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Abstract

The Jordan-Wigner transformation is frequently utilised to rewrite quantum spin chains
in terms of fermionic operators. When the resulting Hamiltonian is bilinear in these
fermions, i.e. the fermions are free, the exact spectrum follows from the eigenvalues of
a matrix whose size grows only linearly with the volume of the system. However, several
Hamiltonians that do not admit a Jordan-Wigner transformation to fermion bilinears
still have the same type of free-fermion spectra. The spectra of such “free fermions in
disguise” models can be found exactly by an intricate but explicit construction of the rais-
ing and lowering operators. We generalise the methods further to find a family of such
spin chains. We compute the exact spectrum, and generalise an elegant graph-theory
construction. We also explain how this family admits an N =2 lattice supersymmetry.
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1 Intro

Integrable models by their nature are special: they possess a hierarchy of commuting charges
that strongly constrain the physical behaviour. A consequence is that sometimes certain types
of computations yield exact results. An array of powerful techniques, including the Bethe
ansatz and Yang-Baxterology, have been developed to do these calculations. Yet even when
these tools are applicable, important physical properties defy description. For example, even
though the Bethe equations contain enough information to determine the full spectrum, in
practice it is usually possible only to obtain exact energies only for the ground state and some
low-lying states, and even then only in the limit of large system size.

A notable exception to the latter statement comes from free-fermion systems, where one
can compute the exact spectrum directly in a number of models of great interest. The method
utilised is called a Jordan-Wigner transformation [1], and the output is a Hamiltonian or trans-
fer matrix written in terms of fermion bilinears. One then can use now-standard techniques [2]
to compute the eigenvalues of such a free-fermion Hamiltonian, yielding

E = ±ε1 ± ε2 ± · · · ± εM , (1)

where the energy levels εk, k= 1, 2, . . . M are eigenvalues of a single matrix, and so are all
roots of a single polynomial. A key feature of this free-fermion spectrum is that choice of the
± signs giving the 2M energies does not affect the values of the εk.

The Jordan-Wigner procedure has been utilised thousands of times over the last century.
Nevertheless, only recently was a method developed to determine whether a given Hamilto-
nian can be transformed to fermion bilinears in such fashion [3] without using trial-and-error
(see also [4]). Even more remarkably, the method is graphical. To any Hamiltonian acting
on two-state systems one associates a frustration graph, and only if this graph satisfies certain
properties can the Jordan-Wigner transformation be used to rewrite the Hamiltonian in terms
of fermion bilinears.

It is natural to ask if all known Hamiltonians with spectrum (1) admit a Jordan-Wigner
transformation to fermion bilinears. The answer is no, and even before [3] several coun-
terexamples were known. The first (that we know of) is the “Cooper-pair” chain, where with
particular open boundary conditions, a Bethe-ansatz computation yields the spectrum (1) [5].
Each state here exhibits large degeneracies, but changing to the seemingly simpler periodic
boundary conditions splits the degeneracies and wrecks the free-fermion behaviour. Another
interesting feature of the Cooper-pair chain is that it exhibits a N = 2 lattice supersymme-
try [6, 7] where the Hamiltonian can be written as a square of either of two supersymmetry
generators. Subsequently, the Cooper-pair model with open boundary conditions was shown
to be equivalent (via a unitary transformation) [8] to another fermion chain with lattice su-
persymmetry, the “DFNR” model [9].

Another model with spectrum (1) not solvable by a Jordan-Wigner transformation was
found in [10] and dubbed “free fermions in disguise” (ffd). The Hilbert space is a chain of
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two-state systems, and the Hamiltonians for periodic and open boundary conditions are given
in terms of Pauli matrices as

Hffd,p =
L+1
∑

j=1

r jX jX j+1Z j+2 , Hffd,o =
L−1
∑

j=1

r jX jX j+1Z j+2 , (2)

respectively, where the indices in the former but not the latter are interpreted mod L+ 1. A
Jordan-Wigner transformation gives a Hamiltonian comprised entirely of four-fermion opera-
tors. The parity-conjugate model with the terms Z j−1X jX j+1 is obviously equivalent, but less
obviously commutes with (2).

The ffd model has no U(1) symmetry, so the Bethe ansatz is at best extremely difficult
to implement. The proof that Hffd,o has spectrum of the form (1) is thus very different from
that of the Cooper-pair/DFNR chain. Instead, the raising and lowering operators were con-
structed explicitly and directly by a tractable but rather intricate method [10]. As we describe
in detail below, the construction involves defining a transfer matrix with nice properties, and
the method yields a solution of the corresponding two-dimensional classical model as well.
There are 2M different energies in (1), while there are 2L eigenstates of H. Each energy here
has exponentially large degeneracies, because M grows linearly in L but with M/L < 1. The
detailed analysis shows that the degeneracies are identical for each choice of ± signs.

Remarkably, there exists a simple graphical procedure to determine if a model can be
solved by the method of [10] [11]. When the frustration graph obeys certain properties (it
is “claw-free” and “even-hole” free), the Hamiltonian has spectrum (1). A feature of these
methods [10–12] is that integrability can be established without need of Yang-Baxter equation,
even in the presence of the spatially varying couplings. Further many-body Hamiltonians
solvable by this method were found in [12,13] and the two graphical procedures were put in a
common structure [12]. However, the frustration graph for the Cooper-pair/DFNR model does
not satisfy the needed properties, so its free-fermion spectrum does not follow automatically.

Nonetheless, the Cooper-pair/DFNR and ffd models exhibit a number of properties in com-
mon beyond the free-fermion spectrum, including the requirement of certain open bound-
ary conditions, an extended supersymmetry algebra, and extensive degeneracies. Moreover,
rewriting the DFNR Hamiltonian in terms of spins makes it simpler and the resemblance closer:

HDFNR,f = Z0Z2 +
L−1
∑

j=1

�

X jX j+1Z j+2 + Z j−1YjYj+1 + Z j Z j+2

�

. (3)

This Hamiltonian acts on L+ 2 two-state systems labeled 0, 1, . . . L+ 1, and we impose fixed
boundary conditions where the edge spins are eigenstates of Z0 and ZL+1.

In this paper we find and analyse an integrable model interpolating between the ffd and
DFNR models, deriving its free-fermion spectrum for fixed boundary conditions. For spatially
uniform couplings, its Hamiltonian is

Hb = bZ0Z2 +
L−1
∑

j=1

�

X jX j+1Z j+2 + b2Z j−1YjYj+1 + bZ j Z j+2

�

, (4)

so that H0 = Hffd,o and H1 = HDFNR,f indeed. The core of our proof is that of [10,11], but we
need to extend the construction beyond its original applicability. At the end we find all the
energy levels εk via the roots of a single polynomial, recovering (1).

In section 2, we detail the Hamiltonian, its supersymmetry, and the algebra its genera-
tors satisfy. We also outline how we found it by exploiting the “medium-range” integrability
approach of [14]. By constructing explicitly a series of commuting conserved quantities, we
show in section 3 that the model is integrable for both periodic and fixed boundary conditions,
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even for spatial varying couplings. We also derive an extended (super) symmetry algebra valid
only for fixed boundary conditions. The transfer matrix and its inversion relation are derived
in section 4. Finally, in section 5 we construct the raising/lowering operators explicitly and
derive the exact free-fermion spectrum for fixed boundary conditions.

2 The Hamiltonian and its supersymmetry

2.1 Medium-range integrability

We start by explaining how we found the particular combination of couplings in (4). Since
below we give a detailed analysis of the more general problem using very different techniques,
we here simply outline the procedure.

Yang-Baxter integrable models have a transfer matrix t(u) constructed from local Lax oper-
ators so that [t(u), t(u′)] = 0. In the standard case of nearest-neighbour interactions, the Lax
operator is constructed from a solution of the Yang-Baxter equation called the R matrix [15].
The integrable Hamiltonian is the first logarithmic derivative

H = ∂u log(t(u))|u=0 , (5)

with local conserved charges arising from higher derivatives.
For spin chains with longer (but finite) interaction ranges, the framework was extended

in [14]. Commuting transfer matrices were found by enlarging the auxiliary spaces and by
choosing R-matrices that factorise into products of Lax operators at selected points in rapidity
space. These ideas yield an integrability condition generalising the Reshetikhin condition [16]
for nearest-neighbour interactions. This condition can be used to construct and classify inte-
grable models. For recent applications of this idea in other settings see for example [17–19].

