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Abstract

The search for superconducting systems exhibiting nonreciprocal transport and, specif-
ically, the diode effect, has proliferated in recent years. This trend has encompassed a
wide variety of systems, including planar hybrid structures, asymmetric SQUIDs, and
certain noncentrosymmetric superconductors. A common feature of such systems is
a gyrotropic symmetry, realized on different scales and characterized by a polar vec-
tor. Alongside time-reversal symmetry breaking, the presence of a polar axis allows for
magnetoelectric effects, which, when combined with proximity-induced superconductiv-
ity, results in spontaneous non-dissipative currents that underpin the superconducting
diode effect. With this symmetry established, we present a comprehensive theoretical
study of transport in a lateral Josephson junction composed of a normal metal support-
ing the spin Hall effect, and attached to a ferromagnetic insulator. Due to the presence
of the latter, magnetoelectric effects arise without requiring external magnetic fields.
We determine the dependence of the anomalous currents on the spin relaxation length
and the transport parameters commonly used in spintronics to characterize the inter-
face between the metal and the ferromagnetic insulator. Therefore, our theory naturally
unifies nonreciprocal transport in superconducting systems with classical spintronic ef-
fects, such as the spin Hall effect, spin galvanic effect, and spin Hall magnetoresistance.
We propose an experiment involving measurements of magnetoresistance in the normal
state and nonreciprocal transport in the superconducting state. Such experiment would,
on the one hand, allow for determining the parameters of the model and thus verifying
with a greater precision the theories of magnetoelectric effects in normal systems. On
the other hand, it would contribute to a deeper understanding of the underlying micro-
scopic origins that determine these parameters.
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1 Introduction

Recently, there has been a significant surge of attention directed towards nonreciprocal trans-
port within superconducting structures. This heightened interest has been particularly focused
on the investigation of the superconducting diode effect (SDE) [1–22, 22–42], as well as the
study of spontaneous supercurrents, referred to as anomalous currents [43–57].

Both of these phenomena share a common origin and stem from the spin-galvanic effect
(SGE) [48], also known in the literature as the (inverse) Edelstein effect [48,58–64]. The SGE
involves the generation of charge currents from a spin accumulation and has been extensively
studied in non-superconducting systems. In the normal state, due to gauge invariance, the SGE
entails generating a charge current only from a nonequilibrium spin distribution, e. g. from
a steady spin accumulation induced by a time-dependent magnetic field [64]. In contrast, in
the superconducting state, gauge invariance does not prevent the generation of finite super-
currents from a static equilibrium spin polarization. This phenomenon is the superconducting,
dissipationless, counterpart of the SGE [48]. In Josephson junctions, it manifests through the
emergence of an anomalous phase denoted as φ0, which has been observed in numerous ex-
periments. If the current-phase relation of the junction contains second or higher harmonics,
φ0-junctions may demonstrate a critical current whose magnitude depends on the direction
of the applied current, which is known as the Josephson SDE [65].

Thus, the SGE in normal systems, anomalous currents, φ0-junctions, and the SDE all man-
ifest as different facets of the same phenomenon. In this introductory section, we collectively
refer to these manifestations as the SGE.

The SGE may appear in systems where time-reversal and inversion symmetries are broken.
Time-reversal symmetry can be broken by an external magnetic field or through the use of
ferromagnets. Meanwhile, it is a specific type of breaking the inversion symmetry that leads
to the emergence of the SGE, and consequently to anomalous currents and the SDE in the
superconducting state.

Formally, the appearance of magnetoelectric effects can be understood by considering the
possible tensors in a system. Spin, as a pseudovector si , with i = x , y, z, maintains its direction
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Figure 1: Illustration of generation of gyrotropy in a system via a polar vector on
different scales. The (vertical) polar vector can be generated on a microscopic level
in crystals with broken inversion symmetry (a), or via the junction geometry. This can
be done on a mesoscopic level via the interface between two materials (b), or even in
a macroscopic scale in devices such as in asymmetric SQUIDs (c). All these systems,
when subject to time reversal breaking, allow for magnetoelectric and nonreciprocal
transport effects.

upon inversion of the system. Therefore, in order for spin to be coupled to the supercurrent
Ji–a polar vector–it requires a connection through a second-rank pseudotensor [48,59]:

Ji = αilsl . (1)

This relation governs the interaction of spins or magnetic fields with electric current and is
essential for both the SGE in normal metals and non-reciprocal effects in superconductors. A
well-known example of systems satisfying Eq. (1) are two-dimensional Rashba conductors [26,
66–68]. These materials are characterized by a polar vector n perpendicular to the conducting
plane. Thus, the pseudotensor in (1) can be constructed through the contraction of the fully
antisymmetric pseudotensor, ϵi jk and the components of n: αil = ϵilknk.

In general, a second rank pseudotensor is allowed in bulk materials with a so call gy-
rotropic crystal structure, widely studied in the context of crystal optics [69] from where the
terminology is originating. The gyrotropy, underlying natural optical activity and the SGE,
implies a lack of inversion symmetry. However, it is important to emphasize that not all non-
centrosymmetric crystals exhibit gyrotropy. For example, zink blend materials, such as GaAs,
are not gyrotropic, even though they are non-centrosymmetric. In bulk crystals, the SGE is
allowed only within 18 out of in total 21 non-centrosymmetric classes [69, 70], the so-called
gyrotropic classes. In infinite systems, gyrotropy is fully determined by the crystal structure
of the material, as illustrated in Fig. 1(a). All gyrotropic materials support non-reciprocal
transport if time-reversal symmetry is broken, for example by a magnetic field. Examples of
gyrotropic materials that are currently used in proposals and realizations for superconducting
diodes are, apart from the Rashba superconductors, MoTe2 and WeTe2 [71,72].

In this respect the SGE and non-reciprocal transport are fundamentally different from the
spin Hall effect (SHE), which is known to be present even in isotropic materials [60, 73–81].
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Indeed, the spin-Hall effect describes the interconversion of electrical current with spin current
instead of spin. The spin current is a second rank pseudotensor, Jik, with indices for both spin
polarization and the direction of the current flow. To couple the spin current with the charge
current Jl , which transforms as a vector, a third rank pseudotensor χikl is needed:

Jik = χikl Jl . (2)

Even in isotropic materials, there exists a natural third rank pseudotensor, χikl = θεikl , where
εikl is the fully antisymmetric tensor and θ is a scalar, usually called the spin-Hall angle.
Consequently, εikl is sufficient to establish a connection between the charge current and a
perpendicular spin current, even in materials with centrosymmetric crystal structures. This
explains why the SHE is allowed in any material and, in infinite systems, is not related to SGE
or non-reciprocal transport.

On the other hand, in finite systems, gyrotropy can exist even when the constituent ma-
terials possess centrosymmetric crystal structures. For example, near the edge of a sample
the symmetry of the crystal structure is broken on a microscopic level, which may lead to
the formation of conducting surface states, such as in topological insulators [82,83] or inter-
faces with Rashba-like surface bands [84–86]. These two situations correspond to effective
two-dimensional gyrotropic structures at hybrid interfaces.

Gyrotropy can also arise at other scales. For example, it can originate from the specific
design of a macroscopic device itself. An example of this is asymmetric SQUIDs, which have
been widely explored in the context of the SDE [24,28,41,42,65] (see Fig. 1(c)). Moreover,
in a hybrid bilayer system, reflection symmetry is broken as there is a polar axis perpendicular
to the hybrid interface (see Fig. 1(b)). In this case, gyrotropy is defined at the mesoscopic
transport scale by the mere existence of an interface, rather than by microscopic symmetry
breaking at this edge. This constitutes the central situation analyzed in the present work.

A significant advantage of this structure or any lateral structure as the one shown in Fig.
2(a) is that they do not require specific assumptions about either the crystal structure or the
interface. The mere presence of hybrid interfaces implies a broken reflection symmetry and
indicates the existence of a polar vector perpendicular to that edge, hence the system is gy-
rotropic and supports SGE. In normal hybrid structures containing interfaces between mate-
rials with substantial bulk SOC, a spin-to-charge conversion due to SGE has been a topic of
extensive studies, both theoretically [64, 87–89] and experimentally [90–98]. From the sym-
metry perspective it is irrelevant whether the SGE is mediated by SOC in the bulk of materials,
comes from the surface Rashba band, or originates from the interfacial SOC and spin-flip scat-
tering off the interface. In such lateral structures, even for trivial spin-inert interfaces without
substantial interfacial SOC, the bulk SOC in the form of SHE generates SGE at the scale of spin
diffusion length. The well known example in the normal spintronics is the current-induced
edge spin accumulation caused by the bulk SHE. The superconducting analogue of such meso-
scopic SGE is our main concern here.

