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Abstract

We argue that one can model deviations from the ensemble average in non-equilibrium
statistical mechanics by promoting the Boltzmann equation to an equation in terms of
functionals , representing possible candidates for phase space distributions inferred from
a finite observed number of degrees of freedom. We find that, provided the collision
term and the Vlasov drift term are both included, a gauge-like redundancy arises which
does not go away even if the functional is narrow. We argue that this effect is linked
to the gauge-like symmetry found in relativistic hydrodynamics [1] and that it could be
part of the explanation for the apparent fluid-like behavior in small systems in hadronic
collisions and other strongly-coupled small systems [2]. When causality and Lorentz in-
variance are omitted this problem can be look at via random matrix theory show, and we
show that in such a case thermalization happens much more quickly than the Boltzmann
equation would infer. We also sketch an algorithm to study this problem numerically.
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1 Introduction

The problem of apparent hydrodynamic behavior of small systems [2] is one of the most, if not
the most important conceptual problem thrown at us by heavy ion collisions. Experimental
data [3, 4] seems to suggest that “collectivity” (precisely defined as the number of particles
present in correlations relevant for anisotropic flow) is remarkably insensitive to the size of
the system produced in hadronic collisions, down to proton-proton and y — nucleus collisions
with 20 final state particles.

Most of the theoretical response to this has been centered around the concept of “hydrody-
namic attractors”/hydronamization [5, 6], based on the idea of taking a “microscopic” theory
(usually Boltzmann equation, a theory with a gravity dual or classical Yang-Mills) in a highly
symmetric (lower dimensional) setup and showing that hydrodynamic behavior occurs for gra-
dients much higher than those “naively expected”. The basic issue is that the main puzzle of
the onset of hydrodynamics in such Small systems is not the size of the gradients, but rather the
small number of degrees of freedom [7,8], which generate fluctuations in every cell even if the
mean free path was zero [9]. Yet all indications seem to show that fluctuations are reducible
only to fluctuations in initial conditions [3]. This absence of fluctuations can be thought of as
another sign of “perfect” hydrodynamics [ 10-12], which also seems to appear beyond its naive
range of validity. In this regime most microscopic theories based on large N approximations
(Boltzmann equation with its molecular chaos, AdS/CFT in the planar limit, classical Yang
Mills theories with large occupation numbers, even Kubo formulae and Schwinger-Keldysh
approaches requiring asymptotic limits for soft modes [13,15-17]) become suspect.

Similarly, approaches based on “anomalous viscosity” and plasma instabilities [18,19] look
suspect because while on average they might reproduce a low-viscosity fluid, fluctuations
around this average are expected to be much larger than hydrodynamic expectations [10].
Multi-particle correlation analysis seems to suggest,on the other hand, the absence of “dy-
namical” fluctuations not reducible to initial state effects, even in small systems [3].

Here one must remember that a universal hydrodynamic-like behavior in small systems
has been noted in a much larger set of circumstances than the debate around heavy ion col-
lisions usually includes: Cold atoms seem to have achieved the onset of hydrodynamics with
comparatively few particles [7,8]. It has long been known that Galaxies behave “as a fluid”,
even though the assumptions related to transport are highly suspect [20]. Even in everyday
physics,phenomena such as the “Brazil nut effect” [21] point to a universality of the hydrody-
namic description even in systems with few particles, provided they are strongly correlated.
This apparent universality is cited by mathematicians such as [22] to study the multi-particle
problem in depth.

Recently it was argued [1, 24] that a way to approach this conundrum is to think in a
Gibbsian rather than a Boltzmannian way [25, 26]: The latter treats the phase space as a
frequentist probability density distribution, and hence is in a sense well-defined only in an in-
finite particle limit. The former arrives at phase space distributions via Bayesian inferencing of
non-measurable microscopic quantities via macroscopically measurable coarse-grained degres
of freedom (the two descriptions are proven to be equivalent for an ideal gas in a thermody-
namic limit only [25,26]).

For a strongly coupled system with a small number of degrees of freedom, since only the
energy-momentum tensor and conserved current components are measurable, fluctuations
bring with them a redundancy of hydrodynamic descriptions, each with it’s flow vector and
Bayesian probability that this is the “true flow vector” and any anisotropy is due to a fluc-
tuation. If the system is strongly coupled enough for the fluctuation-dissipation theorem to
apply locally, each of these descriptions is as good as the others as long as the total energy-
momentum is the same. It is not surprising therefore that as fluctuations become larger the
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probability of a good description near the ideal hydrodynamic limit could actually grow, or at
least it does not go down [1]. In a sense this picture is the inverse of that of an attractor. This
description parallels the role of Gauge symmetry in the renormalizability of Quantum field the-
ory [27]: The fact that “most fluctuations” can be accomodated by Gauge redundances lowers
the degree of divergences in the ultraviolet and perhaps (in the Gribov-Zwanziger picture)
also the number of degrees of freedom in the infrared [28].

For now such a picture is still abstract and qualitative. In this work, we would like to make
a link to microscopic theory, via a generalization of the Boltzmann-Vlasov equation which goes
in the “Gibbsian sense” outlined earlier. The basic idea is that when the number of degrees of
freedom is small, the phase space distribution f (x, p) will not be known but must be inferred
by some kind of Bayesian reasoning. This is admittedly a very heuristic approach, and some
further arguments motivating it and placing it within the more conventional transport theory
have been left to the next section.

The fact that one does not know f(x,p) beyond a few data points can be represented
by considering a functional representing the probability of f(x,p) being what it is. In this
case, the integrals corresponding to the Boltzmann collision operator and the Vlasov potential
operator will not be two copies of f (x, p) but two different functions f (x, p) and f’(x, p), the
latter integrated over.

The next section 2 gives further details of the shortcomings of the state-of-the-art transport
approaches and why a Boltzmann equation with functionals is a possible path forward in a
certain well-defined regime of validity. Section 3 gives some mathematical details, and shows
that the limit close to equilibrium of the functional Boltzmann equation is very different from
the usual Boltzmann equation, exactly because of the residual ambiguities pointed out in [1].
Section 4 argues this can be shown in terms of random matrices, and Section 4.2 suggests an
algorithm to test these ideas numerically.

2 Transport approaches and their limits

2.1 Free streaming, perfect hydrodynamics and ensemble averaging

Transport theory can be thought of as a limit of a classical N — oo particle system, where
the Hamilton Jacobi equation tends to a distribution function, x;—; y,p; v _—_ f (x,p) [22].

The Hamiltonian evolution of this limit also tends to be infinitely unstabf]e, xith the Boltz-
mann collision term cutting off this instability “at the price” of time-reversibility. More com-
plicated correlations f(x;,pi,Xs,Ps,...) are also possible, arranged in the so-called BBGKY
hyerarchy [29]. The ideal hydrodynamic limit is reached when the Boltzmann collision term
is in local equilibrium, and the Vlasov term irrelevant (either averaged out or quenched by
Debye screening).

