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Abstract

In this work we analytically explain the origin of the mobility edge in the partially dis-
ordered random regular graphs of degree d, i.e., with a fraction β of the sites being dis-
ordered, while the rest remain clean. It is shown that the mobility edge in the spectrum
survives in a certain range of parameters (d,β) at infinitely large uniformly distributed
disorder. The critical curve separating extended and localized states is derived analyti-
cally and confirmed numerically. The duality in the localization properties between the
sparse and extremely dense RRG has been found and understood.
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1 Introduction

The Anderson model on the Cayley tree allows the analytic derivation of the critical disorder
for the localization-delocalization phase transition [1]. More recently, the phase transition
in the Anderson model with the diagonal disorder on the hierarchical graphs has found its
reincarnation as a toy model for the transition to the many-body localized (MBL) phase in
some interacting many-body systems [2]. The simplest ensemble which can be considered as
the zeroth approximation to the Hilbert space of the many-body system is the random regular
graph (RRG) ensemble [3–32] (see [33] for review).

It was found in [34] that the phase diagram of the Anderson model on RRG, with a finite
fraction β < 1 of disordered nodes, is different from the standard case of β = 1. In some
regions of the (d,β)-parameter plane, there are delocalized states in the central part of the
spectrum that are separated from the localized states by mobility edges at arbitrarily large
disorder with the box distribution of the β fraction of nodes. This phenomenon takes place
if we have some fraction of the clean nodes. Effectively, from the Hilbert-space perspective,
there are interacting clean and dirty subsystems in the model.

The physical motivation behind this model is given by the attempt to take into account
the topologically protected zero modes in the spectrum of an interacting many-body sys-
tem [35–38] in the Hilbert-space-graph framework. There are overlaps between these modes
and the unprotected modes. Hence, there are links between the clean and dirty nodes in the
partially disordered RRG, but this overlap does not destroy their topological nature, hence the
corresponding nodes in the RRG are clean. On the other hand, even the coexistence of strongly
disordered (MBL) and clean (thermalized) sites in a many-body setting has attracted quite a
bit of attention in the literature. [39–43].

In this study, we extend the analysis of [34] and investigate the phase structure of the
partially disordered RRG in (d,β)-parameter space. The region in the (d,β) plane where the
mobility edge survives at arbitrarily large disorder amplitude will be identified numerically and
derived analytically for sparse and extremely dense regimes. The graph-size N -dependence of
the fractal dimensions Dq and the singular spectrum f (α) for eigenfunctions in the delocalized
part of the spectrum is analyzed numerically. We shall explain the microscopic origin of the
delocalized eigenstates and identify which aspects of the partially disordered (“two-color”)
graph architecture, involving the clean and dirty nodes, are crucial for the delocalization.

We shall show that the delocalized states survive when the graph, composed of only clean
nodes, has a giant connected component. We also generalize the above approach from the
sparse d ≪ N to the extremely dense case of the degree dc = N − d−1. For this, we exploit
the duality property between the mobility edges for the partially disordered RRG with the
degree d and its complementary counterpart with the degree (N − d−1). In addition, in the
Appendix, we shall investigate the robustness of the above predictions with respect to various
perturbations of the RRG. First, we consider the effect of the enhanced number of short cycles,
usually almost absent on RRG, on the localization pattern suggested in [22, 44], and second,
we investigate the non-Hermitian perturbation of RRG by adding the non-reciprocal directed
hopping to the partially disordered RRG as suggested in [45].
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Unlike several recent works [46–50], here for the emergence of the mobility edge, ro-
bust at the large potential, we need neither the special flat-band structure of the disorder-free
model [46–48, 51] nor correlated disorder [49, 50, 52–56]. Our model is based on the i.i.d.
disorder potential on the RRG.

