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Abstract

The double sine-Gordon field theory in the weak confinement regime is studied. It rep-
resents the small non-integrable deformation of the standard sine-Gordon model caused
by the cosine perturbation with the frequency reduced by the factor of 2. This perturba-
tion leads to the confinement of the sine-Gordon solitons, which become coupled into
the ‘meson’ bound states. We classify the meson states in the weak confinement regime,
and obtain three asymptotic expansions for their masses, which can be used in different
regions of the model parameters. It is shown, that the sine-Gordon breathers, slightly
deformed by the perturbation term, transform into the mesons upon increase of the
sine-Gordon coupling constant.
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1 Introduction

Integrable models of statistical mechanics and quantum field theory [1, 2] play an important
role in the present understanding of the properties of the condense matter systems in the
critical region close to the point of the continuous phase transition. Due to the universality
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of critical fluctuations, the exact solution of such a model provides a mathematically reliable
information not only about the integrable model itself, but also about the whole universality
class it represents.

It turns out, however, that a number of interesting physical phenomena, such as particle
decay, nucleation of domains of the equilibrium phase in the false vacuum surrounding, con-
finement of topological excitations, etc., require non-integrable models for their description.
If the proper non-integrable model can be viewed as a small deformation of some integrable
one, perturbative expansions around the integrable point could provide a useful insight into
the realm of physical phenomena described by such a non-integrable model [2, 3]. This idea
was first realized in the form factor perturbation theory (FFPT), which was introduced by
Delfino, Mussardo, and Simonetti [4].

In this paper we study the non-integrable deformation of the sine-Gordon field theory,
which is known in the literature as the two-frequency or double sine-Gordon (dsG) model
[5–9]. We address the particular case of this model, which is specified by the Euclidean action:

AdsG =

∫

d2 x
�

1
16π

(∂aϕ)
2 + V (ϕ)
�

, (1)

where a= 0,1, and
V (ϕ) = −2µ cos(βϕ)− 2Λ cos(βϕ/2) . (2)

The parameters µ,β , and Λ are positive, and 0< β ≤ 1. Along with the sine-Gordon coupling
constant β , the so-called renormalized coupling constant ξ ∈ (0,+∞), which is related with
β as

ξ=
β2

1− β2
, (3)

is also widely used.
At Λ = 0, action (1) describes the standard integrable sine-Gordon (sG) model. The de-

scription of its various properties can be found, e.g. in the monograph [2] and references
therein. At Λ > 0, the second term on the right-hand side of (2) breaks integrability of the
model. It was shown by Delfino and Mussardo [6], that this perturbation term induces a lin-
ear attractive potential between the solitons of the sG model leading to their confinement:
isolated solitons do not exist anymore in the system, and two solitons bind into compound
particles - the ‘mesons’. Recently, the Λ-dependencies of the mass of the lightest meson at
several fixed values of the parameter β in model (1), (2) were studied numerically by Roy and
Lukyanov [10].

The aim of the present work is to classify the meson states in the dsG model (1) in the weak
confinement regime at small Λ→ +0, and to calculate the meson mass spectra perturbatively
in this small parameter. We obtain several initial terms of three asymptotic expansions, which
describe the meson masses for ξ ∈ (0,+∞). It is shown, in particular, that at any small Λ> 0,
there is no qualitative difference between the sG breathers, which survive at Λ = 0 for ξ < 1,
and the newly formed mesons, which are present only at Λ > 0. At a fixed small Λ > 0, the
breather, slightly deformed by the perturbation∼ Λ, smoothly transforms upon increase of the
parameter ξ into the newly formed meson state.

The rest of the paper is organised as follows. In Section 2 we recall some well-known
properties of the sine-Gordon field theory and its two-frequency deformation defined by (1),
(2). Section 3 contains a brief review of two perturbative techniques, which were recently
developed for the calculation of the meson mass spectra in several QFT and spin-chain models
in the weak confinement regime. Applying one of these techniques to the dsG model (1) at
a small Λ > 0, we obtain two asymptotic expansions for the meson masses, which hold in
different regions of the meson parameters. In Section 4 we derive the third asymptotic expan-
sion, which determines the masses of light mesons for ξ in the crossover intervals close to the
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Figure 1: The potential (2) at Λ = 0 (dashed curve), and at a small Λ > 0 (solid
curve).

inverse natural numbers ξn = 1/n. Together, three asymptotic formulas obtained in Sections
3 and 4 determine the evolution of masses of all meson modes upon tuning the parameter ξ
in the whole range of its variation 0 < ξ <∞. This evolution is clarified and illustrated in
Section 5. Concluding remarks are presented in Section 6. Finally, Appendix A contains the
calculation of the meson energy spectra in the deformed Lieb-Liniger model. The results of
this appendix are used in Section 4.

2 Sine-Gordon model and its deformation

In this section we remind the reader some well-known facts about the pure SG model and its
deformation (1), (2).

The profiles of the potential V (ϕ) at Λ= 0, and at a small Λ> 0 are shown in Figure 1 by
the dashed, and solid curves, respectively. At Λ = 0, the potential (2) is the 2π/β-periodical
function of ϕ, which takes its minimum value

Vmin(µ,Λ= 0) = −2µ , (4)

at ϕ = 2πl/β , with l ∈ Z. At Λ ̸= 0, the period of the potential V (ϕ) increases by the factor of
2. At a small enough Λ ∈ (0,1/4), the locations of minima remain the same, ϕ = 2πl/β , while
the minimum values of the potential V (ϕ) corresponding to even and odd l become shifted
downwards, and upwards, respectively:

Vmin(µ,Λ, l) =

¨

−2µ− 2Λ , for even l ,

−2µ+ 2Λ , for odd l .
(5)

Due to the 4π/β-periodicity of the potential (2), it is natural to compactify the scalar field
variable ϕ by putting it on the circle with the circumference 4π/β:

ϕ ∼ ϕ +
4πl
β

, with l ∈ Z .

Upon this identification, the model (1) reduces at Λ= 0 to the two-folded sine-Gordon model
sG(β , 2) [11]. In the infinite volume, this model has two energetically degenerate vacuums
|vac〉(a), a = 0, 1, with the energy density EsG . In the repulsive regime at ξ > 1, the particle
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sector is represented solely by the kinks (solitons and antisolitons) |Kab(α)〉s interpolating
between the vacua a and b. In the attractive regime at ξ ∈ (0,1), the two-kink bound states
(the breathers) are also allowed at Λ = 0 [12]. The kink state |Kab(α)〉s is characterized by
the rapidity α ∈ R, and by the isospin1 (topological charge) s, which takes the value +1/2
for solitons, and −1/2 for antisolitons. The energy ω and the momentum p of a kink can be
parametrized by its rapidity α in the usual way:

ω(α) = m coshα , p(α) = m sinhα , (6)

where m is the kink mass. The dimensional coupling constant µ in the sG potential (2) is
related to the kink mass m as follows:

µ= κ(ξ)m2/(ξ+1) , (7)

where ξ is the renormalized coupling constant (3), and the constant κ(ξ) is known due to
Al. B. Zamolodchikov [14]:

κ(ξ) =
1
π

Γ
�

ξ
ξ+1

�

Γ
�

1
ξ+1

�





p
π Γ
�

ξ+1
2

�

2 Γ
�

ξ
2

�





2/(ξ+1)

. (8)

In the attractive regime at ξ ∈
�

1
j+1 , 1

j

�

, there are j breather states with masses [12,15]:

m(b)j (ξ) = 2m sin
�

π jξ
2

�

. (9)

We will distinguish the breathers with odd and even j by the breather parity:

ι( j) = (−1) j . (10)

The variation of the breather masses with ξ for five lightest breather is shown in Figure 2. The
continuous spectrum in the two-soliton sector, which is shown in grey in this figure, fills the
energies E > 2m.