As can be seen, ideal hydrodynamics thought in this way is a coincidence of several lim-
its, and this can lead to “paradoxes”. For instance, let us take Eq. 6 in the free streaming
collisionless case, adding a mass for the result to have a good classical limit

pH
- . f(x,p) =0, (1

Physically, an obvious solution corresponds to the Galilean motion of particles at constant
velocity that have been released

feep) =1 (xo+2t.p). @)
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Figure 1: A representation of how an uncountable number of physically sensible free-
streaming configurations of finite trajectories can become a smooth but curved “fluid”
when summed together as an ensemble average. In the ideal fluid dynamics limit,
on the other hand, particle trajectories in each sub-event would follow the ensemble
average.

However, what is counter-intuitive is that not the only solution; Consider the case where the
particles are in a thermal distribution according to some field f3,,(x). In this case, it is trivial
to check that

flx,p) ~exp[—Bup"], 3uBy+3,B,=0. 3)

also solves Eq. 1. In particular, an irrotational vortex v ~ %QA will correspond to a gas rotating
forever.

Mathematically, this is understandable: The right hand side of the transport equation van-
ishes for both free streaming and ideal hydrodynamic limits, and in the latter the flow vector
is the Killing vector. But physically, on the surface this makes no sense! How can a gas of
non-interacting particles just rotate? There is no force keeping them rotating. More generally,
the condition on Eq. 3 is that of a Killing vector, in line with the idea that flow is a Killing
vector of the co-moving frame in ideal hydrodynamics [30,31]. But once again, these are
non-interacting particles: Pressure gradients do not correspond to any force on neighboring
volume elements since particles just propagate freely. Very clearly no system of non-interacting
particles, when freely released, will start “flowing”. This paradox is resolved by remembering
that f (x,p) is defined in an ensemble average limit where the number of particles is not just
“large” but uncountable. Just like the limit of many straight segments is curved, once an in-
finite number of trajectories are summed over, the maximum density of trajectories can be a
curve even if trajectories are straight. This means that if we divide f (x, p) in any number of
“physical” sub-events each with a finite number of particles, none of the sub-events will look
like Eq. 3, but each will look like some version of Eq. 2. However,the number of copies of each
Eq. 2 close to its neighborhood in phase space will have a curvature, so when this is summed over
a smooth “Killing vector” emerges. This is illustrated in Fig. 1 [32].! In contrast, in the ideal
hydrodynamic limit,even away from the pure ensemble averaging each microscopic particle
will “flow“ under the action of pressure gradients, and the probability that it flows differently
goes to zero in the ensemble limit. Some put this as the real definition of hydrodynamics [12]:
Initial conditions and conservation laws fix the final state for individual particles. Note that
this is what seems to emerge from multi-particle cumulant analysis of experimental data [3].

What this suggests is that, analogously to the volume in phase transitions, the ensemble
average limit is non-analytic. Being arbitrarily close to it does not necessarily give a qualita-
tively similar description w.r.t. it. In other words, the transport properties of a system of finite

n reality this much studied “billiard stadium” setup is a bit different, for the particles interact with the bound-
aries, and this provides a measure of chaos that leads to a fractal rather than continuous density profile. But the
main idea behind taking a limit prevails. An “free streaming fluid” in such a stadium initialized as an ensemble
limit thermalized distribution would evolve as a turbulent fluid with “fractal” scale-free flow.
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degrees of freedom need not be close to their Boltzmann equation results even if the number of
degrees of freedom is large. It also suggests that away from the non-analytic limit stochasticity
due to a limited number of degrees of freedom interplays with the Knudsen length scale in a
highly non-trivial way: One can regard each sub-ensemble as a frequentist “world”, random
scattering as the interaction “between worlds” and Vlasov evolution as a semi-classical interac-
tion “within a world”. A functional picture, where “every world” corresponds to a probabilistic
ensemble of phase space functions, might be the ideal way of dealing with this picture in a
consistent manner.

2.2 Transport in quantum mechanics and field theory

The arguments in the last section are fundamentally classical. Quantum mechanics comes
with a further “expansion scale” i1 (in reality, i can be thought of as unity and the expansion is
around the action S > # or equivalently state occupancy). Furthermore, the expansion around
f and T do not commute. Let us review the current consensus of how transport theory fits in
with quantum field theory [13,15].

The current consensus is that in quark-gluon plasma physics the Vlasov terms are taken
care of by resummation and screening. The idea is that such terms would be relevant at a
“soft” scale k ~ gT (where g is the quantum field coupling constant), where field are classical.
Thus, in a manner somewhat analogous to the argument in [22], the soft modes are taken
care of by the Vlasov equation while the hard modes are put in the collision Kernel. For this to
work within a quantum field theory perturbative expansion, one needs an intermediate scale,
which can be the temperature or more generically the occupancy of soft states. We can then
resum the soft modes

d3
Viasov ~ g (4%) ~ g J —-f(E,T), Boltzmann~ g?(A")~ f x f, @
P

with all interactions between them counted as a correction to the propagator. The hard mode
(k ~ T) interactions ~ g2 (A4> are then accommodated as a Boltzmann equation with distribu-
tions and collision kernels calculated via such propagators [15]. In this regime, the main effect
of the fields is Debye screening and if the mean free path is well above the Debye screening
length the Vlasov terms become irrelevant.

There are two issues in this description when a finite number of degrees of freedom are
excited and one is well away from a thermodynamic limit: The first is that the ultra soft modes
k ~ g2T couple to the soft modes via Plasma instabilities and can not generally be treated
perturbatively. If the boundary is fixed, for example by an asymptotic expansion around a
hydrostatic state (as is done via Kubo/Schwinger-Keldysh formulae), this provides boundary
conditions that render these ultra-soft modes irrelevant, but for small systems this is suspect.

The second is that while “to leading order” one can obtain a “resummed Boltzmann equa-
tion” it is not clear what the next to leading order is and how good is the convergence of this
series [33]. The fact that to zeroth order in the collision term an infinite quantum thermal
loop summation leads to a classical Vlasov equation [34] ilustrates how careful must we be
with any such expansion: Basically the expansion in correlations, in 1 and in temperature do
not commute.

What we are looking for in this work is a limit where these correlations are classical-
probabilistic rather than quantum. In this case they parametrize our ignorance of the phase
space distribution rather than quantum correlations. So the question is where would this
ansatz lie in corrections of the coupling constant g and Planck scale . The different regimes
of many body theory are illustrated in Fig. 2. In practice, we hope to describe a system which
is
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Our Mrowczynski/
ansatz Muller
_ ()
T {flzp))
..... (divergence)
BBGKY Kadanoff
T expansion Baym
Boltzmann ——— > Wigner function
T

Figure 2: The domain of validity of the ansatz proposed here, in terms of fluid cell
coarse graining and microscopic variables x;, p;.

Strongly correlated, so that the BBGKY hierarchy can not be used as an “expansion” but must
be handled “non-perturbatively”, analogously to functional methods in QFT (Gaussian-
ity, as we shall see later, comes from renormalizeability [37-40]). This is the meaning of
a= % > 1. Otherwise, one can try to truncate the BBGKY hierarchy and the limit
of this is the Boltzmann equation. Vlasov terms together with functionals of f (includ-
ing arbitrary n-point functions) will keep track of long-term correlations, while collision

type terms will keep track of short-term ones.