The rest of the article is organized as follows. In Section 2 we define the model and present
the numerical evidence for the mobility edge at arbitrarily large disorder. In Section 3 we ana-
lytically derive the critical curve in (d,β)-parameter space for the mobility edge. In Section 4
we generalize our analytical consideration to the extremely dense graphs by analytically uti-
lizing the duality between the localization patterns for node degrees d and (N − d−1) and
confirming the results numerically. Section 5 concludes the results. In Appendices we con-
sider the multifractal spectrum and prove the robustness of the phenomena observed with
respect to the small perturbations of RRG by non-Hermitian deformation and the enhanced
number of the short cycles, usually almost absent on RRG.

2 Robustness of delocalization in partially disordered RRG

In this Section we consider the numerical simulation of the RRG, with the fraction β of sites
subject to the disorder of i.i.d. random variables εi of the amplitude W/2 taken from the
uniform distribution, |εi| < W/2. First, in Sec. 2.1 we introduce the model, and second, in
Sec. 2.2 we present the numerical simulations for the spectral and localization properties of
the model across the spectrum.

2.1 The model

In the conventional framework, one studies the Anderson transition for non-interacting spin-
less fermions hopping over RRG with the connectivity d = 3 in a diagonal disorder described
by Hamiltonian

H =
∑

i, j

Ai j

�

c+i c j + cic
+
j

�

+
βN
∑

i=1

εic
+
i ci . (1)

The first sum, representing the hopping between nearest-neighbor RRG nodes i and j, is writ-
ten in terms of the adjacency matrix (Ai j = 1 for nearest neighbors and Ai j = 0 otherwise) for
the regular graph,

∑

i Ai j =
∑

j Ai j = d. The second sum, running over all N nodes, represents
the potential disorder. The standard fully disordered RRG ensemble, corresponding to β = 1,
undergoes the Anderson localization transition at Wc = 18.16 for d = 3 [8, 11, 15, 33]. For
larger d the critical disorder is usually estimated as

Wc(d)≃ d ln d . (2)

2.2 Robustness of delocalization and fractal dimension D2

Let us investigate numerically the properties of the states in the delocalized spectral part,
found in [34] in the large W limit. As the probes, we choose the density of delocalized states,
ρ(E) =

∑

n∈delocalizedδ(E − En)
�

, the spectral level-spacing statistics, P(s), with sn = En+1−En,
and the dependence of the fractal dimension D2(N)≡ − ln

�∑

i |ψE(i)|4
�

/ ln N of an eigenstate
ψE(i) on the point in the (d,β) parameter plane.

First, let us demonstrate that the delocalized states survive at a very large disorder and
are clearly seen numerically. Figure 1 clearly demonstrates that at large W , the width of the
delocalized energy range is W -independent. An additional level, started at E = d at W = 0,
corresponds to the standard eigenstate of the adjacency matrix, which is homogeneous over
the entire graph. Its separation from the bulk bandwidth at W ≲ 2d protects it from most of
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Figure 1: Mobility edge structure versus disorder W . The color plot shows the
fractal dimension D2 versus the disorder W and eigenvalues E in the partially disor-
dered RRG of size N = 1024, with connectivity d = 20, and the fraction of disordered
nodes β = 0.5. The data is averaged over 100 realizations. Figure shows that delo-
calized states survive at any achievable disorder amplitude W .

the localization mechanisms. At larger disorder amplitudes, it merges with the bulk spectrum
and then localizes.

Note that here and further, we focus mostly on the localization, D2 = 0, versus the delo-
calization, D2 > 0, but not on the ergodicity, D2 = 1, versus the non-ergodicity, 0 < D2 < 1.
Already in a fully disordered RRG at β = 1, the question of the existence of a non-ergodic
phase in RRG has been a discussion point for years [4–20,27–32], and even now the maximal
system sizes of a few millions, N ∼ 106, do not resolve this issue [14, 31, 32]. Therefore, in
this work we calculate the fractal dimensions D2 (and their generalization Dq together with the
singularity spectrum f (α) with the definitions given below) in the Appendix A only of finite
sizes up to N ∼ 30000 and do not claim any ergodicity or non-ergodicity. In addition, we have
checked that the above picture of the mobility edge, see Fig. 1, converges with the system size
much below the maximal considered size of N ∼ 30000.