The two-kink excitations in the two-folded sine-Gordon model sG(β , 2) are represented
by the states |Kab(α1)Kba(α2)〉s1s2

. We shall use also the two-kink states |Kab(α1)Kba(α2)〉±
defined by the relations:

|Kab(α1)Kba(α2)〉± =
1
p

2

�

|Kab(α1)Kba(α2)〉1/2,−1/2 ± |Kab(α1)Kba(α2)〉−1/2,1/2

�

. (11)

The two-kink scattering matrix in the sG model was found by A. B. Zamolodchikov [12].
Its representation in the sG(β , 2) model can be described by the commutation relations:

|Kab(α1)Kba(α2)〉1/2,1/2 = S0(α1 −α2)|Kab(α2)Kba(α1)〉1/2,1/2 , (12a)

|Kab(α1)Kba(α2)〉−1/2,−1/2 = S0(α1 −α2)|Kab(α2)Kba(α1)〉−1/2,−1/2 , (12b)

|Kab(α1)Kba(α2)〉± = S±(α1 −α2)|Kab(α2)Kba(α1)〉± , (12c)

where
Sι(α,ξ) = −eiθι(α,ξ) , (13)

with ι = 0,±. The scattering phase θ0(α) is given by the integral formula:

θ0(α,ξ) = −
∫ ∞

0

d x
x

sinh
�

x
2ξ −

x
2

�

sin
�

αx
πξ

�

sinh(x/2) cosh
�

x
2ξ

� . (14)

1The origin of the O(2) isotopic symmetry of the sG model was discussed in [13] in page 268.
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Figure 2: The ξ-dependencies due to (9) of the masses of five lightest breathers.

The scattering phases θ±(α,ξ) are determined by formulas:

θ±(α,ξ) = χ±(α) + θ0(α,ξ) , (15a)

χ+(α,ξ) = arg
�

sinh[(iπ+α)/(2ξ)]
sinh[(iπ−α)/(2ξ)]

�

, (15b)

χ−(α,ξ) = arg
�

cosh[(iπ+α)/(2ξ)]
cosh[(iπ−α)/(2ξ)]

�

. (15c)

The soliton scattering amplitudes Sι(α,ξ) are known [13] to become degenerate at the so-
called reflectionless points

ξn = 1/n , n= 1, 2, . . . , (16)

of the parameter ξ. Specifically, for even n= 2l:

S+(α,ξ2l) = −S0(α,ξ2l) , S−(α,ξ2l) = S0(α,ξ2l) , (17)

S0(0,ξ2l) = S−(0,ξ2l) = −1 , S+(0,ξ2l) = 1 , (18)

while for odd n= 2l − 1:

S+(α,ξ2l−1) = S0(α,ξ2l−1) , S−(α,ξ2l−1) = −S0(α,ξ2l−1) , (19)

S0(0,ξ2l−1) = S+(0,ξ2l−1) = −1 , S−(0,ξ2l−1) = 1 , (20)

with natural l = 1,2 . . .. In particular, the two-particle scattering becomes trivial in the free-
fermion point ξ1 = 1:

S+(α, 1) = S0(α, 1) = −1 , S−(α, 1) = 1 . (21)

Perturbation of the two-folded sine-Gordon model by the term−2Λ cos(βϕ/2)with a small
Λ > 0 in the potential (2) breaks the degeneracy between the vacua |vac〉(a), a = 0,1. The
vacuum |vac〉(1) associated with potential minima at even l in equation (4) decreases in energy
and becomes the true ground state, while the vacuum |vac〉(0) associated with minima with
odd l increases in energy and transforms into the metastable false vacuum. To the linear oder
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in Λ→ +0, the energy densities of the deformed vacua are given [7,10] by the straightforward
perturbative formulas:

E
(1)
psG(Λ) = EsG − 2ΛGβ/2 +O(Λ2) , (22)

E
(0)
psG(Λ) = EsG + 2ΛGβ/2 +O(Λ2) , (23)

where Gγ is the vacuum expectation value of the exponential operator e±iγϕ at Λ = 0. The
explicit expression for this expectation value was found by Lukyanov and Zamolodchikov [16]:

Gγ =
�

πµ
Γ (1− β2)
Γ (β2)

�

γ2

1−β2

exp

�

∫ ∞

0

d t
t

�

sinh2(2γβ t)

2sinh(β2 t) sinh(t) cosh
�

(1− β2)t
� − 2γ2 e−2t

�

�

.

(24)
The margin between the energies of the false and true vacua induces the linear attractive

potential v(x1, x2) = f · (x2 − x1) between two kinks located near the points x1 and x2, such
that x2 − x1≫ m−1. Here f denotes the string tension:

f= E
(0)
psG(Λ)−E

(1)
psG(Λ) = f +O(Λ3) , (25)

where f = 4ΛGβ/2. In what follows, we will widely use instead of the parameter f its dimen-
sionless counterpart

λ=
f

m2
. (26)

The linear attractive potential leads to confinement of kinks, which become coupled into
the ‘meson’ bound states [8, 17, 18]. The meson states |πs,ι,n(P)〉 can be classified by the
momentum P, isospin s = 0,±1, parity ι = 0,±, and the quantum number n = 1, 2,3 . . .. The
quantum numbers s and ι are not independent: ι = 0 for s = ±1, and ι = ± at s = 0.

At Λ = 0, the meson state |πs,ι,n(P)〉 decouples into some linear combinations of the two-
kink states:

|πs=1,ι=0,n(P)〉 → |K10(α1)K01(α2)〉1/2,1/2 , (27)

|πs=−1,ι=0,n(P)〉 → |K10(α1)K01(α2)〉−1/2,−1/2 , (28)

|πs=0,ι=±,n(P)〉 → |K10(α1)K01(α2)〉± , (29)

with p(α1) + p(α2) = P. So, the meson modes with the isospin value s = 1 (s = −1) repre-
sent the bound states of two solitons (antisolitons), while the two meson modes with s = 0
represent the soliton-antisoliton bound states with different parities ι = ±.

The mesons |πs,ι,n(P)〉 are relativistic particles with the dispersion law:

Eι,n(P) =
q

M2
ι,n + P2 , (30)

where Mι,n are the meson masses.
Since the perturbed sine-Gordon model (1) is not integrable, the analytic calculation of the

meson masses Mι,n is possible only by means of some perturbative technique. In this paper we
focus on the weak confinement regime of the perturbed sine-Gordon model (1), (2), in which
the constant Λ> 0 is treated as a small parameter of the theory.

3 Weak coupling expansions for the meson masses

At first sight, it would be natural to use the FFPT for studying the confinement phenomenon
in the non-integrable deformations of integrable QFTs. It was realized, however, already in
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[4, 6] that the original version of the FFPT introduced in [4] cannot be applied directly to
the confinement problem, since the confinement transition changes the particle content of
the theory. In order to circumvent this problem, two different perturbative techniques for
calculation of the meson masses in the weak confinement regime were developed.

The first more systematic and sophisticated technique exploits the Bethe-Salpeter equa-
tion. The main advantage of this approach is that it allows one to account for the long-range
attraction between confined particles already in the zeroth order of the perturbation theory.
In high-energy physics, the Bethe-Salpeter equation was applied to the confinement problem
in the two-dimensional QCD with infinite number of colours by t’Hooft [19]. Fonseca and
Zamolodchikov [17, 18] derived the Bethe-Salpeter equation for the Ising field theory (IFT)
and applied it to the calculation of the meson masses in this model in the limit of a weak
magnetic field. Later the technique based on the Bethe-Salpeter equation has been used for
calculation of the meson energy spectra in three other (properly deformed) models exhibiting
the kink confinement: in the quantum Ising spin chain [20], in the gapped antiferromagnetic
XXZ spin-1/2 chain [21], and in the three-state Potts field theory [22].

It was shown by means of this technique, that the meson masses Mn(λ) in the IFT in the
weak confinement regime can be described by two asymptotic weak-coupling expansions in
the dimensionless small parameter λ→ +0, which is defined by equation (26).

