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Abstract

This paper is a continuation of [1], in which a set of matrix elements of local opera-
tors was computed for the XXZ spin-1/2 open chain with a particular case of unparallel
boundary fields. Here, we extend these results to the more general case in which both
fields are non-longitudinal and related by one constraint, allowing for a partial descrip-
tion of the spectrum by usual Bethe equations. More precisely, the complete spectrum
and eigenstates can be characterized within the Separation of Variables (SoV) frame-
work. One uses here the fact that, under the constraint, a part of this SoV spectrum can
be described via solutions of a usual, homogeneous, TQ-equation, with corresponding
transfer matrix eigenstates coinciding with generalized Bethe states. We explain how
to generically compute the action of a basis of local operators on such kind of states,
and this under the most general boundary condition on the last site of the chain. As
a result, we can compute the matrix elements of some of these basis elements in any
eigenstate described by the homogenous TQ-equation. Assuming, following a conjec-
ture of Nepomechie and Ravanini, that the ground state itself can be described in this
framework, we obtain multiple integral representations for these matrix elements in the
half-infinite chain limit, generalizing those previously obtained in the case of longitudi-
nal boundary fields and in the case of the special boundary conditions considered in [1].
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1 Introduction

This paper is a continuation of our previous work [1], in which a set of matrix elements of
local operators on the first m sites of the chain was computed for the XXZ spin-1/2 open chain
with a particular case of unparallel boundary fields: there was considered the case of a fixed
longitudinal boundary field on the last site of the chain, with a completely generic, a priori
non-longitudinal, boundary field on the first site of the chain. Here, we instead consider the
case in which both boundary fields are non-longitudinal but are related by one constraint [2]
which allows for the description of a part of the spectrum and eigenstates by usual TQ and
Bethe equations.

There exists a large literature on open quantum spin chain [2–42]. These models have in-
deed numerous applications: they are useful to model out-of-equilibrium and transport prop-
erties in quantum condensed matter physics, see for instance [26]; they are also related to
classical stochastic models, such as asymmetric simple exclusion models [15]. The interest in
open integrable quantum spin chains lays notably on the freedom that we have in choosing its
boundary conditions while keeping the system integrable.

The first results on the exact description of the Hamiltonian spectrum and eigenstates
were obtained for longitudinal boundary fields, i.e. when both boundary fields are along the
z-direction, in [3] within the coordinated Bethe ansatz framework, and in [4] within the al-
gebraic Bethe ansatz (ABA) framework. In [4] a complete algebraic formalism for the study
of these open spin chains was also introduced, issued from the Quantum Inverse Scattering
Method (QISM) [43–45], and based on the representation theory of the reflection algebra [46].
Although the case of completely arbitrary boundary magnetic fields is a priori integrable, in
the sense that one can construct, within the algebraic framework introduced in [4], a one-
parameter family of commuting transfer matrices, the explicit construction of its common
spectrum and eigenstates for non-longitudinal boundary fields has remained widely open for
a long period. In that case, the ferromagnetic state can no longer be used as a reference state
and algebraic Bethe ansatz is therefore no longer directly applicable. It was however noticed
in [2] that, under a unique constraint on the six boundary parameters parametrizing the six
components of the two boundary fields, one can still write a system of usual Bethe equations,
which unfortunately provides in general only an incomplete description of the transfer ma-
trix spectrum. Conjectures, based on numerical studies, were made in [13] on the fact that
these Bethe equations yield the ground state at half-filling, and in [14] on the fact that one
could nevertheless recover the full spectrum by combining two different sectors with different
constraints related by some symmetry of the spin chain. A construction of the corresponding
Bethe states via a generalization of algebraic Bethe ansatz based on the use of (a trigonometric
version of) Baxter’s Vertex-IRF transformation [47] was proposed in [12], see also [10,18,19].
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However, it was not possible so far to compute correlation functions within ABA for this case
with the constraint due to the difficulty of constructing Bethe states in both the direct and dual
spaces within a common framework. As for the completely general case without the constraint,
some progresses have been made more recently by the means of alternative approaches: off-
diagonal Bethe ansatz [28], modified Bethe ansatz [32–37, 42], or Separation of Variables
(SoV) [22, 27, 30, 31, 40]. However, the description of the spectrum proposed in these con-
texts does not involve usual TQ and Bethe equations, but modified ones, with some additional
inhomogeneous term, a description which is a priori difficult to deal with when considering
the computation of physical quantities such as correlation functions and the thermodynamic
limit of the model.

Hence, in the present work, we restrict our study to the case in which the boundary fields
are both non-longitudinal but related by the aforementioned constraint, for which at least part
of the spectrum can be described by usual Bethe equations. We suppose moreover that the
boundary conditions are such that the ground state of the model is among the states which
can be described in this framework, in a sector close to half-filling (see the conjectures of
[13,14]), so that it can be described in the thermodynamic limit by the same density function
as in the longitudinal case with possibly some additional boundary roots, see [8, 9, 41]. We
develop our study in the framework of the SoV approach [22, 25, 27, 29–31, 38–40, 48–76],
pioneered by Sklyanin [48–53]. The advantages of using this approach is that it provides, on
the one hand, a complete characterization of eigenvalues and eigenstates of the open spin 1/2
XXZ chain under the most general integrable boundary conditions1 and, on the other hand, it
naturally produces determinant formulae [40] for the scalar products of separate states [27,29,
30, 38–40, 66, 68–71, 73, 75],2 of which the transfer matrix eigenstates are special instances.
Moreover, in this approach, the description of the spectrum in terms of Bethe equations and
ABA-type construction of the eigenstates emerge explicitly as particular simplifications due to
the constraint within the global approach, so that we can also make use of these results when
it is more convenient to do so.

Our purpose is here to compute boundary correlation functions at zero temperature, or
more precisely the mean values in the ground state of local operators on the first m sites of
the chain. Such kinds of results were first obtained in the periodic case [90–94], and were
at the origin of a long series of impressive new and exact results concerning correlation func-
tions [95–129]. These results could be generalized to the case of an open chain with longi-
tudinal boundary fields in [6, 7, 20, 21]. For more general boundary fields or other types of
boundary conditions, the problem has for long remained unsolved due to the aforementioned
difficulties in having a good description of the spectrum and eigenstates. These limitations
were overcome only recently within the SoV framework in [130] for the open XXX chain
with unparallel boundary fields and in [1] for the open XXZ chain with one arbitrary non-
longitudinal boundary field, the other being fixed along the z-direction (see also [131] for the
XXX chain with anti-periodic boundary conditions). Here, we generalize the results of [1] to
the case where both fields are non-longitudinal within the constraint, that is, we enlarge our
results from the case of three free boundary parameters [1] to the case of five free boundary
parameters. As in [1], we however have, due to technical difficulties related to the use of the
vertex-IRF transformation, to restrict ourselves to the consideration of a subclass of matrix
elements.

The content of the paper is the following. In section 2, we briefly recall the solution of
the open XXZ spin 1/2 chain with non-longitudinal boundary fields: we recall the general al-

1This is in particular the case in the framework of the recent rederivation of SoV [77, 78] relying on the pure
integrable structure of the models and allowing for a wide extension of its applicability even to higher rank cases
[77–84]; see also [53,56,85,86] for different precedent higher rank developments.

2This is at least the case for the rank one models. In [87], it has been shown how these types of formulae extend
to the gl(3) higher rank case, see also the interesting and recent papers [88,89].
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gebraic framework, the SoV characterization of the transfer matrix spectrum and eigenstates,
and the simplifications that occur when one imposes the constraint of [2] on the boundary
parameters. In this case, part of the spectrum can be characterized in terms of a homogeneous
TQ-equation, and the corresponding eigenstates – and more generally all separate states as-
sociated with a polynomial function Q – can be reformulated in terms of well-identified gener-
alized Bethe states. The latter are constructed, as in [12], from a gauged transformed version
of the reflection algebra, by means of the Vertex-IRF transformation for particular values of
the corresponding gauged parameters. In section 3, we explain how to decompose these gen-
eralized boundary Bethe states into generalized bulk Bethe states for any arbitrary boundary
field on the last site N of the chain, i.e. for any form of the associated boundary matrix which
is thus a priori non-diagonal. This represents a strong generalization of the boundary-bulk
decomposition derived in [1], since there was only considered the case of a particular lon-
gitudinal boundary field at site N , corresponding to a particular diagonal boundary matrix.
Note that this boundary-bulk decomposition is a central technical point for the computation
of correlation functions, since we do not know at the moment how to act directly with local
operators on boundary states, but only on bulk states. Hence, the form of the boundary-bulk
decomposition has to be simple enough so that we can reconstruct the result of the action in
terms of boundary states. The idea is here to adjust some gauge parameters of the Vertex-IRF
transformation so as to make this decomposition as simple as in the diagonal case. Quite re-
markably, the choice that we have to make on the gauge parameters is compatible with the
constraint, so that we in fact obtain a decomposition of separate states into bulk Bethe states
on which we can act with local operators completely similarly as in [1]. The result of such ac-
tion is then given in section 4. There, we consider the same basis of local operators on the first
m sites of the chain as in our previous work [1]. The result of the action of the elements of this
basis on the boundary Bethe states/separate states obtained in section 4 is very similar, in its
form, as the one derived in [1], with however different hypothesis: a more general boundary
field and more constraint gauge parameters. This enables us to compute, by using the scalar
product formulas derived in [40], the matrix elements of these local operators in any transfer
matrix eigenstate that can be obtained by a solution of the homogenous TQ-equation under
the constraint [2]. However, as in [1], we have to restrict ourselves to the subset of local oper-
ators that preserve the number of gauged boundary B-operators. The result of this action for
the finite chain is presented in section 5. Finally, in section 6, we derive multiple integral rep-
resentations for these matrix elements in the ground state and in the half-infinite chain limit.
We there make the hypothesis (based on the conjecture of [13,14]) that the ground state can
be obtained from a solution of the homogeneous TQ-equation close to half-filling, and can
therefore be described by the same density function as in the diagonal case with possibly some
additional boundary roots related to the four boundary parameters that appear in the Bethe
equations.