The medium-range integrability condition works as follows. For simplicity we consider
only three-site interactions, writing H =

∑

j g j , where g j is a local operator spanning three
sites. Then we construct an extensive operator

H2 =
∑

j

�

�

g j , g j+1 + g j+2

�

+ g̃ j

�

, (6)

where g̃ j is another three-site operator. If the Hamiltonian is derived via (5), and the Lax
operator satsifes a certain regularity condition, then H2 is the next local charge obtained from
t(u), i.e. in finite volume

�

H,H2

�

= 0 . (7)

Note that the form of H2 is very restrictive: its operator density is a five-site operator domi-
nated by the commutator, as the arbitrary term g̃ j spans only three sites.

One often can reverse the logic to find an integrable Hamiltonian. Namely, one treats (7)
as a cubic equation for the Hamiltonian density g j (and linear in g̃ j). If one finds a solution
for any system size, then there should exist an R-matrix which solves the Yang-Baxter relation
yielding commuting transfer matrices and a Lax operator. While not proved, for all known
solutions of (7) they do indeed exist. The same is true here. Taking H to be the periodic
DFNR Hamiltonian but allowing arbitrary (but spatially homogenous) coefficients for each of
the three types of the terms, a direct computation then shows that (7) is satisfied if and only
if H = Hb,p, where [20]

Hb,p =
L+1
∑

j=1

�

X jX j+1Z j+2 + b2Z j−1YjYj+1 + bZ j−1Z j+1

�

, (8)
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and we interpret indices mod L+ 1 and so identify sites 0 and L+ 1. The corresponding Lax
pair then indeed can be found, ensuring integrability of Hb,p.

2.2 The supersymmetry generator

The nicest way to define the Hamiltonian with open boundary conditions and spatially varying
couplings is in terms of supersymmetry generators. Our model thus provides an example of
many-body supersymmetric quantum mechanics [6,7].

The supersymmetry operators are non-local in terms of the spins, and the most transparent
way of writing supersymmetry generators is in terms of Majorana-fermion operators defined
as

ψ2 j−1 = X j

j−1
∏

k=0

Z j , ψ2 j = iZ jψ2 j−1 . (9)

These operators obey {ψk, ψk′} = 2δkk′ . The building blocks of the first supersymmetry gen-
erator are trilinears in the Majorana operators, namely

α j = ia jψ2 jψ2 j+1ψ2 j+2 = a jψ2 j Z j+1 , β j = i b jψ2 j−3ψ2 j−2ψ2 j = b jψ2 j Z j−1 , (10)

for arbitrary real numbers a j and b j . In discussing supersymmetry, we restrict to open bound-
ary conditions. The supersymmetry generator is defined as

Q = ip
2

L
∑

j=1

�

α j + β j

�

= 1p
2

L
∑

j=1

ψ2 j

�

a j Z j+1 + b j Z j−1

�

. (11)

The supersymmetric Hamiltonian is then simply the square of Q:

H =Q2 − 1
2

L
∑

j=1

�

a2
j + b2

j

�

, (12)

where we subtract off the constant piece. Since Q anticommutes with the fermion-parity sym-
metry

(−1)F =
L+1
∏

j=0

�

iψ2 j−1ψ2 j

�

=
L+1
∏

j=0

Z j , (13)

it maps between equal-energy states in even and odd sectors under (−1)F , except for states
annihilated by it. Since Q is Hermitian for real a j and b j , (12) requires that the energy is
bounded from below by the (negative) constant and that any state annihilated by Q must be
a ground state.

2.3 The Hamiltonian

To give an explicit expression for H, we utilise the algebra of the building blocks
�

α j , β j′
	

= 0 , for j ̸= j′ ,
�

α j , α j′
	

=
�

β j , β j′
	

= 0 , for | j − j′|> 1 ,
�

α j

�2
= a2

j ,
�

β j

�2
= b2

j ,
�

α j−1, α j

�

=
�

β j−1, β j

�

=
�

α j , β j

�

= 0 .
(14)

Any pair of terms that anticommutes cancels in Q2, so the Hamiltonian is comprised of products
of any two commuting building blocks, namely

A j ≡ α j−1α j = a j−1a j X j−1X j Z j+1 , B j ≡ β j−1β j = b j−1 b j Z j−2Yj−1Yj ,

C j ≡ α jβ j = a j b j Z j−1Z j+1 .
(15)

5

https://scipost.org
https://scipost.org/SciPostPhys.16.4.102


SciPost Phys. 16, 102 (2024)

For fixed boundary conditions we set a0= b0= aL+1= bL+1= 0 and require the edge spins to
be eigenstates of Z0 and ZL+1. Using (12) then yields the Hamiltonian

H = C1 +
L
∑

j=2

�

A j + B j + C j

�

, (16)

generalising (4) to spatially varying couplings. The periodic version is

Hp =
L+1
∑

j=1

�

A j + B j + C j

�

, (17)

with indices identified mod (L+ 1). The uniform periodic Hamiltonian (8) is recovered from
(17) by setting a j = 1 and b j = b for all j.

The rest of the paper is spent analysing H and Hp, showing both are integrable and the
former has a free-fermion spectrum. A useful tool is a graphical visualisation of the algebra
(14), where each α j and β j corresponds to a vertex on the square ladder, with adjacent vertices
corresponding to generators that commute. For fixed boundary conditions, the graph is

C1

β1

α1

B2
β2

A2 α2

C2

B3
β3

A3 α3

C3 . . .

BL
βL−1

ALαL−1

CL−1

βL

αL

CL (18)

To avoid cluttering the picture, we omit the edges connecting the nodes to themselves. Each
term A j , B j , C j in the Hamiltonian then corresponds to an edge of this square ladder. We thus
often refer to each such term as a dimer. For periodic boundary conditions, the graph is

B0

A0

C0

β0

α0

B1

A1

C1

β1

α1

B2
β2

A2 α2

C2

B3
β3

A3 α3

C3 . . .

BL
βL−1

ALαL−1

CL−1

βL

αL

CL (19)

where the lines at the left and right ends are joined.
A key relation shows that the dimer operators are not all independent of one other. Instead,

A jB j = α j−1α jβ j−1β j = −α j−1β j−1α jβ j = −C j−1C j =⇒ B j = −
1

a2
j−1a2

j

A jC j−1C j . (20)

The B j thus can be written as a non-linear product of the others. In terms of the pictures (18)
and (19), the corresponding dimers obey

β j−1

α j−1

B j
β j

A j α j

= − C j−1

β j−1

α j−1

β j

α j

C j . (21)

Just as the algebra (14) is built from fermionic operators, we can build an algebra from the
independent dimer operators A j and C j . Their algebra is easy to work out using the pictures:
two operators anticommute if either (i) the corresponding dimers share a single vertex, or (ii)
a single edge touches both dimers. Thus we have
�

A j , A j+1

	

=
�

A j , A j+2

	

=
�

A j , C j−2

	

=
�

A j , C j−1

	

=
�

A j , C j

	

=
�

A j , C j+1

	

= 0 . (22)
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All other pairs of A j and C j′ commute. Those involving the B j can be found by using (21).
Because of the α j ↔ β j symmetry of the algebra (vertical reflection of the ladder), one can
replace A with B in (22), along with

�

A j , B j−1

	

=
�

A j , B j+1

	

= 0 . (23)

All other pairs of dimer operators commute, in particular [A j , B j] = [C j , C j′] = 0.