1. The low-energy expansion in fractional powers of λ describes the meson masses Mn(λ)
slightly above the edge point 2m, i.e. at n ≪ λ−1 and λ → +0. Many terms in this
expansion were obtained by Fonseca and Zamolodchikov [18]. Two leading ones read:

Mn(λ) = 2m+λ2/3 mzn +O(λ4/3) , (31)

where −zn are the zeroes of the Airy function, Ai(−zn) = 0. These two terms of the IFT
low-energy expansion reproduce the old result of McCoy and Wu [23].

2. The semiclassical expansion [18,24] in integer powers of λ describes the masses of highly
excited meson states with n ≫ 1. It is convenient to parametrise the masses of such
mesons by the set of rapidities αn:

Mn(λ) = 2m coshαn . (32)

These rapidities must solve the transcendent equation with the power series in λ on the
right-hand side. To the leading order in λ, this equation reads:

sinh(2αn)− 2αn = λ[2π(n− 1/4)] +O(λ2) . (33)

The second perturbative technique is not so powerful and rigorous, but, instead, rather
heuristic and intuitive. Nevertheless, it allows one in a very simple way to recover the initial
parts of the weak coupling expansions for the meson masses beyond the order O(λ2). This
technique can be viewed as a generalisation of the phenomenological scenario of confinement,
which was introduced by McCoy and Wu [23] in 1978.

Proceeding to the description of this heuristic technique, let us consider a system of two
relativistic particles of the mass m moving in a line and attracting one another with a linear
potential. Their Hamiltonian reads:

H(x1, x2, p1, p2) =
q

p2
1 +m2 +
q

p2
2 +m2 + f |x1 − x2| , (34)

where x1, x2 ∈ R, and f > 0. Since the total momentum of two particles P = p1 + p2 is
conserved, one can concentrate on their dynamics for the states with zero total momentum
P = 0. Then, the relative motion of two particles is determined by the reduced Hamiltonian:

eH(x , p) = 2
Æ

p2 +m2 + f |x | , (35)
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where x = x1− x2 ∈ R. The variables x and p in (35) represent the canonical coordinate and
momentum. The classical trajectories of the system (35) are formed by periodically repeated
cycles. Each cycle starts from the collision between two particles, and then follows by their
subsequent movement with a constant acceleration.

Let us now turn to the quantization of the simple classical dynamics determined by the
Hamiltonian (35). The quantum version of the system (35) has a discrete energy spectrum,
and the energies of the two-particle bound states can be identified with the meson masses Mn,
with n= 1, 2, . . ..

For n≫ 1, the masses can be obtained by means of the semiclassical quantization. Exploit-
ing parametrization (32), one obtains in the straightforward fashion [18,24] the constraint on
the rapidities αn following from the Bohr-Sommerfeld quantization rule. The result depends
on the particle statistics. If two particles are fermions, the Bohr-Sommerfeld quantization
condition leads to the equation:

sinh(2αn)− 2αn = λ[2π(n− 1/4)] , (36)

in agreement with (33). In the case of two bosons, one gets, instead:

sinh(2αn)− 2αn = λ[2π(n− 3/4)] . (37)

A different quantization scheme should be applied for calculation of the masses Mn(λ) of
light mesons, such that

Mn(λ)
2m
− 1≪ 1 .

This strong inequality implies, that the momentum p in the reduced Hamiltonian (35) is small
|p| ≪ m, and, therefore, one can replace this Hamiltonian by its non-relativistic approximation:

eH(x , p) = 2m+
p2

m
+ f |x |+O(p4) . (38)

After canonical quantization p → −i∂x , the reduced Hamiltonian (38) transforms into the
Schrödinger Hamiltonian operator

Ĥ = 2m−
∂ 2

x

m
+ f |x | . (39)

The set of its eigenvalues again depends on the particle statistics. If the two particles
are fermions, the Hamiltonian operator (39) acts in the space of odd wave functions,
ψ(−x) = −ψ(x), and the meson masses are given by formula (31). In the case of two bosons,
the wave function must be even, ψ(−x) = ψ(x), and the meson masses are, instead, deter-
mined by the equation

Mn(λ) = 2m+λ2/3 m z′n +O(λ4/3) , (40)

where −z′n denote the zeroes of the derivative of the Airy function,

Ai′(z)
�

�

z=−z′n
= 0 .

In summary, two asymptotic expansions describing the meson masses in the IFT in the
weak confinement regime can be derived by means of the systematic perturbative technique
based on the Bethe-Salpeter equation. Few initial terms in these expansions can be recovered
in a very simple way by means of the quantization (semiclassical or canonical) of the classical
dynamics of two particles, which is determined by the Hamiltonian (34).

It is important to note, that the IFT has a very specific property: the kink topological
excitations do not interact in the deconfined phase at zero magnetic field behaving like free
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fermions. In contrast, in many other integrable models, including the sine-Gordon field theory,
elementary excitations strongly interact already in the deconfined phase at short distances,
and this interaction is encoded in the non-trivial scattering matrix. Fortunately, the outlined
above heuristic perturbative technique, upon minor modifications, can be also applied to such
models. This modified heuristic technique was first introduced for the calculation of the meson
masses in the Potts field theory [25], and later [21,26] applied to the calculation of the meson
energy spectra in the antiferromagnetic XXZ spin chain perturbed by the staggered longitudinal
magnetic field. In paper [21], this technique was described in much detail, and results for the
meson energy spectra obtained by this method were confirmed by more rigorous calculations
exploiting the perturbative solution of the Bethe-Salpeter equation. In the rest of this section,
we will discuss very briefly this modified heuristic technique. More details can be found in [21].

In integrable QFT, the short range interaction between particles is described by the
Faddeev-Zamolodchikov commutation relation, which contains the elastic two-particle scat-
tering matrix. Since the latter can be diagonalised by means of an appropriate unitary trans-
form, it is sufficient to concentrate on the case of the one-channel scattering. In this case, the
Faddeev-Zamolodchikov commutation relation reduces to the form:

Z∗(α1)Z
∗(α2) = S(α1 −α2)Z

∗(α2)Z
∗(α1) , (41)

where Z∗(α) is the operator creating the particle with rapidity α, and S(α) is the scattering
amplitude. It follows from the unitarity condition

S(α)S(−α) = 1 , (42)

that the scattering amplitude can be written in the form:

S(α) = −eiθ (α) , (43)

where θ (α) is the scattering phase. We will require, that this scattering phase is an odd func-
tion of the rapidity: θ (−α) = −θ (α).

The non-trivial two-particle scattering modifies the semiclassical quantization of the clas-
sical dynamics determined by the Hamiltonian (35): the scattering phase of two colliding
particles must be added to the left-hand side of the Bohr-Sommerfeld condition, as it was ex-
plained in [21,25]. As the result, the semiclassical formulas (32), (36) for the meson masses
modify to the form (cf. eqs. (171), (172) in [21]):

Mn(λ) = 2m coshαn , (44)

sinh(2αn)− 2αn = λ[2π(n− 1/4)− θ (2αn)] , (45)

with n≫ 1.
It follows from (42), that S(0)2 = 1. Accordingly, one should distinguish the fermionic

S(0) = −1, and bosonic S(0) = 1 cases. In the fermionic case, the scattering phase θ (α) is
continuous at α ∈ R, and θ (0) = 0. In the bosonic case, the scattering phase θ (α) must have
a discontinuity at the origin, and one can set: limα→±0 θ (α) = ±π. Upon the described above
definition of the scattering phase θ (α), formula (45) holds in both fermionic and bosonic cases.

