h)−W 2 ∂βγD

2(W 2h) , (A.30)

which is equivalent to (113).

Identity 2 The second identity is obtained by the EoM (134) and the property of spinors.
�

DαU(β g̃
��

Dγ)Uα
�

=
�

D(βUα g̃
��

Dγ)Uα
�

= −Uα
�

D(β g̃
��

Dγ)Uα
�

= −
1
2

�

D(β g̃
��

Dγ)U
αUα
�

= −
�

D(β g̃
��

Dγ)U
2
�

,

(A.31)

where the first line comes directly from the EoM (134); the second line is obtained by
�

D(βUα
��

Dγ)Uα
�

≡ 0.

Identity 3 The third identity is an application of integration by parts:

2i U(β g̃
�

∂γ)
δUδ
�

= 2i ∂(γ
δ
�

Uβ) g̃Uδ
�

− 2i
�

∂(γ
δUβ) g̃
�

Uδ

= 4i ∂βγ
�

g̃ U2
�

− 2i
�

∂(γ
δUβ)
�

g̃ Uδ − 2i U(β
�

∂γ)
δ g̃
�

Uδ .
(A.32)

Identity 4 Here, we give a sketch of the proof of (116). We start by considering the following
expression

Iβγ :=
�

DαD(βW 2
�

∂γ)
α
�

W 2 f ′(T )
�

. (A.33)

1. Using (A.21) in the first factor of Iβγ

Iβγ =
�

i ∂α(βW 2
�

∂γ)
α
�

W 2 f ′(T )
�

− 2 (D2W 2)∂βγ
�

W 2 f ′(T )
�

= ∂α(β
�

W 2∂γ)
α
�

W 2 f ′(T )
��

−W 2∂α(β∂γ)
α
�

W 2 f ′(T )
�

− 2 (D2W 2)∂βγ
�

W 2 f ′(T )
�

,
(A.34)

where the first term is zero due to nilpotency and the second term is also zero by sym-
metry (A.20). Namely,

Iβγ = −2 (D2W 2)∂βγ
�

W 2 f ′(T )
�

. (A.35)

2. Using (A.21) in the second factor of Iβγ

Iβγ = i
�

DαD(βW 2
�

D|α|Dγ)
�

W 2 f ′(T )
�

− 2∂βγ
�

W 2 D2
�

W 2 f ′(T )
��

+ 2 W 2 ∂βγD2
�

W 2 f ′(T )
�

.
(A.36)
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Note that the first term can be simplified by applying the following equation,

D2
�

(D(βW 2)
�

Dγ)W
2 f ′(T )
�

�

=
�

D2D(βW 2
��

Dγ)W
2 f ′(T )
�

+
�

D(βW 2
��

D2Dγ)W
2 f ′(T )
�

−
�

DαD(βW 2
�

D|α|Dγ)
�

W 2 f ′(T )
�

= −
�

D(βD2W 2
��

Dγ)W
2 f ′(T )
�

−
�

D(βW 2
��

Dγ)D
2W 2 f ′(T )
�

−
�

DαD(βW 2
�

D|α|Dγ)
�

W 2 f ′(T )
�

.
(A.37)

The LHS is actually zero,

(D(βW 2)
�

Dγ)W
2 f ′(T )
�

= (D(βW 2)
�

Dγ)W
2
�

f ′(T ) + (D(βW 2)W 2
�

Dγ) f
′(T )
�

, (A.38)

where the first term is zero due to the symmetrization of anti-commuting fermions, while
the second term vanishes due to nilpotency. So,

Iβγ = −i
�

D(βD2W 2
��

Dγ)W
2 f ′(T )
�

− i
�

D(βW 2
��

Dγ)D
2W 2 f ′(T )
�

− 2∂βγ
�

W 2 D2
�

W 2 f ′(T )
��

+ 2 W 2 ∂βγD2
�

W 2 f ′(T )
�

.
(A.39)

3. Comparing (A.35) and (A.39), we find

−2 (D2W 2)∂βγ
�

W 2 f ′(T )
�

= −i
�

D(βD2W 2
��

Dγ)W
2 f ′(T )
�

− i
�

D(βW 2
��

Dγ)D
2W 2 f ′(T )
�

− 2∂βγ
�

W 2 D2
�

W 2 f ′(T )
��

+ 2 W 2 ∂βγD2
�

W 2 f ′(T )
�

.
(A.40)

Using the definition of g (107), after some algebra, we get

(D(βW 2)(Dγ)g) = −2i W 2 ∂βγg + 4i W 2 ∂βγ f (T )− 2
�

D(β f (T )
��

Dγ)W
2
�

. (A.41)

A.3 Off-shell expressions for supercurrent-squared operators in TG

In this section, we present the off-shell expressions for the supercurrent-squared operators
{OT2 ,OΘ2 ,OΘR} in the tensor-Goldstone multiplet. As mentioned in the main text, the on-
shell expressions (142) can be computed using similar arguments as those in section 3.3
due to the property (137). Namely, with the support of U2 g̃, the equations of motion yield
D(αUβ) ≈ 2DαUβ . To derive the off-shell results, we first use the following identity

