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Abstract

We propose a general exact method of calculating dynamical correlation functions in
dual symplectic brick-wall circuits in one dimension. These are deterministic classi-
cal many-body dynamical systems which can be interpreted in terms of symplectic dy-
namics in two orthogonal (time and space) directions. In close analogy with quantum
dual-unitary circuits, we prove that two-point dynamical correlation functions are non-
vanishing only along the edges of the light cones. The dynamical correlations are exactly
computable in terms of a one-site Markov transfer operator, which is generally of infi-
nite dimensionality. We test our theory in a specific family of dual-symplectic circuits,
describing the dynamics of a classical Floquet spin chain. Remarkably, expressing these
models in the form of a composition of rotations leads to a transfer operator with a
block diagonal form in the basis of spherical harmonics. This allows us to obtain analyt-
ical predictions for simple local observables. We demonstrate the validity of our theory
by comparison with Monte Carlo simulations, displaying excellent agreement with the
latter for a choice of observables.
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1 Introduction

Symplectic dynamics is a powerful framework for understanding the behaviour of classical
systems in a wide range of physical phenomena, from celestial mechanics to fluid dynamics.
At its core, symplectic dynamics is concerned with the study of the evolution of systems that
conserve phase space volume under Hamiltonian motion. This property is intimately related to
the presence of a geometric structure known as a symplectic form, which encodes the essential
dynamical information of the system. An example of this type of dynamics that has attracted
a lot of interest appears in the studies of classical spin chains. In particular, integrability has
been studied for the classical Heisenberg spin chain (CHSC) [1, 2] in the SU(2) symmetric
case as well as in its generalizations [3,4]. In addition, ergodicity has been studied for various
types of 1D classical spin chain models [5–7], as well as the way it breaks [8] depending on
the range of the interactions.

Recently, the framework of fluctuating hydrodynamics [9], originally introduced in clas-
sical anharmonic chains, has been fruitful in the study of correlations [10–13] in classical
ferromagnetic spin chains, wherein a suitable intermediate temperature regime, the system
was observed to show Kardar-Parisi-Zhang (KPZ) scaling. Quantum correspondence with spin
chains [14] has demonstrated that there is a good agreement in the high-temperature limit
even when the system is far away from the large spin limit.

Dual symplectic dynamics is a novel idea according to which symplecticity characterizes
both time and space propagation. This has been observed in SO(3)-invariant dynamics of
classical spins [15], where the correlation function exhibits KPZ universality [10,16–18], with
the spin transport being characterised by a dynamical exponent of 3/2. There has been a
lot of recent work on the quantum analogue of dual symplecticity, namely dual unitarity in
brick-wall quantum circuits, where both space and time propagators are unitary.

Interestingly, dual unitary quantum circuits can exhibit strongly chaotic quantum dynamics
whose classical simulation is, in general, expected to be exponentially hard in system size
[19]. Remarkably, dual unitarity offers the possibility to calculate exactly certain dynamical
quantities, such as space-time correlation functions [20–22], spectral form-factor [23, 24],
operator entanglement, and entanglement growth [25,26].

In this paper, we propose a general exact method of calculating dynamical correlation func-
tions in dual symplectic brick-wall 1D circuits. We show, that similarly to what happens for
dual-unitary quantum circuits, correlation functions in space and time over the equilibrium
uniform measure of single-site observables 〈O(x , t)O(0, 0)〉 are such that: i) vanish every-
where except the light rays x = ±t; ii) their behaviour on the light rays can be expressed
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in terms of the matrix elements of a transfer operator. We demonstrate that our theory is
in excellent agreement with the numerical calculation on an example of a specific family of
dual-symplectic spin chains, where local gates are composed of Ising Swap gates and one-site
rotations. For this model, we prove that, despite the infinite dimensionality of the local phase
space, the transfer operator involved in the calculation of the correlation functions splits into
finite-dimensional blocks, owing to the conservation of the total angular momentum. Using
this decomposition we obtain exact analytical expressions for some observables and implement
a simple and efficient numerical procedure for general ones.

The paper is organised as follows: in Section 2, we set up the general formalism for a
symplectic characterised by a finite measure phase space; in Section 3 we discuss the dual
symplectic case, and using a graphical representation present exact expressions for the corre-
lations of arbitrary local observables. In Section 4, we discuss an example of the application of
our theory for the Ising Swap model on a spin chain and show how it can be solved by block-
diagonalisation of the transfer operator using conservation of the total angular momentum.

2 The model

We consider a classical dynamical system of N variables {X⃗ i}, with the site index i=0, . . . , N−1.
For simplicity, we take N to be even. We also assume that dynamical variables live on the finite
measure space M , and the phase space of the whole system is obtained as the product of its N
copies, i.e. MN = M× . . .×M . The time is considered to be discrete t ∈ Z, and the interactions
are local. In particular, we express the dynamics in terms of a local symplectic map acting on
two sites only – the so-called (classical) gate, Φ : M × M → M × M . The dynamics of the
whole system is then obtained by acting with Φ on all pairs of neighbouring sites according to
the brick-wall circuit protocol, where we impose periodic boundary conditions X⃗ i+N ≡ X⃗ i (see
Fig. 1).

Specifically, let’s denote the local gate as Φi j : MN → MN , which acts as the map Φ on
the variables X⃗ i , X⃗ j , and trivially with respect to all other variables. We can then introduce
Teven = Φ0,1Φ2,3 . . .ΦN−2,N−1 and similarly Todd = Σ−1◦Teven◦Σ, with the single-site translation
Σ : MN → MN , defined as Σ(X⃗0, X⃗1, . . . X⃗N−1) = (X⃗1, . . . , X⃗N−1, X⃗0). From these two layers, we
construct the Floquet Operator T which generates one period of the dynamics,

T = Todd ◦ Teven . (1)

It is clear that Σ−2T Σ2 = T , namely there is a two-site translation invariance of the dynamics.
In the following we represent a point of MN with bold capital letters e.g X ≡ (X⃗0, X⃗1, . . . X⃗N−1)
whereas, a point of the single site space M is represented with a vector e.g X⃗ .

It is useful to introduce a graphical notation. Specifically, we represent the local gate as a
blue rectangle with two incoming and two outgoing legs

Φ= (2)

Each leg represents a copy of M , and an operator has as many legs as the number of sites it
acts on. With this in mind, the single time-step operator T is graphically depicted in Fig. 1.

The map Φ belongs to a special group of transformations called the symplectic group.
Symplecticity is a property appearing in Hamiltonian systems because they preserve the loop
action [27]. In general, symplectic maps always involve d-pairs of conjugate variables, the
configuration q and the momentum p, which can be seen as the coordinates of a 2d dimen-
sional manifold M (phase space) endowed with a symplectic form ω [27] on M. Then, a
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Figure 1: A graphical representation of the time evolution of a symplectic brick-wall
circuit for a single tme-step.

symplectic map g : M →M, must satisfy DgTωDg = ω for the Jacobian matrix Dg of the
map g. Symplecticity implies a unit determinant of the Jacobian det(Dg) = 1 and thus con-
servation of the phase space volume. However, symplecticity is more restrictive than just the
conservation of the phase space volume as it also imposes restrictions on the spectrum. In
particular, the spectrum σ(Dg) = {gi}2d

i=1 of the Jacobian includes only pairs of eigenvalues
in the form gi , 1/gi [27]. An important consequence of this property of σ(Dg), is that the
Lyapunov exponents λi i = 1, . . . , 2d of the dynamics appear in pairs of ±λi [28].