In the bosonic case, it is convenient to introduce the ’bosonic’ scattering phase:

θ̃ (α) = θ (α)−π signα , (46)

which is odd in α, and continuous at the origin: θ̃ (0) = 0. In terms of the bosonic scattering
phase (46), equation (45) modifies the form:

sinh(2αn)− 2αn = λ[2π(n− 3/4)− θ̃ (2αn)] . (47)
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In the case of free bosons θ̃ (α)≡ 0, the latter equation reduces to (37).
The short-range interaction between particles in the deconfined phase effects also the low

energy expansion for the meson masses in the weak confinement regime. In order to account
for this effect in the frame of the heuristic approach outlined above, one should add some
short-range interaction potential u(x1 − x2) in the classical phenomenological Hamiltonian
(34). After the canonical quantization, the potential u(x) emerges on the right-hand side
of the Schrödinger Hamiltonian operator (39). It was shown in [21] in the fermionic case
S(0) = −1, that this leads to the additional term ∼ λ in the low-energy expansion (31) for the
meson masses (see equation (187) in [21]):

Mn(λ) = 2m+λ2/3 m zn +λm2 a+O(λ4/3) , (48)

where a denotes the scattering length [27], which is defined as:

a = −m−1∂αθ (α)
�

�

�

α=+0
. (49)

The same term ∼ λ appears as well in the low-energy expansion (40) in the bosonic case
S(0) = 1:

Mn(λ) = 2m+λ2/3 m z′n +λm2 a+O(λ4/3) . (50)

It is important to note, that the derivation of formula (48) described in [21] was essentially
based on the assumption, that the scattering phase θ (α) smoothly depends on α at |α|≲ 1.

Now let us apply the general results described above to the dsG model (1). In the weak con-
finement regime atΛ→ +0, the meson masses in the dsG model admit two different asymptotic
expansions in the dimensionless parameter λ= f /m2.

1. At large n ≫ 1 and small λ ≪ 1, the meson masses can be described at any ξ > 0 by
the semiclassical asymptotic expansion in integer powers of λ. The meson masses in this
semiclassical regime are determined by the formula

Mι,n(λ,ξ) = 2m coshαι,n , (51)

in terms of the rapidities αι,n, which solve the transcendent equation

sinh(2αι,n)− 2αι,n = λ[2π(n− 1/4)− θι(2αι,n,ξ)] +O(λ2) , (52)

and the two-kink scattering phases θι(α,ξ) are given by equations (14), (15).

2. At a fixed n ∼ 1 and λ→ +0 the low-energy asymptotic expansion in fractional powers
of λ holds. Three leading terms of this expansion read:

Mι,n(λ,ξ) = 2m+λ2/3 m zn +λm2 aι(ξ) +O(λ4/3) , (53)

where −zn are the zeroes of the Airy function, Ai(−zn) = 0, and aι(ξ) denotes the scat-
tering length:

aι(ξ) = −m−1∂αθι(α,ξ)
�

�

�

α=0
. (54)

In the explicit form, the scattering lengths aι(ξ) in the sine-Gordon model read:

a0(ξ) = −
1

2πmξ

∫ ∞

−∞
d x
�

1− tanh
x

2ξ
coth

x
2

�

, (55)

a+(ξ) = a0(ξ) +
1

mξ
ctg

π

2ξ
, (56)

a−(ξ) = a0(ξ)−
1

mξ
tan

π

2ξ
. (57)
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In the deformed sine-Gordon model, the low-energy expansion (53) for the mesons with
parity ι = 0 holds at any ξ > 0. This asymptotical formula describes also the masses of light
mesons with parities ι = ± for the values of the parameter ξ, which are not too close to the
reflectionless points (16). Indeed, the soliton-antisoliton scattering lengths a+(ξ) and a−(ξ)
given by formulas (56), and (57) diverge, respectively, at ξ−1 = 2l, and at ξ−1 = 2l − 1, with
natural l. Directly at the reflectionless points, formula (53) must be modified in the following
way.

At ξ = 1
2l , the soliton-antisoliton scattering in the ι = + channel becomes bosonic,

S+(0,ξ2l) = 1, see equation (18). Therefore, one should use the bosonic low-energy expan-
sion (50) for the mesons with parity ι = + in this case. For the bosonic scattering phase (46),
we get from (15a), (15b):

θ̃+(α,ξ2l) = θ0(α,ξ2l) . (58)

Thus, the low-energy expansion for the meson masses M+,n(λ,ξ) at ξ= ξ2l takes the form:

M+,n(λ,ξ2l) = 2m+λ2/3 mz′n +λm2 a0(ξ2l) +O(λ4/3) , (59)

where −z′n denotes the zeroes of the derivative of the Airy function.
In turn, the transcendent equation (52), which determines the semiclassical expansion for

the masses M+,n(λ,ξ2l), can be modified due to (47), (58) to the more convenient form:

sinh(2α+,n)− 2α+,n = λ[2π(n− 3/4)− θ0(2α+,n,ξ2l)] +O(λ2) . (60)

At ξ = ξ2l−1, with l = 1, 2, . . ., the soliton-antisoliton scattering in the ι = − channel
becomes bosonic due to (20), and θ̃−(α,ξ2l−1) = θ0(α,ξ2l−1). Accordingly, the low-energy
expansion for the masses M−,n(λ,ξ2l−1) modifies in the similar way:

M−,n(λ,ξ2l−1) = 2m+λ2/3 mz′n +λm2 a0(ξ2l−1) +O(λ4/3) . (61)

In turn, the transcendent equation (52) reduces at ξ= ξ2l−1 and ι = − to the form:

sinh(2α−,n)− 2α−,n = λ[2π(n− 3/4)− θ0(2α−,n,ξ2l−1)] +O(λ2) . (62)

4 Low-energy expansions at ξ−1 close to natural numbers

At ξ−1 close to the natural numbers, the low energy expansion (53) for the meson masses
M±,n(λ,ξ) must be further modified. In this section, we will obtain the modified low-energy
expansion for the meson masses M−,n(λ,ξ), which will replace (53) (for ι = −) in the crossover
regions of the parameter ξ close to ξ2l−1, i.e. for

ξ=
1

2l − 1
+δξ , with |δξ| ≪ 1 , (63)

where l = 1,2 . . .. The similar modified low-energy expansion for the meson masses M+,n(λ,ξ)
at ξ= 1

2l +δξ, with natural l and small |δξ|, will be presented by the end of the section.
At ξ= ξ2l−1, the two-kink scattering phases θ+(α,ξ) and θ0(α,ξ) coincide:

θ+ (α,ξ2l−1) = θ0(α,ξ2l−1) . (64)

This odd function smoothly depends on the rapidity α, and at small |α| ≪ 1 behaves as:

θ0(α,ξ2l−1) = α∂αθ0(α,ξ2l−1)|α=0 +O(α3) . (65)
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Figure 3: Plot of the scattering phase θ−(α,ξ) determined by (15a) at ξ= 1
3+0.002,

and at ξ= 1
3 − 0.002.

Tuning the parameter ξ from the point ξ2l−1 by a small δξ induces only the uniformly small
in α variations δθ0(α,ξ) of this scattering phase: |δθ0(α,ξ)| < C |δξ|, where the positive
number C does not depend on α.

In contrast, the scattering phase θ−(α,ξ) at ξ in the crossover region (63) displays a fast
variation at small real α. For two values of ξ close to 1/3, this fast variation of the scattering
phase θ−(α,ξ) near the origin is illustrated in Figure 3.

It was noticed in Section 3, that a smooth variation of the scattering phase θ (α) at small
α was the essential requirement exploited in the derivation of the low-energy expansion (48).
Since this requirement is broken for the scattering phase θ−(α,ξ) at ξ in the crossover region
(63), the low-energy expansion (53) for the masses M−,n(λ,ξ) of light mesons cannot be used
there. We proceed now to the derivation of the different low-energy asymptotic formula for
the meson masses M−,n(λ,ξ), which will replace (53) in the crossover regions (63).

First, let us note, that the fast variation of the scattering phase θ−(α,ξ) at ξ close to ξ2l−1
is induced, mathematically, by approaching to the real α-axis of the pole and zero of the scat-
tering amplitude S−(α,ξ), which lie on the imaginary α-axis at the points αB = −iπ(2l−1)δξ,
and −αB, respectively. At δξ < 0, the pole αB enters the physical sheet 0< Imα < π, indicat-
ing appearance of the (2l − 1)th breather in the theory at ξ < ξ2l−1.