In this work, we focus on superconducting lateral structures and address the previously
unstudied situation in which nonreciprocal transport effects arise from spin-charge intercon-
version in the bulk of a centrosymmetric material. Specifically, we analyze the simplest struc-
ture that may exhibit the SGE in the absence of an external field: lateral structures, as the one
shown in Fig. 2(a). In these systems, gyrotropy emerges at a mesoscopic scale determined
by the spin diffusion and superconducting coherence lengths. We present a theoretical frame-
work that unifies and generalizes two well-established theories: Superconducting Proximity
Effect and charge-spin conversion in Spin Hall systems, in particular the spin Hall magnetore-
sistance phenomena [99]. We show how results in one of these fields may be used to predict
phenomena in the other, seemingly disparate, field.
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Concretely, the system under consideration in this paper consists of a normal metal (N)
with inversion symmetric crystal structure and bulk SOC, sandwiched between a supercon-
ductor (SC) and a ferromagnetic insulator (FI). This configuration can be either realized in a
Josephson configuration (Fig. 2(a)) or as a continuous structure (Fig. 2(b)). While the former
coincides with a real setup that has recently been explored experimentally in Ref. [100], the
latter is a geometry in which the diode effect can be explored analytically.

Let us focus on the geometry shown in Figs 2. While superconducting singlet correlations
are induced in the normal region via the superconducting proximity effect, the FI introduces an
interfacial exchange field. This field converts a part of the singlet pairs into triplets [101]. By
drawing an analogy between singlet/triplet and charge/spin [48,101,102], one can envision
the FI interface as an injector generating a triplet (spin) accumulation at the interface with the
SC. These triplets can then diffuse in the vertical direction, generating a supercurrent parallel
to the interface through the SOC. This spontaneous current leads to the anomalous phase in
finite structures, as our calculations below demonstrate.

In order to describe transport through the proximitized normal metal, we use the well-
established Usadel equation generalized for the case of extrinsic spin-orbit coupling [103,104].
This equation is complemented by boundary conditions at the interface. For the S/N interface,
we apply the well-known Kupryanov-Lukichev boundary condition [105], whereas to describe
the N/FI interface we establish boundary conditions based on symmetry arguments. At this
interface we identify two types of terms: one describing the interfacial exchange coupling,
quantifiable using the imaginary part of the so-called spin-mixing conductance Gi [99, 106].
The second contribution from the boundary condition takes on the form of a spin-relaxation
tensor in a magnet with uniaxial symmetry [107]. Following convention, interfacial spin-
relaxation can be characterized by two further parameters: the so-called spin-sink conductance
Gs [108] and the real part of the spin-mixing conductance Gr . The three parameters Gi,r,s are
widely used in spintronics for normal metals to describe hybrid interfaces.

One important point of concern is the strong spin relaxation in metals exhibiting SOC
[109–111]. In general, two main sources of spin relaxation exist. One mechanism arises due
to SOC combined with disorder. Since SOC preserves time-reversal symmetry, the spin-orbit
relaxation solely impacts triplet correlations, leaving singlets unaffected. On the other hand,
the presence of the ferromagnetic insulator (FI) can lead to another form of spin relaxation,
due to magnetic disorder. The latter does suppress superconductivity [112] and consequently,
it suppresses supercurrents and the Josephson coupling as well. We show that non-reciprocal
transport in lateral junctions is robust against bulk spin-relaxation due to SOC, as long as the
thickness d of the normal metal is sufficiently small, but is severely affected by the magnetic
disorder at the interface.

The structure of the article is as follows. In Sec. 2 we present our model and the equations
governing transport in dirty normal metals proximitized by superconductors and ferromag-
netic insulators, including the spin Hall angle. In Sec. 3 we use the linearized version of these
equations to obtain the pair amplitudes in a Josephson junction, show the existence of a φ0-
effect and identify conditions to maximize this effect. To illustrate the existence of a diode
effect within the linear approach, we use the same set of equations to describe a different
geometry in Sec. 4. We show that in this setup the maximum of the magnitude of the su-
percurrent is different in opposite directions, even after linearization. Finally, in Sec. 5, we
summarize our results, and propose an experiment based on them.
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Figure 2: (a) Lateral Josephson junction proximized by a ferromagnetic insulator
from below. The normal metal N exhibits a sizable spin-orbit coupling (SOC). The
interface between the N and the superconductor leads (SC) is characterized by the
parameter γB. The interface between N and ferromagnetic insulator (FI) is charac-
terized by the spin mixing conductances Gr,i . (b) Schematic illustration of the gen-
eration of an anomalous current via the combination of the spin Hall effect (SHE)
and the presence of a magnetic interface. The superconductor induces singlet pair
correlations (red) into the metal, which are converted into a mixture of singlet and
triplet pair correlations (yellow) by the ferromagnetic insulator. The gradient of the
triplet correlations causes a vertical diffusive spin current, which in turn causes a
charge current via the SHE.

2 The model

We consider a normal metal with spin-orbit coupling. The normal metal extends infinitely in
both x and y-directions, but has a finite thickness d in the z-direction. It is proximitized by a
ferromagnetic insulator (FI) from below and by conventional superconductors (SC) from the
top, placed only for |x |> L/2. A schematic of the setup is shown in Fig. 2(a). The system has
translational invariance in the y-direction, but the dependence on both x and z coordinates is
non-trivial.

We focus here on a metallic N region with a Fermi energy much larger than any other energy
scale in the problem, allowing the use of the quasiclassical formalism [113,114]. Additionally,
we assume the metal to be dirty, that is, that the scattering rate τ−1 is larger than any other
energy scale except the Fermi energy.

We assume that the metal possesses inversion symmetry, and the spin-orbit coupling (SOC)
within it leads to spin relaxation and the spin Hall effect (SHE). Since the system is in the
diffusive limit, it can be described using the momentum-independent quasiclassical Green’s
functions that satisfy the Usadel equation [115]. A concise and useful way to express the
Usadel equation is through a variational principle, achieved by an effective action, commonly
used to formulate a nonlinear σ-model for disordered systems [116]. The effective action,
which, at the saddle point, generates the Usadel equation in a material with SOC supporting
the spin Hall effect, was derived in Ref. [103]:

S =
iπ
8

Tr
�

D(∇ ǧ)2 + 4iϵτ3 ǧ + Dθεi jkσk ǧ∂i ǧ∂ j ǧ − iDχεi jkσk∂i ǧ∂ j ǧ −
1
τso

ǧσk ǧσk

�

. (3)
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Here ǧ is the quasiclassical Green’s function which satisfies the normalization condition ǧ2 = 1̌,
where 1̌ denotes the unit matrix in Nambu⊗spin space.1 It is a 4×4 matrix in the Nambu⊗spin
space. The matrices σa(τa), a = x , y, z are the Pauli matrices in spin (Nambu) space. Sum-
mation over repeated indices is implied and D is the diffusion constant of the normal metal.
The second order term in spin Pauli-matrices described the spin-relaxation, with τso being the
spin-relaxation time. There are two linear terms in σ’s: The spin Hall term, proportional to
the spin Hall angle θ , which describes the charge-spin conversion, and the so-called spin cur-
rent swapping term, proportional to spin swapping coefficient χ. Due to the normalization
condition ǧ2 = 1̌ these two terms are the only allowed first order terms. While, as explained
later, the spin current swapping effect is not relevant for the present work, it has been shown
in Ref. [117] that by symmetry it always accompanies the spin Hall effect, and we therefore
include the corresponding term in the effective action of Eq. (3) for generality.

It is worth noting that our theory captures all mechanisms (for example, coming from in-
trinsic or extrinsic SOC) of spin-charge coupling and spin relaxation, allowed by symmetry
in isotropic systems. Different types of SOC generally lead to different relations between the
transport coefficients θ ,χ, 1

τso
[103,118]. Therefore, in our theory, without specifying a micro-

scopic origin of θ , χ and 1/τso, we treat them as independent parameters. Because isotropic
systems are not gyrotropic, the action in Eq. (3) does not have any coupling between the
charge current and the spin and hence it does not support the bulk superconducting diode
effect.

The gyrotropy therefore has to be introduced using a boundary. To describe the boundaries
at z = 0 with the superconductor and at z = d with the FI we introduce a boundary action,
also up to second order in the spin Pauli matrices:

Sb =
iπ

8σN
Tr
�

Gim ·στ3 ǧ−Gr m ·στ3 ǧm ·στ3 ǧ−Gsσkτ3 ǧσkτ3 ǧ
�

z=−d
+

iπ
8σN R□

Tr
�

ǧs ǧ
�

z=0
.

(4)
The last term generates the standard Kuprianov-Lukichev boundary conditions [105] and de-
scribes the interface with the SCs. R□ is the SC/N interface resistance, σN is the conductivity
of the N metal. The first three terms in Eq. (4) describe the FI/N interface, with m being
the direction of magnetization in the FI. They are constructed by considering all local terms
allowed by symmetry, up to second order in the spin Pauli matrices, in the presence of the unit
pseudovector m. This boundary functional describes the gyrotropy of the interface, enabling
non-reciprocal transport, as the terms at z = 0 differ from those at z = −d.

As the interaction with the FI is assumed to occur via an exchange field, breaking time
reversal symmetry, the Pauli matrices in spin space, σk, are necessarily accompanied by a
τ3 in Nambu space. The first term in Eq. (4) corresponds to the direct exchange interac-
tion term, which is the first order in Pauli matrices. Following the customary convention
in spintronics, this term is characterized by the interfacial conductance Gi [99, 106]. The
second and third terms are of second order in the Pauli matrices and arise from the spin-
relaxation tensor, which, in the case of uniaxial symmetry, has the following general struc-
ture, Γi j = (1/τ⊥)δi j + (1/τ∥ − 1/τ⊥)mim j , where τ∥ and τ⊥ are the longitudinal and trans-
verse spin relaxation times. These terms can be expressed conventionally [107] by identifying
Gs = e2ν0/τ∥ and Gr = e2ν0(1/τ⊥ − 1/τ∥), with ν0 being the normal density of states at the
Fermi level.