3 Dynamical correlations

3.1 Symplectic gate

In this section, we will consider 2-point correlation functions, and show how symplecticity of
the dynamics can be used to simplify the calculation of these functions. Before proceeding,
we establish some definitions. First, we introduce the space of real functions over the phase
space MN

D(MN ) = {ρ|ρ : MN → R} . (3)

An important role is played by phase-space distributions in D(MN ) satisfying

ρ(X) ∈ R+ ,

∫

dXρ(X) = 1 . (4)

For technical reasons, it is however useful to consider the L2 norm

∥ρ∥=
�∫

dX |ρ(X)|2
�1/2

, (5)

and introduce a Hermitian product

〈ρ1|ρ2〉=
∫

dX ρ∗1(X)ρ2(X) , ρ1,ρ2 ∈ L2(MN ) , (6)

with the bra-ket notation 〈X |ρ〉 = ρ(X). In general, any dynamical system with a map
h : MN → MN on the phase space induces a dynamical transfer operator Ph : D(MN )→ D(MN ).
The map Ph is linear and is known as Frobenius-Perron operator [29]with a Dirac delta kernel

Ph(X , Y ) = δ
�

X − h(Y )
�

, X , Y ∈ MN , (7)

and it performs the dynamics for given initial conditions (e.g. density).
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In the case of the symplectic gate, which is invertible, the dynamical operator acts explicitly
on the phase-space distribution ρ as

(PΦ ◦ρ)(X) =
∫

M2

dY δ
�

X −Φ(Y )
�

ρ(Y ) = ρ
�

Φ−1(X)
�

, X ∈ M2 , (8)

where we used the Jacobian of Φ being equal to one since the map is volume preserving.
The additional structure of the Hilbert space can be exploited to represent PΦ as an infinite-
dimensional unitary matrix. The unitarity 〈ρ1|P

†
ΦPΦ|ρ2〉 = 〈ρ1|ρ2〉 follows from the volume

preservation of the phase space.
An important consequence of symplecticity, is the invariance of the uniform (flat) mea-

sure on L2(M × M) under the action of PΦ. If we denote a single-site uniform measure as
u = 1/|M | → |u〉 with |M | being the volume of the phase space for this site M , then we can
construct the 2-site uniform measure as |u〉 ⊗ |u〉. Then, symplecticity implies, see Eq. (8),
that any constant scalar is invariant under PΦ and so is the uniform density, which leads to the
following equations

PΦ|u〉 ⊗ |u〉= |u〉 ⊗ |u〉 , 〈u| ⊗ 〈u|PΦ = 〈u| ⊗ 〈u| , (9)

where we use the fact that PΦ is a unitary operation in L2(M ×M) and thus the left and right
eigenvectors are the same. It is convenient to work with the normalised state |◦〉 = ∥u∥−1

2 |u〉

and choosing the graphical representation |◦〉= so Eq. (9) is depicted as

= =, (10)

It is straightforward to check that this property implies that the stationary density of the Floquet
transfer operator T is the uniform measure on MN , which is denoted as |uN 〉= |u〉 ⊗ . . .⊗ |u〉.
We also introduce the L2–normalised version |◦N 〉 = ||uN ||−1

2 |uN 〉. Given any function on the
phase space a ∈ D(MN ), representing physical observable, we can express its average over the
phase-space density ρ as

∫

dX a(X)ρ(X) = 〈1N |â|ρ〉 , (11)

where the action of â is defined via 〈X |â|ρ〉 = a(X)ρ(X), and we make use of the unit scalar
|1N 〉 → 1N (X) = 1,∀X ∈ MN . Note that we have |1〉 =

p

|M ||◦〉 . In general, for an ergodic
symplectic system |◦N 〉 is the unique invariant measure and thus at long times, any initial
state will always converge to that. In our setting, we consider correlations of observables at
long times and thus we focus on the invariant uniform measure. The connected dynamical
correlation functions for the one-site observables are defined as

Cab(i, j; t)≡ 〈1N |b̂ jT t âi|uN 〉 − 〈b j〉〈ai〉= 〈◦N |b̂ jT t âi|◦N 〉 − 〈◦N |b̂ j|◦N 〉〈◦N |âi|◦N 〉 , (12)

with i, j = 0, . . . , N − 1 . In this expression, the local operators âi act non-trivially only on the

respective i-site, so that they can be expressed as âi =
site i

1⊗ · · · ⊗ â⊗ · · · ⊗ 1. The second term is
the product of the averages over the uniform measure which, for a local observable is defined
as 〈ai〉= 〈1N |âi|uN 〉= 〈◦|â|◦〉.

In the following, we focus mainly on the nontrivial first term 〈1N |b̂ jT t âi|uN 〉 of the cor-
relations, which is shown in Fig.2, where operations on a single site such as â|◦〉 or b̂|◦〉 are
indicated with a bullet •. Moreover, using the invariance of the circuit with respect to two-site
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a

b

〈◦N |b̂ j T t âi|◦N 〉 =

Figure 2: Graphical representations of the 2-point correlation function. The shaded
grey areas and the black arrows indicate the causal cones attached to each local
observable, with the “curly” edges indicating the periodic boundary conditions. The
symplecticity of Φ reduces this circuit to the cross-section of the causal cones (double-
shaded area of the grid).

shifts, one can map the correlations from point i to 0 or 1 depending on the parity of i. This
implies that the correlations split into two different types,

Cab(i, j; t) =

¨

C+ab( j − i; t) , i = even,

C−ab( j − i; t) , i = odd.
(13)

As we can see in Fig. 2, by applying Eq. (10), one can erase all gates outside of the light-
cone, which spreads with velocity vc = 2 from the position i of the operator â at the bottom.
One can use a similar argument starting from the top at the position j of the operator b̂. This
suggests that the only remaining gates must lie in the intersection between the forward and
backward light-cones (see Fig. 2). In particular, when |i − j| > 2t then these light cones do
not overlap, and the two observables are trivially uncorrelated. When |i − j| ≤ 2t the causal
cones do overlap and can lead to non-trivially vanishing correlations. For times t > N/4 the
light cones reach the boundary. This introduces finite-size effects, which makes the analytical
calculations more complicated. Below we focus on times t ≤ N/4 where the correlation func-
tions are the same as in the thermodynamic limit N →∞. As explained above, we can make
use of the symplecticity of the gate PΦ as expressed by Eq. (10) to cancel all gates outside the
intersection of the two light-cones. This leads to the following representation

〈◦N |b̂ j T t âi|◦N 〉 =

a

b

(14)

where the diagram is rotated by 45◦ and we do not consider the case with the local observ-
ables on the same edge of the light-cone. The rectangle can be decomposed into rows or
columns, which are represented as two different types of contracting transfer operators. This
idea appears in the same manner in the folded picture of unitary circuits [20], and although
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X⃗m X⃗m+1

X⃗ ′m X⃗ ′m+1

Φ

Φ̃

Figure 3: The local map Φ acting on two neighbouring spins and performing their
temporal dynamics. By exchanging the diagonal legs we get the dual map Φ̃ which
performs spatial dynamics. The diagonal exchange of the legs exchanges the time
and the space axes producing a map that propagates the temporal change in space.

it represents an important simplification, the calculation of 2-point correlation functions, still
remains challenging particularly, when |i − j| does not scale with t, because the size of the
involved transfer operators grows with time. We will see in the following section that for
dual symplectic gates additional simplifications are possible which allows one to calculate the
correlation functions explicitly.