Classical-probabilistic in the sense that statistical independence has to hold. In other words
the CHSH inequality [41]

(xisq5) = (xi,p5) + (xiq5) +{xiop5) < 2, ©)

must hold for any pair of conjugate observables (position,momentum, spin for fluids
with polarization) from any cells i, j This is required for the probabilities of any field
configuration must be classical functionals rather than quantum operator averages. In
this sense, h < 1 (or equivalently state occupancy > 1). Otherwise, phase space func-
tions and functionals stop being classical objects. Note that the saturation of Eq. 5 might
be done by decoherence with unseen degrees of freedom or by “Eigenstate thermaliza-
tion” of a strongly coupled quantum evolution [42], something described in some detail
in [24], and within effective field theory in [43]

In certain situations [44-47], when <m¢>2 / h) > 1 the spectral function of the theory is
dominated by quasi-particle peaks [35] (the expansion in hard thermal loops can lead to a
temperature-dependent effective mass term that in turn generates an effective thermal “force”
incorporated into the Vlasov equation [36]) In this case, the assumptions above lead to a
Boltzmann-Vlasov equation with a strong mean field term and features like in-medium masses
and widths. However, there is no guarantee for this to happen, and such mean-field theory is
not known to produce a hydrodynamic-like behavior in small systems. We therefore go in a dif-
ferent direction (perhaps (<m¢2 / (hg2)> > 1, g2 ~ 1), giving up the quasi-particle assumption
but retaining the quasi-classical behavior and the strong correlations so that the system is rep-
resented by a classical probabilistic ensemble of fields. If these fields are both highly occupied
and weakly coupled, the dynamics has analogies to that of a Color Glass condensate [48] but if
the coupling is strong enough to guarantee the sort of random phase decorrelation consistent
with the Eigenstate thermalization hypothesis but also occupation number is small enough that
fluctuations of it are non-negligible, no ansatz is currently known. We conjecture that because
of the ETH one can continue using classical probabilities rather than quantum density matrices
in this regime. Since we are working in the limit of a large ensemble (perhaps with a small
number of DoFs per event but “many” events) a well-defined convergent functional integral

6
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is required to construct such an ensatz. In the next section we argue that a Boltzmann-Vlasov
functional with a Gaussian ansatz could be the ansatz we require, and argue that the limit to
the usual Boltzmann equation could be non-analytical in the number of degrees of freedom,
thereby providing a mechanism for fast thermalization of small systems

3 Mathematical development of a Boltzmann equation with func-
tionals

The idea of including fluctuations in the Boltzmann equation is not new [ 14], but up until now
it was done in a linearized stochastic expansion.
To try to develop an exact theory let us start from the Boltzmann-Vlasov equation Eq. 6

Pt o f(x,p)=C[f]- Fui 6

A o) Cop)=Clf]l-¢g apuf(x,p), (6)
where A is a generic IR momentum scale, usually associated with the particle mass, but might
also be the virtuality, the Debye screening length and so on. We note that we wrote Eq. 6
in an unusual way for, other than the generic virtual scale, usually the Vlasov term is on the
right-hand side. F* is the four-force.

This way of writing,however, is physically justified as we will show. The Vlasov term is of
the same order of magnitude in the Coupling constant as the Boltzmann term, and is thought to
dominate for long-range correlations where, due to Bose-enhancement, the occupation num-
bers of bosons are high requiring a semi-classical field. It is thought that instabilities due to
thermal fluctuations and Debye screening make this term obsolete but, for “small” but highly
correlated systems, there is no justification for this.

More formally, the Boltzmann equation is known to be a good approximation of a quan-
tum field theory evolution in the “ensemble average”. One way to express this is to consider
that the Wigner functional can be approximated by a one particle Wigner function which in
turn becomes a classical phase space distribution function [13]. In terms of a (defined in
section 2.2) it is

WW (x,p)) =6 (W'(x,p) =W (x,p)) = & (f' = f(x.,p)) - 7)
a1 <1

One can relax the a < 1 assumption but not the i < 1 assumption using Wigner functionals
[49], defined over field configurations f; ,(x) in configuration space

A

P

W (1), f(x)) = J Do) [-if(ISN (A + 360 b )= 39(). ®

where p is the density matrix, defined via the partition function (See [50]) This expression is
exact at the quantum level, and hence it’'s momentum equivalent is a straight-forward infinitely
dimensional Fourier transform with fl’z(p). It also contains every possible correlation of the
BBGKY hierarchy, encoded, in configuration space in “bunchings” between f;(x) and f,(x) as
explained in the previous section (f (x;, Xo, ..., X,) would be related to the n— th cumulant of
the functional).

Analogously how f is the (’)(ho) limit of W [51] one can imagine the Boltzmann func-
tional is the corresponding limit of the Wigner functional in [49], a decohered system with an
undefined probability density. More formally, the regime where the ansatze presented in this
work are valid are in section 2.
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In this regime, where Eq. 7 is relaxed Eq. 6 would become something like this

P fiep) = (€L folly, — & VT fad, 2o ©
A8fo1 x,p) =(Clf1, f2D)5,— & f1. f21)y, apﬂfl’

the left-hand side is identical, but the RHS is written in terms of

(0)f, = f Dfy0(f1, f2)W(f1, f2), (10)

with C, V* being the generalizations to functional averages of Vlasov and Boltzmann collision
operators.

Physically, the we are “keeping track” of f; and letting f, represent our ignorance of the
“real distribution”. Hence, the Vlasov term can be physically interpreted as “an ensemble of
forces defined by our ignorance of the real distribution” acting on a distribution f; of particles.
The Boltzmann term is, analogously, an ensemble of collision terms.

Gaussianity in this context means that any phases between degrees of freedom oscillate
“fast” w.r.t. any time-scale, so position and momentum decouple into a classical probability in
both position and momentum space which is approximately of Gaussian form

N oo 1 [ DIfF]
W (), f2(x)) > pLf (x,p). f/(x,p)] = 3 exp[ 207 (X’p)] , an

where o £ is some undetermined “width” function (whose significance will be clear shortly)
and the obvious choice of a distance measure is

D[f,f'1= f d*xd®p (f (x,p)— f'(x,p))’ , (12)

with the Boltzmann-Vlasov equation recovered for oy — 0. The large number theorem makes

it likely that oy ~ N, 01 Ifz, the square root of the number of degrees of freedom so it is certainly
away from the ensemble average limit for the “small” fluids seen in hadronic collisions and
ultra-cold atoms.