It is worth noting that, in principle, similar boundary terms at hybrid interfaces can be
formulated due to the existence of the polar vector n perpendicular to the interface. The
influence of spin-orbit coupling in this scenario also induces spin relaxation. In such cases,

1The effective action, Eq. (3), is typically formulated in terms of the matrix field Q̌, which arises following
a Hubbard-Stratonovich transformation [131], and satisfies Q̌2 = 1. Instead, we have directly introduced the
quasiclassical Green’s function ǧ to reflect our focus on the saddle point equation, i.e. the Usadel equation.
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the boundary action adopts the same form as Eq. (4), albeit without the τ3 matrices. This
difference only leads to a renormalization of coefficients in the normal state. However, in the
superconducting case, the above two situations yield distinct consequences: whereas magnetic
impurities suppress both singlet and triplet correlations, those arising from spin-orbit coupling
keep the singlet component unaffected. In the subsequent discussion, we exclusively consider
magnetic interactions at the interfaces, though we will get back to this aspect later.

The saddle-point equation for the action Eq. (3) is the Usadel equation, which was de-
rived in Ref. [103] (see Eq. (21) in that work). Here, aiming at the subsequent lineariza-
tion (see Sec. 3), we present a simplified form of it in the Matsubara representation, where
iϵ −→ω= (2n+ 1)πT , T is the temperature, and assuming that θ and χ are both constant in
the N region

−∂a J̌a = [ωτ3, ǧ] +
1

4τso
[σa ǧσa, ǧ] , (5)

where the matrix current Ĵa is given by:

J̌a = −Dǧ∂a ǧ + εak jθD{∂k ǧ,σ j}+ iεak jχD[ ǧ∂k ǧ,σ j] , (6)

where {, } denotes the matrix anticommutator. The boundary conditions at the interfaces with
the SC and FI can be obtained from Eqs. (3,4). They can be written in terms of the currents
flowing through the boundaries as

−J̌z(z = 0)/D =
1

σN R□
[ ǧ, ǧs] , (7)

and

−J̌z(z = −d)/D = i
Gi

σN
[m ·στ3, ǧ] +

Gs

σN
[σkτ3 ǧτ3σk, ǧ] +

Gr

σN
[m ·στ3 ǧm ·στ3, ǧ] . (8)

At the interface with the superconductor, the obtained boundary condition Eq. (7) coincides
with the Kuprianov-Luckichev boundary condition [105].

At the N/FI interface, one can easily check that Eq. (8), in the normal state corresponds to
the boundary condition between a normal metal and a ferromagnetic insulator [106], widely
used in the theory of the spin Hall magnetoresistance (SMR) [99,107]. In the superconducting
state, Eq. (8) can be related to the boundary conditions for interfaces with a spin-mixing angle
derived in Ref. [119], up to second order in Pauli matrices.

The Usadel equation, Eq. (5), along with the boundary conditions Eqs. (7-8) and the
normalization condition ǧ2 = 1̌, defines the boundary problem for the quasiclassical matrix
Green’s function ǧ. Once this matrix Green’s function ǧ is obtained, the current can be com-
puted through Eq. (6) and to explore the transport properties of the junction. In the next
section, we employ these equations to calculate the anomalous current and to understand its
origin.

3 The anomalous current

In this section, we focus on calculating the anomalous current in the lateral Josephson junc-
tion shown in Fig. 2. The N/FI interface defines a polar vector n, the normal to this interface.
Therefore, the spin-galvanic effect is allowed by symmetry. According to Eq. (1), a super-
current can be generated, satisfying j ∝ n × m, where m is the unit vector indicating the
direction of the magnetization of the FI. In the structure depicted in Fig. 2, n = ẑ, and thus,
to maximize the spontaneous current in the x-direction, we set m = ŷ . In this geometry σx ,z
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do not appear in the problem and hence the Green’s function necessarily satisfies ǧ = σy ǧσy .
As a result, the spin-swapping coefficient naturally drops out of the equation.

To obtain analytical results for the anomalous current, we linearized the boundary problem
described by Eqs (5-8). This is justified by assuming that the contact between the superconduc-
tor and the normal metal is weak, resulting in a weak superconducting proximity effect. Under
this condition, the pair amplitudes in the normal region, which correspond to the amplitude of
the anomalous Green’s functions, are small. Thus, the Green’s function can be approximated
as ǧ ≈ sign(ω)τ3σ0 + F̂sσ0 + F̂tσysign(ω) where the singlet (s) and triplet (t) anomalous
parts are parameterized as F̂s,t = Re(Fs)τ1 + Im(Fs)τ2 and F̂t = Re(Ft)τ2 + Im(Ft)τ1, where
Fs,t are the singlet and triplet pair amplitudes. Since singlet(triplet) correlations are even(odd)
in frequency this parameterization ensures that both F̂s and F̂t are even-frequency.

The current is given by

I =
2πσN

e
T
∑

n

j(ω) , (9)

where the summation is over the Matsubara frequencies. It is convenient to calculate the
spectral current j(ω), at the interface between the normal metal and one of the electrodes by
using the boundary condition Eq. (7). As elaborated upon in appendix A, the supercurrent
flowing from the left (L) to the right (R) electrodes is expressed in terms of the kernel Q of the
linearized problem as

j(ω) = γ2
B Im

�∫

L
d x

∫

R
d x ′ f ∗L Q(x − x ′) fR

�

, (10)

where γB =
1

σN R□
, fL,R are the BCS pair amplitudes at the left (right) electrodes, that is,

fs0(x) = fLΘ

�

−
L
2
− x

�

+ fRΘ
�

x −
L
2

�

, (11)

fL,R =
∆

p
ω2 +∆2

eiφL,R , (12)

where ∆ is the pair potential of the superconductor and φL,R are the phases of the supercon-
ductors, with φR = −φL = φ. Q(x − x ′) is the kernel defining the linear relation between the
anomalous functions at a contact surface.

We assume that the junction is translation invariant in the y-direction. In this case the
anomalous functions are independent of y , and the problem reduces to two dimensions. It is
convenient to Fourier transform the anomalous functions over the x-direction and to express
all quantities as a function of Fourier momentum k, while keeping the z-coordinate in position
space. In momentum space the linear relation between the pair potential in the normal metal
Fs(k, z = 0) and the pair potential in the superconductor fs0(k) via the kernel Q takes the form:

Fs(k, z = 0) = γBQ(k) fs0(k) , (13)

where Q(k) is the Fourier transform of Q(x − x ′).
The singlet Fs(k, z), and triplet Ft(k, z) components of the condensate satisfy the linearized

Usadel equation obtained by linearizing Eqs. (5-6) and Fourier transforming over the x-
direction:

∂ 2
z Fs(k, z)− (k2 +κ2

s )Fs(k, z) = 0 ,

∂ 2
z Ft(k, z)− (k2 + κ2

t )Ft(k, z) = 0 .
(14)

These are two decoupled equations that determine the characteristic inverse lengths over
which the singlet and triplet correlations vary: κ2

s =
2|ω|

D and κ2
t = κ

2
s +

1
l2
so

, where lso = vFτso
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represents the spin relaxation length due to bulk SOC. As expected, because SOC preserves
time reversal symmetry, it does not affect the singlet component of the condensate, whereas
it has a detrimental effect on the triplet one.

The full boundary problem is defined by Eqs. (14) and the linearized boundary conditions
obtained Fourier transforming Eq. (7) at the interface with the superconductor (z = 0), and
Eq. (8) at the interface with the ferromagnetic insulator (z = −d):

∂z Fs(k,−d)− γikFt(k,−d)− (γr + 3γs)Fs(k,−d) = 0 ,

∂z Ft(k,−d) + γikFs(k,−d)− (γr + γs)Ft(k,−d) = 0 ,

∂z Fs(k, 0) + kθ Ft(k, 0) = γB fs0(k) ,

∂z Ft(k, 0)− kθ Fs(k, 0) = 0 ,

(15)

where γik = γi−kθ , γi =
Gi
σN

, γr =
Gr
σN

, and γs =
Gs
σN

. Some remarks can be made at this stage:
First, the singlet and triplet components satisfying Eqs. (14) are coupled via the γi term.
The latter describes an interfacial exchange field and, as in ferromagnets, it is the source
of singlet-triplet conversion [120]. Both γr and γs act as pair-breaking mechanisms similar
to magnetic impurities [112], thus suppressing both singlet and triplet correlations near the
interface. Finally, the spin Hall angle only enters the boundary problem through the boundary
conditions, as given by the last two Eqs. (15).

The appearance of the anomalous current, and hence the finite φ0, can be explained as
follows (see Fig. 2b): The singlet component of the condensate is induced in the normal
region via the proximity effect, third equation in (15). The singlet components diffuse in the
normal metal over the length κ−1

s , according to first Eq. (14). At the boundary with the FI the
singlets are converted into triplet due to the interfacial exchange field, γi-term in first line of
Eqs. (15). Triplet components diffuse in the normal region over distances of the order κ−1

t ,
Eq. (14), generating a diffusive spin current in z-direction, which under the SHE, quantified
by the SH angle θ , it converts to a charge current in x-direction.