3.2 Dual-symplectic gates

So far, the discussion has been quite general. In order to, make explicit calculations here,
we introduce an additional restriction to the dynamics. We demand that the local gate Φ is
dual-symplectic. In other words, the evolution of the system remains symplectic when one
exchanges the roles of space and time. Specifically, one can introduce the map performing
the propagation in space, which is called the dual map Φ̃. As in the case of dual-unitary
circuits [25], it can be obtained by reshuffling diagonal legs as shown in Fig. 3, which leads
to the exchange of time and space axes. In particular, one can see from Fig.3 that in the dual
picture, the two adjacent times of one site define the same times of its neighbouring site on
the right. One can also show, that for a dual-symplectic system knowing the time evolution of
one site, one can uniquely determine the time evolution of the whole system. The dual picture
allows for diagrams, like the one in Fig 2, to be interpreted in the space direction from left
to right, with the exchange of Φ→ Φ̃ or from right to left, where the dual map is defined as
in Fig. 3, but with the exchange of the legs of Φ with respect to the other diagonal. These
diagrams are graphical representations of integrals over the phase space MN and the passing
to the dual picture is a change of integration variables, which leads to a factor coming from the
Jacobian of the transformation. In order, for both pictures to be equivalent under this change
of variables, one has to ensure that the value of this Jacobian is equal to 1 for both left-to-right
and right-to-left directions in space. Thus the local gate should satisfy the following conditions

�

�

�

�

det

�

∂Φ1(X⃗1, X⃗2)

∂ X⃗2

��

�

�

�

=

�

�

�

�

det

�

∂Φ2(X⃗1, X⃗2)

∂ X⃗1

��

�

�

�

= 1 , ∀ X⃗1, X⃗2 ∈ M ×M , (15)

where Φ1,2 are the single-site outputs of the local gate defined as
�

Φ1(X⃗1, X⃗2),Φ2(X⃗1, X⃗2)
�

= Φ(X⃗1, X⃗2). We provide an explicit proof of (15) in the Appendix A.
In addition, the dual map, by definition, is an involution and so the dual of the dual picture
should be the original one with Φ. In order to assure that the change from the original pic-
ture, in the time direction, to the dual one, and vice versa, is equivalent the Eq, (15) should
respectively hold for the dual map. We prove in Appendix A that the condition (15) for Φ is
sufficient for this to hold.
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In general, an arbitrary symplectic map typically has a dual-space propagator which is not
unique (non-deterministic) or not even defined for all points in M × M . Here we focus on
a local gate Φ with a uniquely defined and symplectic Φ̃, that also satisfies (15). We stress
that Eq. (15) is crucial and follows naturally in dual symplectic circuits which are obtained
through a limiting procedure from dual-unitary quantum circuits with a finite discrete local
Hilbert space. In fact, there has already been some work on dual symplectic circuits where
Eq. (15) does not hold. In particular, in integrable circuits with non-abelian symmetries, it has
been demonstrated [15] that 2-point dynamical correlations follow Kardar-Parisi-Zhang (KPZ)
universality and are not restricted to the edges of the light-cone. This is in contrast with what
we prove here for the dual-symplectic circuits where Eq. (15) holds.

With the additional property of dual symplecticity, the set of graphical contraction rules
(10) is extended as

=

=

=

=

,

,

(16)

where the dual-symplectic gates are now being indicated with green colour. Dual symplecticity
ensures the invariance of the uniform measure in the space direction as well. Its analogue in
quantum systems is called dual unitarity and has been used to obtain exact results for a number
of different systems [23,30,31]. There are similar expectations for dual-symplectic dynamics,
and indeed in the following we show that one can use dual-symplecticity, to obtain exactly the
dynamical correlation functions, and to show that they do not vanish only along the edges of
the causal cones with (13) becoming

Cab(i, j; t) =

¨

δ j−i,2t C+ab(2t; t) , i = even,

δ j−i,−2t C−ab(−2t; t) , i = odd.
(17)

We are going to prove this, using the diagrammatic representation established above. Specif-
ically, one can simplify the correlations depicted in (14), by applying (16) at the edge of the
rectangular area with neighbouring |◦〉 states.

a

b
b

a

a

b

Repeating this process, we observe that the diagram trivialises to the second term of (12) and
thus the connected correlations vanish. As long as this type of edge exists, the correlations
will vanish except, when the surface area of the cross-section is zero and the parities of the
sites of the local observables are the same. This would imply, that either of the sides of the
cross-section has length zero, and the rectangle reduces to just a line segment of length 2t,
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F+ F−

Figure 4: The graphical representation of two different types of transfer operators
F±. On the left (right) is the transfer operator appearing on the right (left) moving
light edge on (18).

with the local observables at the edges. From Fig. 2, one can see that depending on the parity
of the site i there are two different types of line segments

a b

b a

i = even,

i = odd.

C+a,b(vc t, t) =

C−a,b(−vc t, t) =

(18)

When i is even, the correlations survive along the right-moving light edge, and when i is odd
it is the same for the left-moving edge. In fact, one only has to study correlations of single
chirality, since the correlations with opposite chirality, can be obtained via reflection of the
circuit. As can be seen in Fig. 2, a reflection with respect to the axis passing between the
points (N/2− 1, N/2) (which implies that every site i = 0, . . . , N − 1 is mapped to N − 1− i),
exchanges the two edges of the causal-cone. Furthermore, this reflection does not only change
the parity of the sites but also the order of the input and output states, and thus the local gate
is transformed as PΦ→ P ◦PΦ ◦ P, where P is the Swap operation.

The correlations in (18) can be expressed in terms of two different one-site transfer op-
erators. In particular, we define linear maps F± : L2(M) → L2(M), where ± corresponds to
even/odd parity respectively. Graphically the transfer operators are represented in Fig. 4

Here one can also observe the reflection property mentioned above, which maps the trans-
fer operator of one chirality to the other. For this reason, from now on we are going to omit
the label ± and focus only on the right moving light-cone edge with F+ ≡ F . Afterwards,
according to (18), the correlations along the edges of the light cone take the form

Cab(2t; t) = 〈◦|b̂ F2t â|◦〉 − 〈◦|b̂|◦〉〈◦|â|◦〉 . (19)

This is an important exact result, which shows that in dual-symplectic circuits, the correlations
are determined explicitly by transfer operators acting on a single site. The operator F is in
general not Hermitian, but as proven in the Appendix B, it is positive, and a weak contraction.
Assuming that it has a pure point spectrum, as will be the case in the spin chain examples
studied below, its spectral decomposition reads

F =
∞
∑

i=0

µi |µR
i 〉 〈µ

L
i | , (20)

where we indicated the left and right eigenvectors as |µR
i 〉, 〈µ

L
i |, and ordered the eigenvalues

as |µ0| ≥ |µ1| ≥ . . .. As it is a weak contraction, its spectrum lies in the unit disk, |µi| ≤ 1. We
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Table 1: The table with all the different levels of ergodicity, with respect to the non-
trivial eigenvalues.

should also note, that as proved in [32], the eigenvalues with |µi| = 1 have equal algebraic
and geometric multiplicity, and thus their Jordan blocks are trivial. A direct consequence of
the dual-symplectic nature of PΦ, is that the uniform measure is invariant under the action of
F . Therefore, the transfer operator always has the trivial eigenvalue µ0 = 1 with |µR

0〉 = |◦〉
and 〈µL

0 |= 〈◦|. Plugging the spectral decomposition (20) in Eq. (19), we obtain:

Cab(vc t; t) =
∞
∑

i=1

〈◦|b̂|µR
i 〉 〈µ

L
i |â|◦〉µ

2t
i , (21)

where the i = 0 term in the sum cancels with the second term in Eq. (19).
Note that the spectrum of F can be used to analyse the ergodicity of single-site observ-

ables. Depending on how many non-trivial eigenvalues are equal to 1 or have a unit modulus,
dual-symplectic circuits can demonstrate different levels of ergodicity, as we show in Table 1.
In particular, in the non-interacting case, all eigenvalues are unimodular with |µi| = 1, and
all correlations either remain constant or oscillate around zero, and in the non-ergodic case,
where more than one but not all eigenvalues are equal to 1, the correlations decay to a non-
thermal value. When the system is ergodic and non-mixing, all non-trivial µi are not equal to
1, and at least one of them has unit modulus leading to correlations which oscillate around
zero, and thus their time averages vanish at long times. Finally, for an ergodic and mixing
system, all µi are within the unit disk and all correlations decay to zero. A general example
for the non-interacting case is the dual-symplectic local gate PΦ = P ◦(Pφ1

⊗Pφ2
)with P being

the Swap gate and φ1,φ2 being single-site symplectic maps.

4 The Ising swap model

Previously, we were studying an abstract dual-symplectic circuit. In order to test our general
analytical results, we now focus on a 1D classical spin chain, where the local phase space is
the unit sphere M ≡ S2. We denote the coordinates as X⃗ i ≡ S⃗i with the constraint |S⃗i| = 1,
and introduce the 3-parameter family of dual-symplectic local gates, which read

Φ(α,β ,γ) :=
�

Rx(β)⊗ Rx(γ)
�

◦ Iα ◦
�

Rx(γ)⊗ Rx(β)
�

. (22)

Here, the operation Rn(θ ),θ ∈ [0, 2π) denotes a single spin rotation – SO(3) rotation matrix
– with respect to axis n ∈ {x , y, z} by the angle θ . We denote with Iα, the Ising Swap gate,
whose action on a pair of sites reads

Iα(S⃗1, S⃗2) =
�

Rz(αSz
1)S⃗2, Rz(αSz

2)S⃗1

�

, (23)

with α being the coupling constant of the interactions, Rz(θ ) is a rotation around the z-axis
and Sz

i is the z-component of S⃗i . Assuming the SO(3) Poisson bracket on the unit sphere

{Sa
i , Sb

j }= δi jεabcS
c
i , (24)
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with εabc being the Levi-Civita symbol, it is easy to recognize Eq. (23) as the symplectic evo-
lution of two sites under the Hamiltonian H12 = αSz

1Sz
2 for a time step δt = 1, followed by a

Swap operation (Sn
1 , Sn

2)→ (S
n
2 , Sn

1). The spin variables, as we can see from (24), are not the
pairs (q, p) of conjugate variables, as would be expected in symplectic dynamics. In general,
there is not a unique choice of conjugate variables since a symplectic transformation maps
from one set of conjugate variables to another. However, here we choose the pairs ϕi , zi with
zi being the cartesian coordinate along the z-axis and ϕi the azimuthal angle of the i-th site
and so they satisfy

{ϕi , z j}= δi j , {ϕi ,ϕ j}= {zi , z j}= 0 . (25)

The spin variables are just vectors of the unit sphere, namely, they are related to ϕi , zi in the
following way

S x
i =

q

1− z2
i cos(ϕi) , S y

i =
q

1− z2
i sin(ϕi) , Sz

i = zi , (26)

and one can check that (26) satisfies the SO(3) Poisson bracket (24).
We explicitly demonstrate in Appendix C, that (22) satisfies (15), allowing us for equivalent

interpretations of the diagrams in both time and space directions. Following the same method
as employed in Appendix A one finds that the space-time dual of our model is defined as

Φ̃(α,β ,γ) ≡ (1⊗ (−1)) ◦Φ(α,−β ,γ) ◦ ((−1)⊗ 1) , (27)

where we indicated by 1 the identity map and by −1 the change of sign of all components
Sa

i → −Sa
i . Thus the dual dynamics differs from the temporal one, by a simple sign-gauge

transformation. As described in [15], our map Φ(α,β ,γ) is space-time self-dual because flip-
ping of the spins in a checkerboard pattern recovers spatial dynamics from the temporal one.
Dual-symplectic circuits with local gates (22) accommodate both ergodic and integrable cases
depending on the choice of parameters. For example, for α = 0 the model becomes a trivial
non-interacting one and so integrability is expected. Another integrable case is when both
β ,γ take either of the values 0,π, where the dynamics preserve the z-components of the spins
along their respective light rays leading to conserved extensive quantities along the parity’s bi-
partition of the lattice. This type of local conserved quantities are called gliders and have been
previously studied in dual-unitary quantum circuits [33]. Later, in (33) we provide analytical
results for the auto-correlation of the z-components at integrable points when they do not de-
cay to zero. These models are also known as super-integrable as they support an exponentially
large number of extensive conserved quantities, which can be obtained by summing arbitrary
products of z-components along the aforementioned bipartitions, e.g. Q =

∑

i zizi+2zi+4. At
the integrable points of parameter space, the trajectories in phase space are bounded on invari-
ant tori and the Lyapunov spectrum vanishes [34], whereas away from those points chaotic
behaviour is expected to arise. In Fig. 5, we present some examples of the Lyapunov spec-
trum at chaotic points of our Ising Swap model, where it demonstrates a positive maximal
Lyapunov exponent and thus sensitivity to initial conditions, which is a characteristic property
of a chaotic system.

Having chosen, our family of local gates we proceed with the calculation of the correlations.
As explained in the general formalism of Sec. 3.2, this requires the calculation of the transfer
operators F , acting on the single-site functions. In Appendix D, we present an analytical
calculation of the transfer operator, in both the phase space and the density space:

f = Rx(γ)Q(α)Rx(γ) , F ≡ P f , (28)

with Q(α) = 1
2

∫ 1
−1 dz′Rz(αz′) and f : M → M . The transfer operator is the Frobenius-Perron

operator of f , and its kernel is given in the same way as in (7), for a single site phase space.
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Figure 5: Lyapunov spectrum λi of the Ising Swap model, for two different coupling
constants α = 0.4,1, angles β =

p
2π,γ =

p
3π/2 and system size N = 200. The

figures were obtained for t = 800 and a sample size of Nsample = 104 initial states
drawn from the uniform measure. The black circles represent the Lyapunov spec-
trum at every 10 exponents at time t = 700 showing an excellent time convergence
for λi . The spectrum is symmetric with respect to the horizontal axis, as expected
for a symplectic system and has a positive maximal Lyapunov exponent indicating
chaoticity for Φα,β ,γ.

Rotations preserve the total angular momentum and since, F , according to (28), is a compo-
sition of rotations it shares the same property, as shown in the Appendix D. More explicitly, we
denote as Ji , i = x , y, z the generators of single-site rotations, and J2 =

∑

i J2
i as the angular-

momentum-squared which satisfies [J2, Ji] = 0,∀i and thus, commutes with every rotation
operation. Therefore, F commutes with the total angular momentum operator and thus, has
a block-diagonal form in its eigenvalues, as we demonstrate in Appendix D. However, this is
not a consequence of an underlying rotational symmetry but rather of the specific form of
the local gate PΦα,β ,γ

. Indeed, the Ising swap gate in PΦα,β ,γ
involves a non-linear rotation, i.e.

a rotation whose angle depends on the z component of the neighbouring spin. Because of
this nonlinearity, it is not block- diagonal with respect to the eigenvalues of J2, as we show
in Appendix E. Nonetheless, in going from the local gate PΦα,β ,γ

to the transfer operator F ,
the neighbouring site is, by definition Fig. 4, in the equilibrium state, so that its z component
can be integrated over, thus leading to the operator Q(α), which is a linear superposition of
rotations.