D(αUβ) = 2DαUβ −D[αUβ] = 2DαUβ + CαβH , (A.42)

where (A.17) is used and we define
H := Dγ Uγ . (A.43)

Note that the auxiliary field H is the lowest component of the superfield H: H =H|. Equation
(137) is equivalent to U2 g̃ H = 0. After some algebra, we get

OT2 = −4!2 κ̃2 U2 T̃
�

h(T̃ ) + T̃ h′(T̃ )
�2
− 4! U2 g̃2 H2 , (A.44a)

OΘ2 =
κ̃2

2
T̃ U2
�

h(T̃ )− 2 T̃ h′(T̃ )
�2

, (A.44b)

OΘR = 4!2
p

6 κ̃2 U2 T̃
�

h(T̃ )− 2 T̃ h′(T̃ )
��

h(T̃ ) + T̃ h′(T̃ )
�

(A.44c)

+ U2
�

h(T̃ )− 2 T̃ h′(T̃ )
� g̃2 H p(H)

4!4
p

6 κ̃2 U2 T̃
�

h(T̃ ) + T̃ h′(T̃ )
� + · · · ,
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where

p(H) = 3!3!2
�

H3 + 4 κ̃2 T̃ H− (DδUγ)(DγU
δ)H − 2 (DδUβ)(DβUγ)(DγU

δ)
�

, (A.45)

and the · · · in the end of (A.44c) denotes terms which are higher order in g̃2 H p(H). Clearly,
the second term in OT2 and the second line in OΘR vanish on-shell and (A.44) reduces to
(142).

B Conventions for sections 2 and 4

B.1 Conventions

Indices In sections 2 and 4 we used Latin letters to denote spacetime indices: a = 0, 1,2;
and we use Greek letters for spinorial indices: α= 1, 2.

Gamma matrix We choose 3d gamma matrices as

(γ0) βα = i(σ2) βα , (γ1) βα = (σ
3) βα , (γ2) βα = −(σ

1) βα , (B.1)

which satisfy:

{γa,γb}= 2ηabI , (γa)α
γ(γb)γ

β = ηabδ
β
α + ϵabc(γ

c)α
β , (B.2)

where the Minkowski metric and the Levi-Civita tensors are

ηab = η
ab = diag(−1,1, 1) , ϵ012 = −1 , ϵ012 = 1 . (B.3)

Spinor indices are raised and lowered as follows:

ψα = ϵαβψ
β , ψα = ϵαβψβ , (B.4)

where
ϵαβ = −ϵβα , ϵαβ = −ϵβα , ϵ12 = ϵ21 = 1 , (B.5)

such that
ϵαβϵ

γδ = −2δ γ[αδ
δ
β] , ϵβαϵ

αδ = δδβ . (B.6)

We use the spinor contraction

ψ2 =ψαψα = −ψαψα . (B.7)

The symmetric gamma matrices with up and down indices are

(γa)αβ = (γa)βα := ϵβγ(γa)α
γ , (γa)

αβ = (γa)
βα := ϵαγ(γa)α

β . (B.8)

Symmetrization/anti-symmetrization The symmetrization of indices is denoted by the
round bracket; the antisymmetrization of indices is denoted by the square bracket:

A(α Bβ) :=
1
2

�

Aα Bβ + Aβ Bα
�

, (B.9)

A[α Bβ] :=
1
2

�

Aα Bβ − Aβ Bα
�

. (B.10)

Similarly for (anti-)symmetrization of vector indices. For n indices, (anti-)symmetrization
includes an implicit factor of 1/n!.
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Covariant Derivatives The superspace coordinates are defined as xA = (xa, θ a) with θα

being a real Grassmann coordinate. The flat superspace covariant derivatives are defined as
DA = (∂a, Dα), where

Dα = ∂α + i θβ ∂αβ , ∂α :=
∂

∂ θα
, ∂αβ = (γ

a)αβ∂a . (B.11)

They satisfy the algebra
{Dα, Dβ}= 2i ∂αβ , [∂a, Dβ] = 0 . (B.12)

The operators D2 and □ are defined as

□ := ∂ a ∂a = −
1
2
∂ αβ∂αβ , D2 = DαDα . (B.13)

Note that given a vector index, whether used for a field, a coordinate, or a derivative, the map
between vector and symmetric bi-spinors is the same. For instance, given a vector Va we define
the symmetric bi-spinor Vαβ by

Vαβ := (γa)αβVa , Va = −
1
2
(γa)

αβVαβ . (B.14)

B.2 Map of conventions between sections 3 and 4

To conclude this Appendix, we provide rules to map results between Section 4 and Section 3.
The following correspondences hold where the left-hand side in each pair of columns refers
to notation used in Section 4, while the right-hand side of each pair refers to Section 3 and
Appendix A. One can map results in Sections 4 to results in Section 3, or vice-versa, by replac-
ing all instances of the symbols in one column with the corresponding symbols in the other
column of the pair. Note in particular that this table does not give equalities between pairs of
symbols, but rather replacement rules which convert an expression from one set of conventions
to another.