Figure 2 demonstrates finite-size data, D2(N), up to N ∼ 30000 and its infinite-size ex-
trapolation, D2(N) = D2+ c2/ ln N , with a certain fitting parameter c2 (see [8,57,58] for more
details on extrapolation), for partially disordered RRG with connectivity d = 3 and the fraction
of disordered nodes β = 0.5 at intermediate disorder amplitudes W = 30. The mobility edges
calculated from (18) stay at the same energy regardless of the system size, while the fractal
dimension flows upwards between the mobility edges and goes to zero beyond it.

The delocalization can also be checked via the level spacing distribution P(s), see
Fig. 3. Level spacing determines the statistics of spacing between two adjacent energy lev-
els si = Eu

i+1− Eu
i , where Eu

i are energy levels after the unfolding procedure (see, e.g., [26] for
details). There, the eigenenergy statistics show the standard repulsion inside the delocalized
region and the Poisson statistics beyond the mobility edge [59]. Some deviations from the
Poisson statistics for the localized nodes, |E| > EM E , should be related to the small DOS for
these states and its fluctuations for large W = 1000, see the further discussion of Fig. 4 below.

The density of states, ρ(E), see Figs. 2(b) and 4, shows a clear separation into two
parts: the states, localized at disordered nodes, form a flat box-like distribution of the width
W ≫ d (barely seen in Fig. 4), while the extended ones are confined at small energies,
|E| ≲ 2
p

(1− β)(d − 1). At small β , the density of delocalized states, ρ(E), is close to the
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Figure 2: (a) Fractal dimension D2 and (b) density of states across the spectrum
on partially disordered RRG at several sizes N , with connectivity d = 3, disorder
amplitude W = 30 and fraction of disordered nodes β = 0.5. Colored symbols show
finite-size data, while the solid purple line shows an extrapolated curve [8, 57, 58].
Black dashed lines in (a) show the mobility edges, calculated from (18). The black
solid line in (b) shows a generalized Kesten-McKay distribution of delocalized states,
calculated from (17). The flat contribution of the localized states is clearly seen
in (b).

Kesten-McKay distribution [60,61]

ρ(E) = ρKM (E) =
d
p

[4(d − 1)− E2]
2π(d2 − E2)

, (3)

while at large β it becomes close to the Wigner-Dyson distribution (Fig. 4). We confirm this
behavior later in Eq. (17) by the analytical consideration. It is expected since at a small β , the
clean nodes form almost RRG, while at larger β , the clean-node graph gets randomized by the
dirty nodes.

As the localized states live mostly on the dirty nodes, they are subject to the box-distributed
disorder of the amplitude W = 1000. The number of such localized states is β ·N ≃ 300−500
in Fig. 4. As a result, in normalized DOS,

∫

ρ(E) dE = 1, shown in Fig. 4, the contribution
of such localized states is rather small, ρ(|E| < W/2) ≃ β/W ≃ 0.0001− 0.0007 on average
in panels (a)-(d). At small β , panel (a), in one realization of the graph only a few localized
states, ∼ β∆EN/W ≃ 0.6, appear in the shown interval |E| < ∆E = 6 and this gives barely
seen fluctuations (do not associate a peak at E ≃ d with them). With increasing β from
panel (a) to (d) the number of localized states grows, and so does the background, becoming
more and more homogeneous and close to the box distribution of the diagonal disorder. At
intermediate W ≃ 30, shown in Fig. 2(b), this box contribution to the DOS overcomes the
threshold of the noise.

In the central part of the spectrum, the deviations from the predicted behavior, Eq. (17),
are expected in Fig. 4 as the parameter (1−β)d goes down, making our cavity-method approx-
imation Eqs. (11) and (12) less and less accurate. Other deviations, see, e.g., Fig. 2(b) come
from the corrections in the small parameter d/W , neglected in the analytical consideration for
simplicity.