2.4 A second supersymmetry generator

The DFNR Hamiltonian from (3) has a U(1)× U(1) symmetry and a second supersymmetry
generator [9]. The latter but not the former holds for the full model (16), but with an inter-
esting caveat. At a j = b j =1 the other generator can be found by commuting with the U(1)
charges

Qodd =
∑

j odd

Z j Z j+1 , Qeven =
∑

j even

Z j Z j+1 . (24)

Using [Z j , ψ2k] = 2iδ jkψ2 j−1 gives

1
2

�

Qodd, Q
�

a j=b j=1 =
1
2

�

Qeven, Q
�

a j=b j=1 =
ip
2

L
∑

j=0

ψ2 j−1

�

1+ Z j−1Z j+1

�

. (25)

Squaring this operator does indeed yield HDFNR plus a constant. Using this hint it is straight-
forward to find another supersymmetry generator for any couplings a j , b j , but only for fixed
boundary conditions:

eQ =
1
p

2

L
∑

j=1

�

ψ2 j−1

�

a j

j
∏

k=1

bk

ak
+ b j Z j−1Z j+1

j
∏

k=1

ak

bk

��

. (26)

It satisfies H = eQ2+ const and so commutes with H. The constant here in general is different
from that in (12). For a j and b j independent of j, the constant is larger and so the lower
bound on H (arising from the non-negative eigenvalues of Q2) is not as strong. The two
supersymmetry generators obey {Q, eQ}= 0, so that H has (at least) N = 2 supersymmetry for
any couplings. However, away from the DFNR point neither Q nor eQ annihilates any states, so
all states form doublets under each of the supersymmetries.

3 The conserved charges

We here show here that the Hamiltonians H and Hp with fixed and periodic boundary condi-
tions are integrable. We do so by constructing explicitly a sequence of commuting conserved
charges. These charges are not purely of academic interest – knowing them explicitly is es-
sential to our subsequent calculation of the spectrum. We cannot however immediately apply
the conserved-charge construction of [10] because this model does not satisfy the necessary
graphical conditions of [11,12]. We here first review the earlier procedure, and then explain
how to generalise it to our Hamiltonians. The relation (21) between the generators proves
absolutely essential.

3.1 Conserved charges from graphs

The first step is to write the Hamiltonian as a sum of terms hm with the following properties:

H =
M
∑

m=1

hm , (hm)
2 = r2

m , either
�

hm, hn

�

= 0 , or
�

hm, hn

	

= 0 , ∀ m, n , (27)
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for rm a real number. Our Hamiltonians have

h3 j−2 = C j , h3 j−4 = B j , h3 j−3 = A j , (28)

with M = 3L − 2 and 3L + 3 for fixed and periodic boundary conditions respectively.
Such interactions can be encoded in a frustration graph. This graph G has a vertex for each

m and an edge between m and n when {hm, hn} = 0 [11]. The graph is easy to draw in the
special case Hffd,o from (2), which comes from setting β j = 0 in H, leaving only the A j . Since
{A j , A j+1} = {A j , A j+2} = 0 with other pairs commuting, the resulting G for open boundary
conditions is a zig-zag ladder:

Gffd =

A2

A3

A4

A5

A6

A7

. . . (29)

For our general Hamiltonians (16, 17) the graph is rather nasty-looking, and it is more con-
venient to work with the ladder (18). Nonetheless, we will show how a modified frustration
graph plays an essential role in our analysis.

The original construction of conserved charges for the ffd chain was by explicit computa-
tion [10]. For Hffd,o, the first non-trivial charge is

Q(3) =
∑

j<k−2<l−4

A jAkAl , (30)

i.e. is the sum over of all products of three different generators that commute with other.
The remarkable result of [11] was that this construction of conserved charges follows solely
from properties of the frustration graph, and so applies to a more general class of models.
A commuting sequence of non-trivial conserved charges occurs when the frustration graph is
claw-free. A claw is conveniently displayed via an “induced” subgraph. An induced subgraph is
defined by specifying a subset of vertices of the graph and then including all edges connecting
those vertices. A claw corresponds to a quartet of operators a, b, c, d ∈

�

hm

	

whose induced
subgraph is a

c db
(31)

The operators thus obey

[b, c] = [b, d] = [c, d] = {a, b}= {a, c}= {a, d}= 0 . (32)

The frustration graph for the ffd chain drawn in (29) is claw-free.
For a claw-free frustration graph, the conserved quantities are given in terms of indepen-

dent sets. An independent subset of a graph is a collection of vertices such that no pair shares
an edge. Let G be the frustration graph associated with a Hamiltonian obeying (27), so that
each independent subset corresponds to a collection of r operators hm such that each pair
commutes with each other. Let S(r) be the set of all independent subsets of G with r vertices.
Then a theorem of [11] shows that for claw-free G, all charges

Q(r) =
∑

S∈S(r)

∏

s∈S

hs , (33)

are conserved, i.e. [H, Q(r)] = 0. Each term on the right-hand side of (33) corresponds to an
induced subgraph of r disconnected vertices. The ordering in the product does not matter, as
by definition all the hs commute when the s belong to an independent set. This expression
indeed reduces to (30) for Hffd,o, as apparent from the corresponding frustration graph (29).
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The reason for the claw-free condition is straightforward to understand. First note that in
H2, pairs that anticommute necessarily vanish, leaving only independent sets and constants:

H2 =
∑

m,m′
hmhm′ =
∑

m,m′
�

�[hm, hm′ ]=0

hmhm′ = 2Q(2) +
∑

m

r2
m . (34)

Obviously, H2 commutes with H, so Q(2) trivially commutes with H. The cube is more inter-
esting. When the claw-free condition applies, H3 can be split into two pieces that individually
commute with the Hamiltonian. Consider a term bcd in H3 with b ̸= c ̸= d ̸= b. Two types of
such term remain in the sum: the “non-local” ones where [b, c] = [b, d] = [c, d] = 0, and the
“local” ones where {b, c}= {c, d}= [b, d] = 0. The corresponding induced subgraphs are

non-local: cb d , local: cb d . (35)

The only other terms remaining in H3 are those where two or all of the three operators coin-
cide.

The non-local terms (35) in H3 are all independent subsets in S(3), so summing over all
of them gives Q(3). Now consider [H, Q(3)]. The only terms potentially remaining in this
commutator are those where each term hm of H either anticommutes with precisely one of
b, c, d or anticommutes with all three of them. The latter case, however, cannot occur when
the frustration graph does not have a claw (32). The terms in [H, Q(3)] coming from the
non-local terms in Q(3) thus correspond to an induced subgraph of the form

c db

hm
(36)

since hm ̸= b, c, d. The key observation is such an induced subgraph cannot arise from com-
muting any hm with any of the other terms in H3, neither the local ones from (35) nor those
where operators coincide. The sum over the terms of the form (36) therefore must vanish in
order for H3 to commute with H, yielding [H, Q(3)]= 0.

The proof that all Q(r) defined by (33) commute with H = Q(1) for claw-free G is sim-
ple [11]. Consider the commutator [hm,

∏

s∈S hs] between one term in H and one in Q(r).
This commutator is non-vanishing if hm anticommutes with an odd number of the hs in the
product. When G is claw-free, the only possibility for a non-vanishing commutator is for hm to
anticommute with only a single one of the hs, which we label hs′ . We then consider the subset
Sm ⊂ S comprised of the elements of S other than s′, i.e. those that commute with m. Another
independent subset of G is therefore m∪ Sm, and we have
�

hm + hs′ ,
∏

s∈S

hs +
∏

s∈m∪Sm

hs

�

=
�

hm + hs′ ,
�

hs′ + hm

�

∏

s∈Sm

hs

�

= 0 . (37)

All terms in the commutator
�

H, Q(r)
�

cancel two by two in this fashion, and so this commu-
tator vanishes for claw-free G.

More work is required to show that all Q(r) defined by (33) mutually commute for claw-free
G, and we defer it to section 3.3.

3.2 Conserved charges for periodic and fixed boundary conditions.

The construction of conserved charges from the procedure of [10–12] does not immediately
apply to our Hamiltonians H and Hp. The reason is that there are claws (32) in the frus-
tration graph, for example from taking a = A j or B j and then b, c, d to be any three of
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C j−2, C j−1, C j , C j+1. The arguments of the preceding section 3.1 no longer automatically ap-
ply.