At first sight, the Gaussian approximation appears arbitrary and explicitly at odds with
the aim to construct a theory “to all orders” in the BBGKY hyerarchy, since correlations
O (f1(x1,p1) % fo(x9,p2) % f3(x3,p3)) and higher could give rise to non-Gaussianities. The
point is that Gaussianity in field theory has two quite distinct justifications: There is the fact
that free field theories, the basis of perturbative constructions, have Gaussian wave-functions
with free theory propagators (Eq. 13 with G(x—y) being the Fourier transform of a free theory
propagator). In this sense, higher order cumulants come associated with increasing powers of
the coupling constant so Gaussianity is a good approximation to weak coupling.

However, in 3+1D Gaussian functional integrals are the only ones that are well-defined
analytically. Not conincidentally, renormalization can be shown to arise from a central limit
type expansion [37]. Examples such as superconductivity [38] variational QCD [39] and ran-
dom matrix theory for nuclear physics [40] show that the Gaussian approximation, where the
wave functional is of the form

1

(W [{¢}]) o< exp [—5 f d*xd®y (¢ (x) = oo (X)) G (x = ¥) ($(¥) — ¢oo(y)):| , (13)

where ¢, (x) is the topological term at infinity and G™! is the Green’s function, is relevant
for situations where coupling is strong. The renormalizeability connection to the central limit
theorem [37] in fact makes this form close to unavoidable (bar some exotic examples discussed

8
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in [37]) , precisely because the well-definedness of a theory in the UV requires a convergent
functional integral (thus, a “stable renormalized” G(x — y), ¢ emerging from a microscopic
“bare” Gpgre(X — ¥), Ppare is nalogous to the approach to the central limit, and the limits
on the number of couplings of ¢;,,. in the lagrangian is a consequence ). In this sense a
visible breakdown of Gaussianity can be seen either as the appearence of irrelevant terms in
the effective theory or as the breakdown of the classical probability approximation (which is
the one “heuristic” requirement of the approach presented here). Higher order correlations
will find their manifestation in the complexity and transendentality of the Green’s function
G(x — y) (in BCS theory [38] a condensate emerges).

In the semi-classical (diagonal density matrix) limit Eq. 13 can only converge to some-
thing like Eq. 11 and Eq. 12. Since for a renormalizeable theory irreducible diagrams are a
maximum of 2 — 2) additional functional integrals of the type f DfyDf30(f1, fa, f3) are also
subleading in # and hence neglected in the semiclassical expansion. In terms of classical prob-
ability theory the “functional central limit” applies to the number of events from which {f}
is inferred. This is assumed here to be “large”, even through each event could have “a small
number” of degrees of freedom dominated by correlations of many particles. These are not
included in higher cumulants of the functional (which would render it ill-defined) but rather
in the form of o /(x,p) of Eq. 11, just like multi-particle interactions and states are not pre-
cluded by a wavefunctional such as Eq. 13, their probability is encoded in G(x —y) (A good
demonstration of this is the treatment of superconductivity [38]).

We note that a way to generalize the H-theorem is not apparent here, since microscopic
entropy as it is usually defined will be inherently scale dependent [50]. However, a generaliza-
tion of local equilibrium based around the vanishing of the RHS Eq. 9 is immediately apparent,
as is apparent, from the corresponding “LHS=0" equation, the onset of ideal hydrodynamic
behavior. The terms on the right hand side of Eq. 9 converge to

Clf1, fol= J d? [k1,2,3:| Gscattering( f10xe, p)falx, ki) — folx, kz)fl(X,ks)) ) (14)

where the Vlasov operator here V is the Vlasov operator
VI f1, fo] = f dxy o F*(xq — x2)0((x1 — x2)*)faf1 - (15)

Where |M|? is the scattering matrix element and F* the force field, augmented by a © func-
tion enforcing causality. By the analogy of Eq. 12 to the Green’s function in Eq. 13 and the
assumption of being close to the central limit theorem [37], we can conjecture that higher
order terms in Eq. 15 and Eq. 14 will show up as corrections of O'J% in Eq. 12 (representing
oscillating condensates as such, as in [38]) to leading order in f if the classical ansatz is to
stay well-defined.

Note that [22] one can consider the Boltzmann term as the UV completion of the Vlasov
term, as scattering is the continuation “within the coarse grained cell” of the Vlasov evolution,
increasingly unstable at smaller scales.? As “infinitely unstable infinitely local” interactions
degenerate into random scattering, they are taken care of by the Boltzmann collision term,
while long-range correlations are taken care of by the Vlasov drift term. Thus one expects,
when one coarse grains, each term to be scale dependent but not the difference.

2[22] contrasts this instability in terms of KAM’s theorem, which on the contrary implies the existence of
an eH, + H;, where H, I are respectively integrable and non-integrable hamiltonians, where integrability is not
broken. However this € generally depends as O (e_N ) and to make the transition to a probability density function,
x;,p; — f(x,p) requires i —» oo, which nullifies the lower KAM limit. This is a heuristic explanation as to why
Vlasov type equations are always unstable at all scales.
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Very roughly, such “two independent scales up to a redundancy” parallel the Pauli-Villars
renormalization scheme, where two infinities are needed to maintain Gauge symmetry [27].
Analogously, if Boltzmann is the “UV completion” of the Vlasov term (as was argued for in
[22]), this can not result in physics depending on whether an interaction happens “via a Vlasov
term above the cut-off” or a “Boltzmann term below it”.

To see how this symmetry works physically we note that

* The integral in C is in momentum space while in V¥ it is in position space. f; 5(x; 2,P12)
are of course defined in both but the gradients expected in any expansion will be, re-
spectively, in position and momentum.

» For a consistent coarse-graing the scattering cross-section matrix elements and the long
distance semi-classical potential are strictly related, as forces are related to scattering
via potentials. For scalar particles

Ff(x)=0"V(x), O scattering ™ |M(k)|2dﬂ(k): M(k) = J d3xeikxv(x)’ (16)
with the appropriate extension for vector potentials. Thus in general both terms are

present.

The point here is that for finite functional width o in equation 11, even away from the
Gaussian parametrization, there arises a hidden “gauge” symmetry within the RHS of Eq. 6.
Consider all possible transformations such that

A A a
FGe,p) = f'Ge,p), (C(fGe,p), f/Cx,p))) = (V¥ (f (x, p), f'(x, ) % ' 4
I

limg_,p/~0f[dx

limy_,;/~0f/0p

In the ensemble average Eq. 11 has no physical meaning because f (x,p) — f(x’,p’) can only
be a shift in phase space, not a shift in functions.

In the Gibbsian picture, however, f (x, p) is itself unknown, and only estimated via a coarse-
graining. Hence the RHS of Eq. 9 can be dominated by redundancies so as to be qualitatively
very different equation from Eq. 9, even for small o, ie narrow distributions in functional
space. In other words, if only the Boltzmann term or the Vlasov term are present one assumes
that as the Boltzmann functional converges to a §-functional,ie a function, the equation of
motion for it converges to a Boltzmann or Vlasov equation. But if both terms are included, the
redundancy in the difference spoils this convergence.