In Fig. 2(b), the black line shows only the partial DOS of the delocalized states at W →∞.
Therefore, even without finite-W corrections, one expects to see the overall shift of the DOS
due to the localized state contribution (which is of the order of 0.15 in that figure). This ex-
plains the overall upward shift of the data with respect to the analytical black curve. The peaks
around |E| ≲ 2
p

(d − 1)(1− β) in the analytical formula (17) are related to the smallness of
d = 3 and therefore to the closeness in Eq. (17) of the spectral edges ±2

p

(d − 1)(1− β) of
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Figure 3: Level spacing distribution between (black dots) and beyond (purple
dots) the mobility edges in the partially disordered RRG of the size N = 8192,
with the connectivity d = 10 and the fraction of disordered nodes β = 0.5 at the
disorder W = 1000. The data is averaged over 1024 realizations. The data within
(beyond) the mobility edge is well described by red dashed (blue dotted) line, cor-
responding to the Wigner-Dyson (Poisson) distribution.
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Figure 4: Density of states of partially disordered RRG for different node degrees
d and fractions of disordered nodes β . Green-colored histograms show numeri-
cally calculated spectral densities for the size N = 8192 and disorder amplitude
W = 1000. The data is averaged over 100 realizations. Black lines show generalized
Kesten-McKay distributions of delocalized states calculated from (17) for each panel.
(a) β = 0.1, d = 6, (b) β = 0.1, d = 10, (c) β = 0.5, d = 10, (d) β = 0.7, d = 20.
The contribution of the localized states is barely seen at such large disorder.

the delocalized states and the divergences in DOS ±d
p

(1− β) to each other. The rounding
of these peaks in the data might be finite-size-N and finite-disorder-W effects.

The width of the delocalized energy range has nontrivial (d,β) dependence, see Fig. 5(a).
There, the above-mentioned fluctuations in DOS from the localized nodes, box-distributed
with the width W = 1000, have been eliminated by putting a threshold to the DOS data, see
the caption of Fig. 5.

There is the critical curve βc(d) in the parameter space that separates the regime with and
without the mobility edge, see Fig. 5(c). This is related to the percolation via the clean nodes
on the partially disordered RRG, see the analytical consideration in the next section.

We have also investigated the N -dependence of the fractal dimension

Dq ≡
ln
�∑

i |ψE(i)|2q
�

(1− q) ln N
, (4)
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Figure 5: Mobility edge structure versus the fraction of disordered nodes β and
the connectivity d. Color plots in panels (a) and (b) show the fractal dimension D2
versus β and eigenvalues E in the partially disordered RRG of size N = 1024 at the
disorder amplitude W = 1000 for (a) the dilute graph with the connectivity d = 10
and (b) the extremely dense graph with the connectivity dc = N − d−1 ≃ N , which
is complement to the one in (a). Black solid (dashed) line in (a) [(b)] denotes the
mobility edge, |EM E |2 = 4(1− β)(d − 1), Eq. (18), (|EM E+1|2 = 4(1− β)(d − 1)) for
the sparse (dense) graph. The localized states are spread over a huge energy interval
|E| < W/2 = 500 and thus, give only a noise-like contribution to DOS. In order to
make the data smooth and accessible, we have put a threshold on the DOS and got
rid of this noisy part. The grey color in panels (a) and (b) corresponds to the DOS
below the threshold. (c) Color plot of the average fractal dimensions D2 over the
states in the central band |E| < EM E in the partially disordered RRG versus β and d
at W = 1000. Green solid lines in all panels show the critical curve βc , given by (19).
All the data is averaged over 25 realizations.

and spectrum of fractal dimensions

f (α)≡ 1+
ln P
�

α= − ln |ψE(i)|2
ln N

�

ln N
. (5)

The corresponding plots for β = 0.5 and β = 0.75 are presented in Fig. 7 – 10 in Appendix A.
The peak in the central part of the DOS and the corresponding deviations in the fractal di-
mensions in Fig. 2(a) and Fig. 4(c, d) (it is not always a dip in Dq) is considered in detail
numerically in the multifractal analysis in Appendix A, where this DOS peak is called as the
central part of the spectrum. From the previous literature (see, e.g., [44]), we know that the
dips in Dq at certain energies can be related to the isolated small clusters of clean nodes or to
so-called topologically equivalent nodes.