Note also that given a vector field, similarly to the vector derivative, the map of notation
is not only a replacement rule but an equivalence:

Section 2 follows the conventions of Section 4, although the only entries of Table 2 and
Table 3 used in Section 2 are those for vector indices Va (which are not underlined) and the
conversion between vectors indices and pairs of spinor indices.

Table 2: A set of replacement rules for converting between the notation of Section 4
and that of Section 3.

Section 4 Section 3 Section 4 Section 3 Section 4 Section 3

(γa)αβ (γa)αβ ϵabc −εabc (γa)αβ i(γa)αβ

(γa)αβ i(γa)αβ ψ2 2iψ2 ψα ψα
ψα iψα θα θα θα −iθα
∂αβ ∂αβ Dα = ∂α + iθβ∂αβ Dα = ∂α + iθβ∂αβ Dα iDα

D2 2iD2 {Dα, Dβ}= 2i∂αβ {Dα,Dβ}= 2i∂αβ □ □
A(α1···αn)

1
n!A(α1···αn) A[α1···αn]

1
n!A[α1···αn] ϵαβ iCαβ

Table 3: The maps of notation between vector indices and pairs of spinor indices in
Section 4 and Section 3 are equalities.

Section 4 Section 3 Section 4 Section 3

Va Va Vαβ Vαβ
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C Off-shell flow for bosonic tensor-Goldstone Lagrangian

In this Appendix we will present a modified version of the flow considered in Section 2.2
which holds fully off-shell. The modification relies upon a reformulation of the Lagrangian’s
dependence on the auxiliary field H which makes its coupling to the metric similar to that of
the scalar field kinetic term ∂ aφ∂aφ.

Recall that the initial condition for the bosonic tensor-Goldstone flow equation is

L0 = −∂ aφ∂aφ +H2 . (C.1)

Here H2 is a Lorentz scalar which is completely independent of the metric. However, one
could rewrite the theory in a different way as follows. We introduce a vector field va with the
properties that

vava = 1 , vavb∂aφ∂bφ = ∂
aφ∂aφ . (C.2)

The vector is not a new dynamical degree of freedom, but rather plays a role which is somewhat
similar to the auxiliary scalar field a in the PST formalism [106–108]whose gradient vm = ∂ma
is also normalized to unit length. In our case, the presence of the vector field va will not affect
any of the on-shell dynamics of the theory but is merely a trick which modifies the coupling of
the H2 term to a background metric.

We now define the two invariant combinations

x1 = ∂
aφ∂aφ , x2 = (Hva) (Hva) = H2vava = H2 . (C.3)

We emphasize that, due to the normalization condition vava = 1, these variables are identical
to those used in Section 2.2 when considering theories on a fixed background metric; all that
has changed is the coupling to metric fluctuations, and therefore the Hilbert stress tensor. For
a general Lagrangian L(x1, x2), one now finds

Tab = ηabL− 2
∂L
∂ gab

= ηabL− 2
∂L
∂ x1

∂aφ∂bφ − 2
∂L
∂ x2

H2vavb , (C.4)

and the contractions of the stress tensor which we will need are

T abTab = 3L2 − 4x1L
∂L
∂ x1
− 4Lx2

∂L
∂ x2

+ 4x2
1

�

∂L
∂ x1

�2

+ 8x1 x2
∂L
∂ x1

∂L
∂ x2

+ 4x2
2

�

∂L
∂ x2

�2

,

T a
a = 3L− 2x1

∂L
∂ x1
− 2x2

∂L
∂ x2

. (C.5)

Note that the factor of (va∂aφ)
2 in the cross-term of T abTab collapses to x1 x2 by the second

assumption of (C.2). The root-T T -like combination is now

R=

√

√3
8

�

T abTab −
1
3

�

T a
a

�2
�

=

√

√

√

�

x1
∂L
∂ x1

+ x2
∂L
∂ x2

�2

, (C.6)

and if we assume that

x1
∂L
∂ x1

+ x2
∂L
∂ x2

> 0 , (C.7)

then we can take the square root to write

R= x1
∂L
∂ x1

+ x2
∂L
∂ x2

. (C.8)
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Now the flow equation becomes

∂L
∂ λ
=

1
6

T abTab −
1
9

�

T a
a

�2
+

1
9

�

T a
a

�

R

= −
1
2
L2 +L
�

x1
∂L
∂ x1

+ x2
∂L
∂ x2

�

, (C.9)

and the solution to this differential equation with initial condition L0 = −x1 + x2 is

L(λ) = 1
λ

�

1−
Æ

1+ 2λ(x1 + x2)
�

. (C.10)

This is a fully off-shell solution to the flow equation which does not require assuming H = 0
in any intermediate steps. The upshot of this simple exercise is that a trivial modification to
the way in which the auxiliary field H enters the Lagrangian can change the properties of
the off-shell solution to the flow equation. It would be interesting to understand whether this
argument can be supersymmetrized, which would lead to an off-shell version of the superspace
flow equation for the tensor-Goldstone multiplet presented in Section 3.
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