If the thickness is large, κsd > 1, the interfaces are far away and only a small portion
of the singlet condensate reaches the FI interface. In this case the two proximity effects are
almost decoupled and the anomalous current is negligibly small. Here we focus in the more
interesting case in which the normal metal is thin enough that it is fully proximitized by the
superconductor, that is, κsd ≪ 1. Below we solve the above boundary problem defined by
Eqs. (14), (15), determining the singlet amplitude Fs and compute the kernel Q(k) from Eq.
(13). Technical details of the calculation are presented in Appendix A. In this thin N limit the
kernel reads

Q(k)=
d(k2 +κ2

t )(1+ γr d)S + (γ2
i − 2γiθk)C + γr(1+ γr d)C

((k2 +κ2
s )(k2 + κ2

t )d2S + (γ2
i − 2γiθk)C + 2γiθk+ (k2 + κ2

t )γr dS + (k2 +κ2
s )γr dC + γ2

r C)
,

(16)
where C = coshκt d and S = sinhκt d

κt d
were introduced for brevity of notation. To maximize the

φ0-effect we consider first the limit of weak spin relaxation at the boundary, i.e. γr ,γs ≪ γi ,
which may correspond to certain Eu chalcogenide insulators [121]. Later, in Sec. 3.3, we
discuss the influence of γr and show how it limits nonreciprocal transport. We keep lso finite
to show that anomalous currents may exist even if L ≫ lso. Because the numerator and de-
nominator of Eq. (16) are analytic functions, Q(k) is a rational function and hence the Fourier
transform is calculated by summing over the residues at the poles. Poles with large imaginary
part have exponentially suppressed residues due to the exponential factor eikL that appears
after the Fourier transform, as discussed in appendix A, see Eq. (A.6). Therefore, later on, we
only take into account those poles with small imaginary part, kd ≲ 1.
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The current is computed from Eq. (10), which can be written in terms of the kernel and
the phase difference φ between the electrodes as

j(ω) = γ2
B
∆2

ω2 +∆2

�

sinφ

∫

L
d x

∫

R
d x ′ReQ(x − x ′) + cosφ

∫

L
d x

∫

R
d x ′ ImQ(x − x ′)

�

,

(17)
where Q(x − x ′) is the inverse Fourier transform of Eq. (16). Since we use the linearized
equation the current contains only first harmonics, I(φ) = I0 sinφ+ I1 cosφ = Ic sin(φ −φ0),
where φ0 is determined by

−φ0 = tan−1

∑

n

∫

L d x
∫

R d x ′ ImQ(x − x ′)
∑

n

∫

L d x
∫

R d x ′ReQ(x − x ′)
. (18)

Thus, if ImQ(x−x ′) is nonzero, the current I(φ) has an anomalous cosφ-term. The imaginary
part ImQ(x− x ′) is the Fourier transform of the antisymmetric part Qa(k) =Q(k)−Q(−k) of Q
in momentum space. As expected, it follows from Eq. (16) that Qa(k) can be nonzero only if
both θ and γi are nonzero simultaneously, that is, if the spin Hall angle and the exchange field
of the ferromagnet are both finite. Moreover, it should be noted that this odd in momentum
term is allowed only because the top surface and bottom are different, otherwise the contri-
butions of these surfaces to terms that odd in k cancel out. This reflects that gyrotropy is a
necessary condition for the appearance of anomalous currents.

3.1 Normal metal with negligible spin Hall angle

To illustrate the interplay between the exchange field characterized by γi = Gi/σN and SOC-
induced spin relaxation characterized by lso, we first neglect the spin Hall effect, θ = 0. Gi
describes an interfacial exchange field, and therefore we expect a critical current behavior
similar to superconductor-ferromagnet-superconductor junctions, where 0-π transitions are
possible [122]. As we show in this section, this is possible only when γi is larger than a
threshold value, which depends on the spin orbit relaxation and thickness of the junction.

For θ = γr,s = 0 the kernel, Eq. (16), reduces to

Q(k) = d
(k2 +κ2

t )S + γ
2
i C

(k2 +κ2
s )(k2 + κ2

t )d2S + γ2
i C

. (19)

The poles of this expression satisfy

k2
10 = −κ

2
s −

1
2l2

so
+

1
2l2

so

p
1− a , (20)

k2
20 = −κ

2
s −

1
2l2

so
−

1
2l2

so

p
1− a , (21)

a = 4
γ2

i l4
so

d2

dκt

tanh dκt
. (22)

The appropriate sign of k10,20 is determined by the convergence of the integrand in the half-
plane in which the contour of integration is closed, that is, determined by the condition
Im(k10,20(x − x ′)) < 0. We identify two regimes based on whether the square root in Eq.
(20) is real or imaginary, determined by a < 1 or a > 1. If the square root is imaginary, i.e.
a > 1, the poles are complex and satisfy k20 = −k∗10. The kernel in real space Q(x − x ′) can
be calculated by summing residues at k1,2. The current follows from Eq. (10):

j(ω) =
1
d
γ2

B
∆2

ω2 +∆2
sinφ

2πl2
sop

a− 1
Re

�

(κ2
t + k2

10 + γ
2
i C/S)

eik10 L

k3
10

�

. (23)
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(a) (b)

Figure 3: The sinφ (a) and cosφ (b) contributions of the Josephson current as
a function of γi for different lso. The sinφ contribution is suppressed by the
ferromagnetic insulator, the cosine contribution is absent without the ferromag-
netic insulator, but suppressed for large couplings. The maximal I1 depends non-
monotonically on ξ/lso. On the other hand, I1 increases with increasing ξ/lso for
nonzero γi , approaching I0(h = 0), which is independent of lso. Other parameters
are γr = 0, T/Tc = 0.1, d/ξ= 0.1, L/ξ= 5 and θ = 0.15.

These expressions contain the oscillating functions eik10,20 L . Thus, the junction exhibits 0-π
transitions.

On the other hand, if a < 1, k2
10,20 are both real and negative. In this limit, both poles are

on the imaginary axis. Again summing the residues to obtain the kernel from Eq. (10), we
obtain:

j(ω) =
1

dS
γ2

B
∆2

ω2 +∆2
sinφ

πl2
sop

1− a

�

(κ2
t+k2

10+γ
2
i )

e−|k10|L

|k10|3
−(κ2

t+k2
20+γ

2
i C/S)

e−|k20|L

|k20|3

�

. (24)

Since |k10| < |k20|, the expression between square brackets is always real and positive.
Thus, there are no 0-π transitions.

In short, 0-π transitions appear only for large enough interfacial exchange, precisely when
a > 1. In the absence of spin-orbit relaxation, i.e. 1/lso→ 0, even very small exchange fields
lead to 0-π transitions. In contrast, for strong spin-orbit relaxation, i.e. lso −→ 0, 0-π transitions
are completely suppressed. On the other hand, for thinner junctions smaller exchange fields
are needed. A related effect of the spin-orbit coupling is that it weakens the suppression of the
critical current by an exchange field [123, 124]. This can be understood from the expression
for the poles in Eqs. (20-22). γi only appears in 22, and this term is suppressed for small lso.

3.2 Normal metal with spin Hall effect

We now focus on the case, when the combination of SOC, via the spin Hall angle θ ̸= 0,
and magnetic proximity effect described by Gi , leads to an anomalous current and hence to
a φ0-junction. From Eq. (16), if θ is nonzero, also terms of odd order in k appear in the
denominator of Q(k) and hence anomalous currents may exist.

As before, we consider the case where κsd ≪ 1, that is, singlets decay on a scale much
larger than the thickness and therefore the normal metal is fully proximitized. We do no
assumption on the decay length scale of the triplet correlations compared to the thickness
junction, instead we explore the dependence on their ratio. An analytical compact expression
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(a) (b)

Figure 4: The anomalous phase φ0 as a function of γi for different lso. If γi is small,

such that a =
4γ2

i lso4

d2
dκt

tanh dκt
< 1 and the square root in Eqs. (20,21) is real, φ0 in-

creases gradually, as shown in panel (a). The φ0-effect decreases with stronger spin-
orbit relaxation. If a > 1 and the square root is imaginary, there are ’smoothened’
0 − π transitions, as shown in panel (b). The stronger the spin-orbit coupling, the
stronger the field at which the transition between these regimes appears. Parameters
are set to γr = 0, T/Tc = 0.1, d/ξ= 0.1, L/ξ= 5 and θ = 0.15.

for the spectral current can be obtained for enough large and small parameter a, Eq. 22,
specifically when |a−1| ≫ θ . Details of the calculations and corrections for a ≈ 1 are discussed
in Appendix B.