3 Derivation of critical curve at (d,β) plane

In this section, we explain why the density of the delocalized states at not very large β is
well-approximated by the Kesten-McKay distribution with the rescaled RRG d∗ and tree d∗t
degrees. This rescaling reproduces correctly the numerical result for the spectral width of the
delocalized range and the critical curve at the (d,β) plane at relatively small d ≪ N/2. Note
that the one-loop correction for the Kesten-McKay law has been found in [62] and a more
general cavity analytic approach for dense graphs has been developed in [63].

This result can be straightforwardly understood as follows. For large enough disorder
W ≫ 1, d, all the dirty nodes of the RRG become localized, and the only possibility for extended
states to survive is to live exclusively on the clean nodes. This reduces the problem to the RRG
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with the β fraction of edges being removed from that. This graph should be equivalent to the
Erdös-Rényi one or other hierarchical graphs with fluctuating connectivity [64] with a certain
distribution of the number of edges.

In order to make the above argument clear, as on the usual RRG, let us consider cavity
equations for the single-site Green’s functions on clean G∗n and dirty G′n nodes and their tree
counterparts G∗n→a and G′n→a with the removed link from n to its ancestor a.















































1
G∗n
= E + iη−

kn
∑

m=1
G∗i∗m→n −

d−kn
∑

m=1
G′i′m→n ,

1
G′n
= E + iη− ϵi −

kn
∑

m=1
G∗i∗m→n −

d−kn
∑

m=1
G′i′m→n ,

1
G∗n→a

= E + iη−
ln
∑

m=1
G∗i∗m→n −

d−1−ln
∑

m=1
G′i′m→n ,

1
G′n→a

= E + iη− ϵi −
ln
∑

m=1
G∗i∗m→n −

d−1−kn
∑

m=1
G′i′m→n ,

(6)

where i∗m and i′m are the indices, enumerating the pure and disordered sites on the tree, the
ancestor of which is n, kn and ln are numbers of clean descendants of n on the RRG (Gn) and on
the tree (Gn→a), respectively. It is important to note that the total number of the descendants
of n for the tree is given by a branching number dt = d − 1, while for the RRG, where each
point is locally a root of the tree, it is given by the vertex degree d.

The number of clean nearest descendants of any node n obeys the binomial distribution

pd̃(k) =
�

d̃
k

�

(1− β)kβ d̃−k , (7)

with d̃ = dt , k = ln for the tree (pdt
(ln)) and d̃ = d, k = kn for the RRG (pd(kn)). In both

cases, for large enough (1 − β)d̃ ≫ 1 this distribution is well approximated by the normal
distribution with the mean and the variance given by

〈k〉d̃ =
∑

k

pd̃(k)k = (1− β)d̃ , (8)

σ2
d̃
=
∑

k

pd̃(k)(k− 〈k〉d̃)
2 = β(1− β)d̃ . (9)

Let us consider the simplest approximation at large W by keeping in the equation for the
dirty nodes only the disorder term which yields

G′n∝W−1 , (10)

and substitute this solution into the equation for the clean nodes. In the limit W →∞, the
effects of dirty nodes are subleading, and the problem reduces to the one on the disorder-free
nodes on a graph with node degree distribution (7). Hence we get the equation for clean
nodes

1
G∗n
= E + iη−

kn
∑

m=1

G∗i∗m→n , (11)