All hope is not lost: we can exploit the fact not all terms in the Hamiltonian are indepen-
dent, as shown in (21). First consider Q(2), which as seen in (34) is the sum over all products
of two commuting generators. It thus includes the combination A jB j + C j−1C j = 0, so that all
such “forbidden pairs” A jB j and C j−1C j cancel in the sum in Q(2). This observation suggests we
redefine Q(r) to exclude forbidden pairs from any product. We thus construct a modified frus-
tration graph G ⊂G by adding edges to G between C j and C j+1 and between A j and B j for all

j. Then we define Q
(r)

in the same fashion as (33) but instead using the modified frustration
graph G:

Q
(r)
=
∑

S∈S
(r)

∏

s∈S

hs . (38)

Because forbidden pairs cancel in the sum, Q
(2)
= Q(2) here. The operators for higher values

of r, however, are different. Because of restriction to independent sets, the highest value of r
allowed for non-zero couplings is rmax = ⌊(L + 1)/2⌋.

The definition (38) amounts to removing all the terms in Q(r) from (33) that involve any
of the forbidden pairs. In any term, the generators can be no closer than

A jB j±2 , C jC j+2 , A jC j+2 , B jC j+2 , A jC j−3 , B jC j−3 , A jA j+3 , B jB j+3 . (39)

Examples of terms in Q
(3)

for L= 6 and fixed boundary conditions are

A2

B4

A6

C1

B6

C3 (40)

For periodic boundary conditions at L+ 1= 6, Q
(3)
p = C1C3C5 + C2C4C6.

Here we extend the proof of section 3.1 to show that Q
(r)

commutes with the Hamiltonian.
It is straightforward to check that all the claws of G involve one of the forbidden pairs, so that
they do not appear in G. Consider [hm,

∏

s∈S hs] for some independent set S ∈ G, and denote
by hm′ the other part of the forbidden pair involving hm. By construction of G, the situation
in (32) never occurs in this commutator, leaving only contributions where hm anticommutes

with a single term hs′ in the product. If m′ ̸∈ S, contributions to [H, Q
(r)
] cancel two by

two by splitting S = s′ ∪ Sm and then proceeding as in (37). However, when m′ ∈ S, the
argument no longer works because hmhm′ cannot be included in any product, i.e. m ∪ Sm is
not an independent set of G.

Such terms in the commutator cancel in a different way. Because of (21), each forbidden
pair (hm, hm′) partners with another forbidden pair (hm′′ , hm′′′). As pictured, the four operators
correspond to dimers on a single square, with the two comprising a forbidden pair on opposite
sides from each other. They obey

hmhm′ = −hm′′hm′′′ ,
�

hm′′′ , hm′
	

=
�

hm, hm′′
	

=
�

hm′′′ , hm′′
�

=
�

hm, hm′
�

= 0 . (41)

For the case at hand with m′ ∈ S, we have by assumption
�

hm, hs′
	

=
�

hm′ , hs′
�

= 0 . (42)

Then necessarily one of (hm′′ , hm′′′) commutes with hs′ and the other anticommutes, say
�

hm′′′ , hs′
	

=
�

hm′′ , hs′
�

= 0 . (43)

10

https://scipost.org
https://scipost.org/SciPostPhys.16.4.102


SciPost Phys. 16, 102 (2024)

This relation follows either by using the decomposition (15) or simply by checking all cases
explicitly. For example, consider hm = A j so that hm′ = B j and the only possibilities for hs′

satisfying (42) are A j±2. Then for hs′ = A j+2, we have hm′′ = C j−1 and hm′′′ = C j , while for
hs′ = A j−2, we have hm′′ = C j and hm′′′ = C j−1. In terms of pictures, these two examples are

hm

hm′

hs′

hm′′ hm′′′

hm

hm′

hs′

hm′′′ hm′′ (44)

where we use dashed lines for the dimer operators coming from S
′
. We define S

′
m by removing

m′ as well as s′ from S. Because of (43), the set (m′′, s′)∪ S
′
m is independent, and so appears

in Q
(r)

. We then have
�

hm + hm′′′ ,
∏

s∈S

hs +
∏

s∈(m′′,s′)∪S′m

hs

�

=
�

hm + hm′′′ ,
�

hm′ + hm′′
�

hs′
�∏

s∈S′m

hs = 0 , (45)

where we use the essential relation (21) along with (42, 43) to show that
�

hm, hm′hs′
�

+
�

hm′′′ , hm′′hs′
�

=
�

hm, hm′′hs′
�

=
�

hm′′′ , hm′hs′
�

= 0 . (46)

Thus commutators involving forbidden pairs also cancel in the sums.
Nowhere in these arguments was it necessary to invoke the fixed boundary conditions of

H; we only needed the algebra (22) along with the condition (21) (or equivalently the algebra

(14) and the definitions (15)). Thus if we define the charges Q
(r)

and Q
(r)
p from (38) using

the graphs G for fixed and periodic boundary conditions respectively, they are conserved:

�

H, Q
(r)�
=
�

Hp, Q
(r)
p

�

= 0 . (47)

3.3 Commuting charges

Here we extend the proof of [11] to show that the conserved charges commute amongst them-
selves:

�

Q
(r)

, Q
(r ′)�

= 0 . (48)

A single term in this commutator can be written as

CS S
′ =

� k
∏

l=1

hsl
,

k′
∏

l ′=1

hs′
l′

�

, (49)

where we have denoted the two independent sets in the charges as S = (s1, s2, . . . sk) ∈ S
(r)

and S
′
= (s′1, s′2, . . . s′k′) ∈ S

(r ′)
. As with the proof of conserved charges, we show that non-

vanishing terms in the commutator cancel two by two in the sum over all subsets.
When no forbidden pairs appear in the product in CS S

′ , we can use the proof of Lemma 1
of [11]. The first step is to decompose CS S

′ into a product over paths on the frustration graph.
An open path P = (p1, p2, . . . , p|P |) has the property that each operator in the corresponding
list (hp1

, hp2
, . . . , hp|P |

) anticommutes with its successor and predecessor, and commutes with
the rest:

�

hpi
, hpi+1

	

= 0 ,
�

hpi
, hpi′

�

= 0 , for |i − i′|> 1 . (50)
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In a closed path the indices are interpreted cyclically mod |P |. The length of the path is the
number of vanishing anticommutators, i.e. the number of pairs of non-commuting operators.
For a closed path, the length is the number of operators |P |, while for an open path the length
is |P |− 1.

A term hsl
that commutes with all the hs′

l′
forms a path with a single operator and so is of

length zero. Longer paths correspond to operators alternating between the two charges
�

hsi
, hs′

i′
, hsi+1

, hs′
i′+1

, . . .
�

, (51)

with the corresponding induced subgraph of G for an odd-length open path being

hsi

hs′
i′

hsi+1

hs′
i′+1

. . . (52)

For an odd-length path, there are the same number of si and s′i′ , and the corresponding com-
mutator

CS∩P , S
′∩P =

� i−1+|P |/2
∏

l=i

hsl
,

i′−1+|P |/2
∏

l ′=i′
hsl′

�

, (53)

is non-vanishing, while the anticommutator of the same two operators vanishes. For example,
[A2C4, B3A6] = −2A2B3C4A6 corresponds to a path of length three pictured by

A2

B3

A6

C4 (54)

The reverse is true for even-length paths: the corresponding commutator vanishes, while the
anticommutator does not.

The only non-vanishing terms in the commutator of charges are therefore those CS S
′ that

possess an odd number of odd-length open paths. (A closed path of the form (51) is by neces-
sity even-length.) Pick one of these odd-length open paths P . Since by construction all terms
in (51) commute with all other operators in S

′
and S not part of the path, we can define two

new independent sets eS, eS′ by swapping all the operators hsi
∈ S ∩P in the path with those

hs′
i′
∈ S
′
∩ P . This is the generalisation of the swap we did in (37); that case corresponds

to a path length of one. Because CS∩P ,S
′∩P + CS

′∩P ,S∩P = 0 by definition, the same crucial
cancellation happens here:

CS S
′ + C
eS eS′ = 0 . (55)

When an open path of the form (51) is of odd length, the total number of operators |P | is
even, as apparent in the picture (52). Thus the swap does not change the number of operators

in each product so that eS ∈ S
(r)

and eS′ ∈ S
(r ′)

. The cancellation (55) therefore means that all
terms in (48) involving no forbidden pairs cancel two by two.

Terms involving forbidden pairs cancel by a generalisation of the argument leading to (45).