2 The open spin-1/2 XXZ quantum chain

In this paper, we consider the open XXZ spin-1/2 quantum chain coupled with local external
fields on sites 1 and N . The Hamiltonian of this model is given on H = ⊗Nn=1Hn, Hn ≃ C2, as

H =
N−1
∑

n=1

�

σx
nσ

x
n+1 +σ

y
nσ

y
n+1 +∆σ

z
nσ

z
n+1

�

+
∑

a∈{x ,y,z}

�

ha
−σ

a
1 + ha

+σ
a
N

�

. (2.1)

Here σαn , α ∈ {x , y, z} stand for the usual Pauli matrices acting on Hn. The anisotropy ∆ of
the coupling is parameterized as

∆= coshη , (2.2)
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and the boundary fields h± as

hx
± = 2κ± sinhη

coshτ±
sinhς±

= sinhη
coshτ±

sinhϕ± coshψ±
, (2.3)

hy
± = 2iκ± sinhη

sinhτ±
sinhς±

= i sinhη
sinhτ±

sinhϕ± coshψ±
, (2.4)

hz
± = sinhη cothς± = sinhη cothϕ± tanhψ± , (2.5)

where the two sets of boundary parameters are related by

sinhϕ± coshψ± =
sinhς±

2κ±
, coshϕ± sinhψ± =

coshς±
2κ±

. (2.6)

The spectral problem of an inhomogeneous version of the Hamiltonian (2.1) with non-
longitudinal boundary fields can be solved by the quantum version of the Separation of Vari-
ables (SoV) approach [22,27,30,40,80], in the algebraic QISM framework of the representa-
tion theory of the reflection algebra [4, 46]. We here use the same definitions and notations
as in our previous paper [1], in which this approach was reviewed, so that we give here only
the necessary notations for the purpose of the present paper and refer to [1] for details.

2.1 General framework

Let us define the boundary monodromy matrix U−(λ)≡ U−,0(λ) ∈ End(V0 ⊗H), V0 ≃ C2, as

U−,0(λ) = T0(λ)K−,0(λ) T̂0(λ) =

�

A−(λ) B−(λ)
C−(λ) D−(λ)

�

, (2.7)

in terms of

T0(λ) = R01(λ− ξ1 −η/2) . . . R0N (λ− ξN −η/2) , (2.8)

T̂0(λ) = (−1)N σ y
0 T t0

0 (−λ)σ
y
0 = R0N (λ+ ξN −η/2) . . . R01(λ+ ξ1 −η/2) , (2.9)

and of
K−(λ)≡ K−,0(λ) = K(λ;ς+,κ+,τ+) , (2.10)

The bulk monodromy matrix with inhomogeneity parameters ξ1, . . . ,ξN (2.8) is defined in
terms of the 6-vertex trigonometric R-matrix,

R(λ)≡ R12(λ) =







sinh(λ+η) 0 0 0
0 sinhλ sinhη 0
0 sinhη sinhλ 0
0 0 0 sinh(λ+η)






∈ End(C2 ⊗C2) , (2.11)

whereas the scalar boundary matrix (2.10), which parameterizes the boundary field h+, is
defined as

K(λ;ς,κ,τ) =
1

sinhς

�

sinh(λ−η/2+ ς) κeτ sinh(2λ−η)
κe−τ sinh(2λ−η) sinh(ς−λ+η/2)

�

. (2.12)

Introducing also the scalar boundary matrix K+(λ) = K(λ+η;ς−,κ−,τ−) parameterizing the
boundary field h−, we define the transfer matrice as

T (λ) = tr0

�

K+,0(λ) T0(λ)K−,0(λ) T̂0(λ)
�

= tr0

�

K+,0(λ)U−,0(λ)
�

. (2.13)
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The latter form a one-parameter family of commuting operators on H, and the Hamiltonian
(2.1) can be obtained in terms of this transfer matrix in the homogeneous limit
ξ1 = ξ2 = · · ·= ξN = 0 as

H =
2 (sinhη)1−2N

tr[K+(η/2)] tr[K−(η/2)]
d

dλ
T (λ)

λ=η/2
+ constant . (2.14)

Note that we have here used the same convention as in [1], in which we have defined K− in
terms of ς+,κ+,τ+ parameterizing h+ and K+ in terms of ς−,κ−,τ− parameterizing h−.

In this framework, the transfer matrix eigenstates can be constructed by algebraic Bethe
ansatz (ABA) when both boundary matrices K± are diagonal [4], or by Separation of Variables
(SoV) otherwise [22, 27, 30, 40, 80]. In this paper we consider the situation in which the
boundary matrices K± are both non-diagonal and in which the boundary parameters satisfy
some constraint,

cosh(τ+ −τ−) = εϕ+εϕ− cosh(εϕ+ϕ+ + εϕ−ϕ− + εψ+ψ+ − εψ−ψ− + (N − 1− 2M)η) , (2.15)

for some M ∈ {1, . . . , N} and some ϵ ≡ (εϕ+ ,εϕ− ,εψ+ ,εψ−) ∈ {−1,1}4 such that
εϕ+εϕ−εψ+εψ− = 1. In this case, the spectrum can be partially described by usual Bethe
equations [2, 12, 31], with corresponding eigenstates constructed by SoV in terms of some
polynomial function Q(λ) of the form

Q(λ) =
M
∏

j=1

cosh(2λ)− cosh(2λ j)

2
=

M
∏

j=1

�

sinh2λ− sinh2λ j

�

, (2.16)

where λ1, . . . ,λM are the corresponding Bethe roots. Except in the case M = N , such a de-
scription is not complete. However, it was conjectured in [13, 14], using numerical studies,
that the solutions of the Bethe equations for some M subject to the constraint (2.15) with
some choice of ϵ, together with the solutions for M ′ = N−1−M subject to the constraint with
ϵ′ = −ϵ, produce the complete spectrum. We shall not discuss the validity of this conjecture in
the present paper, but we will nevertheless suppose that we are in a situation in which at least
the ground state can be described in this framework, which will be enough for our purpose.

2.2 Transfer matrix spectrum and eigenstates by SoV

Let us recall that, in the situation we consider here of non-diagonal boundary matrices K±,
and provided that the inhomogeneity parameters are generic, i.e.

ξ j ,ξ j ± ξk /∈ {0,−η,η} mod(iπ), ∀ j, k ∈ {1, . . . , N} , j ̸= k , (2.17)

the transfer matrix T (λ) has simple spectrum, and that the complete set of its left and right
eigenstates can be expressed in the form of separate states as

|Q 〉=
∑

h∈{0,1}N

N
∏

n=1

Q(ξ(hn)
n )

Q(ξ(0)n )
e−
∑

j h jξ j
bV (ξ(h1)

1 , . . . ,ξ(hN )
N ) |h 〉, (2.18)

〈Q |=
∑

h∈{0,1}N

N
∏

n=1

�

�

sinh(2ξn − 2η)
sinh(2ξn + 2η)

Aϵ(ξn +
η
2 )

Aϵ(−ξn +
η
2 )

�hn Q(ξ(hn)
n )

Q(ξ(0)n )

�

× e−
∑

j h jξ j
bV (ξ(h1)

1 , . . . ,ξ(hN )
N ) 〈h | . (2.19)

More precisely, the unique (up to normalization) T (λ)-eigenstates associated with any given
eigenvalue τ(λ) are given by (2.18) and (2.19) in which Q is such that

Q(ξ(1)n )

Q(ξ(0)n )
=
τ(ξ(0)n )

Aϵ(ξ
(0)
n )
=

Aϵ(−ξ(1)n )

τ(ξ(1)n )
, ∀n ∈ {1, . . . , N} . (2.20)
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In the above formulas,
�

|h 〉,h≡ (h1, . . . , hN ) ∈ {0,1}N
	

and
�

〈h |,h≡ (h1, . . . , hN ) ∈ {0, 1}N
	

(2.21)

are SoV bases of H and H∗ respectively, which can be constructed either by a generalization
of Sklyanin’s SoV approach [27, 30] or by the new SoV approach proposed in [80]. The nor-
malization of such bases can be chosen so that

〈h |h′ 〉= δh,h′
N({ξ}) e2
∑N

j=1 h jξ j

bV (ξ(h1)
1 , . . . ,ξ(hN )

N )
, (2.22)

where

N({ξ}) = bV (ξ1, . . . ,ξN )
bV (ξ(0)1 , . . . ,ξ(0)N )

bV (ξ(1)1 , . . . ,ξ(1)N )
. (2.23)