Physically, the manifestation of this is that the RHS of Eq. 6 vanishes in just two cases, free
streaming and ideal hydrodynamics. This is because oy — 0 and all dependence of it on x, p is
irrelevant. However, for Eq. 9 there is a wealth of situations, parametrized by Eq. 17 where the
system flow looks isentropic because o will be a complicated (perhaps fractal/non-integrable)
function of x, p which means many pairs { fx,p), f'(x',p’ )} exist whose difference is “small”
with respect to it. In other words, there will be many configurations where the system will look
like an ideal fluid, along the lines of [1]. This is shown schematically in Fig. 3. What happens
is that close to the local equilibrium limit we do not know if the volume cell is being moved
by microscopic pressure (described by a Boltzmann type equation) or rather by a macroscopic
force (described by a Vlasov term). The set of configurations where a pressure gradient is
exchanged for a force corresponds exactly to the set of configurations where the difference
between the two sides of Eq. 9 does not change. In a Gibbsian picture, therefore, all such f
need to be counted in the entropy which generally results in differences w.r.t. the Boltzmannian
entropy [26].
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RHS=0
—

3 f(p) or & f(x)

S 1(x)

S f(p)

Figure 3: A representation of how when both Boltzmann and Vlasov
terms are considered the limit of the Boltzmann functional converg-
ing to a function admits a continuum of minima where Eq. 9 is in-
distinguishable from an ideal fluid dynamic equation. In this notation

5f(p)= [ dx(fCe,p)—f'(x,p)), 6f(x)=[dp(f(x,p)—f'(x,p)).

At the classical level, it has long been known [22] that the Boltzmann term can function
as a “counter-term” cutting off the effect of short-range instabilities of the Vlasov term. At the
quantum level this picture is indeed confirmed by the fact that the Boltzmann term describes
“microscopic” and the Vlasov term “macroscopic” DoFs. The set of transformations leaving the
RHS of eq. 9 invariant can be thought of as defining a “Gauge orbit” across the space of f(...)
which are part of the same “Gibbsian” ensemble. Gibbsian here would mean that the observer
has at their disposal an ensemble {x, p}, allowing them to infer a (f (x, p)) and it’s uncertinity
6 f (x, p), the latter related to a some scale defined by the coarse-graining in the distribution of
{x,p}). Different functions in (f (x,p)) £ 6f (x, p) will have different Boltzmann and Vlasov
terms but the same RHS of Eq. 9. Note that the above argument needs to be updated with
spin and vortical susceptibility if non-conservative fields, such as magnetic fields [23], are
considered (the Gauge-like ambiguity would be if angular momentum is exchanged via vortical
motion augmented with spin-orbit coupling or magnetic fields)

Quantitatively, these redundancies should ensure that the system is indistinguishable from
local equilibrium in a much wider array of circumstances than a purely Boltzmann description
would suggest. As there is no small parameter in the functional expansion around the average
f(x,p), an analytical quantification of this statement is non-trivial. However, the universality
of random matrix theory could provide a quantitative validation of this point if causality is
neglected.

4 A non-relativistic insight from random matrices

Let us discretize the system (using i for position and j for momentum variables) and use
random matrix theory, f (x,p) — f;;(x;,p;)C = C; ;,,V =V}, ;,. Of course we have neglected
causality (the O-term in Eq. 15 as well as Lorentz invariance (broken in the discretization),
but this is a round qualitative estimate, perhaps relevant for cold atom measurements such
as[7,8]

Equation 9 becomes of the form

- / / ) , Afi
fij_[%'Ak]fij:fd[filjl][wilhii (th (fiifim_fihfilf)_Vglfijfille_lﬂj‘)]' e
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A is the discrete derivative (the difference between lattice points normalized by lattice spacing)
and W, ; ; ; isadiscretized version of Eq. 11 (in agreement with the definition Eq. 10). Double
summation is used in the (...) bracket but VW _is multiplied separately. As we describe in detail
below, the RHS can be thought of as a Gaussian random matrix ensemble

* V,C are deterministic matrices of i, j. Hence, one can do a change of variables

d [fi;jl] - { ]C;:ll }d [fill,jl] . (19)

This results in a series of Gaussian ensembles, with a transformed VV as the weight,
equivalent to a previous one up to a normalization factor. These ensembles are invariant
under similarity transformations that mix C, ) with the distribution of f;;, and in fact are
related to the functional symmetries we are argue for.

* Provided the system is governed by central force type equations
2 5 . Al .

{filjzfi;jz Vi1i2} ~f (x - x’) é,_y (contracted with Af /Ap*, where é, is th unit vector

in direction n), is an antisymmetric ensemble in i; 5. j; 5 is traced over in a normalization

factor.

/ / . . o . . . . .
* Cij, ( fij, fi2 B fisj, fi2 jz) is also an anti symmetric in j, j,, i3 5 are traced over in a nor-
malization factor.

* This is however a deformed ensemble, since the average ( fi j> is non-zero.

* In the oy — 0 limit of Eq. 11 one expects < fij> to reflect the general Boltzmann Vlasov
estimate. More generally, we note C; ;, conserves momentum and V; ; respects Lorentz
invariance, so momentum conservation on average can be implemented via Lagrange
multipliers where the quantity maximized is the local entropy given the choice of d%,
(invariance w.r.t. d%,, would then be enforced by the gauge symmetry described in the
previous section and [1]). Thus one expects < fi j> away from oy — 0 will be of the form

(£ij) o< exp[—d =, (x)B,(x )0} ] (20)
for some choice of f3,,d%, in line with the gauge-like expectations from [1].

This problem is the combination of ensembles studied for many decades [54,55] but an elegant
solution was shown in [56], where it was shown that the distribution is that of the Wigner
semi-circle and outliers.

1 1 A2
P =po(A)+ E A=) +86(A+u)), po(M)=—=\1-——7, 21
" J 4J
kA >
the RHS of Eq. 9 will be the difference between two such “shifted” Gaussian ensembles.

f(X,P, t)_é-vf(x:p: t) :Np(t)F(Jp(f(X,P, t)))_Nx(t)a_fF(Jx(f(xspa t))): (22)
m op

where N, , are extra normalizations (from Eq. 19) and

F(J)= Jf po(x)e_xzdx +Zexp [—,ui[J]]

(J is perhaps related to the cut-off for the Vlasov and Boltzmann modes). Thus, assuming
the “sparse” exponential terms can be neglected, the evolution will be driven by a difference
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between two Bessel-function type terms, where N, , and J, ,. This is much faster than the
relaxation time of the Boltzmann equation, where the corresponding equation to Eq. 22 in the
close-to-equilibrium (relaxation time) approximation is

fo(x:P: t)_f(x,p, t) )

To

Fle,p,t)— %.Vf(x,p, £) = (23)

The RHS for the “functional” term Eq. 22 is exponentially suppressed, while that of Eq. 23 is
suppressed by O (f — f,). The first is much more likely to stay close to zero even when the
configuration of the system is far away from what would be called thermodynamic equilibrium.

Physically, a dynamics such as that of Eq. 22 means the system “rapidly and uniformly
transitions to close to local equilibrium at the beginning” rather than approaching it slowly
and inhomogeneusly. This is consistent with the Gaussian ansatz functioning throghout this
dynamics, since the equilibrium state could be seen more as similar to a “condensate” (a’ la’ the
dominant condensate in superconductivity and QCD [38,39], appearing in Eq. 11 at the level
of o) than a complicated multi-body dynamical process that generally violates gaussianity.