Since they do not appear in Q
(r)

, the only way a forbidden pair (hm, hm′) can appear in (49)
is when one m ∈ S and m′ ∈ S

′
. Moreover, the only way the presence of a forbidden pair can

change matters is if it interferes with the swap needed for the cancellation in (55). Thus we
only need consider forbidden pairs involving an odd-length path.

The needed cancellations depend on how the forbidden pair appears. There are few
enough cases so that we just go through them one by one. It is convenient to display the
cases using induced subgraphs as in (52) with a forbidden pair (i.e. an edge in G but not G)
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denoted by a dotted line. The two configurations in the cancellation in (45) then have induced
subgraphs

hm hs′hm′ hm′′′ hs′hm′′
(56)

The same cancellation obviously happens in the case of any path with the forbidden pair re-
maining on the end.

Thus we now need only consider cases where the forbidden pair appears in the middle of
a path, or joins two paths. There are two types of such joints. One is similar to (56), and so
we again exploit (45) and the identity (21) with no need of swapping. The joints of this type
in the cancelling cases pictured as e.g.

(57)

Extending (56), the corresponding induced subgraphs are the same but with changed labels:

hm′ hm hm′′ hm′′′
(58)

Since the operators away from the joint do not change between the two configurations, the
cancellation happens for any length of paths on either side.

A subtler type of joint can occur with the forbidden pair C j−1C j , e.g.

(59)

Here we cannot use (21) directly without any swap. Instead, the cancelling configuration
does not have a joint, but rather a forbidden pair A jB j in the middle of an odd-length path.
For example, cancelling (59) is

(60)

Such an odd-length path must have an even number of operators on one side of the forbidden
pair, and odd on the other. There are the same number of operators from S and from S

′
on

the even side. We thus swap only these operators between Q(r) and Q(r
′), so that the number

of operators in each stays the same. To check that the signs work out properly, (59) relates to
(60) via
�

A3B5A7

��

A5C7

�

= −A3B5A5A7C7 = A3C4C5A7C7 = −
�

A3C5C7

��

C4A7

�

, (61)

as needed for the cancellation. Again, the paths on either end can be extended. As long as
the total path length (not including dotted lines) remains odd, one side always has an even
number of operators and edges. That side swaps without extra signs, e.g. extending the path
by including one additional operator on each side gives
�

A3B5A7B9

��

A2A5C7

�

= −A3B5A5A7B9A2C7 = A3C4C5A7B9A2C7 = −
�

A2C4A7B9

��

A3C5C7

�

.

It makes no difference if other forbidden pairs occur; if they are on the even side they just
swap along with the others.

The remaining cases to check are when multiple forbidden pairs are adjacent, e.g.

(62)
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Here and whenever the number of operators in the forbidden pairs connecting the two paths
is odd, the number of operators of each type is the same whenever the total path length is
odd. Thus one can simply swap between the two sets to get the desired cancellation. When
the number of operators in the forbidden pairs is even, e.g.

(63)

the cancellation happens differently. Instead, this configuration pairs and cancels with

(64)

The signs here are those needed for the cancellation:
�

B3A5B7

��

A3B5

�

= B3A3A5B5B7 = C2C3C4C5B7 = −
�

C2C4B7

��

C3C5

�

. (65)

The extension to more forbidden pairs in the joint is straightforward. Moreover, lengthening
the paths away from the forbidden pairs is possible via the same arguments as before, as long
as the total path length (not including dotted lines) remains odd. We thus have established
(48).

3.4 More conserved charges for fixed boundary conditions

All of the results for conserved charges above apply to both fixed and periodic boundary con-
ditions. However, the former possesses more symmetry, just as in the b j = 0 limit [10]. A first
inkling of why fixed boundary conditions are special is apparent in the second supersymmetry
generator eQ from (26), as it exists for L →∞ in general only for fixed boundary conditions.
Here we show how H (but not Hp) possesses a entire hierarchy of symmetries beyond super-
symmetry. A consequence is the extensive degeneracies in the free-fermion spectrum.

The additional conserved charges for fixed boundary conditions are built from non-local
combinations of the building blocks α j , β j of the supersymmetry generator Q. We relabel them
as

γ j =

¨

α j , j odd,

β j , j even,
δ j =

¨

α j , j even,

β j , j odd.
(66)

These operators obey
�

γ j , δ j

�

=
�

γ j , δ j±1

�

= 0 ,
�

γ j , γ j′}=
�

δ j , δ j′}=
�

γk, δk′
	

= 0 , for |k− k′|> 1 , (67)

and for all j, j′. The supersymmetry generator can be split as

Q =Qγ +Qδ , Qγ =
L
∑

j=1

γ j , Qδ =
L
∑

j=1

δ j . (68)

Each operator Qγ and Qδ squares to a constant and so commutes with the Hamiltonian indi-
vidually:

H =
�

Qγ, Qδ
	

,
�

Qγ, H
�

=
�

Qδ, H
�

= 0 . (69)

The extra symmetry generators constructed in [10] also generalise to our model. To pro-
ceed, we first consider the commutator [Qγ, Qδ], which obviously commutes with H as a
consequence of (69). Less obviously, we can split it into two pieces as with the supercharge Q:

1
2

�

Qγ, Qδ
�

=Qγδ −Qδγ , Qγδ =
∑

j≤k−2

γ jδk , Qδγ =
∑

j≤k−2

δ jγk , (70)
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each of which commutes with H individually. Since the operators in Qγδ are separated like

the hm are in Q
(r)

, the proof is similar. First note that

H =
L
∑

i=1

γi

∑

l=0,±1

δi+l =
L
∑

i=1

δi

∑

l=0,±1

γi+l , (71)

where for fixed boundary conditions δ0=γ0=δL+1=γL+1= 0. As in (37), non-vanishing
contributions to the commutator [H, Qγδ] cancel two by two. Such contributions γiδi+lγ jδk
must have either i + l = j, j ± 1, or i = k, k± 1. More specifically, non-vanishing terms of the
first type require (i, i + l, j, k) to be one of

( j−2, j−1, j, k) , ( j−1, j−1, j, k) , ( j−1, j, j, k) , (i, i, i−1, k) , (i, i−1, i−1, k) , (i, i−1, i−2, k) ,

where k ≥ j+ 2. Without this additional constraint on k in the latter three the corresponding
commutator vanish. For each term of this type, the term with i↔ j also appears in the list
and has opposite sign, so that the two cancel in the sum over all. For example,

γ j−2δ j−1γ jδk = −γ jδ j−1γ j−2δk , γ j−1δ j−1γ jδk = −γ jδ j−1γ j−1δk .

Terms of the second type cancel two-by-two in the same fashion. From (70) and (69), it follows
that [H, Qδγ]= 0 as well. The fixed boundary conditions are essential, as the splitting makes
no sense for periodic.

A series of conserved charges follows by this construction. The operators

Qγδγ =
1
2

�

Qγ, Qγδ
	

= 1
2

�

Qγ, Qδγ
	

=
∑

j≤k−2≤ j′−4

γ jδkγ j′ ,

Qδγδ =
1
2

�

Qδ, Qγδ
	

= 1
2

�

Qδ, Qδγ
	

=
∑

j≤k−2≤ j′−4

δ jγkδ j′ ,
(72)

automatically commute with H. The terms must alternate between δ and γ in this fashion
because the other contributions to the anticommutator cancel two by two as above. Non-trivial
conserved charges do follow by using the same commuting and splitting procedure from (70)

1
2

�

Qγ, Qδγδ
�

= −1
2

�

Qδ, Qγδγ
�

=Qγδγδ −Qδγδγ ,

Qγδγδ =
∑

j≤k−2≤ j′−4≤k′−6

γ jδkγ j′δk′ , Qδγδγ =
∑

j≤k−2≤ j′−4≤k′−6

δ jγkδ j′γk′ .
(73)

The proof that Qγδγδ commutes with H is essentially the same as for Qγδ.
Continuing in this fashion yields a series of non-trivial and non-local bosonic commuting

charges Qγδγδ... . A crucial distinction with the Q
(r)

is that these charges do not in general
commute amongst one another. Their full algebra, however, is not known (at least not by us).
Obviously, it would be interesting to find it, or even to find a commuting subalgebra. Such
a large non-abelian symmetry algebra implies that the energy levels are highly degenerate, a
fact we prove in section 5.