The poles of Eq. (16) in the considered case can be written as k j = k j0 + θδk j , where
j = 1, 2, and the poles at zeroth order in θ , k j , are defined by Eqs. (20-22), whereas

δk1 = −δk2 = δk = γi
1− coshκt d
d sinhκt d

lsop
1− a

, (25)

where it is assumed that θ |δk j| ≪ k0 j .
The current, calculated from Eq. (10), can be obtained by summing the residues

R1ei(k1+θδk1)(x−x ′) and R2ei(k2+θδk2)(x−x ′) of Q(k)eikx at the two poles after closing the inte-
gration contour in the appropriate half-plane, where Q(k) is given by Eq. (16) . This results
in the following general expression for the spectral current:

j(ω) = γ2
B Re

π ∆2

ω2+∆2 eiφ

dS(k2
1 − k2

2)

�

eik1 L

k2
1k10

�

(κ2
t + k2

1)S + (γ
2
i − 2γiθk1)C

	

−
eik2 L

k2
2k20

�

(κ2
t + k2

2)S + (γ
2
i − 2γiθk2)C

	

�

. (26)

The total current can now be obtained by substituting Eq. (26) in Eqs. (9) and (10).
Before we proceed to evaluating numerically the current, we focus on insightful analytical
expressions that can be derived when a,θ ,κs/κt ≪ 1. This case corresponds to weak charge-
spin conversion, with triplets decaying over a shorter length scale than singlets. Furthermore,
we consider large enough temperatures such that kB T ≫ ∆(T ) and hence we may take only
the first Matsubara frequency in the sums. In this case the total current has the form:

I(φ) =
σN

e

2γ2
B∆

2ξ3
T

dT
e−L/ξT

�

1+ l2
soγ

2
i

d/lso
tanh(d/lso)

�

�

sin (φ + θδkL) + 2θδkξT cos (φ + θδkL)
�

,

(27)
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with ξT =
p

D/(2πT ) being the thermal length.
The anomalous phase φ0 is then given by

φ0 = −
�

θδkL+tan−1(2θδkξT )
�

≈ −θδk(L+2ξT ) =
θγi lso(L + 2ξT )

d
cosh (d/lso)− 1

sinh (d/lso)
. (28)

Expression Eq. (28) displays the usual linear dependence on the parameter characterizing
the strength of spin-orbit coupling (θ) and the exchange field strength (γi), and length of the
junction (L). This expression can be easily used to estimate the anomalous phase in real ex-
periments on lateral Josephson junctions with ferromagnetic insulators, where the interfacial
exchange dominates against other depairing effects (γi ≫ γr). Moreover, we were able to
incorporate spin-relaxation in our equations. For a normal metal thickness much smaller that
the spin-relaxation length, i.e. d/lso≪ 1, one obtains from Eq. (28) that φ0 ≈ θγi(L + 2ξT ).
On the other hand, if d/lso ≫ 1 one obtains φ0 ≈ θγi(L + 2ξT )lso/d. Thus, the anomalous
phase, and hence the anomalous current, is suppressed by spin-orbit relaxation only if the
corresponding spin relaxation length is much smaller than the thickness. This suppression ap-
pears because the anomalous current flows only in the presence of triplet correlations, that is,
it is localized near the boundary with the FI on a length scale of order lso. If the normal metal
is thin enough, the triplet correlations are present in the whole junction and hence spin-orbit
relaxation weakly affects the φ0-effect. Since in one-dimension the thickness does not play
a role such robustness against spin-orbit relaxation is due to the inherently two-dimensional
geometry.

Beyond the above limiting case the current can be calculated by numerically evaluation
of (26). The results for the sinφ-contribution I0 and cosφ-contribution I1 to the current and
ϕ0 obtained from these results are shown respectively in Figs. 3 and 4 as a function of the
interfacial exchange field parameter γi and different values of 1/lso. A decrease of lso weakens
the suppression of the sinφ-contribution of the current I0 as shown in Fig. 3(a). Indeed, spin-
orbit relaxation suppresses the effective exchange coupling of the ferromagnetic insulator and
the normal metal, as discussed in the previous section. Therefore, for small lso the sinφ-
contribution of the currents converges towards the zero-field value, as expected. The stronger
the exchange field coupling, the stronger the spin-relaxation necessary to recover the current.

Fig. 3(b) shows the anomalous current I1 as a function of the interfacial exchange field,
γi . It shows a non-monotonic behaviour with a maximum at an optimum value of γi . Both
the value of γi for which I1 is maximized and the maximal I1 increase with decreasing lso.
Indeed, for small γi the generated anomalous current is almost independent of l2

so, and in-
creases approximately linearly with γi . For larger values , γi suppresses the singlet and hence
there are less singlet-triplet conversion and hence the SHE is less effective. The decay of the
current due to γi induced pair breaking can be weaken via spin-orbit relaxation. Thus, for
stronger spin-orbit relaxation the maximal anomalous current is obtained for larger values of
γi . If d ≲ lso this leads to an increase in the maximally attainable anomalous current, as shown
in Fig. 3(b). However, if lso ≪ d, the maximal anomalous current is suppressed. Indeed, as
explained in the analytical limit, in the presence strong spin-orbit relaxation the anomalous
current only flows in a rather narrow region near the boundary with the FI.

The increase of the anomalous current with increasing spin-orbit coupling does not mean
that the φ0-effect increases with decreasing lso, as shown in Fig. 4(a). The φ0-effect is not
solely determined by I1, but also by I0. For small exchange fields (γiξ ≪ 1), a ≪ 1, the
anomalous phase φ0 is almost independent of lso, consistent with Eq. 28.

When a approaches 1, the suppression of I0 leads to an enhancement of the φ0-effect.
Since a ∝ l4

so smaller fields are needed for weak relaxation, that is, φ0 is larger for weak
relaxation. As the exchange field is increased further the regime a > 1 is obtained, and the
signs of I0 and I1 start to alternate. As discussed in Sec. 3.1 this leads to 0−π transitions in
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(a) (b)

Figure 5: The dependence of the anomalous current (a) and φ0 (b) in the Joseph-
son junction on the boundary parameters γr and γi . While the anomalous cur-
rent falls off rapidly as a function of γr and is maximized at a finite γi , the φ0-
parameter increases with γi and decreases slowly with Gr . The pink dashed line is
used to indicate Gi/Gr ≈ 4.5, as is the case for EuS, while the white dashed line
is used to indicate Gi/Gr ≈ 0.1, as is the case for YiG. Using suitable supercon-
ductors and normal metals one may move over these lines in the diagram. In the
case of YiG no significant anomalous current can be obtained. Using EuS the at-
tainable anomalous current is an order of magnitude larger. Other parameters are
γr = 0, T/Tc = 0.1, d/ξ= 0.2, L/ξ= 5 and θ = 0.15.

the case θ = 0, i.e. sharp transitions between φ0 = 0 and φ0 = π. Fig. 4(b) shows that for
finite θ these transitions are smoothened, and φ0 takes intermediate values. One should bear
in mind, however, that in the regime of large γi shown in Fig. 4(b) both the values of I0 and
I1 are very small.

3.3 Interfacial pair-breaking: The effect of Gr

In the previous section, we focused on ferromagnetic insulators with large interfacial exchange
field parameter γi ≫ γr,s. In other words, we neglected the terms Gr and Gs in the boundary
condition, Eq. (8). As explained above, these terms take the form of a pair-breaking term,
similar to magnetic impurities. and hence, they suppress not only the triplet, but also the
singlet component induced by the proximity effect in N.

The prototypical magnetic insulator used in spintronics is yttrium iron garnet (YIG), a
ferrimagnet with compensated magnetic moment for which Gr > Gi , and hence γr > γi . In
this section, we quantify the effect of Gr (at low temepratures one can neglect the effect of
Gs [107].)

The kernel Q(k), given in Eq. (16), is still a rational function, and the same procedure
as in previous section can be applied to find the poles and currents to first order in θ . In the
limit a,θ ,κs/κt ≪ 1, φ0 has the same form as in Eq. 28, but with a renormalized thermal
length ξ−2

T −→ ξ
−2
T +γr/d and spin orbit relaxation length l−2

so −→ l−2
so +γr/d(κt d/ tanh dκt−1).

Thus, as expected, the effect of γr is to reduce both the proximity penetration length and the
effective spin-relaxation length, thereby suppressing the φ0-effect.

The dependence of the anomalous current and φ0 on γi,r is illustrated in Fig. 5. As before,
a finite γi is needed to have an anomalous current in the system, but a large γi suppresses
this anomalous current since the proximity effect becomes weak, see Fig. 5(a), In addition,
the pair breaking term γr suppresses the anomalous current regardless of γi . For γi ≪ γr
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Figure 6: The current I(k) flowing through the N layer in the trilayer junction when
the pair potential in the superconductor is given by ∆ = ∆0eikx is shown for dif-
ferent Gi . There is a maximum of the induced current that is attained for a finite
phase gradient. If the current through the supercurrent and hence k are increased
further the current in the normal metal decreases towards 0. Other parameters are
γr = 0, T/Tc = 0.1, d/ξ= 0.2, L/ξ= 5 and θ = 0.15.

the anomalous current almost vanishes. The ratio between γi and γr for two used materials,
the ferromagnetic insulator EuS and the ferrimagnet YIG are indicated using dashed lines
in the 2D plot. While for YIG the obtained anomalous current is almost negligible, for EuS
sizeable anomalous currents can be obtained. Since ξ is determined by the superconductor
and the normal metal, by choosing different materials one may obtain different points on
this line. For typical values [107], Gi,r ∼ 1013 Ω−1m−2, σN ∼ 108 Ω−1m−1, the density of
states N0 ∼ 1028/10−18 = 1046 m−3J−1 and ∆ ∼ 1 meV (Tc ∼ 5 K), one obtains γi,rξ ∼ 0.1,
which is within the optimal range. The effect on φ0 is illustrated in Fig. 5(b). φ0 increases
monotonically with γi . This increase is suppressed by γr , but the suppression is weaker than
for the anomalous current I1.