1
G∗n→a

= E + iη−
ln
∑

m=1

G∗i∗m→n . (12)
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These equations evidently yield the RRG KM spectral density, but now both with fluctuating
and rescaled d∗ = kn and d∗t = ln. For large enough 〈k〉dt

≫ 1 the corresponding rescaled
parameters in the most realizations are given by their mean values

d∗ = 〈k〉d = (1− β)d , d∗t = 〈l〉dt
= (1− β)dt , (13)

and their relative fluctuations are small as σd/d
∗ ∼
p

β/d∗ ≪ β1/2 ≤ 1 for large d∗ in our
consideration. In addition to that, following the results of [65–67], one concludes that the
effects of fluctuations in graph degree are important for the eigenstate localization properties
as soon as the variance (but not the standard deviation) is large compared to the mean value.
This is not the case in our limit as well σ2

d/d
∗ = β ≲ 1. The critical value βc , when the clean

nodes do not form a connected tree-like graph, can be derived from the equation d∗t (βc) = 1.
Note that, unlike the regular case, both rescaled parameters d∗ and d∗t are not anymore

related to each other via d∗ = d∗t + 1 (similarly to [64]).
The generalized KM distribution can be obtained from Eqs. (11) and (12). In the limit

(1−β)d̃≫1, when due to the large effective connectivity of clean nodes, it is natural to assume
that G∗n→a is self-averaging, one can rewrite the latter of two equations as a self-consistent
equation on the mean




G∗n→a

�

= G∗→ as follows

1
G∗→
= E + iη− d∗t G∗→ , (14)

which immediately gives the solution

G∗→ =
E + i
p

4d∗t − E2

2d∗t
, d∗t = (1− β)(d − 1) . (15)

with the semi-circular density of states ρ→ = Im G∗→/π.
The generalized KM distribution is given by the equation (11) for




G∗n
�

= G∗ with
kn ≃ d∗ = (1− β)d

G∗ =
1

E + iη− d∗G∗→
=
(d − 2)E + id
p

4d∗t − E2

2 [d2(1− β)− E2]
. (16)

This gives for the density of states ρ

ρ(E) =
Im G∗

π
=

d
p

4(d − 1)(1− β)− E2

2π [d2(1− β)− E2]
, (17)

and the corresponding mobility edges EM E at

EM E = ±
Æ

4(d − 1)(1− β) . (18)

Critical value βc can be determined by the existence of a giant component in the graph
of clean nodes. For arbitrary node degree distribution, the graph almost surely has a giant
component if



k2
�

− 2 〈k〉> 0 [68]. For distribution pd(k) (7) critical value βc is

βc(1− βc)d + (1− βc)
2d2 − 2(1− βc)d = 0 → βc = 1−

1
d − 1

. (19)

Note that one can derive the same result from the standard KM density of states: the critical
value βc is defined as the percolation threshold d∗t = 1 on the tree with the branching number
d∗t , Eq. (15), as the formation of the giant connected component is described by the equa-
tion (14) on the corresponding tree. If β ≤ βc , the graph of clean nodes has a giant connected
component, and the wave functions on this component are delocalized. If β > βc , the graph
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of clean nodes separates into disconnected components, the average size n of each of those is
small compared to the network size, n ≪ N . Localized eigenstates in Fig. 5(a) significantly
below threshold appear due to the isolated pure nodes at λ = 0 and connected pairs of pure
nodes at λ = ±1. Probably, it is these isolated clean nodes that lead to the deviations of DOS
from Eq. (17) in Figs. 2(b) and 4(c), (d).

Note that the above problem might be similar to the one of the Erdös-Rényi graph, where
some states can be localized even without disorder due to the fluctuating extensive node degree
d ∼ (ln N)a, 1 < a < 2 [65–67]. Different approximation schemes were proposed for the
analytically calculated density of states [69,70].