Taking into account the above mentioned analytical properties of the the scattering ampli-
tude S−(α,ξ), we rewrite the latter for ξ in the vicinity of the point ξ2l−1 in the form

S−(α,ξ2l−1 +δξ) = −S(reg)
− (α,ξ2l−1 +δξ)

α− iπ(2l − 1)δξ
α+ iπ(2l − 1)δξ

. (66)

The function S(reg)
− (α,ξ2l−1 + δξ) on the right-hand side has at |δξ| ≪ ξ2l−1 − ξ2l+1 neither

poles nor zeroes in the narrow strip |Imα|< γl with γl ≈ 2πξ2l−1, and

S(reg)
− (0,ξ2l−1 +δξ) = −1 . (67)

At small α, the kink rapidity becomes proportional to its momentum:

α(p) =
p
m
+O(p3) , (68)

and the kink relativistic dispersion law (6) can be approximated by its non-relativistic asymp-
totics:

ω(p) = m+
p2

2m
+O(p4) . (69)
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As it was shown by McCoy and Wu [23], the low-energy expansions for the meson masses
in relativistic QFTs in the weak confinement regime can be effectively studied in the frame of
the non-relativistic quantum mechanics. Following this strategy, let us first consider a system
of two non-relativistic δ-interacting bosons moving in a line. The Hamiltonian of the system
reads:

H0 = 2m−
∂ 2

x1

2m
−
∂ 2

x2

2m
+ cδ(x1 − x2) , (70)

where c is the interaction constant.
The quantum state of two bosons can be described by the wave-function Ψ(x1, x2), with

x1, x2 ∈ R, which is symmetric under permutation of the spatial coordinates x1, x2. Up to the
constant term 2m, the Hamiltonian (70) coincides with the Hamiltonian of the Lieb-Liniger
model in the two-particle sector, which is discussed in Appendix A.

The solution of the Hamiltonian eigenvalue problem

H0Ψp1,p2
(x1, x1) = E(p1, p2)Ψp1,p2

(x1, x1) , (71)

in the half-plane −∞< x1 < x2 < +∞ is given by the Bethe wave function:

Ψp1,p2
(x1, x1) = exp[i(p1 x1 + p2 x2)] + S(p1 − p2)exp[i(p1 x2 + p2 x1)] , (72)

where

S(p1 − p2) =
p1 − p2 − ic m
p1 − p2 + ic m

, (73)

is the two-particle scattering amplitude, and

E(p1, p2) = 2m+
p2

1

2m
+

p2
1

2m
, (74)

is the energy of the state (72).
Upon the choice

c = (2l − 1)πδξ , (75)

the scattering amplitude (73) coincides with the leading term of the small-α asymptotics of
the scattering amplitude S−(α1 −α2,ξ2l−1 +δξ) of the sine-Gordon model

S(p1 − p2) = S−(α1 −α2,ξ2l−1 +δξ)
�

�

�

α1,2=p1,2/m
+O(p1 − p2) . (76)

Let us now deform the Hamiltonian (70) by adding the linear attractive potential acting
between bosons:

H( f ) = 2m−
∂ 2

x1

2m
−
∂ 2

x2

2m
+ cδ(x1 − x2) + f |x1 − x2| , (77)

where f > 0 is the string tension. The energy spectrum {En( f , c)}∞n=1 of the particle bound
states with zero total momentum can be easily found, as it is described in Appendix A. The
final result reads:

En = 2m+mλ2/3 tn , (78)

where λ= f /m2, and the numbers tn are the successive solutions of the transcendent equation

Yρ(tn) = 0 , (79)

with Yρ(t) = Ai′(−t)−ρAi(−t). Here Ai(z) is the Airy function, and

ρ =
c

2λ1/3
. (80)
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Formulas (78)-(80), and (75) determine two leading terms in the modified low-energy
expansion for the masses of mesons having the negative parity ι = − in the crossover region
(63). One more term ∼ λ in this low-energy expansion can be determined following the lines
described in [21] by taking into account the smooth dependence of the function S(reg)

− (α,ξ)
on the rapidity α at α → 0. Then, the modified low-energy expansion representing in the
crossover region (63) the masses of mesons with parity ι = − takes the form:

M−,n(λ,ξ2l−1 +δξ) = 2m+mλ2/3 tn +λm2 [a0(ξ2l−1) +O(δξ)] +O(λ4/3) , (81)

where the scattering length a0(ξ) is given by (55).
Let us describe the meson masses predicted by equation (81) in three limit cases.

1. At ρ≫ 1, the solutions of the secular equation (79) have the following asymptotics

tn(ρ) = zn −ρ−1 +O(ρ−3) .

Accordingly, formula (81) reduces at λ1/3≪ ξ− ξ2l−1≪ 1 to the form

M−,n(λ,ξ) = 2m+mλ2/3

�

zn −
2λ1/3

c
+ . . .

�

+λm2 a0(ξ2l−1) +O(λ4/3)

= 2m+mλ2/3zn +λm2
�

−
2

c m
+ a0(ξ) + . . .
�

+O(λ4/3)

= 2m+mλ2/3zn +λm2 a−(ξ) +O(λ4/3) ,

in agreement with (53).

2. At ρ = 0, solutions of equation (79) taken with the ‘minus’ sign are just the zeroes of
the derivative of the Airy function: tn(0) = z′n, Ai′(−z′n) = 0, and formula (81) reduces
to (61).

3. At a large negative ρ, the first solution t1(ρ) of equation (79) becomes negative and well
separated from all other solutions t2(ρ), t3(ρ), . . .. The following asymptotic formulas
hold at ρ→−∞:

t1(ρ) = −ρ2 −
1

2ρ
+O(ρ−4) , (82)

and for n= 2,3 . . .:
tn(ρ) = zn−1 −ρ−1 +O(ρ−3) .

As the result, we obtain at λ1/3≪−δξ≪ 1 for the meson masses (81):

M−,1(λ,ξ2l−1 +δξ) = 2m−
mc2

4
+λm
�

−
1
c
+m a0(ξ2l−1) +O(δξ)

�

+ . . . (83)

= 2m−
π2m

4

�

δξ

ξ2l−1

�2

+λm
�

ma0(ξ2l−1)−
ξ2l−1

πδξ
+O(δξ)
�

+ . . . ,

and

M−,n(λ,ξ2l−1 +δξ) = 2m+mλ2/3zn−1 +λm2 a−(ξ2l−1 +δξ) +O(λ4/3) , (84)

for n= 2,3, . . .. At l = 1, formula (83) reduces to the form:

M−,1(λ,ξ)
�

�

�

ξ=1+δξ
= 2m−

π2m
4
δξ2 +λm
�

−
1
πδξ

+O(δξ)
�

+ . . . (85)
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The lightest meson with the mass given by (83) must be identified with the jth breather,
with j = 2l − 1, perturbed by the term −2Λ cos(βϕ/2) in the potential (2). Indeed, the
mass m(b)2l−1(ξ) of this breather at f = 0 and ξ < ξ2l−1 is given by equation (9):

m(b)2l−1(ξ) = 2m sin
�

πξ

2ξ2l−1

�

.

Two initial terms in its Taylor expansion at ξ= ξ2l−1 read:

m(b)2l−1(ξ) = 2m−
π2m

4

�

ξ− ξ2l−1

ξ2l−1

�2

+O
�

(ξ− ξ2l−1)
4
�

. (86)

At λ = 0, the last line of (83) reduces to the right-hand side of (86), in confirmation of
the above statement. The linear in λ term in the last line of (83) represents the linear
perturbation of the breather mass by the deforming potential −2Λ cos(βϕ/2).

The linear in λ correction to the breather masses can be independently calculated by means
of the FFPT. For the lightest breather, this O(λ) correction was explicitly found by Bajnok et
al. [7], and recently represented in a compact form by Roy and Lukyanov [10]. Combining
formulas (II.4), (II.5) in the Supplementary information to Ref. [10] with (9), and (22)-(26),
yields:

m(b)1 (ξ,λ) = 2m sin(πξ/2) +
λm

2 cos(πξ/2)
+O(λ2) . (87)

This formula represents two initial terms of the FFPT expansion for the mass of the lightest
breather in the dsG model (1). It holds in the interval ξ ∈ (0, 1) for ξ not too close to the
free-fermion point ξ1 = 1, at which the second term in the right-hand side has a simple pole.
The residue (−λm/π) at this pole is reproduced by our formula (85).