As in [1], we have used the notations

ξ(h)n = ξn +η/2− hη, 1≤ n≤ N , h ∈ {0, 1}, (2.24)

bV (x1, . . . , xN ) = det
1≤i, j≤N

�

sinh2( j−1) x i

�

=
∏

j<k

(sinh2 xk − sinh2 x j) , (2.25)

Moreover we have defined,

Aϵ(λ) = (−1)N
sinh(2λ+η)

sinh(2λ)
aϵ(λ) a(λ) d(−λ), (2.26)

where

a(λ) =
N
∏

n=1

sinh(λ− ξn +η/2) , d(λ) =
N
∏

n=1

sinh(λ− ξn −η/2) , (2.27)

and

aϵ(λ) =
sinh(λ− η2 + εϕ+ϕ+) cosh(λ− η2 + εψ+ψ+)

sinh(εϕ+ϕ+) cosh(εψ+ψ+)

×
sinh(λ− η2 + εϕ−ϕ−) cosh(λ− η2 − εψ−ψ−)

sinh(εϕ−ϕ−) cosh(εψ−ψ−)
, (2.28)

for any choice of ϵ ≡ (εϕ+ ,εϕ− ,εψ+ ,εψ−) ∈ {−1,1}4 such that εϕ+εϕ−εψ+εψ− = 1.
Note that the new SoV construction proposed in [80] (see Section 3.1.2 of our previous

work [1] for a summary of this construction in our present notations) is more general: it is
valid as long as the two boundary matrices K+ and K− are not both proportional to the identity.
The generalization of Skyanin’s SoV approach proposed in [30] (see Section 3.1.1 of [1]) is
instead restricted to the case in which at least one boundary matrix (the boundary matrix K−
with our conventions) is non-diagonal. It involves a generalized gauge transformation of the
reflection algebra,

U−(λ|α,β) = S−1
0 (η/2−λ|α,β) U−(λ) S0(λ−η/2|α,β)

=

�

A−(λ|α,β) B−(λ|α,β)
C−(λ|α,β) D−(λ|α,β)

�

, (2.29)

given by a trigonometric version of Baxter’s Vertex-IRF transformation,

S(λ|α,β) =

�

eλ−η(β+α) eλ+η(β−α)

1 1

�

, (2.30)
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with a particular choice3 of the two parameters α and β as

ηα= −τ− +
ε′− − ε−

2
(ϕ− −ψ−)−

ε− + ε′−
4

iπ+ ikπ mod 2iπ , (2.31)

ηβ =
ε− + ε′−

2
(ϕ− −ψ−) +

2+ ε− − ε′−
4

iπ+ ikπ mod 2iπ , (2.32)

for ε−,ε′− ∈ {1,−1} and k ∈ Z. Since it is not necessary for our purpose and was already
recalled in our previous work [1], we do not recall the details of this construction here and
refer instead the reader to [1]. We also refer to [1] for general properties of the gauged
transformed algebra generated by the operator entries of (2.29).

2.3 Reformulation of the spectrum and eigenstates

One of the difficulties of the SoV approach is that it provides a priori a characterisation of the
transfer spectrum and eigenstates in terms of discrete equations of the form (2.20). Such a
characterisation is not convenient for the consideration of the physical model at the homoge-
neous limit ξ1 = ξ2 = · · · = ξN = 0 and the computation of physical quantities such as the
correlation functions. Hence, this characterisation has been reformulated in [31] in terms of
functional TQ-equations, leading notably to usual Bethe equations in the cases in which the
constraint (2.15) holds.

Let us first introduce the following notations:

f(r)ϵ ≡ f(r)ϵ (τ+,τ−,ϕ+,ϕ−,ψ+,ψ−) =
2κ+κ−

sinhς+ sinhς−

�

cosh(τ+ −τ−)

− εϕ+εϕ− cosh(εϕ+ϕ+ + εϕ−ϕ− + εψ+ψ+ − εψ−ψ− + (N − 1− 2r)η)
�

. (2.33)

Moreover, we denote with ΣM
Q the set of Q(λ) polynomials in cosh(2λ) of degree M of the

form (2.16) with

cosh(2λ j) ̸= cosh(2ξ(h)n ), ∀ ( j, n, h) ∈ {1, . . . , M} × {1, . . . , N} × {0,1} . (2.34)

Proposition 2.1 ( [31,40], see also [1]). Let the two boundary matrices be not both proportional
to the identity matrix and the inhomogeneity parameters be generic (2.17).

1. Let us suppose that, for a given ϵ ≡ (εϕ+ ,εϕ− ,εψ+ ,εψ−) ∈ {−1, 1}4 such that
εϕ+εϕ−εψ+εψ− = 1,

∀r ∈ {0, . . . , N − 1}, f(r)ϵ (τ+,τ−,ϕ+,ϕ−,ψ+,ψ−) ̸= 0 . (2.35)

Then, the transfer matrix T (λ) is diagonalizable with simple spectrum, and the set ΣT of
its eigenvalues is given by the set of entire functions τ(λ) such that there exists a polynomial
Q(λ) ∈ ΣN

Q satisfying with τ(λ) the following TQ-equation with inhomogeneous term:

τ(λ)Q(λ) = Aϵ(λ)Q(λ−η) +Aϵ(−λ)Q(λ+η)

+ f(N)ϵ a(λ) a(−λ) d(λ) d(−λ) [cosh2(2λ)− cosh2η] . (2.36)

Moreover, in that case, the corresponding Q(λ) ∈ ΣN
Q satisfying (2.36) with τ(λ) is unique,

and the unique (up to an overall normalization factor) left and right T (λ) eigenstates can
be expressed as (2.18)-(2.19).

3This choice ensures that the transfer matrix (2.13) can be written only in terms of the elements A−(λ|α,β−1)
and D−(λ|α,β + 1) of the gauged transformed monodromy matrix (2.29), see Proposition 2.2 of [1].
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2. Let us suppose that
κ+κ−

sinhς+ sinhς−
= 0 . (2.37)

Then, the transfer matrix T (λ) is diagonalizable with simple spectrum, and the set ΣT of
its eigenvalues is given by the set of entire functions τ(λ) such that there exists a polynomial
Q(λ) ∈ ∪N

n=0Σ
n
Q satisfying with τ(λ) the following homogeneous TQ-equation:

τ(λ)Q(λ) = Aϵ(λ)Q(λ−η) +Aϵ(−λ)Q(λ+η) , (2.38)

for a given ϵ ≡ (εϕ+ ,εϕ− ,εψ+ ,εψ−) ∈ {−1,1}4 and εϕ+εϕ−εψ+εψ− = 1, Moreover, in
that case, the corresponding Q(λ) ∈ ∪N

n=0Σ
n
Q satisfying (2.38) with τ(λ) is unique, and

the unique (up to an overall normalization factor) left and right T (λ) eigenstates can be
expressed as (2.18)-(2.19).

3. Let us suppose that the condition (2.15) is satisfied for a given M ∈ {0, . . . , N − 1} and a
given choice of ϵ ≡ (εϕ+ ,εϕ− ,εψ+ ,εψ−) ∈ {−1, 1}4 such that εϕ+εϕ−εψ+εψ− = 1. Then,
the transfer matrix is diagonalizable with simple spectrum, and any entire function τ(λ)
such that there exists Q(λ) ∈ ΣM

Q satisfying the homogeneous TQ-equation (2.38) is an
eigenvalue of the transfer matrix T (λ) (we write τ(λ) ∈ ΣT ). Moreover, in that case, the
corresponding Q(λ) ∈ ΣM

Q satisfying (2.38) with τ(λ) is unique, and the unique (up to an
overall normalization factor) left and right T (λ) eigenstates can be expressed as (2.18)-
(2.19).

Remark 1. In the formulation of this proposition, the bases (2.21) used in (2.18)-(2.19) can
be either the SoV bases constructed via the new SoV approach proposed in [80], or the bases
constructed via the generalized Sklyanin’s approach, provided that the latter approach is ap-
plicable (we recall that its range of validity is more restricted).

In our previous work [1], we considered the case 2, which corresponds to the situation
in which (at least) one of the two boundary matrices is diagonal. Here instead we want to
consider the case 3, in which both boundary matrices are non-diagonal and satisfy the con-
straint (2.15). Note that the characterization of the spectrum and eigenstates provided by
this proposition in the case 3 is not complete, contrary to what happens in cases 1 and 2. As
explained in [31,40], a part of the spectrum is then given by solutions of the inhomogeneous
TQ-equation (2.36). It can also be noticed that, if the constraint (2.15) is satisfied for a given
M and a given ϵ, then it is also satisfied for M ′ = N−1−M and ϵ′ = −ϵ. As mentioned above,
it was conjectured in [13,14] that the solutions for M ,ϵ together with the solutions for M ′,ϵ′

produce the complete spectrum.
Under such a reformulation of the spectrum, any separate state constructed as in (2.18)-

(2.19) within the generalization of Sklyanin’s SoV approach can be expressed as a generalized
Bethe state in the framework of the generalized gauge transformed reflection algebra given
by (2.29), see (3.59)-(3.62) of [1]. Moreover, under certain conditions, the corresponding
generalized reference state can be explicitly identified.