Of course, the model presented here is highly acausal. Including causality in the Vlasov
potential would add a non-trivial correlation to the random matrix which we do not at the
moment know how to perform analytically.

4.1 Zubarev hydrodynamics and random matrices

The connection to random matrices of the above two sections can also be extended via Zubarev
hydrodynamics. Consider a general strongly coupled system in a volume V (Boltzmann-Vlasov,
quantum chaos, whatever). Divide V at a given time-step into a “random lattice” of a large N
points ZL:L"N (t) such that

N N 3
av=a’s, S av=>[](=-=)=v. (24)
i=1 j=1 j=1
Now take the output of the microscopic system over its evolution, and simply maximize the
Zubarev statistical operator
N
InZ=In l_[exp (A?’ZH (ﬁ,,T“”—,uiJ“)) , (25)
i=1
with, as constraints, 3, (for the energy-momentum current) and y; (for chemical poten-
tial). d%; are free parameters, under the constraint of total volume invariance. The resulting
stochastic picture is very similar to that conjectured in [57].

This is a very complicated Lagrange multiplier problem (The number of multipliers is
3 4+ 1+Number of conserved charges per point), but it is still a linear problem. Since un-
stable solutions of “large systems of linear equations” approach random matrix theory ( [40]
and references therein) a connection is clear.

A numerical simulation is for now necessary to see how good is Zubarev hydrodynamics
using a given highly non-linear system with many degrees of freedom. If In Z defined as
Eq. 25 leads to a “large” value for the likelihood, some fluctuating hydrodynamics is a good
approximation for the systems evolution. The dependence of this on the number of degrees of
freedom is far from clear, in particular it is far from clear that it should always increase with the
number of degrees of freedom. This was the main argument in [57], where it was conjectured
that combining Zubarev hydrodynamics with Crooks fluctuation theorem is a good ansatz
for relativistic hydrodynamics in the strong fluctuation regime, and in this regime, counter-
intuitively, fluctuations “help” maintain the system in local equilibrium. Here, we see that
this picture is related to the functional thermalization picture in the random matrix limit. A
numerical simulation of the two would be able to confirm if this similarity is quantitative.
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4.2 A numerical algorithm

The discretized Eigenvalue analysis in [52] (but also [53]) allows us to make an estimate of
Eq. 9 initializing it close to a fluctuating equilibrium and seeing at every step if something like
“an ideal hydrodynamic evolution” is maintained on average even at gradients of 3, where
a typical Boltzmann configuration would be far away from the hydrodynamic regime. The
algorithm is summarized as follows

(i) Start with an average (Tw>. Create an ensemble {f} of configurations in every cell x;, p;

using equation Eq. 25 for P[f (x;, p;)], with a sample {Tuv} ~ {p“pv} This can be done
from a Metropolis type algorithm, with §, being Lagrange multipliers.

An immediate issue is the choice of d%,, the foliation. Since we are simulating using a
square grid around a hydrostatic limit [52], consistency requires d%, = dV (1, 5). One
might need to check that the gauge-like symmetries with respect to a reparametrization
of %, of [1,24] will emerge. f3, is given by the Landau condition 3, T"” oc 3.

(ii) Expand {f} in Eigenvalues and Eigenvectors, according to to [52].

(iii) Evolve each {f} — {f}. according to the Boltzmann equation, using the Eigenvalue
analysis of [52]. This time a Vlasov operator respecting causality can be constructed via
Eq. 15

(iv) Construct <Tw> (x)= <pHp,,> (x;) and B, (x;) from {f’} and return to step (i).

If the picture argued for in this work is correct then, while perhaps the typical f in the ensemble
at each step is far from the equilibrium value, fluctuations within the {f} will smear out non-
hydrodynamic effects and the evolution of f,(x;) will follow the hydrodynamic description
on average. Causality means this model would be different from the random matrix ansatz
discussed in the previous section (the matrices would be “locally random” within a causal
diamond) so a comparison would be interesting. Also, the “Gaussian width” o (x, p) of Eq. 12
can be numerically reconstructed step-by-step. The correctness of the picture suggested by this
work would correspond to o ¢(x, p) becoming more and more “rapidly oscillating” in x, p in a
way that makes outwardly different pairs of f (x, p), f'(x, p) being equivalent for more intents
and purposes.

5 Discussion

This has been a very speculative exercise. At the moment, we do not have a way to check
quantitatively if a functional Boltzmann equation approach will give the desired result, an
approach to local equilibrium which

* Is significantly faster than that of the Boltzmann equation.
* Does not increase as the number of degrees of freedom goes down.

At best, a “Galilean” model (instant signal propagation) can be looked at from a random ma-
trix perspective, and universality of random matrix ensembles seems to show that indeed this
scenario is plausible (Note that this universality has some similarity to the “inverse attractor”
postulated in [1], where every system “looks” similar when sampled a certain way). Neverthe-
less, heuristically when the number of degrees of freedom is small ensemble average notions
such as “phase space distribution function” are obviously inadequate and must be generalized,
and a functional approach, with discretization, might be the best way to achieve this. Mean-
while,experimental tests of collectivity in smaller and smaller systems, both cold atoms [7, 8]
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and heavy ion collisions [3, 4] will tell us if a theoretical justification of hydrodynamics with
small systems is worth pursuing while numerical implementations of the functional picture,
described in the previous section, will show whether the rapid thermalization via the functional
picture is indeed realized.

Acknowledgments

We thank Igor Gorniy and Leonid Pastur for providing references and answering my newbie
questions about random matrices, Peter Arnold for explaining some subtleties of thermaliza-
tion in quantum field theory and Leonardo Tinti, Sangyong Jeon and Stanislaw Mrowczynski
for helpful discussions.

Funding information GT thanks CNPQ bolsa de produtividade 306152/2020-7, bolsa
FAPESP 2021/01700-2 and participation in tematico FAPESE 2017/05685-2. The initial part
of this work was done when I was in Kielce under NAWA grant BPN/ULM/2021/1/00039.

References

[1] T. Dore, L. Gavassino, D. Montenegro, M. Shokri and G. Torrieri, Fluctuating rela-
tivistic dissipative hydrodynamics as a gauge theory, Ann. Phys. 442, 168902 (2022),
doi:10.1016/j.a0p.2022.168902.

[2] J. L. Nagle and W. A. Zajc, Small system collectivity in relativistic hadronic and nuclear
collisions, Annu. Rev. Nucl. Part. Sci. 68, 211 (2018), doi:10.1146/annurev-nucl-101916-
1232009.

[3] V. Khachatryan et al., Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765,
193 (2017), doi:10.1016/j.physletb.2016.12.009.

[4] G. Aad et al., Two-particle azimuthal correlations in photonuclear ultraperipheral
Pb+Pb collisions at 5.02 TeV with ATLAS, Phys. Rev. C 104, 014903 (2021),
doi:10.1103/PhysRevC.104.014903.