4 The transfer matrix and local commuting quantities

The next step in the derivation of the spectrum is to construct a one-parameter family of
commuting transfer matrices, and show they satisfy a nice inversion relation. They generate
local conserved quantities, despite the longer-range interactions. In this section we describe
these steps, restricting to fixed boundary conditions here and for the remainder of the paper.
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Commuting transfer matrices are comprised of a series of the commuting conserved quan-
tities:

T (u) =
rmax
∑

r=0

(−u)rQ
(r)

=⇒ [T (u), T (u′)] = 0 , (74)

with Q
(0)
= 1, Q

(1)
=H and rmax = ⌊(L + 1)/2⌋. It is useful below to have a recursion relation

for T (u). To write it out, we include a subscript TL for the transfer matrix acting on the L-site
Hilbert space i.e. α j = β j = 0 for j > L and j < 1. We also define TA

L such that βL = 0 as
well, and T B

L such that αL = 0 instead. These have the effect of shortening one of the legs
of the ladder on which the dimers live. Then the transfer matrices for varying sizes obey the
recursion relations

TL = TA
L + T B

L − TL−1 − uCL TL−2 ,

TA
L+1 = TL − uAL+1T B

L−1 , T B
L+1 = TL − uBL+1TA

L−1 ,
(75)

for L > 0, defining T0 = T−1 = TA
0 = TA

1 = T B
0 = T B

1 = 1.

4.1 Inversion relation

For fixed boundary conditions, T (u) satisfies a very nice inversion relation, namely

T (u)T (−u) = P(u2) , (76)

where the polynomial P(x) is built from independent sets in the same fashion as the charges

P(x) =
rmax
∑

r=0

(−x)r
∑

S∈S
(r)

∏

s∈S

�

rs

�2
. (77)

To prove (76), we show that all the terms in T (u)T (−u) cancel save the “diagonal” ones.
Writing out the product in terms of the charges gives

T (u)T (−u) =
rmax
∑

r ′=0

rmax
∑

r=0

(−1)rur+r ′Q
(r)

Q
(r ′)
=

rmax
∑

l=0

l
∑

r=0

(−1)ru2lQ
(r)

Q
(2l−r)

. (78)

As reflected in the last expression, the terms with r + r ′ odd cancel because of the (−1)r and

the fact that the charges commute. We see already from (76) and the fact that Q(2) = Q
(2)

that the terms with r + r ′= 2 indeed sum to −u2
∑

m(rm)2. The “diagonal” terms then give a
polynomial constructed from independent sets in the same way as the charges, so that relations

PL = PA
L + PB

L − PL−1 −
�

uaL bL

�2
PL−2 ,

PA
L+1 = PL −
�

uaLaL+1

�2
PB

L−1 , PB
L+1 = PL −
�

ubL bL+1

�2
PA

L−1 ,
(79)

hold for L > 0, defining P0 = P−1 = PA
0 = PA

1 = PB
0 = PB

1 = 1.
Following [11], we again decompose each term in (78) into a products of paths. Expanding

out the charges in terms of independent sets S and S
′

as in (49) gives each term as

AS S
′ =

r
∏

l=1

hsl

r ′
∏

l ′=1

hs′
l′

. (80)

Since the commutator (53) for an odd-length path without forbidden pairs is non-vanishing,
the corresponding anticommutator vanishes. Thus any time such a path appears in AS S

′ , we
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can define new configurations eS, eS′ by swapping the operators within the path, analogously
to (55). The swap does not change r or r ′, so

AS∩P , S
′∩P +AS

′∩P , S∩P = 0 =⇒ AS S
′ +A
eS eS′ = 0 . (81)

When forbidden pairs are included, we then can rerun all the arguments from section 3.3 to
define the cancelling configuration for any odd-length path, including those with forbidden
pairs.

Thus the only potentially non-vanishing contributions to (78) come from AS S
′ with only

even-length paths, or those diagonal terms with S = S
′
. The factor (−1)r is crucial to the

cancellations of the former. To illustrate, consider a zero-length path for some term in (80),
i.e. an hsi

that commutes (but does not form a forbidden pair) with all hs′
i′
, We then can define

independent sets eS and eS′ by moving this si from S to S
′
. As eS = S/si has one less element and

eS′ = si ∪ S
′

one more, A
eS eS′ appears in the product Q

(r−1)
Q
(r ′+1)

. Because AS S
′ = A
eS eS′ here,

the (−1)r in (78) ensures that these two terms cancel in the sum over r and r ′.
Such a swap is possible for any even-length path without forbidden pairs, and so all such

paths do not contribute. We thus need to extend the proof of [11] to allow for forbidden pairs
in even-length paths. The cancellations discussed in section 3.3 that do not require a swap
(i.e. only utilise (21)) apply here as well. Thus the arguments given above in (56) or (57, 58)
also mean the analogous even-length paths also cancel two by two.

Requiring more work is the case where a forbidden pair occurs in the middle of an even-
length path, analogous to (59) or (60)). Since the full path is of even length, there must be
either an odd or an even number of operators on each of the sides of the forbidden pair. The
latter possibility cancels as before, since the swap described in (59, 60) only occurs on the
even-length side, independently of what happens on the other side. When both sides are odd,
e.g.

(82)

the cancelling operator is then

(83)

Here r increases by one while r ′ decreases. The swap here does not result in a sign change,
so that AS S

′ =A
eS eS′ . The above example corresponds to

�

A3B5A7

��

A5

�

= −A3B5A5A7 = A3C4C5A7 =
�

A3C5

��

C4A7

�

. (84)

Since the swap increases the number of operators in one charge by one and decreases the other
by one, the cancellation comes from the (−1)r in (78). Again, the paths on either end can be
extended with the same arguments as above.

The final case to check is that with multiple adjacent forbidden pairs, as for example

(85)

This configuration pairs and cancels with

(86)
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The signs here amount to
�

B3A5

��

A3B5

�

= −B3A3A5B5 = −C2C3C4C5 = −
�

C2C4

��

C3C5

�

, (87)

as needed for the cancellation. Extending this calculation to longer paths is straightforward,
e.g.
�

B3A5B7

��

A3B5C8

�

= B3A3A5B5B7C8 = C2C3C4C5B7C8 = −
�

C2C4B7

��

C3C5C8

�

, (88)

gives the needed sign for cancellation.
The only terms that contribute to (78) are those without any paths at all. These are the

“diagonal” terms, where S = S
′
. Summing over all of them with the weight ur+r ′ gives the

polynomial P(u2) defined in (77). We thus have proved (76).

4.2 Local commuting quantities

We then can construct a family of local conserved quantities from the logarithmic derivative
− ∂∂ u ln T (u). To order u2,

−
1

P(u2)
T ′(u)T (−u) =
�

1+ u2
∑

m

r2
m + . . .
��

H − 2uQ
(2)
+ 3u2Q

(3)��
1+ uH + u2Q

(2)�

= H + u
�

H2 − 2Q
(2)�
+ u2
�

3Q
(3)
−HQ

(2)
+H
∑

m

r2
m

�

+ . . .

= H + uH(2) + u2H(3) − . . .

Since all the non-vanishing terms in H2 are comprised of pairs of operators that commute with
each other (see (34)), the only remaining terms in H(2) are constants, i.e.

H(2) = H2 − 2Q
(2)
=
∑

m

r2
m . (89)

The first non-trivial local conserved charge is therefore

−H(3) = HQ
(2)
− 3Q

(3)
−H
∑

m

r2
m . (90)

The subtractions remove all non-local terms in HQ
(2)

, leaving H(3) local.

5 The raising/lowering operators

The crucial property needed for a free-fermion spectrum is the existence of the raising and
lowering operators satisfying a Clifford algebra. We construct them in this section, utilising an
algebraic relation between the transfer matrix and an edge mode in the same fashion as [10].
We then show that combining this relation with the commuting charges and the inversion
relation (76) allows the Hamiltonian to be written as a bilinear in the raising and lowering
operators. The free-fermion spectrum then follows directly.