It is worth noting, that (28) is completely independent of β . The correlation with the
opposite chirality is simply recovered from the middle point reflection P ◦PΦα,β ,γ

◦ P = PΦα,γ,β
,

which is equivalent with changing β ,γ→ γ,β .
The fact that (28),(22) are expressed in terms of rotations, suggests the use of spherical

harmonics as a convenient basis for the L2 density space, and indeed in Appendices D, E, we
obtain analytical expressions for their representations on this basis. We choose the conjugate
variables z,ϕ for the parametrization of S2. Then, the spherical harmonics |ℓ, m〉 → Yℓ,m(z,ϕ)
for ℓ= 0,1, . . . and |m| ≤ ℓ form a suitable orthonormal basis for L2 functions. Our approach
is based on finding the representation of the transfer operator on this basis. As we already
mentioned, the transfer operatorF preserves the total angular momentum and thus has a block
diagonal form in ℓ, with each block having dimension 2ℓ+1. It follows, that the eigenvectors
and eigenvalues in Eq. (20), can be indexed by a block index ℓ and an index m̃ within each
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block. Thus, Eq. (21) assumes the form

Ca,b(2t, t) =
∞
∑

ℓ=1

ℓ
∑

m̃=−ℓ

〈◦|b̂|µR
ℓ,m̃〉 〈µ

L
ℓ,m̃|â|◦〉µ

2t
ℓ,m̃ . (29)

From this expression, it follows that if the local observables |ax〉, |by〉 lie within a finite number
of total angular momentum subspaces, then the sum in Eq. (29) contains a finite number of
terms. In particular, only the common values of ℓ between the two observables will matter.
For example, the observable a(z,φ) = z2 has non-vanishing overlaps, only for ℓ = 0,2. Simi-
larly, any polynomial in the variable z involves a finite number of blocks. This is an important
property of our system, proved in Appendix F, since it suggests that a finite set of exponentials
(in t) fully captures the behaviour of the 2-point correlations, whenever one of the two ob-
servables a, b involves only a finite number of ℓ blocks. In practice, one can calculate the exact
dynamical correlations, by diagonalizing the relevant finite-dimensional blocks of F . More-
over, observables which have no such overlapping subspaces lead to vanishing correlations for
every t.

At this point, we provide some analytical results for the choice of a(z,φ) = zn , b(z,φ) = z
with n ∈ Z+. In this case, a has non vanishing overlaps for ℓ = 0, 2, . . . n, if n even and
ℓ = 1,3, . . . n, if n odd and b for ℓ = 1. We can see that for the case of n even, there are no
common overlapping subspaces between the two observables, and thus the correlations vanish
for all t. However, when n is odd, the correlations depend only on the ℓ = 1 block of F , and
by using (28) one can explicitly find, that the eigenvalues of this block are the following

µ1,0 =
sin(α)
α

,

µ1,−1 =
(α+ sin(α)) cos(2γ)−∆(α,γ)

2α
,

µ1,1 =
(α+ sin(α)) cos(2γ) +∆(α,γ)

2α
,

(30)

where ∆(α,γ) =
p

(α+ sinα)2 cos2(2γ)− 4α sin(α). Since only the ℓ = 1 subspace con-
tributes we only need the overlaps of the observables with this subspace,

〈1m|zn〉=
2
p

3π
n+ 2

δm,0 . (31)

The observable zn does not depend on the azimuthal angle, and therefore it depends only on
the spherical harmonics |ℓm〉 with m = 0. By diagonalizing the block of F , that corresponds
to ℓ= 1 and using (30),(31), one can recover the exact expression for the correlations:

Ca,b (2t, t) =
1

22t+1(n+ 2)

�

E+(t) + E−(t)
�

,

E±(t) =
�

1±
α− sinα
∆

)
�

(α+ sinα) cos(2γ)±∆
α

�2t

,
(32)

where the other chirality is recovered with γ→ β . In the special integrable cases, one finds

lim
α→0

Ca,b (2t, t) =
cos(4γt)

2+ n
, lim

γ→0
Ca,b (2t, t) =

1
2+ n

. (33)

In Fig. 6, we present the results of the numerics, which show, that the correlations survive
only along the edges of the causal cone, and verify (32) in the case of n= 1. Here it is important
to note, that we make use of the symmetries of our circuit for the numerical evaluation of the
correlations. In particular, apart from the 2-site translation invariance, there is also a 1 time
step translation invariance, because the correlations are evaluated over the invariant measure,
and both of these symmetries allow us to perform averaging, over a larger sample size and
obtain more accuracy for the numerical data.
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Figure 6: Auto-correlations for the Sz spin component, normalized by the maximum
value Ca,b(0,0) for systems with N = 128, 1024 spins, the parameters α = 0.3 and

β =
p

2
4 π,γ =

p
2

2 π, and with a sampling size of Nsample = 5 × 104 for the ini-
tial conditions. (a): The space-time correlator |Ca,b(x , t)/Ca,b(0,0)| for N = 128
where we can observe that it vanishes away from the edge (x = vc t) of the causal
cone. (b): The comparison of the theoretical result for |Ca,b(x , t)/Ca,b(0,0)|, ob-
tained from (32), on the right edge of the causal cone with exact diagonalization
for F in the ℓ = 1 subspace. The numerical results are obtained for two different
system sizes N = 128,1024 and shown with the time step of 5 on a log scale. The
dashed line represents the time moment t = N/4 for the system of length N = 128,
where our theory (which gives the results in the thermodynamic limit) no longer
applies. The numerical results for the system with length N = 128, no longer agree
with the exact results after this time moment, but a larger system N = 1024 demon-
strates excellent agreement with the theory at longer times. (c): The comparison of
Ca,b(x , t)/Ca,b(0,0) on the right edge of the causal cone, shown using a linear scale
for the vertical axis.

5 Conclusion

We have provided an exact approach for the calculation of the dynamical correlation functions
in dual-symplectic classical circuits, showing that the correlations do not vanish only along
the edges of the light cones, and are completely specified in terms of a weakly contracting
and positive single-site transfer operator. We would like to stress, that our method is valid not
only for dual-symplectic systems, as it is easy to check that any local gate Φ which is volume
preserving and which also has a volume-preserving dual map Φ̃ and satisfies (15), satisfies
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also (16) and exhibits the same diagrammatic behaviour. Every symplectic map is volume and
orientation-preserving, but the group of symplectic diffeomorphisms is significantly smaller
than that of the volume-preserving ones (Non-squeezing theorem [35]). Consequently, there
is a larger set of dynamical ergodic systems, which exhibit our diagrammatic representation,
having correlations, which vanish everywhere except the edges of the light-cone. In addition,
we prove that for the important case of the Ising Swap model, the transfer operator exhibits a
block-diagonal form, which leads to an expansion, involving only the common ℓ subspaces of
the observables. This property has a great advantage, as truncation is not required, and one
can obtain analytical results using exact diagonalization within each (finite) block.