[5] A. Soloviev, Hydrodynamic attractors in heavy ion collisions: A review, Eur. Phys. J. C 82,
319 (2022), doi:10.1140/epjc/s10052-022-10282-4.

[6] G. Giacalone, A. Mazeliauskas and S. Schlichting, Hydrodynamic attractors, initial state
energy, and particle production in relativistic nuclear collisions, Phys. Rev. Lett. 123,
262301 (2019), doi:10.1103/PhysRevLett.123.262301.

[7] S. Brandstetter et al., Emergent hydrodynamic behaviour of few strongly interacting
fermions, (arXiv preprint) doi:10.48550/arXiv.2308.09699.

[8] S. Floerchinger, G. Giacalone, L. H. Heyen and L. Tharwat, How many particles do
make a fluid? Qualifying collective behavior in expanding ultracold gases, (arXiv preprint)
doi:10.48550/arXiv.2111.13591.

[9] P Kovtun, G. D. Moore and P Romatschke, Stickiness of sound: An absolute lower limit on
viscosity and the breakdown of second-order relativistic hydrodynamics, Phys. Rev. D 84,
025006 (2011), doi:10.1103/PhysRevD.84.025006.

15


https://scipost.org
https://scipost.org/SciPostPhys.16.3.070
https://doi.org/10.1016/j.aop.2022.168902
https://doi.org/10.1146/annurev-nucl-101916-123209
https://doi.org/10.1146/annurev-nucl-101916-123209
https://doi.org/10.1016/j.physletb.2016.12.009
https://doi.org/10.1103/PhysRevC.104.014903
https://doi.org/10.1140/epjc/s10052-022-10282-4
https://doi.org/10.1103/PhysRevLett.123.262301
https://doi.org/10.48550/arXiv.2308.09699
https://doi.org/10.48550/arXiv.2111.13591
https://doi.org/10.1103/PhysRevD.84.025006

Scil SciPost Phys. 16, 070 (2024)

[10] S. Mrowczynski and E. Shuryak, Fluctuations of the elliptic flow, (arXiv preprint)
doi:10.48550/arXiv.nucl-th/0208052.

[11] S. Vogel, G. Torrieri and M. Bleicher, Elliptic flow fluctuations in heavy ion
collisions and the perfect fluid hypothesis, Phys. Rev. C 82, 024908 (2010),
doi:10.1103/PhysRevC.82.024908.

[12] R. Derradi de Souza, T Koide and T Kodama, Hydrodynamic approaches
in relativistic heavy ion reactions, Prog. Part. Nucl. Phys. 86, 35 (2016),
doi:10.1016/j.ppnp.2015.09.002.

[13] E Gelis, Quantum field theory, Cambridge University Press, Cambridge, UK, ISBN
9781108480901 (2019).

[14] R. E Fox G. E. Uhlenbeck, Contributions to nonequilibrium thermodynamics. IL
Fluctuation theory for the Boltzmann equation, Phys. Fluids 13, 2881 (1970),
doi:10.1063/1.1692878.

[15] P Arnold, Quark-gluon plasma and thermaligation, Int. J. Mod. Phys. E 16, 2555 (2007),
doi:10.1142/5021830130700832X.

[16] E.A. Calzetta and B.-L. B. Hu, Nonequilibrium quantum field theory, Cambridge University
Press, Cambridge, UK, ISBN 9781009290036 (2022), doi:10.1017/9781009290036.

[17] H. Liu and P. Glorioso, Lectures on non-equilibrium effective field theories and fluctuating
hydrodynamics, Proc. Sci. 305, 008 (2018), doi:10.22323/1.305.0008.

[18] S. Mréwczynski, B. Schenke and M. Strickland, Color instabilities in the quark-gluon
plasma, Phys. Rep. 682, 1 (2017), doi:10.1016/j.physrep.2017.03.003.

[19] M. Asakawa, S. A. Bass and B. Miiller, Anomalous viscosity of an expanding quark-gluon
plasma, Phys. Rev. Lett. 96, 252301 (2006), doi:10.1103/PhysRevLett.96.252301.

[20] D. Lynden-Bell, Statistical mechanics of violent relaxation in stellar systems, Mon. Not. R.
Astron. Soc. 136, 101 (1967), doi:10.1093/mnras/136.1.101.

[21] A. P J. Breu, H.-M. Ensner, C. A. Kruelle, and 1. Rehberg, Reversing the Bragzil-nut effect:
Competition between percolation and condensation, Phys. Rev. Lett. 90, 014302 (2003),
doi:10.1103/PhysRevLett.90.014302.

[22] C. Mouhot and C. Villani, On Landau damping, Acta Math. 207, 29 (2011),
d0i:10.1007/s11511-011-0068-9.

[23] G. S. Denicol, E. Molnar, H. Niemi and D. H. Rischke, Resistive dissipative magneto-
hydrodynamics from the Boltzmann-Vlasov equation, Phys. Rev. D 99, 056017 (2019),
doi:10.1103/PhysRevD.99.056017.

[24] G. Torrieri, Emergent symmetries of relativistic fluid dynamics from local ergodicity, (arXiv
preprint) doi:10.48550/arXiv.2307.07021.

[25] A.Y. Khinchin, Mathematical foundations of statistical mechanics, Dover Publications, Mi-
neola, USA, ISBN 9780486601472 (1949).

[26] E. T. Jaynes, Gibbs vs Boltzmann entropies, Am. J. Phys. 33, 391 (1965),
doi:10.1119/1.1971557.

16


https://scipost.org
https://scipost.org/SciPostPhys.16.3.070
https://doi.org/10.48550/arXiv.nucl-th/0208052
https://doi.org/10.1103/PhysRevC.82.024908
https://doi.org/10.1016/j.ppnp.2015.09.002
https://doi.org/10.1063/1.1692878
https://doi.org/10.1142/S021830130700832X
https://doi.org/10.1017/9781009290036
https://doi.org/10.22323/1.305.0008
https://doi.org/10.1016/j.physrep.2017.03.003
https://doi.org/10.1103/PhysRevLett.96.252301
https://doi.org/10.1093/mnras/136.1.101
https://doi.org/10.1103/PhysRevLett.90.014302
https://doi.org/10.1007/s11511-011-0068-9
https://doi.org/10.1103/PhysRevD.99.056017
https://doi.org/10.48550/arXiv.2307.07021
https://doi.org/10.1119/1.1971557

Scil SciPost Phys. 16, 070 (2024)

[27] C. Itzykson and J. B. Zuber, Quantum field theory, McGraw-Hill, New York, USA, ISBN
9780070320710 (1980).

[28] V. N. Gribov, Quantization of non-Abelian gauge theories, Nucl. Phys. B 139, 1 (1978),
doi:10.1016/0550-3213(78)90175-X.

[29] K. Huang, Statistical mechanics, Wiley, Hoboken, USA, ISBN 9780471815181 (1987).