5.1 The nice algebraic relation

Key to our construction is a edge operator αL+1 that satisfies a nice algebraic relation with the
transfer matrix. As the notation indicates, the edge operator is defined to satisfy

α jαL+1 = −(−1)δ j LαL+1α j , β jαL+1 = −αL+1β j ,
�

αL+1

�2
= 1 , (91)
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so that

A jαL+1 = (−1)δ j LαL+1A j , B jαL+1 = αL+1B j , C jαL+1 = (−1)δ j LαL+1C j , (92)

with δ j L the Kronecker delta. One example of an edge operator is αL+1 = X L+1, but as we will
see in (106), it is best to use another one. An immediate consequence of (92) is that

�

H, αL+1

�

= 2
�

A j + C j)αL+1 . (93)

In this section we prove that the edge mode satisfies

�

αL+1, T (u)
�

=
u
2

¦

�

H ,αL+1

�

, T (u)
©

. (94)

An immediate consequence of (94) and (76) is

T (u)
�

2αL+1 + u
�

H ,αL+1

�

�

T (−u) = P(u2)
�

2αL+1 − u
�

H ,αL+1

�

�

, (95)

extending the relation of [10] to our more general transfer matrix.
The proof of (94) is straightforward, requiring only repeatedly using the algebra (22,23,92)

along with the recursion relation for the transfer matrix (75). Useful rewritings of the latter
are

T j = T B
j − u
�

T j−2C j + T B
j−2A j

�

= T j−1 − u
�

T j−2C j + T B
j−2A j + TA

j−2B j

�

. (96)

Because αL+1 commutes with all transfer matrices T j with j < L − 1, we use the last relation
and the algebra to simplify the left-hand side of (94) to

�

αL+1, TL

�

= 2u
�

T B
L−2AL + TL−2CL

�

αL+1 . (97)

The strategy to simplify the right-hand side is to keep using the recursion relation and algebra
to remove contributions to TL that anticommute, finally leaving only commuting bits. Thus

�

TL , ALαL+1

	

=
�

TL−1 − u
�

TL−2CL + T B
L−2AL + TA

L−2BL

�

, ALαL+1

	

=
�

TL−2 − u
�

TL−2CL + TA
L−2BL

�

, ALαL+1

	

=
�

T B
L−2 − u
�

T B
L−2CL + TL−3BL

�

, ALαL+1

	

= 2
�

T B
L−2 − u
�

T B
L−2CL + TL−3BL

�

�

ALαL+1 ,

and
�

TL , CLαL+1

	

=
�

TL−1 − u
�

TL−2CL + T B
L−2AL + TA

L−2BL

�

, CLαL+1

	

=
�

TL−2 − uTL−3CL−1 − uT B
L−2AL , CLαL+1

	

= 2
�

TL−2 − u
�

TL−3CL−1 + T B
L−2AL

�

�

CLαL+1 .

Then because {AL , CL}= 0 we have

�

TL ,
�

AL + CL

�

αL+1

	

= 2
�

T B
L−2AL + TL−2CL − uTL−3

�

BLAL + CL−1CL

�

αL+1

�

.

Using the forbidden-pair relation (21) along with (97) and (93) yields (94).
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5.2 The raising/lowering operators and their algebra

The raising and lowering operators are now easy to construct following [10]. They are de-
fined in terms of the edge mode and the transfer matrix at the roots of the polynomial P(u2)
defined by (77). There are 2rmax = 2⌊(L + 1)/2⌋ such roots, which we write as ±uk with
k= 1, 2, . . . rmax. These roots are non-zero, since by construction P(0) = 1, and are real for
a j , b j real. The latter statement is not immediately apparent, but follows from the subsequent
analysis. We then have k raising and k lowering operators defined by

Ψ±k =
1
Nk

T (∓uk)αL+1T (±uk) , (98)

where Nk is a normalisation defined below. Then (95) applied at u = ±uk along with the fact
that H commutes with T (u) yield

�

H, Ψ±k

�

= ±
2
uk
Ψ±k . (99)

The relation (99) is the canonical definition of a raising (+) and lowering (-) operator.
Acting with Ψ+k on an eigenstate of H either annihilates the state or gives another state with
energy raised by 2/uk. Likewise, acting with Ψ−k either annihilates or lowers the eigenvalue.
The connection to the free-fermion spectrum (1) is obvious once we identify

εk =
1
uk

. (100)

This spectrum is then the simplest possibility consistent with (99).
To establish that the set of raising/lowering operators is complete and that the spectrum

is precisely that in (1), we need to derive several properties of the Ψ±k. Luckily, we do not
need to do much additional work, now that we have dealt with the complications of having
a frustration graph with claws. We have derived (48), (76) and (95), which correspond re-
spectively to equations (2.10), (2.16) and (3.11) of [10] and Lemmas 1, 2 and 3 in [11]. The
needed properties of the raising/lowering operators requires only this information, and so we
can utilise the subsequent proofs wholesale. We thus do not repeat them and just give the
results.

The first property needed is that the Ψ±k satisfy a Clifford algebra when their normalisation
is chosen appropriately:

�

Ψl ,Ψl ′
	

= δl,−l ′ , (Nk)
2 = −8uk PB

L

�

u2
k

�

∂uPL(u
2)
�

�

u=uk
. (101)

The proof of these relations is found in the analysis leading to equations (1.3) and (3.20)
of [10], or equivalently from Lemma 4 of [11]. Because {Ψk, Ψ−k} = 1, no state can be
annihilated by both of Ψk, Ψk′ . Moreover, (Ψl)2= 0 means that no raising or lowering operator
can be applied twice. The energy spectrum (1) remains the simplest possibility consistent with
these facts.

One more result establishes that the spectrum of H is precisely that of (1) with
M = rmax = ⌊(L+1)/2⌋. Using the proof leading to equation (3.21) of [10], we can rewrite the
Hamiltonian H = H(1) and the local conserved charges as bilinears in the raising and lowering
operators:

H(2n+1) =
rmax
∑

k=1

u−(2n+1)
k

�

Ψk, Ψ−k

�

, (102)

where m is any non-negative integer. Given the Ψ±k satisfy Clifford algebra (101) and the rais-
ing/lowering properties from (99), the spectrum of H = H(1) with fixed boundary conditions
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must be included in the eigenvalues given in (1), once we identify εk = 1/uk. Likewise, all
eigenvalues of H(2n+1) are contained in

E(2n+1) = ±ε2n+1
1 ± ε2n+1

2 ± · · · ± ε2n+1
rmax

. (103)

The operators H(2n) are proportional to the identity, with eigenvalues
∑

k(εk)2n.

5.3 The spectrum and its degeneracies

While our analysis leading to (103) shows that all energies must be of this form, it does not
guarantee that all such energies appear in the spectrum of H with a given fixed boundary
condition. The reason is that we have not checked that the raising/lowering operators we
have constructed leave the boundary conditions invariant. Here we show that for even L, the
spectrum includes all the energies in (1), but that for odd L only half of them appear. We then
show each energy has an exponentially large degeneracy.

It is first useful to construct a set of operators that anticommute with H and square to 1:

Cl ≡ X l Yl+1X l+4Yl+5X l+8Yl+9 . . . , C3 ≡ Y0X3Y4X7Y8X11 . . . , (104)

where l = 0, 1,2 and the products truncate at index L+ 1 for fixed boundary conditions. It is
easy to check that Clhm = −hmCl for any l, m. However, depending on the value L, the Cl may
change the fixed boundary conditions. For L a multiple of 4, only C2 leaves the boundary spins
unchanged. For L = 4n+ 2 with n a non-negative integer, C1 works, while for L = 4n+ 3 both
C1 and C2 work. However, for L = 4n+ 1 with n a non-negative integer, all the Cl change the
boundary conditions. The spectrum therefore is invariant under H →−H for L ̸= 4n+ 1.

Products ClCl ′ then yield discrete symmetries. For the fixed boundary conditions of interest
here, symmetries must leave the spins at sites 0 and L+ 1 unchanged. For any length L, the
Z2 symmetry from (13) is (−1)F ∝ C0C1C2C3. The operator

R= Z0Y1X3Z4Y5X7 . . . ∝ C0C3 , (105)

then generates another Z2 symmetry for L = 4n+ 1, 4n+ 3. Thus for L odd, our Hamiltonian
with fixed boundary conditions has a Z2×Z2 symmetry, while for L even the discrete symmetry
is only Z2, generated by (−1)F .