4 The diode effect

As mentioned when writing Eq. (17), the linearization procedure leads to a current phase
relation which only contains the first harmonics in φ. This prevents obtaining the diode effect
[65]. To describe the diode effect in the Josephson junction of Fig. 2 one either needs to solve
the full non-linear boundary problem numerically, Eqs. (5-8), or to expand the solution up to
next leading order in the proximity effect. These tasks are beyond the scope of the present
work. Instead we address the diode effect in a slightly different structure for which it is enough
to use the linearized equations to calculate non-reciprocal transport effects. The geometry is
shown in 2(b). It is closely related to the setup described in the previous section. Just like the
Josephson junction, it consist of a S/N/FI trilayer. Thus, also this structure is gyrotropic, it has
the z-axis as its polar vector. In fact, since the previous problem was solved in Fourier space,
the equations describing this structure are the same as used in previous sections. This means
that we may use the same kernel Q(k) as presented in Eq. (19), but now use the same kernel
to describe the system. What differs is the quantity that we calculate from this kernel.
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Indeed, contrary to the Josephson junction, the superconductor now fully covers the nor-
mal metal. If a current passes through the superconductor, a phase gradient k develops, that
is, the pair potential in the superconductor has the form ∆ = ∆0eikx . In this case, the cur-
rent through the normal metal depends of the phase gradient, I(k). As we show next, in the
presence of SOC, the maximum value of that current depends on its direction. This explains a
kind of diode effect which can be described even in the linearized case.

In our calculation, we assume that the current passing through the superconductor is much
smaller than its critical current, so that we do not need to determine the gap self-consistently,
that is, ∆0 is independent of k for the range of k considered. Under this assumption the equa-
tions to be solved for the anomalous Green’s function are exactly those used to find the kernel
of the Josephson junction in Sec. 3.2. Indeed, the corresponding boundary value problem for
this setup is exactly the one given by Eqs. (14-15). The solution to this boundary value prob-
lem is presented on in appendix Sec. A and given by Eqs. (A.10-A.13) therein. Here we show
the results for the current using Eq. (6). As in the previous sections, ǧ commutes with m ·σ
and hence the spin-swapping term does not contribute. Hence, there are two contributions to
the current D∂x ǧ and 2Dθ∂z ǧσy . Going to the linearized limit and converting to momentum
space in the x-direction, Eq. (6) reduces to

eRN

2πTc
I(k) =

T
Tc

∑

n

∫ 0

−d
k Re(F∗s Fs − F∗t Ft) + 2θ Re(F∗s ∂z Ft + F∗t ∂z Fs)dz , (29)

where the summation is over Matsubara frequencies. The dependence of the current on the
phase gradient is shown in Fig. 6. The second term represents anomalous currents, that
is, currents at k = 0. The necessary conditions for this term to be nonzero at k = 0 are the
presence of a spin-Hall angle θ , the generation of triplet correlations, possible via the exchange
field of the FI, and a nonzero average gradient of the pair amplitudes. The latter is allowed
due to the specific gyrotropy of the junction.

Even though the current in the superconductor is unbounded due to the absence of self-
consistency, there is a critical current in the normal metal. It appears because in the presence

of a phase gradient k the coherence length
p

D/|ω| is modified to
Æ

D/
p
ω2 + k2, that is,

the proximity effect is weaker if the phase gradient is larger. This limits the current flowing
trough N for large k. That is, the Cooper pairs in the superconductor can “drag” only a finite
supercurrent in the normal layer. If either θ = 0 or γi = 0, this maximum Cooper drag is the
same in both directions. However a finite θ and γi the maxima and minima at positive and
negative k respectively are not necessarily the same. In the parameter regime discussed here,
this effect is small but finite, see Fig. 6.

To have a qualitative comparison of the homogeneous junction in Fig. 2(b) with the lateral
Josephson junction in Fig. 2(a), the anomalous current is calculated as I(k = 0). As shown
in Fig. 7, the anomalous current is non-monotonous as a function of γi and suppressed by
increasing γr , similar to the anomalous current in the Josephson junction. The anomalous
current is maximized for γiξ ≈ 0.5, which is in good correspondence with the value of γi for
which the anomalous current is maximized in the Josephson junction in Fig. 3(b).

The quality of the diode effect is characterized by the diode efficiency η, defined as

η=
maxk I(k)− |mink I(k)|
maxk I(k) + |mink I(k)|

. (30)

The dependence of the diode efficiency on exchange field strength is illustrated for different
thicknesses in Fig. 8(a). As for the anomalous current discussed in Sec. 3.2, the thinner
junction the smaller the exchange field for which the diode efficiency is maximized. For large
exchange fields the diode efficiency may even change sign. However, for too large γi the
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Figure 7: The anomalous current I(k = 0) in the trilayer junction as a function of
γr and γi . Other parameters are ξ/lso = 5, T/Tc = 0.1, d/ξ = 0.2, L/ξ = 5 and
θ = 0.15.

critical current is highly suppressed, and hence this parameter regime may be less suitable for
experiment.

The dependence of η on lso is shown for γiξ = 0.5 in Fig. 8(b). Similar to the results for
the anomalous current discussed in the previous section (Fig. 3(b)), decreasing lso leads to
an increase in the maximal currents, which is beneficial for the diode efficiency. The diode
efficiency however, does not increase indefinitely with decreasing lso, see Fig. 8(b). Indeed,
if lso is much smaller than the thickness, triplet correlations exist only in a small region near
the interface and hence the non-reciprocal part of the current is supported only in part of the
junction. This leads to a non-monotonous dependence of the diode efficiency on lso.

Finally, for interfaces with a finite pair-breaking parameter, γr , we show in Fig. 9 the
maximum critical current and diode efficiency as functions of γr,i . Both effects depend non-
monotonically on γi . They vanish for γi = 0 but increase with increasing γi , reaching a max-
imum, and then decrease with further increases in γi . In contrast, γr suppresses the critical
current monotonically as it weakens the singlet correlations, as seen in Fig. 9a. The suppres-
sion of η by γr is, however, weaker, as shown in Fig. 9b.

The values obtained here for η serve as lower bounds, given that we have linearized the
equations under the assumption of a weak proximity effect. Consequently, in experiments
with good SC/N interfaces and a strong proximity effect, one can anticipate observing larger
values for η. For two materials EuS and YiG, typical ratios Gi/Gr have been indicated using
dashed lines in 9. For EuS (pink), significant diode effects can be obtained by choosing suitable
combinations of superconductor and normal metal, for YiG (white) the diode efficiency is
typically small.

5 Discussion and conclusions

According to our model, optimizing the anomalous current, and therefore the diode effect,
requires a normal metal with significant spin-orbit coupling and an interfacial exchange field
(described by the parameter Gi) between the N and the FI in such a way that it dominates
over pair-breaking effects related to spin relaxation at this interface. Heavy metals like Pt
and Ta have shown to possess a large spin Hall angle and a good charge-spin interconversion
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(a) (b)

Figure 8: (a): The diode efficiency η in the trilayer junction in positive as a function
of γi for different thicknesses. The diode efficiency may change sign as a function
of γi for thin enough junctions. Other parameters are set to γr = 0, T/Tc = 0.1,
ξ/lso = 5, L/ξ = 5 and θ = 0.15. (b): The diode efficiency as a function of ξ/lso
for different thicknesses of the junction. The efficiency has an optimum for finite
spin-orbit relaxation, when the spin orbit relaxation length is of the same order as
the thickness of the material. For smaller relaxation the exchange field suppresses
the current, for larger relaxation the region in which the anomalous current may
flow is constricted. Other parameters are γr = 0, T/Tc = 0.1,γiξ= 0.5, L/ξ= 5 and
θ = 0.15.

and are therefore suitable to serve as the normal metal in such junctions. As an FI material,
the well-studied ferromagnetic insulator EuS [125] is recommended. For example, Ref. [121]
reported SMR measurements in Pt/EuS systems and established high values for Gi . Hence, it
is anticipated that a Josephson junction like the one depicted in Fig. 2(a) with this material
combination could exhibit very significant magnetoelectric effects.