[30] F Becattini, M. Buzzegoli and E. Grossi, Reworking Zubarev’s approach to nonequilibrium
quantum statistical mechanics, Particles 2, 197 (2019), doi:10.3390/particles2020014.

[31] S. Dubovsky, L. Hui, A. Nicolis and D. T. Son, Effective field theory for hydrodynam-
ics: Thermodynamics, and the derivative expansion, Phys. Rev. D 85, 085029 (2012),
doi:10.1103/PhysRevD.85.085029.

[32] L. A. Bunimovich, Billiards and other hyperbolic systems with singularities, in Dynamical
systems, ergodic theory and applications, Springer, Berlin, Heidelberg, Germany, ISBN
9783540663164 (2000)

[33] Y. Fu, J. Ghiglieri, S. Igbal and A. Kurkela, Thermalization of non-Abelian
gauge theories at next-to-leading order, Phys. Rev. D 105, 054031 (2022),
d0i:10.1103/PhysRevD.105.054031.

[34] P E Kelly, Q. Liu, C. Lucchesi and C. Manuel, Classical transport theory and
hard thermal loops in the quark-gluon plasma, Phys. Rev. D 50, 4209 (1994),
doi:10.1103/PhysRevD.50.4209.

[35] P Arnold, Private communication.

[36] P Elmfors, T. H. Hansson and I. Zahed, Simple derivation of the hard thermal loop effective
action, Phys. Rev. D 59, 045018 (1999), doi:10.1103/PhysRevD.59.045018.

[37] G. Jona-Lasinio, Renormalization group and probability theory, Phys. Rep. 352, 439
(2001), doi:10.1016/S0370-1573(01)00042-4.

[38] J. Negele and H. Orland, Quantum many particle systems, Adddison-Wesley, Boston, USA
(1987).

[39] I. 1. Kogan and A. Kovner, Variational approach to the QCD wave functional:
Dynamical mass generation and confinement, Phys. Rev. D 52, 3719 (1995),
doi:10.1103/PhysRevD.52.3719.

[40] A. Edelman and N. Raj Rao, Random matrix theory, Acta Numer. 14, 233 (2005),
doi:10.1017/50962492904000236.

[41] J. E Clauser, M. A. Horne, A. Shimony and R. A. Holt, Proposed experi-
ment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880 (1969),
doi:10.1103/PhysRevLett.23.880.

[42] J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018),
doi:10.1088/1361-6633/aac9f1.

[43] G. Torrieri, Multi-particle correlations, many particle systems, and entropy in effective field
theories, (arXiv preprint) doi:10.48550/arXiv.1306.5719.

[44] M. B. Pinto, Three-dimensional Yukawa models and CFTs at strong and weak couplings,
Phys. Rev. D 102, 065005 (2020), doi:10.1103/PhysRevD.102.065005.

17


https://scipost.org
https://scipost.org/SciPostPhys.16.3.070
https://doi.org/10.1016/0550-3213(78)90175-X
https://doi.org/10.3390/particles2020014
https://doi.org/10.1103/PhysRevD.85.085029
https://doi.org/10.1103/PhysRevD.105.054031
https://doi.org/10.1103/PhysRevD.50.4209
https://doi.org/10.1103/PhysRevD.59.045018
https://doi.org/10.1016/S0370-1573(01)00042-4
https://doi.org/10.1103/PhysRevD.52.3719
https://doi.org/10.1017/S0962492904000236
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.48550/arXiv.1306.5719
https://doi.org/10.1103/PhysRevD.102.065005

Scil SciPost Phys. 16, 070 (2024)

[45] A. H. Mueller and D. T. Son, On the equivalence between the Boltzmann equation
and classical field theory at large occupation numbers, Phys. Lett. B 582, 279 (2004),
doi:10.1016/j.physletb.2003.12.047.

[46] P Romatschke, Quantum field theory in large N wonderland: Three lectures, (arXiv
preprint) doi:10.48550/arXiv.2310.00048.

[47] W. Cassing, Transport theories for strongly-interacting systems, Springer, Cham, Switzer-
land, ISBN 9783030802943 (2021), do0i:10.1007/978-3-030-80295-0.

[48] F Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Annu.
Rev. Nucl. Part. Sci. 60, 463 (2010), doi:10.1146/annurev.nucl.010909.083629.

[49] S. Mréwcezynski and B. Miiller, Wigner functional approach to quantum field dynamics,
Phys. Rev. D 50, 7542 (1994), doi:10.1103/PhysRevD.50.7542.

[50] T. Nishioka, Entanglement entropy: Holography and renormalization group, Rev. Mod.
Phys. 90, 035007 (2018), doi:10.1103/RevModPhys.90.035007.

[51] S.R. De Groot, W. A. Van Leeuwen and C. G. Van Weert, Relativistic kinetic theory. Princi-
ples and applications, Elsevier, Amsterdam, Netherlands, ISBN 9780444854537 (1980).

[52] S. Ochsenfeld and S. Schlichting, Hydrodynamic and non-hydrodynamic excitations in
kinetic theory — A numerical analysis in scalar field theory, J. High Energy Phys. 09, 186
(2023), doi:10.1007 /JHEP09(2023)186.

[53] P Romatschke, M. Mendoza and S. Succi, Fully relativistic lattice Boltzmann algorithm,
Phys. Rev. C 84, 034903 (2011), doi:10.1103/PhysRevC.84.034903.

[54] V. Marcenko and L.Pastur, Distribution of eigenvalues for some sets of random matrice, Mat.
Sb. 114, 507 (1967).

[55] L.Pastur and V. Vasilchuck, On the law of addition of random matrices, Commun. Math.
Phys. 214, 249 (2000), doi:10.1007/s002200000264.

[56] A. Katsevich and P Meshcheriakov, The eigenvalue spectrum of a large real antisymmetric
random matrix with non-gero mean, (arXiv preprint) doi:10.48550/arXiv.2309.01833.

[57] G. Torrieri, Fluctuating relativistic hydrodynamics from Crooks theorem, J. High Energy
Phys. 02, 175 (2021), doi:10.1007/JHEP02(2021)175.

18


https://scipost.org
https://scipost.org/SciPostPhys.16.3.070
https://doi.org/10.1016/j.physletb.2003.12.047
https://doi.org/10.48550/arXiv.2310.00048
https://doi.org/10.1007/978-3-030-80295-0
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1103/PhysRevD.50.7542
https://doi.org/10.1103/RevModPhys.90.035007
https://doi.org/10.1007/JHEP09(2023)186
https://doi.org/10.1103/PhysRevC.84.034903
https://doi.org/10.1007/s002200000264
https://doi.org/10.48550/arXiv.2309.01833
https://doi.org/10.1007/JHEP02(2021)175

	Introduction
	Transport approaches and their limits 
	Free streaming, perfect hydrodynamics and ensemble averaging
	Transport in quantum mechanics and field theory  

	Mathematical development of a Boltzmann equation with functionals 
	A non-relativistic insight from random matrices 
	Zubarev hydrodynamics and random matrices
	A numerical algorithm

	Discussion
	References