We close with some naturally arising questions. Is it possible to find a more general charac-
terization or complete parametrization of the dual symplectic circuits which may help in, also
finding a parametrization of dual-unitary gates [32] to larger than qubits local spaces? Could
one find exact results for other initial densities as has already been demonstrated in the dual
unitary case [31]? Our formalism can be a stepping stone to studying these types of questions
for the novel class of dual-symplectic systems.
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A Dual picture and the change of variables

In this Appendix, we obtain analytically the extra condition, that comes from demanding the
diagrammatic representation to be equivalent in both the original and the dual picture. We
start with the simple case of two sites, and thus we are working in the phase space M2. Assum-
ing two arbitrary scalars A, B ∈ L2(M2), we are interested in the Hermitian product 〈B|PΦ|A〉,
which corresponds to the following diagram,

A

B

Φ

Φ̃

〈B|PΦ|A〉 =
(A.1)
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With the help of (6),(7) on can write (A.1) as an integral

〈B|PΦ|A〉=
∫

dX⃗1dX⃗2dX⃗ ′1dX⃗ ′2 A(X⃗1, X⃗2)B
∗(X⃗ ′1, X⃗ ′2)δ

�

(X⃗ ′1, X⃗ ′2)−Φ(X⃗1, X⃗2)
�

, (A.2)

in the time direction. If the same diagram can be interpreted equivalently in the dual picture
one should obtain that

〈B|PΦ|A〉=
∫

dX⃗1dX⃗2dX⃗ ′1dX⃗ ′2 A(X⃗1, X⃗2)B
∗(X⃗ ′1, X⃗ ′2)δ

�

(X⃗2, X⃗ ′2)− Φ̃(X⃗1, X⃗ ′1)
�

, (A.3)

where we used the definition of the dual map, as presented in Fig. 3, and exchanged the input
from being the local states in space (X⃗1, X⃗2) to local states in time (X⃗1, X⃗ ′1). In order for both
(A.2),(A.3) to be valid one has to demand that

δ
�

(X⃗ ′1, X⃗ ′2)−Φ(X⃗1, X⃗2)
�

= δ
�

(X⃗2, X⃗ ′2)− Φ̃(X⃗1, X⃗ ′1)
�

. (A.4)

The equivalence of the delta functions implies the equivalence of the change of variables from
one picture to the other and thus imposes a restriction on the Jacobian of this transformation.
In particular, we define g(X⃗1, X⃗2, X⃗ ′1, X⃗ ′2) = (X⃗

′
1, X⃗ ′2)− Φ(X⃗1, X⃗2) and assume that we want to

change variables with respect to X⃗2, X⃗ ′2 . Then from (A.4), one obtains

δ
�

g(X⃗1, X⃗2, X⃗ ′1, X⃗ ′2) = 0
�

|det(Dg)|
= δ

�

(X⃗2, X⃗ ′2)− Φ̃(X⃗1, X⃗ ′1)
�

, (A.5)

where Dg is the Jacobian matrix of the transformation g with respect to X⃗2, X⃗ ′2, and it is found
as

Dg =





− ∂Φ
1(X⃗1,X⃗2)
∂ X⃗2

0

− ∂Φ
2(X⃗1,X⃗2)
∂ X⃗2

1



 , (A.6)

where we decomposed Φ into single-site outputs

Φ(X⃗1, X⃗2) =
�

Φ1(X⃗1, X⃗2),Φ
2(X⃗1, X⃗2)

�

. (A.7)

The solutions of g(X⃗1, X⃗2, X⃗ ′1, X⃗ ′2) = 0 with respect to X⃗1, X⃗ ′1, are the points of the dual map
(X⃗2, X⃗ ′2) = Φ̃(X⃗1, X⃗ ′1), and if we assume that Φ has a unique and bijective dual map then from
(A.5) we obtain that

δ
�

(X⃗2, X⃗ ′2)− Φ̃(X⃗1, X⃗ ′1)
�

|det(Dg)|
= δ

�

(X⃗2, X⃗ ′2)− Φ̃(X⃗1, X⃗ ′1)
�

. (A.8)

This is true in M2 if |det(Dg)|= 1, which according to (A.6) leads to
�

�

�

�

det

�

∂Φ1(X⃗1, X⃗2)

∂ X⃗2

��

�

�

�

= 1 , ∀ X⃗1, X⃗2 ∈ M ×M . (A.9)

This is a necessary condition that the local gate Φ has to satisfy, in order for the diagrammatics
to be equivalent in both the time picture and the dual picture.

We continue by showing that, as expected, (A.9) implies a respective condition for Φ̃,
meaning that, we get an equivalent result, even when the change of variables happens from the
dual picture back to the original one. Firstly, if we denote the output of as Φ(X⃗1, X⃗2) = (X⃗ ′1, X⃗ ′2),
from (A.7) we obtain:

X⃗ ′1 = Φ
1(X⃗1, X⃗2) , (A.10)

X⃗ ′2 = Φ
2(X⃗1, X⃗2) . (A.11)
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Since, by the definition (X⃗2, X⃗ ′2) = Φ̃(X⃗1, X⃗ ′1) we need to find X⃗2, X⃗ ′2 as functions of X⃗1, X⃗ ′1 and
thus we invert (A.10) with respect to X⃗2 and replace it in (A.11),

X⃗2 = (Φ
1
X⃗1
)−1(X⃗ ′1) ,

X⃗ ′2 = Φ
2
�

X⃗1, (Φ1
X⃗1
)−1(X⃗ ′1)

�

,

where we assume that the first output Φ1(X⃗1, X⃗2) = Φ1
X⃗1
(X⃗2) is a family of invertible maps

Φ1
X⃗1

: M → M for every X⃗1 ∈ M . Finally the dual map of Φ reads

Φ̃(X⃗1, X⃗ ′1) =
�

(Φ1
X⃗1
)−1(X⃗ ′1),Φ

2
�

X⃗1, (Φ1
X⃗1
)−1
�

X⃗ ′1)
�

�

. (A.12)

Then, from (A.9), one can deduce that the inverse of Φ1
X⃗1
(X⃗2) has also a Jacobian equal to one,

�

�

�

�

�

�

det

 

∂ (Φ1
X⃗1
)−1(X⃗ ′1)

∂ X⃗ ′1

!

�

�

�

�

�

�

= 1 , (A.13)

which is exactly the respective condition (A.9) for the dual map Φ̃, and thus making this con-
dition consistent with the the dual operation, being an involution.

One can follow the same procedure for the case when the diagrams are being interpreted
from right to left and thus, the change of variables we need to perform in (A.4) is with respect
to X⃗ ′1, X⃗1. This is equivalent to defining a dual map as in Fig. 3, but with the swapping of the
other diagonal of the legs of Φ. This dual map is the solution of g(X⃗1, X⃗2, X⃗ ′1, X⃗ ′2) = 0 with
respect to X⃗ ′1, X⃗1. Similarly, we demand that Φ2(X⃗1, X⃗2) = Φ2

X⃗2
(X⃗1) is a family of invertible

maps Φ2
X⃗2

: M → M for every X⃗2 ∈ M , and we obtain the extra condition

�

�

�

�

det

�

∂Φ2(X⃗1, X⃗2)

∂ X⃗1

��

�

�

�

= 1 , ∀ X⃗1, X⃗2 ∈ M ×M . (A.14)

In addition, one can prove, in the same manner as for (A.13), that (A.14) is consistent with
the dual map being an involution.