In Ref. [100], nonreciprocal effects were reported in Josephson junctions with the same
geometry studied in the present work. Instead of using a FI, they employed YIG, a well-known
ferrimagnet often studied in combination with Pt [108, 126–130]. SMR measurements com-
bined with the existing theory establish that for this material combination, Gr ≫ Gi . According
to our theory, in this case, both anomalous current and diode effect are strongly suppressed.
Nevertheless, the experiment in Ref. [100] suggests a diode effect with notable efficiency.
Some explanations for this discrepancy can be considered. Firstly, it is well-known that the
values of spin-mixing conductance critically depend on the Pt/YIG interface preparation. It
is possible that in the experiments from Ref. [100], this interface significantly differs from
those in experiments showing a clear SMR signal. On the other hand, the origin of terms
proportional to Gr in Eq. (8) could be due to strong spin-orbit coupling at the interface, as
postulated in Ref. [100]. This type of relaxation does not affect the singlet component of the
condensate, and thus, the diode effect would persist despite a large spin relaxation. Thus, in
the superconducting state one can distinguish the origin of spin-relaxation by studying nonre-
ciprocal transport and anomalous currents. In addition, strong interfacial SOC may lead to an
enhancement of the effective spin-Hall angle θ near the interface and hence to a larger SHE
and anomalous current.

To elucidate these points and establish a comprehensive understanding of such junctions,
we propose an experiment that measures, in the same system, both the angle-dependent mag-
netoresistance, and the nonreciprocal superconducting effect. For the first experiment, mea-
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(a) (b)

Figure 9: (a): The maximum critical current Ic =max(Ic+, Ic−) in the trilayer junction
is suppressed as a function of γr,i . The suppression by γr is significantly stronger
than the suppression by γi . (b): The diode efficiency as a function of γr and γi . A
nonzero γi is needed to have a diode effect, γr suppresses the diode efficiency. Other
parameters are ξ/l2

so = 5, T/Tc = 0.1, d/ξ = 0.2, L/ξ = 5 and θ = 0.15. The pink
dashed line is used to indicate Gi/Gr ≈ 4.5, as is the case for EuS, while the white
dashed line is used to indicate Gi/Gr ≈ 0.1, as is the case for YiG. Using suitable
superconductors and normal metals one may move over these lines in the diagram.

surements should be performed above the superconducting critical temperature to avoid ef-
fects related to the superconducting proximity effect. The interfacial coefficients Gi,r,s may be
determined using the SMR theory [99]. One can then measure the non-reciprocal transport
when T < Tc and try to use the above parameters to fit the results. This experiment would
shed light on the connection between magnetoelectric effects in normal and superconducting
systems, which so far have only been studied separately. This would provide an opportunity
to a better understanding of the primary microscopic mechanisms at N/FI interfaces and an
interesting testbed for existing theories.

In summary, we have presented an exhaustive study of the simplest structure with a polar
symmetry exhibiting magnetoelectric and nonreciprocal transport effects in the absence of
an external applied magnetic field. The suggested structures are lateral N/FI bilayers either
embedded in a Josephson junction or forming a trilayer with a superconductor. The gyrotropy
in our system is not a microscopic property. In fact, all the materials we have considered exhibit
inversion symmetry. However, gyrotropy arises due to the presence of the hybrid interface. In
other words, gyrotropy does not necessarily have to be a microscopic characteristic of the
system; it can be induced at the mesoscopic or even macroscopic scale.

The combination of the induced superconductivity via the proximity effect, the SOC in
the N layer and the interfacial exchange at the N/FI leads to an anomalous supercurrent that
manifest as anomalous phase in the Josephson configuration and as the diode effect. Our
theoretical framework based on an effective action of the non-linear σ-model of the system,
allowed us to make connection between the interfacial spin-mixing conductance formalism
and the superconducting proximity effects in mesoscopic structures.

In particular, we explore the effect of the spin-relaxation which is unavoidable in metals like
Pt or Ta with strong SOC. Both the anomalous current and the φ0-effect survives even in the
presence of strong spin orbit relaxation, as long as the thickness of the N layer is comparable to
the spin relaxation length. However, there is no restriction on the length of the junction: large
anomalous currents and diode effects are obtained even if the length of the junction is much
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larger than the spin relaxation length. This provides a major step forward in the engineering of
Josephson diodes compared to one-dimensional SDEs with Rashba-like spin-orbit coupling. We
also demonstrated how these effects depend on the spin conductance parameters describing
the N/FI interface, finding that the diode effect is maximized at interfaces with large exchange
coupling, Gi > Gr .

We have also calculated non-reciprocal transport in a different setup, which exploits the
maximum Cooper drag of a superconductor on a metal proximized by this superconductor. We
have shown that this problem has the same kernel as the Josephson junction, and therefore
the anomalous current in this setup is similar to that in the Josephson junction. Moreover, in
this geometry the diode effect can be studied analytically using linearized equations, unlike in
other types of junctions. The correspondence with the φ0-effect in junctions allows us to use
the results obtained from linearized equations as proof of diode effects in lateral Josephson
junctions with an FI.
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A Linearized equation and kernel

In this appendix we derive the linearized Usadel equation for the lateral system in Fig. 2 and
present the equations from which the kernel used in the main text may be calculated. We give
explicit expressions for the solutions of those equations, thereby showing how the kernel is
obtained.

In the limit γB/κs ≪ 1 the Usadel equation may be expanded to lowest order in the pair
amplitudes. That is, the Green’s function can be approximated as

G ≈
�

sign(ω) Fs + iFtsign(ω)σy
F∗s − iF∗t sign(ω)σy −sign(ω)

�

. (A.1)

The triplet-terms Ft are multiplied by sign(ω) because the triplet correlations are odd-
frequency in contrast to the even frequency singlet correlations. Indeed, from Eqs. 5 and 7
it follows that the Green’s function satisfies the symmetry ǧ(−ω) = −τ3σy ǧ(ω)∗σyτ3.
By taking out the sign(ω), Fs and Ft thus satisfy the same symmetry with respect to ω,
Fs,t(−ω) = Fs,t(ω)∗. By substituting this parameterization in the Usadel equation and the
boundary conditions, given by Eqs. 5,6 and 7 in the main body, the following linearized equa-
tions for Fs, Ft are obtained:

∇2Fs = 2ω/DFs , (A.2)

∇2Ft =

�

2ω/D+
1
l2
so

�

Ft , (A.3)

21

https://scipost.org
https://scipost.org/SciPostPhys.16.2.055


SciPost Phys. 16, 055 (2024)

with boundary conditions

− ∂z Fs(z = 0) + θ∂x Ft(z = 0) = DγB fs0 ,

− ∂t Fs(z = 0)− θ∂x Fs(z = 0) = 0 ,

− ∂z Fs(z = −d) + θ∂x Ft(z = −d) = 2Dγi Ft(z = −d) + 2Dγr Fs(z = −d) ,

− ∂t Fs(z = −d)− θ∂x Fs(z = −d) = 2Dγi Fs(z = −d) + 2Dγr Ft(z = −d) .

(A.4)

For the linearized Usadel equation, the current that passes through the superconductor-normal
metal interface at a given coordinate x may be expressed via the Kuprianov-Luckichev bound-
ary conditions as

j(ω, x) = γBTr(τ3[ ǧs, ǧ]) = 4γB Im( fs0(x)
∗Fs(x)) , (A.5)

where fs0(x) is the pair amplitude in the superconductor at point x and Fs(x) is the pair am-
plitude in the normal metal at the interface at position x . The kernel is defined in momentum
space via the relation Fs(k) = γBQ(k) fs0(k). Using the convolution rules for Fourier trans-
forms, the corresponding expression in real space is

Fs(x) =

∫ ∞

−∞
Fs(k)e

ikx dk = γB

∫ ∞

−∞
Q(k) fs0(k)e

ikx dk = γB

∫ ∞

−∞
Q(x − x ′) fs0(x

′)d x ′ . (A.6)

Substituting Eq. (A.6) into Eq. (A.5), it follows that

j(ω, x) =
1
4

Trτ3( ǧ∇ ǧ) = γ2
B Im

∫ ∞

−∞
fs0(x)

∗Q(x − x ′) fs0(x
′)d x ′ . (A.7)

Since fs0(x) = fLΘ(−x − L/2) + fRΘ(x − L/2), the total current flowing between the right
superconducting electrode and the normal metal can be expressed as

j(ω) =

∫

R
j(ω, x)d x = 4γ2

B Im

∫ ∞

−∞

∫

R
fs0(x)

∗Q(x − x ′) fs0(x
′)d x ′d x

= 4γ2
B Im

∫

L

∫

R
f ∗L (ω)Q(x − x ′) fRd x ′d x + 4γ2

B Im

∫

R

∫

R
f ∗R Q(x − x ′) fR(ω)d x ′d x , (A.8)

where the notation
∫

L and
∫

R is used to denote integration over the left and right electrode
respectively. The second term should be ignored because it does not represent currents that
flow from left to right, but currents both leaving and re-entering the right electrode. This
results in the following expression for the current:

j(ω) = γ2
B Im

�∫

L
d x

∫

R
d x ′ f ∗L Q(x − x ′) fR

�

,

which is presented as Eq. (10) in the main body. The Fourier component Q(k) of the kernel is
calculated from the solution at z = 0 of the following boundary value problem,

∂ 2
z Fs(ω, k, z)− (k2 +κ2

s )Fs(ω, k, z) = 0 ,

∂ 2
z Ft(ω, k, z)− (k2 + κ2

t )Ft(ω, k, z) = 0 ,

∂z Fs(ω, k, 0) + kθ Ft(ω, k, 0) = γ fs0(k) ,

∂z Ft(ω, k, 0)− kθ Fs(ω, k, 0) = 0 ,

∂z Fs(ω, k,−d)− (γi − kθ )Ft(ω, k,−d)− (γr + 3γs)Fs(ω, k,−d) = 0 ,

∂z Ft(ω, k,−d) + (γi − kθ )Fs(ω, k,−d)− (γr + γs)Ft(ω, k,−d) = 0 ,

(A.9)
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where κ2
t = 2|ω|/D+ 1

lso
, κs =

p

2|ω|/D. The solution to this boundary problem is given by

Fs(ω, k, z) = Acosh
q

k2 +κ2
s z + B sinh

q

k2 +κ2
s z ,

Ft(ω, k, z) = C cosh
q

k2 + κ2
t z + D sinh

q

k2 + κ2
t z .