The three initial terms of the modified low-energy expansion for the masses of the mesons
with ι = + at ξ close to (2l)−1 can be obtained by means of the same procedure. The only
difference is that formula (75) must be now replaces by:

c = 2l πδξ .

The final result reads:

M+,n(λ,ξ) = 2m+mλ2/3 tn +λm2 [a0(ξ2l) +O(δξ)] +O(λ4/3) , (88)

where ξ= ξ2l +δξ, and |δξ| ≪ 1.
It follows from (88), that at

λ1/3≪ ξ2l − ξ≪ 1 , (89)

the masses of mesons with ι = + behave as:

M+,1(λ,ξ2l +δξ) = 2m−
π2m

4

�

δξ

ξ2l

�2

+λm
�

m a0(ξ2l)−
ξ2l

πδξ
+O(δξ)
�

+ . . . , (90)

and
M+,n(λ,ξ2l +δξ) = 2m+mλ2/3zn−1 +λm2 a+(ξ2l +δξ) +O(λ4/3) , (91)

for n = 2, 3, . . .. At ξ satisfying (89), the lightest meson in this set is just the perturbed (2l)th
breather.

So, upon decrease of the parameter ξ in the crossover region close to the point
ξ2l−1 = 1/(2l − 1), the lightest meson with the negative parity ι = − transforms into the
(2l − 1)th breather, which also has the negative parity according to (10). In turn, the light-
est meson with the positive parity ι = + transforms upon decrease of ξ close to the point
ξ2l = 1/(2l) into the (2l)th breather, which parity is positive as well.
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5 Evolution of meson masses with parameter ξ

In this section we illustrate and compare the predictions for the meson masses given by differ-
ent asymptotic expansions, which were obtained in the previous section. The emphasis will
be made on studying of the variation of these masses upon tuning the parameter ξ.

Figure 4 displays the masses Mι,n(λ,ξ) of six lightest mesons determined by the semiclas-
sical formulas (51), (52) at the fixed value of the parameter λ = 0.5 and five different values
of the parameter ξ. Note, that the semiclassical approximation a priori is supposed to work
well only for the mesons with large n≫ 1, while the masses of the lightest mesons should be
instead described by the low-energy expansions. It will be shown later, however, that in many
cases, the predictions for the masses of the lightest mesons (with small n = 1,2, . . .) given by
the semiclassical and low-energy expansions are numerically very close to each other.2

The meson masses shown in Figure 4 form triplets, in which the mesons are distinguished
by the parity index ι = 0,±. The splitting of the meson masses inside each triplet is caused by
the ι-dependent scattering phase θι(2αι,n,ξ) on the right-hand sides of (52).

At ξ > 1, the meson masses in each triplet are ordered in the following way:

M−,n(λ,ξ)< M0,n(λ,ξ)< M+,n(λ,ξ) . (92)

This situation is illustrated in Figures 4a, and 4b, which correspond to the ξ-parameter values
ξ= 2, and ξ= 1.2, respectively.

Directly at the free-fermion point ξ= 1, two scattering phases vanish:

lim
ξ→1

θι(α,ξ) = 0 , for ι = 0,+ ,

while the third one reduces to the step function:

lim
ξ→1±0

θ−(α,ξ) = ±π signα . (93)

Accordingly, the masses of the mesons with parities ι = 0,+, continuously depend on ξ near
the free-fermion point ξ = 1, and M0,n(λ, 1) = M+,n(λ, 1). In contrast, the masses of the
mesons with negative parity display a discontinuity at ξ= 1, such that:

lim
ξ→1−0

M−,n(λ,ξ) = lim
ξ→1+0

M−,n+1(λ,ξ) . (94)

As the result, the masses of the mesons at ξ ∈ (1/2,1) in each triplet are ordered due to

M+,n(λ,ξ)< M0,n(λ,ξ)< M−,n(λ,ξ) , (95)

as one can see in Figures 4c, and 4d.
The next reordering of the meson masses upon decrease of the parameter ξ takes place at

ξ = 1/2, and the order (92) is restored in the interval ξ ∈ (1/3, 1/2), as it is shown in Figure
4e. Directly at ξ= 1/2 one gets from (51), (52), and (15): M0,n(λ, 1/2) = M−,n(λ, 1/2), and

lim
ξ→1/2−0

M+,n(λ,ξ) = lim
ξ→1/2+0

M+,n+1(λ,ξ) . (96)

In general, the meson masses in each triplet are ordered according to (92) at
ξ ∈
�

(2l + 1)−1, (2l)−1
�

, and due to (95) at ξ ∈
�

(2l)−1, (2l − 1)−1
�

, with natural l.

2The high efficiency of the semiclassical expansions for prediction the masses of lightest mesons in several
models exhibiting confinement were noticed in papers [28–31], in which the meson masses were studied by direct
numerical methods.
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Figure 4: Masses of mesons Mι,n(λ,ξ) calculated by semiclassical formulae (51),
(52) at λ= 0.5, ι = 0,±, and n= 1, . . . , 6 for (a) ξ= 2, (b) ξ= 1.2, (c) ξ= 0.8, (d)
ξ= 0.53, (e) ξ= 0.47.

Figure 5 displays the evolution of the masses of several lightest meson modes of different
parities ι = 0,±, calculated by means of the semiclassical formulas (51), (52), upon variation
of the parameter ξ. The parameter λ for all mesons in this figure is chosen at the fixed value
λ= 0.01.

As one can see in Figure 5a, the masses of the mesons with the parity ι = 0 monotonically
increase with decreasing ξ. In contrast, the masses of the mesons with positive parity ι = +,
and fixed n = 1,2, . . ., shown in different colours in Figure 5b, monotonically decrease with
decreasing ξ in the intervals ξ ∈ (1/2,∞), ξ ∈ (1/4,1/2), ξ ∈ (1/6, 1/4), . . ., but have
discontinuities at the points ξ = 1/2,1/4, 1/6, . . .. The masses of the mesons with negative
parity ι = − shown in Figure 5c display the similar evolution upon variation of the parameter
ξ, but with discontinuities at the points ξ= 1, 1/3,1/5, . . ..

It is clear, however, that the continuity in ξ of the semiclassical meson mass spectra can
be easily restored in both cases ι = ± simply by changing the numbering of the meson states
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Mι,n(λ,ξ):

M̃−,n(λ,ξ) = M−,n−l(λ,ξ) , at ξ2l+1 < ξ < ξ2l−1 , (97a)

M̃+,n(λ,ξ) = M+,n−l(λ,ξ) , at ξ2l+2 < ξ < ξ2l , (97b)

where M̃ι,n(λ,ξ) denotes the semiclassical meson masses with modified numbering,
l = 0,1, . . . , n− 1, ξ j = 1/ j for natural j, and ξ0 = ξ−1 = +∞.