B Weak contractivity and positivity of F±
In this Appendix, we show, that the single-site transfer operator F (≡ F+) is a weak contrac-
tion, as well as being a positive operator. First, as mentioned in the main text, the map PΦ is
unitary in L2(M × M) since it preserves the L2-norm. Then according to this, from (D.1) we
can obtain for every ρ1,ρ2 ∈ L2(M):

|〈ρ1|F |ρ2〉|= |(〈◦| ⊗ 〈ρ1|) PΦ (|ρ2〉 ⊗ |◦〉)| ≤ ∥ |◦〉 ⊗ |ρ1〉∥2 ∥PΦ (|ρ2〉 ⊗ |◦〉)∥2
= ∥ |◦〉 ⊗ |ρ1〉||2 ∥ |ρ2〉 ⊗ |◦〉∥2 = ∥ρ1∥2 ∥ρ2∥2 ,

(B.1)

where we used the Cauchy-Schwarz inequality and the fact, that the state |◦〉 is normalised.
Now by setting |ρ1〉= F |ρ2〉, one recovers

∥F |ρ2〉∥2 ≤ ∥ρ2∥2 , (B.2)

for every ρ2 ∈ L2(M). This suggests that the single-site transfer operator is a weak contraction.
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The positivity is a direct consequence of the properties of the Frobenius-Perron operator.
In particular, let us assume that ρ ∈ L2(M) and X⃗ ∈ M . Then we are interested in the value of
the scalar 〈X⃗ |F |ρ〉. It is sufficient to prove, that it is always positive if ρ ≥ 0. The calculation
is based on the use of Eq. (D.1), from which we get

〈X⃗ |F |ρ〉= (〈◦| ⊗ 〈X⃗ |) PΦ (|ρ〉 ⊗ |◦〉) . (B.3)

The scalar |◦〉 → u◦(X⃗ ) = 1/
p

|M | is positive, thus if we assume ρ ≥ 0 then
|ρ〉⊗|◦〉 → (ρu◦)(X⃗1, X⃗2) = ρ(X⃗1)u◦(X⃗2) is also a non-negative scalar. Now as the last step, we
need to note that PΦ is a Frobenius-Perron operator, which by definition is positive and thus
implies that PΦ (|ρ〉 ⊗ |◦〉 ≥ 0. As a consequence the value (B.3), is non-negative for every
X⃗ ∈ M meaning that

F |ρ〉 ≥ 0 , for any ρ ≥ 0 ∈ L2(M) .

In the same way, one can prove these properties for F− as well.

C Diagrammatic equivalence’s conditions for Φα,β ,γ

In this part, we will show, that our Ising Swap model satisfies Eq. (15) for classi-
cal spin variables in S2. We start by decomposing (22) into single site components
Φα,β ,γ(S⃗1, S⃗2) =

�

Φ1
α,β ,γ(S⃗1, S⃗2),Φ2

α,β ,γ(S⃗1, S⃗2)
�

= (S⃗′1, S⃗′2) with

S⃗′1 = Rx(β)Rz

�

α(Rx(γ)S⃗1)
z
�

Rx(β)S⃗2 , (C.1)

S⃗′2 = Rx(γ)Rz

�

α(Rx(β)S⃗2)
z
�

Rx(γ)S⃗1 . (C.2)

First, we observe that, Φ1
α,β ,γ(S⃗1, S⃗2) = Rx(β)Rz

�

α(Rx(γ)S⃗1)z
�

Rx(β)S⃗2 and

Φ2
α,β ,γ(S⃗1, S⃗2) = Rx(γ)Rz

�

α(Rx(β)S⃗2)z
�

Rx(γ)S⃗1, which makes its Jacobian matrix over S⃗2 and

S⃗1 respectively, a composition of rotations and implies that

�

�

�

�

�

det

 

∂Φ1
α,β ,γ(S⃗1, S⃗2)

∂ S⃗2

!�

�

�

�

�

=
�

�det
�

Rx(β)Rz

�

α(Rx(γ)S⃗1)
z
�

Rx(β)
��

�= 1 , ∀ S⃗1, S⃗2 ∈ S2 ×S2 ,

�

�

�

�

�

det

 

∂Φ2
α,β ,γ(S⃗1, S⃗2)

∂ S⃗1

!�

�

�

�

�

=
�

�

�

Rx(γ)Rz

�

α(Rx(β)S⃗2)
z
�

Rx(γ)
��

�= 1 , ∀ S⃗1, S⃗2 ∈ S2 ×S2 .

D Block-diagonal form of the operator F±
In this Appendix, we calculate the matrix of the one-site transfer operator in terms of spherical
harmonics and prove that it has a block-diagonal form in ℓ. Our calculation is based on the
interpretation of Fig. 4. In particular, for a general local gate, one can interpret F± either in
the time direction, where the dynamics are performed by Φ, or in the space direction, where
we can use the dual picture with Φ̃. Both of these pictures are equivalent, but here we choose
the former one. As in the main text, we focus on the right-moving chirality F+ ≡ F and omit
the ± label. According to this choice, one can see from Fig. 4, that the transition amplitudes
of F for two arbitrary densities (functions) ρ1,ρ2 from L2(M) are the following

〈ρ1|F |ρ2〉= (〈◦| ⊗ 〈ρ1|) PΦ (|ρ2〉 ⊗ |◦〉) . (D.1)
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We note that this holds for any dual-symplectic gate. We focus on the Ising Swap model, where
since |◦〉= |00〉 in the basis spherical harmonics one can use (D.1),(E.6),(E.7) to obtain

〈ℓm|F |ℓ′m′〉= 〈00,ℓm|PΦα,β ,γ
|ℓ′m′, 00〉= δℓ,ℓ′

ℓ
∑

q2=−ℓ

〈ℓm|PRx (γ)|ℓq2〉
sin(αq2)

aq2
〈ℓq2|PRx (γ)|ℓm

′〉 ,

(D.2)
where we used that T (0) = 1, C0,0,0

0,0,0 = 1 and j0(x) = sin(x)/x , and the fact that a constant
scalar is invariant under rotations, thus 〈00|PRx (β)|00〉 = 1. This expression can be further
simplified by defining the map Q(α) : M → M

Q(α) =
1
2

∫ 1

−1

dz′Rz(αz′) . (D.3)

The spherical harmonics form the eigenbasis of the Frobenius-Perron operator of rotations
around the z−axis and in particular 〈ℓ1m1|PRz(θ )|ℓ2m2〉= e−im1θδℓ1,ℓ2δm1,m2

for a rotation of
an angle θ ∈ [0, 2π). Then, using this in (D.3) and performing the integration, one recovers
the representation of PQ(α) : D(M)→ D(M).

〈ℓ1m1|PQ(α)|ℓ2m2〉=
sin(αm1)
αm1

δℓ1,ℓ2δm1,m2
, (D.4)

and we finally obtain the exact form of the transfer operator

F = PRx (γ)PQ(α)PRx (γ) , (D.5)

and this implies that the latter is a Frobenius-Perron operator of the local phase-space map
f : M → M :

f = Rx(γ)Q(α)Rx(γ) , F ≡ P f . (D.6)

We have managed to obtain the exact form of the transfer operator, in both the density space
and pointwise map in phase space, and as we can see in (D.2), it is block-diagonal in the
total angular momentum ℓ. The results for F− can be found using the middle point reflection
β ,γ→ γ,β .