(A.10)

The coefficients A, B, C , D are to be determined by the boundary conditions. The former two
boundary conditions imply

q

k2 +κ2
s B = γB fs0 − kθC , κt D = kθA . (A.11)

Substituting this into the other two boundary conditions one finds up to first order in θ that A
and C should satisfy the following relations:
�q

k2 + κ2
s sinh

q

k2 + κ2
s d + (γr + 3γs) cosh

q

k2 + κ2
s d −

γi
Æ

k2 +κ2
t

kθ sinh
q

k2 +κ2
t d
�

A

+
�

γi cosh
q

k2 + κ2
t d + kθ cosh

q

k2 +κ2
s d +

γr
Æ

k2 +κ2
s

kθ sinh
q

k2 + κ2
s d
�

C

= γB fs0
�

cosh
q

k2 + κ2
s d +

(γr + 3γs)
Æ

k2 + κ2
s

sinh
q

k2 + κ2
s d
�

,

�

−
q

k2 +κ2
t sinh

q

k2 +κ2
t d − (γr + γs) cosh

q

k2 +κ2
t d +

γi

κs
kθ sinh

q

k2 +κ2
s d
�

C

+
�

γi cosh
q

k2 + κ2
s d + kθ cosh

q

k2 +κ2
t d +

(γr + γs)
Æ

k2 +κ2
t

kθ sinh
q

k2 + κ2
t d
�

A

= γB
γi

Æ

k2 +κ2
s

fs0 sinh
q

k2 + κ2
s d .

(A.12)

Since we are interested in the current to first order in θ , in the resulting expression we keep
terms in numerator and denominator up to first order in θ :

A
γB fs0

= 1
�

κsk sinhκskd+(γr+3γs) coshκskd
��

κtk sinhκtkd+(γr+γs) coshκtkd
�

+γ2
i coshκskd coshκtkd+2kθγh

×
�

κtk sinhκtkd coshκskd +
γ2

i

κs
coshκtkd sinhκskd + (γr + 3γs) coshκtkd coshκskd

+
(γr + 3γs)(γr + γs)

κsk
coshκtkd sinhκskd +

(γr + γs)κtk

κsk
sinhκtkd sinhκskd

�

,

C
γB fs0

= 1
�

κsk sinhκskd+(γr+3γs) coshκskd
��

κtk sinhκtkd+(γr+γs) coshκtkd
�

+γ2
i coshκskd coshκtkd+2kθγh

×
�

γi+kθ coshκskd coshκtkd+
γ2

i

κskκtk
kθ sinhκskd sinhκtkd+

(γr+3γs)kθ
κsk

coshκtkd sinhκskd

+
(γr + γs)kθ
κtk

sinhκtkd coshκskd +
(γr + 3γs)(γr + γs)kθ

κskκtk
sinhκtkd sinhκskd

�

, (A.13)

where κs,tk =
q

k2 +κ2
s,t were introduced for brevity of notation Now recall that the kernel

Q(k) of the problem is defined such that

γB fs0Q(k) = Fs0(ω, k, z = 0) = A , (A.14)
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and thus we conclude that

Q(k)

= 1
�

κsk sinhκskd + (γr + 3γs) coshκskd
��

κtk sinhκtkd + (γr + γs) coshκtkd
�

+ γ2
i coshκskd coshκtkd + 2kθγh

×
�

κtk sinhκtkd coshκskd +
γ2

i

κs
coshκtkd sinhκskd + (γr + 3γs) coshκtkd coshκskd

+
(γr + 3γs)(γr + γs)

κsk
coshκtkd sinhκskd +

(γr + γs)κtk

κsk
sinhκtkd sinhκskd

�

. (A.15)

In the limit κsd ≪ 1 this reduces in first order in θ to Eq. (16) in the main body. The poles of
this expression to zeroth order in θ are given by

k2
1 = −

�

κ2
s +
γr

d

�

−
1
2

�

1/l2
so +

γr

d

�

dκt

tanh dκt
− 1

��

+
1/l2

so +
γr
d

�

dκt
tanh dκt

− 1
�

2

p
1− c ,

(A.16)

k2
2 = −

�

κ2
s +
γr

d

�

−
1
2

�

1/l2
so +

γr

d

�

dκt

tanh dκt
− 1

��

−
1/l2

so +
γr
d

�

dκt
tanh dκt

− 1
�

2

p
1− c ,

(A.17)

c = 4
γ2

i
�

1/l2
so +

γr
d

�

dκt
tanh dκt

− 1
��2

d2

dκt

tanh dκt
. (A.18)

B Calculation of poles of the kernel

In this appendix we discuss the poles of the kernel Q(k) in the presence of a finite spin Hall
angle θ . First we derive Eqs. 20 to 25 in the main body under the assumption that a≪ 1, that
is, all poles are well separated, so that the correction to the poles is much smaller than the
difference between the poles. Next to this, we derive the expressions for the poles in the limit
where |k10 − k20| ≪ θ |δk1,2|. We will show here the case γr,s = 0. In the presence of finite
boundary spin relaxation the derivation is very similar, with the result shown in the previous
section. The final expression for the first order poles in terms of the zeroth order poles is in
fact exactly the same.

The expression for the denominator of Q(k) in Eq. (16) is written as

d2S
�

k4 + (k2 +κ2
t )k

2 +κ2
sκ

2
t

�

+ γ2
h + 2θγi(1− C)k . (B.1)

For θ = 0 this expression reduces to a second order polynomial in u = k2. Therefore its poles
can be solved for analytically, at the poles u satisfies

u± = −κ2
s −

1
2l2

so
±

1
2l2

so

p
1− a , (B.2)

where a = 4
γ2

i l4
soC

d2S . This gives the zeroth order poles k j in Eqs. (20,21).
With this the denominator for arbitrary θ can to first order in κs/κt be expressed as

D(k) = d2S

 

4
∏

j=1

(k− k j0) +
2γiθ (1− C)

d2S
k

!

. (B.3)
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The first order correction in θ to the poles can be found by substituting k j = k j0 + θδk j .
Substituting this in Eq. (B.3) and keeping only terms up to first order in θ it follows that the
pole of the new expression satisfies

0=

 

∏

l ̸= j

�

k j0 − kl0

�

!

δk j +
2θγi (1− C)

d2S
k j0 . (B.4)

Since we expand in θ this is a first order polynomial in δk j , and hence is solved directly by

δk j = −
2γi(1− C)

d2S
k j0

∏

l ̸= j

1
k j0 − kl0

. (B.5)

To simplify this expression further we may exploit that the zeroth order poles come in pairs
with opposite sign. Using this we may simplify Eq. (B.5) to, using indices modulo 2.

δk j =
γi(1− C)

d2S
1

k2
( j+1)0 − k2

j0

, (B.6)

which implies Eq. (25) in the main body.
The procedure above only holds as long as |k10− k2| ≫ |k1,2|, that is, if |a−1| ≫ θ . If this

constraint is not satisfied we find that |k10 − k20| is of order θ or smaller as well, and hence
the expansion to first order in θ is incorrect. In fact, Eq. (B.6) incorrectly predicts that δk j
diverges as a −→ 1.

This means that we need to expand Eq. (B.4) up to second order in this limit. We may
write k1,2 = k± +δ1,2

k± = ±i

√

√

√

κ2
s +

1
2l2

so
,

δ j ≪ k± , j = 1, 2 ,

(B.7)

where the appropriate sign is determined by the convergence of the kernel in the plane in
which the contour is closed. Using that k − k1 = k+ + δ1,2 − k1 = δ1,2 +

1
2(k2 − k1) and

k− k2 = k+ +δ1,2 − k2 = δ1,2 −
1
2(k2 − k1) the poles satisfy

0= (k+ − k−)
2(δ2

1,2 − (k1 − k2)) +
2θγi(1− C)

d2S
k+ . (B.8)

This is a second order polynomial in δ1,2. Its solutions are given by

δ1,2 = ±
1
2

√

√

√

(k1 − k2)2 − 4
2θγi(1− C)

d2S
k+

(k+ − k−)2
, (B.9)

where the + sign is used for δ1 and the − sign for δ2, In summary, if |a−1| ≫ θ the expression
for the poles in Eq. (B.6) should be used, while for |a − 1| ≪ θ the poles can be found using
Eq. (B.9).
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[26] S. Ilić and F. S. Bergeret, Theory of the supercurrent diode effect in Rashba
superconductors with arbitrary disorder, Phys. Rev. Lett. 128, 177001 (2022),
doi:10.1103/PhysRevLett.128.177001.
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