Let us introduce, as in [1], the notations

|η, x 〉 ≡ ⊗N
n=1

�

e−(n−N+x)η−ξn

1

�

n
, (2.39)

bB−(λ|α− β) = sinh(ηβ) e−ηβ e−(λ−η/2)B−(λ|α,β) , (2.40)

and

bB−,M ({λi}Mi=1|α− β + 1) = bB−(λ1|α− β + 1) · · · bB−(λM |α− β + 2M − 1)

=
∏

j=1→M

bB−(λ j|α− β + 2 j − 1) . (2.41)
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Then we can state the following proposition, which is just a reformulation of Proposition 3.4
of [1]:

Proposition 2.2. Let us suppose that, for a given M ∈ {1, . . . , N} and given εϕ+ ,εϕ− ∈ {+1,−1},

τ+−τ− = −εϕ+(ϕ++ψ+)−εϕ−(ϕ−−ψ−)−(N−1−2M)η+
1− εϕ+εϕ−

2
iπ mod 2iπ . (2.42)

Let us moreover suppose that the generalized Sklyanin’s approach is applicable, with α and β
fixed in terms of the boundary parameters ϕ−,ψ− and of εϕ− as

ηα= −τ− +
εϕ− − ε−

2
(ϕ− −ψ−)−

ε− + εϕ−
4

iπ+ ikπ mod 2iπ, (2.43)

ηβ =
ε− + εϕ−

2
(ϕ− −ψ−) +

2+ ε− − εϕ−
4

iπ+ ikπ mod 2iπ, (2.44)

for any ε− ∈ {1,−1}, k ∈ Z. Then, there exists a constant c(R)M ,ref such that, for any Q ∈ ΣM
Q with

roots λ1, . . . ,λM labelled as in (2.16), the separate state (2.18) constructed within the generalized
Sklyanin’s SoV approach with α,β given by (2.43)-(2.44) can be written as

|Q 〉= c(R)M ,ref
bB−,M ({λi}Mi=1|α− β + 1) |η,α+ β + N − 2M − 1 〉 . (2.45)

Note that the ABA rewriting of (2.45) is valid for any separate state constructed within
the Sklyanin’s approach, and not only for eigenstates (i.e. Q in (2.45) does not need to satisfy
the TQ-equation). Such a rewriting does however not hold in general for separate states
constructed via the new SoV approach, except for eigenstates, see [1] for more details.

3 Decomposition of boundary states into bulk ones

To compute correlation functions, we need to be able to act with the local operators on the
transfer matrix eigenstates. In the bulk case [93,94], this could be done thanks to the solution
of the quantum inverse problem [93,132,133], i.e. of the expression of local operators in terms
of the generators of the Yang-Baxter algebra. In the absence of a solution of the quantum
inverse problem directly in terms of the boundary algebra, we shall use the same strategy
as in [1, 20]: decompose the boundary eigenstates in terms of bulk states on which we are
able to act by using the bulk inverse problem, see [1] for more details on this procedure. To
this purpose, the representation of eigenstates, and more generally of separate states (in the
Sklyanin’s framework) in terms of generalized Bethe states of Proposition 2.2, is particularly
convenient. In this section, we explain how to decompose these generalized Bethe states into
generalized (gauged transformed) bulk Bethe states for any boundary matrix K−.

3.1 Boundary-bulk decomposition of the monodromy matrix

The idea is, as in [20] to use the decomposition of the boundary monodromy matrix into the
bulk one. However, as in [1], instead of using directly (2.7) giving U− in terms of T (2.8), we
prefer for technical reasons to use the decomposition

U−(λ) = M̂(−λ)K−(λ)M(−λ) , (3.1)

in terms of

M(λ) = R̄0N (λ− ξN +η/2) . . . R̄01(λ− ξ1 +η/2) =

�

A(λ) B(λ)
C(λ) D(λ)

�

, (3.2)

= (−1)N T̂ (−λ) , (3.3)
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and

M̂(λ) = (−1)N σ y
0 M t0(−λ)σ y

0 = R̄01(λ+ ξ1 +η/2) . . . R̄0N (λ+ ξN +η/2) (3.4)

= (−1)N T (−λ) , (3.5)

in which

R̄12(λ) =







sinh(λ−η) 0 0 0
0 sinhλ − sinhη 0
0 − sinhη sinhλ 0
0 0 0 sinh(λ−η)






= −R12(−λ) , (3.6)

is the R-matrix which corresponds to a change of parameterη→ η̄= −ηwith respect to (2.11).
Using the Vertex-IRF transformation (2.29)-(2.30), we can then write, for any choices of the
gauge parameters α,β ,γ,δ,γ′,δ′ such that the corresponding matrices (2.30) are invertible,

U−(λ|α,β) = M̂(−λ|(γ,δ), (α,β))K−(λ|(γ,δ), (γ′,δ′))M(−λ|(γ′,δ′), (α,β)) , (3.7)

in which we have defined

M(λ|(α,β), (γ,δ)) = S−1(−η/2−λ|α,β)M(λ)S(−η/2−λ|γ,δ)

=

�

A(λ|(α,β), (γ,δ)) B(λ|(α,β), (γ,δ))
C(λ|(α,β), (γ,δ)) D(λ|(α,β), (γ,δ))

�

, (3.8)

M̂(λ|(α,β), (γ,δ)) = S−1(λ+η/2|γ,δ) M̂(λ)S(λ+η/2|α,β)

= (−1)N
det S(λ+η/2|α,β)
det S(λ+η/2|γ,δ)

σ
y
0 M t0(−λ|(α− 1,β), (γ− 1,δ))σ y

0 , (3.9)

and
K−(λ|(γ,δ), (γ′,δ′)) = S−1(η/2−λ|γ,δ)K−(λ)S(λ−η/2|γ′,δ′) , (3.10)

see [1] for more details. As in [1], we shall also use the notations

M(λ|(α,β), (γ,δ)) =
eη(α+1/2)

2sinhηβ

�

A(λ|α− β ,γ+δ) B(λ|α− β ,γ−δ)
C(λ|α+ β ,γ+δ) D(λ|α+ β ,γ−δ)

�

. (3.11)

highlighting the fact that the entries of (3.11) depend in fact only on two combinations α±β
and γ±δ. In terms of these matrix elements, the relation (3.7) can be rewritten as

U−(λ|α,β) =
(−1)N eη(γ

′+α)

4 sinhηδ′ sinhηβ

�

D(λ|γ+δ− 1,α− β − 1) −B(λ|γ−δ− 1,α− β − 1)
−C(λ|γ+δ− 1,α+ β − 1) A(λ|γ−δ− 1,α+ β − 1)

�

× K−(λ|(γ,δ), (γ′,δ′))

�

A(−λ|γ′ −δ′,α+ β) B(−λ|γ′ −δ′,α− β)
C(−λ|γ′ +δ′,α+ β) D(−λ|γ′ +δ′,α− β)

�

, (3.12)

This relation was used in [1] to express the generalized boundary creation operators
bB−(λ1|α − β) into gauged bulk operators, and then the generalized boundary Bethe states
into gauged bulk Bethe states. This was done there in a particular case in which the boundary
matrix K−, and hence its gauged counterpart (3.10), was diagonal, so that the boundary-bulk
decomposition obtained in [1] was particularly simple: it was just similar to the one used
in [20]. Here we explain how to generalize such formulas to the case of any general bound-
ary matrix K−. As shown below, this can be done by choosing adequately the internal gauge
parameters γ,δ,γ′,δ′ in (3.7).
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Proposition 3.1. Let us fix the internal gauge parameters as

γ= γ′ , ηγ= −τ+ + ε+iπ/2 , (3.13)

δ = δ′ , ηδ = −ε+(ϕ+ +ψ+)− iπ/2 , (3.14)

with ε+ = ±1. Then, for any choice of the external gauge parameter α−β , the following boundary
bulk decomposition holds:

bB−(λ|α− β) =
(−1)N eη(γ+α−β)

4 sinhη(δ+ 1)
sinh(2λ−η)

sinh2λ

×
�

Aε+(λ)B(−λ|γ−δ− 1,α− β − 1)D(λ|γ+δ,α− β)

− Aε+(−λ)B(λ|γ−δ− 1,α− β − 1)D(−λ|γ+δ,α− β)
�

, (3.15)

where

Aε+(λ) =
sinh(λ− η2 + ε+ϕ+) cosh(λ− η2 + ε+ψ+)

sinh(ε+ϕ+) cosh(ε+ψ+)
. (3.16)

Proof. Let us recall that the gauged boundary matrix K−(λ|(γ,δ), (γ′,δ′)) can be made diag-
onal, identically with respect to λ, by fixing γ,γ′ and δ,δ′ such that

γ= γ′, δ = δ′, (3.17)

and that

κ+
sinhζ+

�

sinh(η(γ+δ) +τ+) + sinh(ϕ+ +ψ+)
�

= 0 , (3.18)

κ+
sinhζ+

�

sinh(η(γ−δ) +τ+) + sinh(ϕ+ +ψ+)
�

= 0 . (3.19)

With the choice (3.13)-(3.14) these conditions are satisfied, and we have
�

K−(λ|(γ,δ), (γ,δ))
�

11 = eλ−η/2 Aε+(λ) , (3.20)
�

K−(λ|(γ,δ), (γ,δ))
�

22 = eλ−η/2 A−ε+(λ) , (3.21)

so that,

bB−(λ|α− β) = (−1)N
e−λ+η/2+η(γ+α−β)

4sinhηδ

×
¦

[K−(λ|(γ,δ), (γ,δ))]11 D(λ|γ+δ− 1,α− β − 1)B(−λ|γ−δ,α− β)