E Representation of PΦ(α,β ,γ)
in spherical harmonics

In this Appendix, we present the calculation of the matrix elements of the Frobenius-Perron
operator PΦ(α,β ,γ)

of the local gate in the basis of spherical harmonics. We denote this basis as
|ℓ, m〉 → Yℓ,m ℓ = 0, . . . ,∞ , |m| ≤ ℓ, which is clearly orthonormal with respect to the inner
product (6):

〈ℓ1m1|ℓ2m2〉=
∫

S2

dX⃗ Y ∗ℓ1m1
(X⃗ )Yℓ2m2

(X⃗ ) = δℓ1,ℓ2δm1,m2
. (E.1)

As follows from (22), the local gate is composed of local single-site rotations Rx(θ ), θ ∈[0,2π),
together with the Ising Swap gate Iα. The rotations around the x-axis are trivially known in the
basis of spherical harmonics as PRx (θ ) = D(−π/2,θ ,π/2)where D is the Wigner-D matrix [36]
and is block diagonal in ℓ (〈ℓ1m1|D|ℓ2m2〉 = 0 when ℓ1 ̸= ℓ2). Thus, we only require the
representation of Iα. Our approach is based on finding the kernel of the Ising gate on S2×S2,
and then using this result to obtain its representation on |ℓ, m〉.

We already know from (23), how Iα acts on two spins and this leads to the following kernel

PIα(X⃗1, X⃗2, X⃗3, X⃗4) = δ
�

X⃗1 − Rz(αz3)X⃗4

�

δ
�

X⃗2 − Rz(αz4)X⃗3

�

, (E.2)
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(one should mention that we choose polar coordinates X⃗ i = (zi ,ϕi) i = 1, . . . , 4 for the
parametrization of the unit sphere). This operation couples two spins and thus by using (6)
in the basis of two-spherical harmonics we obtain

〈ℓ1m1,ℓ2m2|PIα |ℓ3m3,ℓ4m4〉= δm1,m4
δm2,m3

×
∫

S2

dX⃗3dX⃗4 Y ∗ℓ1m1
(Rz(αz3)X⃗4)Yℓ4m4

(X⃗4) Y ∗ℓ2m2
(Rz(αz4)X⃗3)Yℓ3m3

(X⃗3) . (E.3)

The Kronecker deltas come from the integration over ϕ3,ϕ4, and in the expression above we
can see the coupling of the rotations with the z-component of each other’s vector. In order
to continue our calculation, we have to note that a rotation around the z-axis is a translation
over the azimuthal angle, so that the spherical harmonics satisfy Yℓ,m(Rz(θ )X⃗ ) = Yℓ,m( x⃗)eimθ .
Based on this property one can decouple the z-components in the following way

〈ℓ1m1,ℓ2m2|PIα |ℓ3m3,ℓ4m4〉

=

∫

S2

dX⃗3dX⃗4 Y ∗ℓ1m1
(Rz(α

m2

m1
z4)X⃗4)Yℓ4m4

(X⃗4) Y ∗ℓ2m2
(Rz(α

m1

m2
z3)X⃗3)Yℓ3m3

(X⃗3) . (E.4)

At this point, we have managed to couple the rotations Rz of one spin with its own z- com-
ponent. This type of nonlinear rotation is called ‘torsion’ T (a)X⃗ = Rz(az)X⃗ (where a is the
coupling constant with T (0) = 1) and its representation in spherical harmonics has been ob-
tained in [37]. In particular, it was found that

〈ℓm|PT (a)|ℓ′m′〉= δm,m′(−1)m
Æ

(2ℓ+ 1) (2ℓ′ + 1)
ℓ+ℓ′
∑

p=|ℓ−ℓ′|

(−i)p jp(−ma)Cℓℓ
′p

000 Cℓℓ
′p
−mm0 , (E.5)

where jp is the spherical Bessel function and Cℓ1,ℓ2,ℓ3
m1,m2,m3

are the Clebsch-Gordan coefficients.
Finally, we obtain the representation of the Ising Swap gate

〈ℓ1m1,ℓ2m2|PIα |ℓ3m3,ℓ4m4〉= 〈ℓ1m1|PT (αm2
m1
)|ℓ4m1〉 〈ℓ2m2|PT (αm1

m2
)|ℓ3m3〉 δm1,m4

δm2,m3
.

(E.6)
This expression is valid also in the case when m1, m2 = 0 since, as we can observe from (E.5),
the denominators cancel in the argument of jp. Now, we only need to combine all of the above,
which leads to the following representation

〈ℓ1m1,ℓ2m2|PΦα,β ,γ
|ℓ3m3,ℓ4m4〉

=
ℓ1,ℓ2
∑

q1,q2=−ℓ1,−ℓ2

〈ℓ1m1|PRx (β)|ℓ1q1〉〈ℓ4q1|PRx (β)|ℓ4m4〉〈ℓ2m2|PRx (γ)|ℓ2q2〉〈ℓ3q2|PRx (γ)|ℓ3m3〉

× 〈ℓ1q1|PT (α q2
q1
)|ℓ4q1〉 〈ℓ2q2|PT (α q1

q2
)|ℓ3q2〉 . (E.7)

F The modes which contribute to the correlations

In this Appendix, we prove, that the only contributing ℓ-subspaces to the correlations are the
common ones of the expansions of the observables over the spherical harmonics. We denote
these subspaces as V ℓ = span({|ℓ, m〉}ℓm=−ℓ). The proof is a consequence of the block diagonal
form of F (≡ F+). Specifically, the transfer operator is block diagonal in ℓ, meaning, that it is

the direct sum F =
∞
⊕
ℓ=0

Fℓ, where Fℓ are the blocks of each total angular momentum subspace.
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It is thus convenient to work in the picture where the Hilbert space L2(S2) =
∞
⊕
ℓ=0

V ℓ is a direct

sum of the total angular momentum subspaces. Now according to this picture, the two local ob-

servables mentioned in the main text would also be decomposed as |a〉=
∞
⊕
ℓ=0
|aℓ〉 , |b〉=

∞
⊕
ℓ=0
|bℓ〉.

Assume, that their expansions over the spherical harmonics overlap only with a finite number
of V ℓ spaces, which we denote as ℓa

i i = 1, . . . , na and ℓb
j , j = 1, . . . , nb respectively. The in-

tegers na, nb are the total number of overlapping V ℓ of the observables. This would imply that
the components |aℓ〉, |bℓ〉 vanish trivially at the rest of the total angular momentum subspaces:

|aℓ〉= 0⃗ℓ , for ℓ ̸= ℓa
i ,

|bℓ〉= 0⃗ℓ , for ℓ ̸= ℓb
j ,

(F.1)

where 0⃗ℓ is the zero vector in V ℓ. Moreover, in this picture, the Hermitian product splits into
a sum of Hermitian products over V ℓ and by using |◦〉= |1〉/2

p
π, we obtain from (19)

Ca,b(t, t) =
1

4π

�

∞
∑

ℓ=0

〈aℓ|(Fℓ)2t |bℓ〉 −
1

4π
〈1|b〉〈1|a〉

�

=
1

4π

∑

ℓc ̸=0

〈aℓc |(Fℓc )2t |bℓc 〉 , (F.2)

where we applied (F.1) and now, one can observe, that the only non-vanishing terms are the
ones of the common subspaces ℓc between ℓa

i and ℓb
j . The space V 0 of the constant on S2

scalars, does not contribute to the correlations since it is being cancelled out from the sec-
ond term in (F.2). In addition, our result automatically implies, that only the eigenvalues of
Fℓc contribute and thus the exact 2-point function is defined by a finite set of exponentials.
One can obtain the results for the other chirality of correlations by using the middle point
reflection β ,γ→ γ,β .
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