We now can complete our understanding the spectrum. The raising/lowering operators
Ψ±k from (98) include the operator αL+1 satisfying the algebra (91). The simplest choice
αL+1 = X L+1 does not preserve the fixed boundary conditions, as it flips the spin at site L+ 1.
However, we can use the operator R defined in (105) to make a different choice that leaves
the boundary conditions invariant. Namely, note that for L even, R commutes with each term
in H and hence T (u), but flips the spin at L+ 1. Thus if we instead take

αL+1 = iL/2+1X L+1R , (106)

the ensuing raising/lowering operators preserve the fixed boundary conditions when L is even.
Since using αL+1 = X L+1 instead gives raising/lowering operators that change the boundary
spin, the spectrum for even L is independent of which fixed boundary conditions are taken.

Acting with all rmax = L/2 of the Ψ±k thus shows that all 2L/2 energies in (1) or (103)
occur in the spectrum for L even. For L odd, however, they do not, because any valid choice
for αL+1 flips a boundary spin. Thus acting with any Ψ±k changes the boundary conditions
(Z0, ZL+1)↔ (Z0,−ZL+1) for L odd, but a with two of them, however, restores the original
boundary conditions. Thus for a given fixed boundary condition (++), only half the spectrum
(1) occurs, with the other half occurring when the boundary condition is (+−).
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This behaviour is easy to illustrate by considering a small number of sites. For L= 1, the
Hamiltonian is simply a1 b1Z0Z2, while the two Z2 symmetries are (−1)F = Z1 and R = X1.
The energies come from the roots ±u1 = ±(a1 b1)−1 of the polynomial P1(u2) = 1− (a1 b1u)2.
The possibilities (1) for the energies are thus E = ±a1 b1. For (±±) fixed boundary conditions,
E = a1 b1 for either state at site 1, as required from the discrete symmetry R. For (±∓) fixed
boundary conditions, E = −a1 b1. Each state is doubly degenerate.

For L= 2, rmax = 1, so the roots of the polynomial P2(u2) and the energies are

E = ±u−1
1 = ±
Ç

�

a1 b1)2 + (a2 b2)2 + (a1a2)2 + (b1 b2)2 . (107)

The Hamiltonian for fixed boundary conditions is

H
�

�

L=2 = a1 b1Z0Z2 + a2 b2Z1Z3 + a1a2X1X2Z3 + b1 b2Z0Y1Y2 . (108)

By using the symmetry (−1)F , this Hamiltonian splits into two blocks
�

a1 b1Z0 + a2 b2Z3 a1a2Z3 − b1 b2Z0
a1a2Z3 − b1 b2Z0 −a1 b1Z0 − a2 b2Z3

�

, and

�

−a1 b1Z0 + a2 b2Z3 a1a2Z3 + b1 b2Z0
a1a2Z3 + b1 b2Z0 a1 b1Z0 − a2 b2Z3

�

,

that indeed both have eigenvalues (107) for any of the four fixed boundary conditions. The
spectrum is thus doubly degenerate.

The L= 3 case is also illuminating. Here rmax = 2 so

P3(u
2) = 1− u2
�

(a1 b1)
2 + (a2 b2)

2 + (a3 b3)
2 + (a1a2)

2 + (a2a3)
2 + (b1 b2)

2 + (b2 b3)
2
�

+ u4(a1 b1a3 b3)
2 ,

has two pairs of roots ±u1 and ±u2, yielding four distinct energies. The energies still can be
worked out by hand: because the symmetry here is Z2×Z2 (R= Z0Y1X3Z4), the Hamiltonian
can be decomposed into four 2×2 blocks. One finds that all four blocks have the same eigen-
values, so each energy is four-fold degenerate. Therefore only two distinct energies occur for
a given fixed boundary condition, despite there being four possible energies. Explicit calcula-
tion shows that for (++) or (−−) boundary conditions, the two energies are E = ±(ε1 + ε2),
while for (+−) or (−+), they are of the form E = ±(ε1 − ε2), where ε1 and ε2 indeed are
the inverses of the roots of P3(u2). Acting on the state with E = ε1 + ε2 with both lowering
operators Ψ−1Ψ−2 does preserve the (++) or (−−) boundary condition and gives the state with
energy E = −ε1 − ε2. The spectrum is invariant under E→−E as it must be for L= 3.

Our formalism of course works for any L. Since rmax = ⌊(L+1)/2⌋, the number of distinct
energies grows much slower than the number of eigenvalues of H. Since the Hamiltonian is
written as (102), it immediately follows that each energy is exponentially degenerate, with
the identical degeneracy for all. The analysis of this subsection gives this degeneracy exactly.

Table 1: Properties of spectrum for different L for fixed boundary conditions.

L = 4n L = 4n+ 1 L = 4n+ 2 L = 4n+ 3

invariant under E→−E? yes no yes yes

discrete symmetry Z2 Z2 ×Z2 Z2 Z2 ×Z2

# energy levels rmax 2n 2n+ 1 2n+ 1 2n+ 2

Action of Ψ±k on b.c. invariant (++)↔ (+−) invariant (++)↔ (+−)
# distinct energies 22n 22n 22n+1 22n+1

degeneracy of each state 22n 22n+1 22n+1 22n+2
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We collect these numbers along with a summary of all the properties of the spectrum in Ta-
ble 1. This table applies to the case where all a j and b j are non-vanishing. In the ffd case
b j = 0 (or equivalently instead all a j = 0), rmax becomes the smaller value ⌊(L−1)/3⌋ and the
degeneracies here are larger.

6 Conclusion

We have computed the exact free-fermion spectrum of family of spin chains that does not have a
Jordan-Wigner transformation to fermion bilinears. This family unifies two previously known
but seemingly distinct examples [9, 10] of such behaviour into a common framework. Our
results allow for certain spatially varying couplings, and demonstrate that integrability if not
the free-fermion spectrum still holds with periodic boundary conditions. The same techniques
can also be applied directly to the Cooper-pair chain of [5], yielding the same spectrum up to
degeneracies. Precisely, one unitarily transforms (see eqn. (18) in [21]) the Cooper-pair chain
to an equivalent model of coupled bosonic and fermionic chains [22]. The generators of the
resulting Hamiltonian obey the same algebra as the DFNR model. We thus can deform the
Cooper-pair model as described above, and so find another family of models with free-fermion
spectra.

Our analysis required extending the approach of [10,11] further, as the interactions here do
not obey the conditions needed to utilise the graphical results of [11, 12]. The relation (21)
between Hamiltonian generators proved crucial in this extension. Our results thus suggest
that this graphical approach can be extended further. Another potential generalisation is in
the direction of “free parafermions”, which can be solved [23] and generalised [13, 24] in
a very analogous fashion. As these models involve n-state systems (i.e. qudits) and have a
Zn symmetry, the graphs needed here presumably would need to be directional. Also worth
pointing out is that since our methods allow for spatially varying couplings, one has some
headway in analysing these models with random couplings [25].

The connection with supersymmetry is rather mysterious. Here it led to a non-abelian
symmetry algebra that (at least in part) explains the large degeneracies. Is supersymmetry
required for models for our methods to be applicable, or are other consistent non-abelian
symmetry algebras possible? Another mystery is how the degeneracies split when periodic
boundary conditions are imposed, e.g. if there is a second dynamical critical exponent describ-
ing these modes.

A more general mystery is how our approach relates to the traditional approach to integra-
bility using Lax operators. We originally found our Hamiltonian in its translationally invariant
form by exploring the integrability of medium-range spin chains as discussed in section 2.1,
constructing a Lax operator that leads to commuting transfer matrices for translationally in-
variant couplings. However, it is not apparent how to analyse the spatially varying couplings
in H or Hp in a traditional setup. Moreover, the transfer matrices coming from the Lax oper-
ators are not the same as our transfer matrix T (u), even for uniform couplings. Indeed, the
local conserved charge H2 from (6) derived from Hb,p does not appear to follow from T (u): as
explained in (34) and near (38), the charge Q(2) stemming from bilinears in the Hamiltonian
generators is trivially related to H2. We plan to return to these issues and the other connections
with integrability in the future [20].
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