The masses of the meson modes M̃ι,n(λ,ξ) defined by (97) are continuous (and analytical)
functions of the real parameter ξ, which monotonically decrease with decreasing ξ. However,
these functions are defined not for all positive ξ: M̃−,n(λ,ξ) and M̃+,n(λ,ξ) are defined in the
half-infinite intervals ξ ∈ (1/(2n− 1),+∞), and ξ ∈ (1/(2n),+∞), respectively. In fact, the
positive left edges in these half-infinite intervals indicate the failure in the vicinity of these
points of the semi-classical approximation used in the derivation of (52), (60). This statement
is illustrated in Figure 6, which displays the evolution in ξ close to the point ξ1 = 1 of two
lightest meson modes with the negative parity ι = − at the fixed value of λ = 0.01. The blue
dots in this figure plot the ξ-dependencies the masses M̃−,n(0.01,ξ) with n= 1, 2, determined
by the semiclassical formulas (97a), (51), (52). Note, that the explicit form of formula (97a)
at n= 1, 2 reads:

M̃−,1(λ,ξ) = M−,1(λ,ξ) , at 1< ξ <∞ , (98)

M̃−,2(λ,ξ) =

¨

M−,2(λ,ξ) , at 1< ξ <∞ ,

M−,1(λ,ξ) , at 1/3< ξ < 1 .
(99)
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Figure 5: Variation with ξ of the masses of lightest mesons Mι,n(ξ) at λ = 0.01
calculated by semiclassical formulae (51), (52): (a) at ι = 0, (b) at ι = +, (c) at
ι = − .
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Semiclassical expansion

LE expansion

modified LE expansion

bound state at λ = 0

lightest breather mass from FFPT

Figure 6: Variation with ξ of the masses M̃−,n(λ,ξ) of two lightest meson modes
with n = 1,2 at λ = 0.01 and ξ close to the free-fermion point ξ1 = 1. The ξ-
dependence of these masses given by the semiclassical expansion (51), (52), (97a)
are shown by blue dots; the brown dotted-dashed lines display the variations with
ξ of these masses given by the low-energy expansion (53), (57); the solid red lines
plot the prediction of the modified low-energy expansion (81) for M−,n(0.01,ξ) with

n = 1,2. The dashed black line shows the mass of the lightest breather m(b)1 (ξ) at
λ = 0, which is given by (9). The dashed green line displays the prediction (87) of
the FFPT for the mass of the lightest breather at λ= 0.01.

A priori, however, there is no reason to rely on the semiclassical asymptotic formulas (51),
(52) in the case of light mesons with n = 1, 2, since the semiclassical approximation can be
well justified only for the highly excited meson states with n≫ 1. The masses of light mesons
should be described, instead, by the low-energy expansions. The brown dotted-dashed curves
in Figure 6 plot at ξ > 1 the masses M−,n(0.01,ξ) of two lightest mesons (with n = 1, 2)
given by the low-energy expansion (53). As one can see from this figure, predictions of the
low-energy and semiclassical expansions for these masses become numerically very close to
each other at ξ ≳ 1.4. However, at ξ in the crossover region close to the point ξ1 = 1, the
low-energy expansion (53) is not applicable, and one should use instead the modified low-
energy expansion derived in the previous section. The solid red curves in Figure 6 show the
predictions of this modified low-energy expansion (81) at l = 1 for the masses of two lightest
mesons M−,n(0.01,ξ) with n= 1, 2 at ξ in the crossover region close to the point ξ1 = 1. The

mass m(b)1 (ξ) of the first breather at λ = 0 is plotted by the black dashed line in Figure 6.

Finally, the mass m(b)1 (ξ,λ) of the first breather at λ = 0.01 predicted by the FFTP expansion
(87) is shown by the green dashed line.

Comparison of the upper blue dotted, and solid red curves in Figure 6 indicates, that the
semiclassical formulas (51), (52), (99) give surprisingly accurate numerical values for the
mass of the second meson mode in the wide interval of the parameter ξ ∈ (0.8, 1.5) shown in
this figure. In turn, upon decrease of the parameter ξ below the free-fermion point ξ1 = 1, the
lower solid red curve approaches very close to the dashed green curve, which represents the
FFTP prediction (87) for the mass m(b)1 (ξ,λ) of the lightest breather. This clearly indicates,
that the lightest meson having the negative parity ι = − transforms upon decrease of the
parameter ξ below the free-fermion point into the breather, deformed by the perturbation
term −2Λ cos(βϕ/2) in the interaction potential (2).

It turns out, that all mesons characterized by the parities ι = ± display qualitatively similar
evolution upon decrease of the parameter ξ. Figures 7a, and 7b, show the ξ-dependencies of
the masses of several meson modes with parities ι = +, and ι = −, respectively. As in Figures
5, 6, the parameter λ is chosen at the fixed value λ= 0.01. The curves shown by the blue dots
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(a) Dashed black lines display the masses of breathers m(b)j (ξ) with j = 2, 4,6 in the unperturbed
sine-Gordon model.
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λ = 0.01

(b) Dashed black lines display the masses of breathers m(b)j (ξ) with j = 1, 3,5 in the unperturbed
sine-Gordon model.

Figure 7: Variation with ξ of the masses of lightest mesons M̃ι,n(ξ) with n= 1, . . . , 5
at λ = 0.01: (a) at ι = +, (b) at ι = −. Blue dots display the semiclassical mass
spectra (51), (52). Solid red lines show the masses of the n = 1 mesons calculated
by means of the modified low-energy expansions: (a) by formula (88) for the mesons
with ι = +; (b) by formula (81) for the mesons with ι = −. The masses m(b)j (ξ) of the
breathers in the unperturbed sine-Gordon model, which are shown by black dashed
lines, are given by formula (9). All masses are normalised by the soliton mass m.

in Figure 7 display the semiclassical mass spectra determined by equations (51), (52). The
solid red lines show the evolution of the masses Mι,1(λ,ξl +δξ) of the lightest mesons, which
transform into the lth breather in the crossover regions surrounding the points ξl = 1/l. The
masses Mι,1(λ,ξl + δξ) in the crossover regions are determined by the modified low-energy
expansions (88), and (81) for the cases ι = +, and ι = −, respectively. The masses of the
breathers m(b)l (ξ) at λ= 0 are shown by the dashed black curves.
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6 Conclusions

In this paper we have analytically studied the particle mass spectrum in the double sine-Gordon
model in the weak confinement regime, that takes place in this model close to the integrable
direction, at which the cosine term with the frequency β/2 in the scalar self-interaction po-
tential vanishes. This integrability-breaking term induces the weak constant attractive force
(string tension) between neighbouring solitons leading to their confinement: two solitons bind
into compound particles - the mesons. We obtain three asymptotic expansions in the weak
string tension, which describe the meson masses in different regions of the model parameters.
Namely, the semiclassical expansion (51), (52) describes the masses of higher meson states,
while the low-energy expansion (53) determines the masses of light mesons at generic values
of the coupling constant ξ. Finally, at ξ close to the reflectionless points ξn = 1/n, the masses
of light mesons with zero isospin are described by the modified low-energy expansions (81)
and (88). Analysis of these asymptotic expansions leads us to the unexpected conclusion, that
there is no qualitative difference between the meson and breather excitations in the dsG model
in the weak confinement regime. Upon increase of the parameter ξ, the nth breather does not
disappear at the critical point ξ= 1/n, as it was in the unperturbed sG model, but transforms
into a meson state.

The heuristic perturbative technique, which has been further developed and used in this
paper for calculation of the meson masses, originates from ideas due to McCoy and Wu [23].
It is desirable to validate the obtained results by reproducing them in the more systematic and
powerful approach based on the Bethe-Salpeter equation. Derivation of the Bethe-Salpeter
equation for the dsG field theory would be also crucial for getting insight into the decay mech-
anism for heavy unstable mesons in this model.