− [K−(λ|(γ,δ), (γ,δ))]22 B(λ|γ−δ− 1,α− β − 1)D(−λ|γ+δ,α− β)
©

. (3.22)

By using the commutation relation

D(λ|γ+δ− 1,α− β − 1)B(−λ|γ−δ,α− β)

=
sinh(ηδ) sinh(2λ−η)

sinh(2λ) sinh(η(δ+ 1))
B(−λ|γ−δ− 1,α− β − 1)D(λ|γ+δ,α− β)

+
sinhη sinh(2λ+δη)

sinh(2λ) sinh(η(δ+ 1))
B(λ|γ−δ− 1,α− β − 1)D(−λ|γ+δ,α− β) , (3.23)

one gets the result. □
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3.2 Decomposition of gauged boundary states into bulk ones

From the previous result one gets the following one on gauged boundary states:

Proposition 3.2. Let {λ1, . . . ,λM} be an arbitrary set of spectral parameters andα,β be arbitrary
gauge parameters. Then, for γ and δ fixed as in (3.13)-(3.14) for a given ε+ = ±1, we have the
following boundary-bulk decompositions for the gauged boundary Bethe state given by the action
of (2.41) on the gauge reference state |η,γ+δ 〉 (2.39):

bB−,M ({λi}Mi=1|α−β +1) |η,γ+δ 〉= hM (γ−δ,α−β ,γ+δ)
∑

σ1=±1,...,σM=±1

Hσ1,...,σM
({λi}Mi=1)

× B(λ(σ)M |γ−δ− 1,α− β) · · ·B(λ(σ)1 |γ−δ−M ,α− β +M − 1) |η,γ+δ+M 〉 , (3.24)

with

Hσ1,...,σM
({λi}Mi=1)≡ Hσ1,...,σM

({λi}Mi=1|ε+ϕ+,ε+ψ+)

=
M
∏

n=1

�

σn a(−λ(σ)n ) Aε+(−λ
(σ)
n )

sinh(2λn −η)
sinh 2λn

�

∏

1≤a<b≤M

sinh(λ(σ)a +λ(σ)b +η)

sinh(λ(σ)a +λ(σ)b )
, (3.25)

hM (γ−δ,α− β ,γ+δ) = (−1)MN eMη γ−δ+α−β+N
2

M
∏

j=1

sinh(ηα−β−γ−δ+N−1+2 j
2 )

2sinh(η(δ+ j))
, (3.26)

where we have used the notation λ(σ)n ≡ σnλn for n ∈ {1, . . . , M}.

Proof. As in the particular case considered in [1], we proceed by induction on M . The result
clearly holds for M = 1 from (3.15). Let us now suppose that it holds for a given M . Then,
we have that by Proposition 3.1 that

bB−(λM+1|α− β + 1) bB−,M ({λi}Mi=1|α− β + 3) |η,γ+δ 〉

=
(−1)N eη(γ+α−β+1)

4sinhη(δ+ 1)
sinh(2λM+1 −η)

sinh 2λM+1
hM (γ−δ,α−β+2,γ+δ)

∑

σ1=±1,...,σM=±1

Hσ1,...,σM
({λi}Mi=1)

×
∑

σM+1=±
−σM+1 Aε+(−λ

(σ)
M+1)B(λ

(σ)
M+1|γ−δ− 1,α− β)D(−λ(σ)M+1|γ+δ,α− β + 1)

× B(λ(σ)M |γ−δ− 1,α− β + 2) · · ·B(λ(σ)1 |γ−δ−M ,α− β +M + 1) |η,γ+δ+M 〉 . (3.27)

Now it is easy to show that the direct action of D(−λ(σ)M+1|γ+ δ,α− β − 1) produces a terms
which satisfies the induction:

D(−λ(σ)M+1|γ+δ,α− β − 1)B(λ(σ)M |γ−δ− 1,α− β + 2). · · ·

· · ·B(λ(σ)1 |γ−δ−M ,α− β +M + 1) |η,γ+δ+M 〉

Direct Action
=

e−(α−β+M−1)η − e−(γ+δ+M−N)η

eη/2
a(−λ(σ)M+1) sinhη(δ+ 1)

sinhη(δ+M + 1)

M−1
∏

a=1

sinh(λ(σ)M +λ(σ)a +η)

sinh(λ(σ)M +λ(σ)a )

× B(λ(σ)M |γ−δ− 2,α− β + 1). · · ·B(λ(σ)1 |γ−δ−M − 1,α− β +M) |η,γ+δ+M + 1 〉 ,
(3.28)

which produces the left hand side of (3.24) for M + 1.
It therefore remains to show that the indirect action of D(−λ(σ)M+1|γ+δ,α−β−1) produces

terms which sum to zero to complete the proof of the induction. Let us consider the indirect
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action which results in the exchange of ±λa, for a ≤ M , with ±λM+1 in the monomial of
gauged bulk B-operators, i.e. into the following vector:

B(λM+1|γ−δ− 1,α− β)B(−λM+1|γ−δ− 2,α− β + 1)

×
∏

j=1→M−1

B(µM− j|γ−δ− 2− j,α− β + 1+ j)|η,γ+δ+M + 1 〉 , (3.29)

in which {µ1, . . . ,µM−1} ≡ {λ1. . . . ,λM} \ {λa}. Then the coefficient in front of this vector
contains the following factor:

∑

σa=±1,σM=1=±1

σM+1σa Aε+(−λ
(σ)
M+1) Aε+(−λ

(σ)
a )

sinh(λ(σ)M+1 +λ
(σ)
a −η(δ+ 1))

sinh(λ(σ)M+1 +λ
(σ)
a )

= − sinh(2λM+1) sinh(2λa)
cosh(ε+(ϕ+ +ψ+) +ηδ) cosh(ε+(ϕ+ +ψ+)−η)

sinh2(ε+ϕ+) cosh2(ε+ψ+)
, (3.30)

which is zero, being
cosh(ε+(ϕ+ +ψ+) +ηδ) = 0 (3.31)

for δ given by (3.14). □

4 Action of local operators on boundary separate states

Using the boundary-bulk decomposition of generalized Bethe states given in Proposition 3.2,
we can now compute the action of local operators on these states similarly as in [1]. This action
is however quite cumbersome due to the fact that we have to deal with generalized gauged
transformed bulk and boundary operators. To overcome this problem, we identified in [1] a
particular basis in the space of local operators on the first m sites of the chain, for which the
action on generalized Bethe states happens to have a relatively simple combinatorial form.4

We recall here the form of this basis and compute the action of its elements on states of the
form (3.24), hence generalizing the result of [1] to the case of a general boundary matrix K−.

Let E i, j , i, j ∈ {1,2}, denote the usual elementary matrices on C2, i.e. the 2× 2 matrices
with elements (E i, j)k,ℓ = δi,kδ j,ℓ. As in [1], we consider the following local operators at site n:

E
ε′n,εn
n (u|(a, b), (ā, b̄)) = Sn(−u|ā, b̄) E

ε′n,εn
n [Sn(−u|a, b)]−1 ∈ EndHn , (4.1)

with ε′n,εn ∈ {1,2}. For given arbitrary values of the parameters (u, a, b, ā, b̄), the opera-
tors (4.1) are therefore four different linear combinations of the local elementary operators
E i, j

n ∈ EndHn, 1≤ i, j ≤ 2, with coefficients written in terms of (u, a, b, ā, b̄).5 From (4.1), we

4This action is in fact similar to the action of the natural basis of local operators on the usual Bethe states that
was obtained in the diagonal case [20].

5Explicitly, we have

E1,1
n (u|(a, b), (ā, b̄)) =

eηa

2 sinh(ηb)

�

− e−η(ā+b̄) E1,1
n + e−u−η(a+ā−b+b̄) E1,2

n − eu E2,1
n + e−η(a−b) E2,2

n

�

,

E1,2
n (u|(a, b), (ā, b̄)) =

eηa

2 sinh(ηb)

�

e−η(ā+b̄) E1,1
n − e−u−η(a+ā+b+b̄) E1,2

n + eu E2,1
n − e−η(a+b) E2,2

n

�

,

E2,1
n (u|(a, b), (ā, b̄)) =

eηa

2 sinh(ηb)

�

− e−η(ā−b̄) E1,1
n + e−u−η(a+ā−b−b̄) E1,2

n − eu E2,1
n + e−η(a−b) E2,2

n

�

,

E2,2
n (u|(a, b), (ā, b̄)) =

eηa

2 sinh(ηb)

�

e−η(ā−b̄) E1,1
n − e−u−η(a+ā+b−b̄) E1,2

n + eu E2,1
n − e−η(a+b) E2,2

n

�

.
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define the following set of tensor products of such local operators on the first m sites of the
chain:

Em(α,β) =

¨ m
∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) ∈ End(⊗m

n=1Hn) | ε,ε′ ∈ {1, 2}m
«

, (4.2)

in which the parameters an, ān, bn, b̄n, 1≤ n≤ m, are fixed in terms of the gauged parameters
α,β and of the m-tuples ε≡ (ε1, . . . ,εm) and ε′ ≡ (ε′1, . . . ,ε′m) as6

an = α+ 1, bn = β −
n
∑

r=1

(−1)εr , (4.3)

ān = α− 1, b̄n = β +
m
∑

r=n+1

(−1)ε
′
r −

m
∑

r=1

(−1)εr = bn + 2m̃n+1, (4.4)

with

m̃n =
m
∑

r=n

(ε′r − εr) =
m
∑

r=n

(−1)ε
′
r − (−1)εr

2
. (4.5)

Then, we have shown in [1] that, except for a finite numbers of values of β mod 2π/η, the set
Em(α,β) defines a basis of End(⊗m

n=1Hn). In other words, it means that any operator O1→m
which acts only on the first m sites of the chain can be expressed as a linear combination of
elements of Em(α,β).

The boundary bulk decomposition of boundary states given in Proposition 3.2, together
with the action of the elements of this basis on gauged bulk Bethe states obtained in Theo-
rem 4.1 of [1], enables us to compute the action of these elements on gauged boundary Bethe
states of the form

bB−,M ({λi}Mi=1|α− β + 1) |η,α+ β + N − 2M − 1 〉 (4.6)

under the following constraint on the choice on the gauge parameters α and β:

η(α+ β + N − 2M − 1) = −τ+ − ε+(ϕ+ +ψ+) +
ε+ − 1

2
iπ mod 2iπ , (4.7)

with ε+ = ±1. More precisely, we can formulate the following result, which is the analog
of Theorem 4.2 of [1] for this case with an arbitrary boundary matrix K−, provided that we
choose α and β satisfying (4.7):7

Theorem 4.1. Under any choice of α,β satisfying (4.7), the action on the state (4.6) of a generic

element
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) of the basis (4.2) of local operators on the first m sites

of the chain, where the parameters an, bn, ān, b̄n are defined by (4.3) and (4.4), is given as

m
∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) bB−,M ({µi}Mi=1|α− β + 1) |η,α+ β + N − 1− 2M 〉

=
∑

Bε,ε′

F̄Bε,ε′
({µ j}Mj=1, {ξ(1)j }

m
j=1|β)

× bB−,M+m̃ε,ε′
({µi}M+m

i=1
i /∈Bε,ε′
|α− β + 1− 2m̃ε,ε′) |η,α+ β + N − 1− 2M 〉 . (4.8)

6For instance, for m = 1, the b and b̄-parameters are fixed as b1 = b̄1 = β − (−1)ε1 ; for m = 2, they are fixed
as b1 = β − (−1)ε1 , b̄2 = b2 = b1 − (−1)ε2 = β − (−1)ε1 − (−1)ε2 , and b̄1 = b2 + (−1)ε

′
2 .

7Note that the formulation of this result does not impose any condition on α− β .
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Here, we have defined µM+ j := ξ(1)m+1− j for j ∈ {1, . . . , m}. The sum in (4.8) runs over all possible
sets of integers Bε,ε′ = {B1, . . . , Bs+s′} whose elements satisfy the conditions

¨

Bp ∈ {1, . . . , M} \ {B1, . . . , Bp−1} for 0< p ≤ s,

Bp ∈ {1, . . . , M +m+ 1− ip} \ {B1, . . . , Bp−1} for s < p ≤ s+ s′.
(4.9)

with the notations

{ip}p∈{1,...,s} = {1, . . . , m} ∩ { j | ε j = 2} with ip < iq if p < q, (4.10)

{ip}p∈{s+1,...,s+s′} = {1, . . . , m} ∩ { j | ε′j = 1} with ip > iq if p < q. (4.11)

Moreover,

F̄Bε,ε′
({µ j}Mj=1, {ξ(1)j }

m
j=1|β) = (−1)(N+1)m̃ε,ε′ eηm̃ε,ε′ (β+m̃ε,ε′ )

m
∏

n=1

eη

sinh(ηbn)

∑

σα+=±

∏s+s′

j=1 d(µσB j
)

∏m
j=1 d(ξ(1)j )

×
Hσα+ ({µα+})

H1({ξ
(1)
γ+
})

∏

i∈α−

∏

ε=±

(

∏

j∈α+

sinh(µσj + εµi +η)

sinh(µσj + εµi)

∏

j∈γ+

sinh(ξ(1)j + εµi)

sinh(ξ(0)j + εµi)

)

×
∏

i∈α+

(

∏

j∈γ+

sinh(ξ(1)j −µ
σ
i )

sinh(ξ(0)j −µ
σ
i )

∏

j∈α+ sinh(µσj −µ
σ
i −η)

∏

j∈α+\{i} sinh(µσj −µ
σ
i )

)

∏

1≤i< j≤s+s′

sinh(µσBi
−µσB j

)

sinh(µσBi
−µσB j
−η)

×
s
∏

p=1



sinh(ξ(1)ip
−µσBp

+η(1+ bip))

∏m
k=ip+1 sinh(µσBp

− ξ(1)k −η)
∏m

k=ip
sinh(µσBp

− ξ(1)k )





×
s+s′
∏

p=s+1









sinh(ξ(1)ip
−µσBp

−η(1− b̄ip))

∏m
k=ip+1 sinh(ξ(1)k −µ

σ
Bp
−η)

∏m
k=ip

k ̸=M+m+1−Bp

sinh(ξ(1)k −µ
σ
Bp
)









, (4.12)

where the sum is performed over all σ j ∈ {+,−} for j ∈ α+, we have defined µσi = σiµi for
i ∈ Bε,ε′ , with σi = 1 if i > M, and

α+ = Bε,ε′ ∩ {1, . . . , M}, α− = {1, . . . , M} \α+, (4.13)

γ− = {M +m+ 1− j} j∈Bε,ε′∩{N+1,...,N+m}, γ+ = {1, . . . , m} \ γ−. (4.14)

The function Hσ({λ})≡ Hσ({λ}|ε+ϕ+,ε+ψ+) is given by (3.25).

Proof. Noticing that the constraint (4.7) is compatible with the choice (3.13)-(3.14) of γ and
δ such that

α+ β + N − 2M − 1= γ+δ, (4.15)

we can use the boundary-bulk decomposition of Proposition 3.2 to decompose the gauge
boundary Bethe state (4.6) into gauged bulk Bethe state of the form

B(λ(σ)1 |x − 1,α− β) · · ·B(λ(σ)M |x −M ,α− β +M − 1) |η,α+ β + N −M − 1 〉 (4.16)

with x = γ − δ. We then use Theorem 4.1 of [1] to compute the action of
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) on the bulk states (4.16) and use again Proposition 3.2 to

reconstruct boundary states. By doing this, we get rid of the apparent dependance on γ− δ.
□
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Remark 2. The action presented in Theorem 4.1 formally coincides with the action that we
have computed in Theorem 4.2 of [1]. However, one has to remark that there it was derived
under the very strong boundary condition:

K−,0(λ;ς+ = −∞,κ+,τ+) =

�

e(η/2−λ) 0
0 e(λ−η/2)

�

0

= e(η/2−λ)σ
z
0 , (4.17)

which completely fixes the boundary field at site N . Here, instead, we are leaving the three
boundary parameters ς+, κ+, τ+ completely arbitrary. The price to pay is that the gauge pa-
rameters α and β need to satisfy the constraint (4.7), whereas in [1] they could be taken arbi-
trary. It happens that the boundary-bulk decomposition here derived in Proposition 3.2 shows
that, even under general boundary parameters, the gauged transformed boundary Bethe states
admit formally, under special choice of the gauge parameters γ and δ, the same boundary-
bulk decomposition as in the special boundary case (4.17), just the boundary-bulk coefficients
Hσ({λ}) here account for the dependence from the current general values of the boundary
parameters ς+,κ+,τ+.

We recall that, under the constraint (2.42) on the boundary parameters, any separate state
in the Sklyanin’s SoV approach can be expressed as a generalized Bethe state of the form (4.6)
with the choice (2.43)-(2.44) of α and β , see Proposition 2.2. Note that the choice (2.43)-
(2.44) together with the constraint (2.42) imposes that α and β satisfy the constraint (4.7)
with ε+ = εϕ+:

η(α+ β) = −τ− + εϕ−(ϕ− −ψ−) +
1− εϕ−

2
iπ mod 2iπ,

= −τ+ − εϕ+(ϕ+ +ψ+)− (N − 1− 2M)η+
1− εϕ+

2
iπ mod 2iπ. (4.18)

Hence Theorem 4.1 also provides the action of a generic element
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) of the basis (4.2) on any generic Sklyanin’s separate state,

provided that the constraint (2.42) is satisfied. We see that the result can still be expressed as
a linear combination of separate states if m̃ε,ε′ = 0.

5 Matrix elements of m-site local operator strips in the finite chain

We now consider the matrix elements of an element of the basis (4.2) of strips of local opera-
tors on the first m-sites of the chain, in a generic transfer matrix eigenstate associated with a
solution of homogeneous Bethe equations under the non-diagonal boundary conditions subject
to the constraint (2.42), that we recall here:

τ+−τ− = −εϕ+(ϕ++ψ+)−εϕ−(ϕ−−ψ−)− (N −1−2M)η+
1− εϕ+εϕ−

2
iπ mod 2iπ (5.1)

for a given M ∈ {1, . . . , N} and with a given choice of εϕ+ ,εψ+ ∈ {+1,−1}. More precisely, we
consider a matrix element of the form

〈 {λ} |
m
∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) | {λ} 〉=

〈Q |
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) |Q 〉
〈Q |Q 〉

, (5.2)

in which | {λ} 〉 and 〈 {λ} | are the normalized transfer matrix eigenstates associated with a
solution {λ} ≡ {λ1, . . . ,λM} of the homogeneous Bethe equations under the constraint (5.1).
We denote by Q the associated polynomial of degree M of the form (2.16) with roots given by
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{λ}, solution of the homogeneous TQ-equation (2.38) with the corresponding transfer matrix
eigenvalue τ. Hence, in the notations (5.2), 〈Q | and |Q 〉 denote the SoV eigenstates con-
structed in the Sklyanin’s approach.8 We fix here α and β as in (2.43)-(2.44), and an, bn, ān, b̄n
are given in terms of α,β ,ε,ε′ as in (4.3)-(4.4).