Of course, it would be interesting to perform the numerical study of the particle mass
spectra in the dsG model (1) by some direct method [9, 10], and to compare the numerical
result with our analytical predictions.
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A Confinement in the deformed Lieb-Liniger model

The integrable Lieb-Liniger model [32] describes the system of delta-interacting non-
relativistic bosons moving in one-dimension. Their state in the N -particle sector can be charac-
terized by the wave functionψ(x1, x2, . . . , xN ), which remains unchanged under permutations
of the spacial coordinates x i , x j of any two particles. In the case of the infinite geometry, the
Hamiltonian acting in the N -particle sector reads:

HN = −
N
∑

j=1

∂ 2
x j

2m
+
∑

1≤i< j≤N

cδ(x i − x j) , (A.1)

where x i , x j ∈ R, and c it the interaction constant. The free-boson, and free-fermion cases are
realized at c = 0, and 1/c = +0 respectively.
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It is well known, that this model admits an alternative equivalent formulation, in which
the particle coordinates run in the N -dimensional region ΓN :

ΓN = {x1, . . . , xN ∈ ΓN | −∞< x1 < x2 . . .< xN <∞} . (A.2)

The wave function ψ(x1, x2, . . . , xN ) must satisfy the Robin boundary conditions on ∂ ΓN :

lim
x j→x j+1

�

(∂x j
− ∂x j+1

) + c m
�

ψ(x1, . . . , x j , x j+1, . . . , xN ) = 0 , (A.3)

for j = 1, . . . , N − 1. The Hamiltonian acting on such wave functions defined in ΓN becomes
free:

eHN = −
N
∑

j=1

∂ 2
x j

2m
. (A.4)

In the two-particle sector, the solution of the Hamiltonian eigenvalue problem

eH2ψp1,p2
(x1, x1) = eE(p1, p2)ψp1,p2

(x1, x1) , (A.5)

is given by the Bethe wave function

ψp1,p2
(x1, x1) = exp[i(p1 x1 + p2 x2)] + S(p1 − p2)exp[i(p1 x2 + p2 x1)] , (A.6)

where

S(p1 − p2) =
p1 − p2 − ic m
p1 − p2 + ic m

, (A.7)

is the two-particle scattering amplitude, and

eE(p1, p2) =
p2

1

2m
+

p2
1

2m
, (A.8)

is the energy of the state (A.6).
Besides, a two-particle bound state exists in the attractive regime at c < 0. Its wave func-

tions reads

ψP(x1, x2) = exp
�

iP(x1 + x2)
2

+ b · (x1 − x2)
�

, (A.9)

where
b = −

c m
2
> 0 , (A.10)

and P is the total momentum of this bound state. The energy of the latter equals:

eE1(c, P) =
P2

4m
−

mc2

4
. (A.11)

Figure 8 illustrates the variation with the parameter c of the energy spectra of the Lieb-
Liniger model in the two-particle sector for the states with zero total momentum. The contin-
uous spectrum filling the half-plane eE > 0 is shown in grey. The parabola −mc2/4 displays the
energy (A.11) of the two-particle bound state at P = 0, which exists in model (A.1) at c < 0.

The model defined by equations (A.2)-(A.4) can be viewed as a toy model of a one-
dimensional ferromagnet. Indeed, let us introduce the spin operator σ̂(x), which acts on
the wave-function ψ(x1, x2, . . . , xN ) defined in ΓN as follows:

σ̂(x)ψ(x1, x2, . . . , xN ) = σ(x |x1, x2 . . . , xN )ψ(x1, x2, . . . , xN ) . (A.12)
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Figure 8: The two-particle energy spectra (A.8), (A.11) of model (A.1) for the states
(A.6), (A.9) with zero momentum P = 0.

The spin variable σ(x |x1, x2 . . . , xN ) takes values ±σ̄ for x in the interval (x j , x j+1) bounded
by the particle coordinates:

σ(x |x1, x2 . . . , xN ) = (−1) jσ̄ , for x ∈ (x j , x j+1) , (A.13)

with j = 0,1, 2, . . . , N , and x0 = −∞, xN+1 = +∞. In this interpretation, the particle coordi-
nates x j are treated as locations of kinks separating the oppositely magnetized ferromagnetic
domains.

Let us now deform the Lieb-Liniger model (A.2)-(A.4) by application of the uniform mag-
netic field h coupled to the spin operator σ̂:

eHN (h) = −
N
∑

j=1

∂ 2
x j

2m
− h

∫ ∞

−∞
d x [σ̂(x)− σ̄] . (A.14)

The deformation term breaks integrability of the model and leads to the confinement of kinks.
However, in contrast to other QFTs (Ising field theory, Potts field theory, sine-Gordon model,
etc.), the deformation term in the Hamiltonian (A.14) commutes with the operator of num-
ber of particles. Furthermore, the model (A.14) remains integrable in the two-particle sector
N = 2. The corresponding stationary Schrödinger equation reads:

−
∂ 2

x1
ψ(x1, x2)

2m
−
∂ 2

x2
ψ(x1, x2)

2m
+ f (x2 − x1)ψ(x1, x2) = eEψ(x1, x2) , (A.15)

where f = 2hσ̄ is the string tension. The two-particle wave function ψ(x1, x2) is defined in
the half-plane −∞< x1 < x2 <∞, and satisfies in the line x1 = x2 the boundary condition:

lim
x1→x2

(∂x1
− ∂x2

+ c m)ψ(x1, x2) = 0 . (A.16)

For the translation invariant eigenfunction ψ(x1, x2) = ψ(x1 + X , x2 + X ), with an arbitrary
real X , one obtains from (A.15) the ordinary differential equation of the Airy type:

−
φ′′(x)

m
− f x φ(x) = eEφ(x) , (A.17)
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where x = x1 − x2 < 0, and φ(x) =ψ(x , 0).
The solution of this equation vanishing at x →−∞ reads:

φ(x) = Ai

�

−λ1/3m x −
eE

λ2/3m

�

, (A.18)

where λ= f /m2.
The boundary condition

lim
x→0−

[2φ′(x) + cmφ(x)] = 0 , (A.19)

leads to the transcendent secular equation

Yρ(tn) = 0 , (A.20)

where
Yρ(t) = Ai′(−t)−ρAi(−t) , (A.21)

and
ρ =

c
2λ1/3

. (A.22)

Solutions {tn}∞n=1 of equation (A.20) determine the energy spectrum {eEn}∞n=1 of the boundary
problem (A.17), (A.19):

eEn = mλ2/3 tn . (A.23)

The limit ρ→ +∞ corresponds to the free-fermionic case. In this limit, the numbers −tn
approach to the zeroes of the Airy function:

lim
ρ→+∞

tn = zn , Ai(−zn) = 0 .

At ρ = 0 the free-bosonic case is realized, which is illustrated in Figure 9b. In this case the
numbers −tn coincide with the zeroes of the derivative of the Airy function:

lim
ρ→0

tn = z′n , Ai′(−z′n) = 0 .

The plot of the function Yρ(t) at ρ = −1 is shown in Figure 9c. The first zero of this
function is negative t1(−1) = −0.566891, while all other zeroes remain positive.

Finally, at ρ→−∞, one gets from equations (A.22), (A.23):

eE1 = −
mc2

4
, eE2 = mλ2/3z1 , eE3 = mλ2/3z2 , . . . (A.24)

Figure 10 shows the plots of the meson energies eEn(c,λ) given by equation (A.23) versus
the parameter c at λ= 1.

The energy spectrum (A.23) has the following properties.

1. At any fixed c ∈ R and λ > 0, the energy spectrum is discrete.

2. At λ > 0, all meson energies eEn(c,λ), with n = 1, 2, . . ., analytically depend on c at
−∞< c <∞.

3. At eE > 0, the spectrum becomes more and more dense with decreasing λ, and transforms
into the continuous spectrum at λ= 0.

4. The energy of the lightest meson eE1(c,λ) becomes negative at c < c0(λ), where
c0(λ) = 2λ1/3 Ai′(0)/Ai(0)≈ −1.4580λ1/3.

5. At c < 0, the lightest meson transforms in the limit λ→ +0 into the bound state of the
unperturbed Lieb-Liniger model (A.1), and

lim
λ→+0
eE1(c,λ) = −

m c2

4
, at c < 0 .
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Figure 9: Plots of the function Yρ(t) = Ai′(−t)−ρAi(−t) at three different values of
the parameter ρ: (a) ρ = 5; (b) ρ = 0; (c) ρ = −1. Vertical lines indicate the zeroes
{zn}6n=1 of the function Ai(−z).
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Figure 10: Solid lines display variation with the parameter c of the energies (A.23) of
the mesons with zero momentum P = 0 in model (A.14) at λ= 1. The dashed black
parabolic line shows the energy of the two-particle bound state at λ= 0. Horizontal
lines are located at λ2/3zn, with n= 1 . . . , 5.
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