It follows from Proposition 2.2 that (5.2) can be re-expressed as

〈 {λ} |
m
∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) | {λ} 〉= c(R)M ,ref

×
〈Q |
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) bB−,M ({λi}Mi=1|α− β + 1) |η,α+ β + N − 2M − 1 〉

〈Q |Q 〉
,

(5.3)

and we can now use Theorem 4.1 to act with
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) on the right in

this expression. We restrict here our study to the case in which9

m
∑

r=1

(ε′r − εr) = 0 , (5.4)

for which the result of this action can again be directly expressed as a sum over Sklyanin’s
separate states of a similar type:

〈 {λ} |
m
∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) | {λ} 〉=

∑

Bε,ε′

F̄Bε,ε′
({λ}, {ξ(1)j }

m
j=1|β)

〈Q | Q̄Bε,ε′
〉

〈Q |Q 〉
. (5.5)

Here we have used the notations of Theorem 4.1, and Q̄Bε,ε′
denotes the polynomial of the

form (2.16) with roots given by

{λ̄1, . . . , λ̄M} ≡ {λ1, . . . ,λN+m} \ {λ j} j∈Bε,ε′ = {λa}a∈α− ∪ {ξ
(1)
ib
}b∈α+ , (5.6)

in which, as in Theorem 4.1, we have denoted ξ(1)m+1− j ≡ λM+ j for j ∈ {1, . . . , m}. We can then
use the formulas obtained in [40] to compute the resulting scalar products of separate states.

The technical details of the computation are then completely similar to those performed
in [1], and we therefore obtain the following result, which extends to the case (5.1) the result
stated in Theorem 5.1 of [1]:

Theorem 5.1. Let the boundary condition (5.1), for a given M ∈ {1, . . . , N} and with a given
choice of εϕ+ ,εψ+ ∈ {+1,−1}, be satisfied, and let {λ} ≡ {λ1, . . . ,λM} be a solution of the
homogeneous Bethe equations under the constraint (5.1). Let α and β be given in terms ofϕ−,ψ−
by (2.43)-(2.44), and let ε≡ (ε1, . . . ,εm),ε′ ≡ (ε′1, . . . ,ε′m) ∈ {1,2}m satisfying (5.4).

8In the expression (5.2), 〈Q | and |Q 〉 may as well denote the SoV eigenstates constructed in the new approach
of [80] since they are proportional to the Sklyanin’s ones due to the simplicity of the transfer matrix spectrum.
However, when acting on the generalized Bethe state in (5.3), we obtain a sum over generalized Bethe states
with modified arguments which are no longer transfer matrix eigenstates, see Theorem 4.1. Under the condition
(5.4), these generalized Bethe states can be re-expressed as Sklyanin’s separate states thanks to Proposition 2.2,
but a priori not in terms of the type of separate states obtained within the new approach of [80]. Therefore our
computations need in principle to be performed in the generalized Sklyanin’s SoV framework. Note however that,
if we happen to be in a limiting case in which only the new separation of variables approach is applicable, we can
proceed as in [1] by taking limits from regions of the space of parameters in which Sklyanin’s SoV is applicable.

9For matrix elements for which (5.4) is not satisfied, we encounter the same problem as in [1]: the action of
Theorem 4.1 produces states with shifted gauge parameters and shifted number of roots, that at the moment we
do not know how to re-express in a simple form in terms of usual types of separate states.
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Then the matrix elements (5.2), where an, bn, ān, b̄n are given in terms of α,β ,ε,ε′ as in
(4.3)-(4.4), can be written as

〈 {λ} |
m
∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) | {λ} 〉

=
M
∑

B1=1

. . .
M
∑

Bs=1

M+m
∑

Bs+1=1

. . .
M+m
∑

Bm=1

H{B j}({λ}|β)
∏

1≤l<k≤m
sinh(ξk − ξl) sinh(ξk + ξl)

, (5.7)

with

H{B j}({λ}|β) =
m
∏

n=1

eη

sinh(ηbn)

∑

σB j

(−1)s
m
∏

i=1
σBi

m
∏

i=1

m
∏

j=1
sinh(λσBi

+ ξ j +η/2)

∏

1≤i< j≤m
sinh(λσBi

−λσB j
−η) sinh(λσBi

+λσB j
+η)

×
s
∏

p=1

§

sinh(λσBp
− ξ(1)ip

−η(1+ bip))
ip−1
∏

k=1

sinh(λσBp
− ξ(1)k )

m
∏

k=ip+1

sinh(λσBp
− ξ(0)k )
ª

×
m
∏

p=s+1

§

sinh(λσBp
− ξ(1)ip

+η(1− b̄ip))
ip−1
∏

k=1

sinh(λσBp
− ξ(1)k )

m
∏

k=ip+1

sinh(λσBp
− ξ(1)k +η)
ª

×
m
∏

k=1

sinh(ξk − εϕ−ϕ−) cosh(ξk − εϕ−ψ−)
sinh(λσBk

− εϕ−ϕ− +η/2) cosh(λσBk
− εϕ−ψ− +η/2)

det
m
Ω . (5.8)

Here we have used the notations (4.10)-(4.11), and the sum is performed over all σB j
∈ {+,−}

for B j ≤ M, and σB j
= 1 for B j > M. Finally, the m×m matrix Ω is given by

Ωlk = −δN+m+1−bl ,k, for Bl > M , (5.9)

Ωlk =
M
∑

a=1

�

N−1
�

Bl ,a
Ma,k, for Bl ≤ M , (5.10)

where we have defined

[N ] j,k ≡ [N (λ)] j,k = 2N δ j,k Ξ
′
ϵ,Q(λ j) + 2π
�

K(λ j −λk)− K(λ j +λk)
�

, (5.11)

[M] j,k ≡ [M(λ̄,λ)] j,k =

¨

[N (λ)] j,k if k ∈ α−,

i[t(ξik −λ j)− t(ξik +λ j)] if k ∈ α+ ,
(5.12)

in terms of

Ξ′ϵ,Q(µ) =
i

2N
∂

∂ µ

�

log
Aϵ(−µ)Q(µ+η)
Aϵ(µ)Q(µ−η)

�

, (5.13)

K(λ) =
i sinh(2η)

2π sinh(λ+η) sinh(λ−η)
=

i
2π

�

t(λ+η/2) + t(λ−η/2)
�

, (5.14)

t(λ) =
sinhη

sinh(λ−η/2) sinh(λ+η/2)
= coth(λ−η/2)− coth(λ+η/2) . (5.15)

6 On correlation functions in the half-infinite chain

As mentioned above, the description of the transfer matrix spectrum and eigenstates in terms
of the homogeneous TQ-equation (2.38) for Q of the form (2.16) is not complete under the
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constraint (5.1). However, it was argued in [13] that, at least for the range of boundary
parameters numerically investigated there, the corresponding Bethe equations,

Aϵ(λ j)Q(λ j −η) +Aϵ(−λ j)Q(λ j +η) = 0, j = 1, . . . , M , (6.1)

which can be rewritten as, for λ j ̸= 0, i π2 ,

a(−λ j) d(λ j)

a(λ j) d(−λ j)

∏

σ=±

sinh(λ j +
η
2 − εϕσϕσ) cosh(λ j +

η
2 −σεϕσψσ)

sinh(λ j −
η
2 + εϕσϕσ) cosh(λ j −

η
2 +σεϕσψσ)

×
M
∏

k=1
k ̸= j

sinh(λ j −λk +η) sinh(λ j +λk +η)

sinh(λ j −λk −η) sinh(λ j +λk −η)
= 1, j = 1, . . . , M , (6.2)

yield the ground state in the sector

M =
�

N
2

�

. (6.3)

It was more generally conjectured in [14] that, when combining the solutions in the sector
M with the constraint (5.1) with a given choice of εϕ+ ,εϕ− and the solutions in the sector
M ′ = N − 1 − M with a constraint in which the signs are negated, one gets the complete
spectrum. If this conjecture is true, this means in particular that, under the constraint (5.1),
the ground state can be found in one the two sectors (M ,ϵ) or (M ′,−ϵ), and can be described
by usual Bethe equations. Note that, if N − 2M remains finite in the thermodynamic limit, so
is N − 2M ′, and we can consider the half-infinite chain limit (thermodynamic limit N →∞)
while maintaining the constraint (5.1).

If we are in such a situation, then the analysis concerning the distribution of Bethe roots
in the ground state can be performed completely similarly as in the diagonal case [8, 9, 41].
Hence, the ground state should be characterized in the homogeneous and thermodynamic
limits by a infinite number (i.e. of order N/2) of Bethe roots distributed on an interval (0,Λ)
according to a density function ρ(λ), with

ρ(λ) =











1
ζ cosh(πλ/ζ)

with ζ= iη > 0 and Λ= +∞ if |∆|< 1,

i
π

ϑ′1(0, q)

ϑ2(0, q)
ϑ3(iλ, q)
ϑ4(iλ, q)

with q = eη (η < 0) and Λ= −iπ/2 if ∆> 1.
(6.4)

This density function is solution of the following integral equation:

ρ(λ) +

∫ Λ

0

�

K(λ−µ) + K(λ+µ)
�

ρ(µ) dµ=
i t(λ)
π

. (6.5)

which can be extended by parity on the whole interval (−Λ,Λ) as

ρ(λ) +

∫ Λ

−Λ
K(λ−µ)ρ(µ) dµ=

i t(λ)
π

. (6.6)

Depending on the configuration of the boundary parameters and on the precise number of
Bethe roots
�N

2

�

− k (with k remaining finite in the thermodynamic limit) characterising the
ground state, the fine structure of the ground state may also include a finite number of “com-
plex” roots,10 i.e. of roots that are not on the real axis in the regime |∆| < 1 nor on the

10We may also possibly have a finite number of “holes” in the distribution of “real” roots. The latter should
however not contribute to the leading order of the result for the correlation functions in the thermodynamic limit.
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imaginary axis in the regime ∆ > 1. In particular, it may contain some isolated “complex”
roots of the form

λ̌σ,1 = η/2− εϕσϕσ + ϵσ,1, λ̌σ,2 = η/2−σεϕσψσ + i
π

2
+ ϵσ,2, σ = +,−, (6.7)

which converge towards the poles of the boundary factor in (6.2) with exponentially small
corrections ϵσ,i in N : these roots play an important role in the computation of the correlation
functions in the thermodynamic limit (see [20,41]), and we call them boundary roots.

Although these are interesting problems, we shall not discuss here the validity of the afore-
mentioned conjectures, nor the fine structure of the ground state according to the precise
configuration of the boundary fields. Instead, we shall simply assume that we are in a configu-
ration of the boundaries so that the ground state can be characterized, in the thermodynamic
limit, by an infinite set of Bethe roots on (0,Λ) distributed according to the density function
(6.4) solution of (6.5)-(6.6), with possibly some additional boundary roots of the form (6.7).
Note that, although all types of boundary roots (6.7) may be present in the description of the
ground state, only the presence of the boundary roots λ̌−,1, λ̌−,2 results into a non-zero direct
contribution to the final result for the correlation functions around site 1 in the thermodynamic
limit,11 due to the presence of the singularities in the expression (5.8). Hence, we have here
a priori to distinguish among the four following possible regimes:12

A) the set of Bethe roots for the ground state does not contain neither λ̌−,1 nor λ̌−,2;

B) the set of Bethe roots for the ground state contains λ̌−,1 but not λ̌−,2;

C) the set of Bethe roots for the ground state contains λ̌−,2 but not λ̌−,1;

D) the set of Bethe roots for the ground state contains both λ̌−,1 and λ̌−,2.

Under such assumptions, we can proceed as in [1,20] to compute the thermodynamic limit
of the expression (5.7)-(5.8) for the ground state, and we obtain the following result for the
mean value in the ground state of an element of the basis (4.2) under the condition (5.4) and
under the hypothesis of Theorem 5.1:

〈
m
∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) 〉=

m
∏

n=1

eη

sinh(ηbn)
(−1)s

∏

j<i
sinh(ξi − ξ j)
∏

i≤ j
sinh(ξi + ξ j)

×
∫

C

s
∏

j=1

dλ j

∫

Cξ

m
∏

j=s+1

dλ j Hm({λ j}Mj=1; {ξk}mk=1) det
1≤ j,k≤m

�

Φ(λ j ,ξk)
�

, (6.8)

11However, the fact that the set of Bethe roots for the ground state contains the boundary roots λ̌−,1 and/or λ̌−,2

may also depend on the boundary parameters at site N , see [41].
12For instance, the numerical results of Tables 2 and 4 of [13] seem to indicate that the numerical values of the

boundary parameters considered in that paper correspond to regime A).
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with

Hm({λ j}Mj=1; {ξk}mk=1) =

m
∏

j=1

m
∏

k=1
sinh(λ j + ξk +η/2)

∏

1≤i< j≤m
sinh(λi −λ j −η) sinh(λi +λ j +η)

×
s
∏

p=1

§

sinh(λp − ξ
(1)
ip
−η(1+ bip))

ip−1
∏

k=1

sin(λp − ξ
(1)
k )

m
∏

k=ip+1

sinh(λp − ξ
(1)
k −η)
ª

×
m
∏

p=s+1

§

sinh(λp − ξ
(1)
ip
+η(1− b̄ip))

ip−1
∏

k=1

sinh(λp − ξ
(1)
k )

m
∏

k=ip+1

sinh(λp − ξ
(1)
k +η)
ª

×
m
∏

k=1

sinh(ξk − εϕ−ϕ−) cosh(ξk − εϕ−ψ−)
sinh(λσBk

− εϕ−ϕ− +η/2) cosh(λσBk
− εϕ−ψ− +η/2)

, (6.9)

and

Φ(λ j ,ξk) =
1
2

�

ρ(λ j − ξk)−ρ(λ j + ξk)
�

. (6.10)

The integration contours are defined as

C =



















[−Λ,Λ] in the regime A),

[−Λ,Λ]∪ Γ (η2 − εϕ−ϕ−) in the regime B),

[−Λ,Λ]∪ Γ (η2 + εϕ−ψ− + i π2 ) in the regime C),

[−Λ,Λ]∪ Γ (η2 − εϕ−ϕ−, η2 + εϕ−ψ− + i π2 ) in the regime D),

(6.11)

and
Cξ = C ∪ Γ (ξ(1)1 , . . . ,ξ(1)m ), (6.12)

where Γ (µ1, . . . ,µp) denotes a contour surrounding the points of µ1, . . . ,µp with index 1, all
other poles of the integrand being outside.

7 Conclusion and Outlooks

In this paper we have considered the open XXZ spin 1/2 chain with non-longitudinal bound-
ary fields under one constraint relating the six boundary parameters. Under such a constraint,
part of the spectrum and eigenstates of the transfer matrix can be described by a homogeneous
TQ-equation, i.e. by usual Bethe equations [2]. The transfer matrix eigenstates can be con-
structed by Separation of Variables as particular separate states whose scalar product formulas
are known [40]. Moreover, under the constraint, the separate states can be reformulated as
generalized Bethe states which are written in terms of a gauged transformed reflection algebra
obtained from the usual reflection algebra by a Vertex-IRF transformation.

So as to compute correlation functions, we have here derived the action of a basis of local
operators on these generalized Bethe states under the most general boundary conditions on the
site N . This gives us, in particular, the action of these local operators on the separate states, and
therefore on the transfer matrix eigenstates which can be described by usual Bethe equations
under the constraint. From this result and from the knowledge of the scalar product formula
between separate states, we were able to derive multiple sum representations for the matrix
elements, in these transfer matrix eigenstates, of the class of local operators which conserve
the number of gauged B-operators under the action, i.e. which satisfy the constraint (5.4).
Assuming that the ground state is among the eigenstates which can be described by usual Bethe
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equations in a sector close to half-filling, as conjectured in [13], and that its corresponding set
of Bethe roots is given in the thermodynamic by the usual density function with possibly extra
boundary roots, we obtained multiple integral representation for the correlation functions of
the aforementioned class of local operators. Our result generalizes those obtained in [1, 20]
for more restricted boundary conditions.

Several interesting questions remain however open.
As in [1], we had here to restrict our study to the class of local operators which satisfy

the constraint (5.4). If this constraint is not satisfied, the action of the corresponding local
operator on generalized Bethe states is expressed in terms of generalized Bethe states with
a different numbers of B-operators and a shifted gauge parameter, see (4.8). The problem
is that Proposition 2.2 does not enable us to re-express such generalized Bethe states in a
simple way in terms of separate states. In other words, we do not know how to compute the
resulting scalar products in a compact way after the action. It would be highly desirable, for
the consideration of interesting physical correlation functions, to be able to understand how
to overcome this difficulty.

Another interesting question concerns the validity of the conjecture of [13, 14], on which
we relied to formulate our results. An analytical proof of this conjecture is still missing, so that
the question remains whether it indeed holds for all ranges of boundary parameters satisfying
the constraint. Also, an interesting question would be to identify precisely the fine structure
of the ground state for the different values of the four independent boundary parameters
appearing in the Bethe equations: identify in particular the boundary roots that are involved
in its description, and discuss the resulting phase diagram. Such a proper and precise analysis
of the ground state can a priori be done as in [41] for the diagonal case, but it is more involved
since there are much more different cases to distinguish.

Finally, the question of an analytical computation of the correlation functions for com-
pletely generic boundary fields, i.e. not satisfying the constraint (2.42), still remains widely
open. The difficulty comes from the actual description of the spectrum in terms of an inhomo-
geneous TQ-equation as in (2.36), which does not lead to a simple description of the ground
state in terms of well-organized Bethe roots as in the homogeneous case (2.38). To overcome
this problem, it would be necessary either to understand how to deal with such kind of equa-
tions within the analytical framework of the correlation functions, or to find an alternative,
more convenient, description of the spectrum, maybe in terms of a homogenous TQ-equation
with non-polynomial Q-solutions.
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