The robustness of the delocalized states with respect to various perturbations, suggested
in the literature [44, 45], is considered in Appendix B. There we focus on the non-Hermitian
versions of RRG with the (partially) directed edges (see Appendix B.1), as well as the presence
of the short cycles of length 3, which are usually almost absent in the RRG. The increase of the
short-cycle number is achieved by a certain deformation of the distribution over all possible
RRG by adding an exponential weight of the number of such cycles [22,44], see Appendix B.2.

Both generalizations show that small perturbations do not break the presence of the ex-
tended states below the mobility edge and confirm the robustness of the above conclusions.

4 Duality in localization properties between sparse and dense
RRG

The analytical derivations of the density of states for the delocalized states, Eq. (17), and
the corresponding mobility-edge location, Eq. (18), should be valid for large enough disorder
amplitudes W ≫ 1, d and effective degrees of the graph of clean nodes, d∗t , d∗≫ 1, Eq. (13),
but for the corresponding values of the total vertex degree d of the graph, not limited from
above.

However, the numerical simulations in Fig. 5(b) show that this is not the case for the dense
RRG at large d, when |N − d| ≪ N . In this case, the energy interval, where the states are de-
localized and the mobility edge curve in the (d,β)-plane exists, is not determined by the large
degree d, but instead by the node degree of the complementary graph, dc = N − d − 1≪ N .
Indeed, the comparison of Fig. 5(a) and (b) shows that the width of this interval ∆E is

∆E = (1− β)min [d, (N − d − 1)]− 1 , (20)

that corresponds to the results of the complementary graph with dc = N − d − 1≪ N .
For the adjacency matrix, consisting of 0 and 1, and for the symmetric disorder distribution,

the above mapping to the complementary graph can be straightforwardly understood via the
rank-1 perturbation of the initial problem, see [71].

Indeed, using the eigenvalues E0
n and eigenvectors

�

�E0
n

�

of a certain realization of the prob-
lem on the standard (complementary) graph with the connectivity dc ≪ N and the diagonal
disorder ϵi , well-described by Eqs. (17) and (18), one can straightforwardly write the Hamil-
tonian of the dense model (with d = N − dc ≃ N) as a complementary graph as follows

H = −
∑

n

E0
n

�

�E0
n

� 


E0
n

�

�+ |1〉 〈1| − I . (21)

Here 〈i|1〉 = 1 for all sites i and I is the identity matrix, as the vector |1〉 of ones is not
normalized. Note that for any disorder realization on the initial (complementary) graph εi,c ,
the effective disorder realization in the dense one changes its sign εi = −εi,c .

The peculiar property of the model with a large connectivity d ≃ N is that the part |1〉 〈1|,
non-diagonal in the eigenstate basis of the initial sparse problem {

�

�E0
n

�

}, is a rank-1 matrix,
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and therefore this dense model can be diagonalized using the simplest Bethe ansatz solution
of the Richardson’s model [72–76].

∑

n

|



E0
n |1
�

|2

E + E0
n + 1

= 1 , (22)

|E〉= CE

∑

n




E0
n |1
�

E + E0
n + 1

�

�E0
n

�

, (23)

C−2
E =
∑

n

|



E0
n |1
�

|2

(E + E0
n + 1)2

. (24)

From the literature [58, 75, 77–79] it is known that, as soon as
�

�




E0
n |1
��

�

2
is more or less

homogeneous versus n and W ≪ N , all but one new eigenvalue, being the solutions of Eq. (22),
E = En (shifted by 1 in our case due to the presence of I in the equation) are located in between
the old ones −E0

N−n+1 < En + 1 < −E0
N−n and the eigenstates are power-law localized in the

eigenbasis of the initial problem with the power-law exponent 2, |



E0
N−n|Em

�

|2 ∼ 1/|m− n|2.
This property is related to the fact that for W ≪ d ∼ N all but one of the eigenstates are nearly
orthogonal to |1〉.

The only high-energy level (not shown in Fig. 5(b)), which is not orthogonal to |1〉, takes
the large energy of the order of EN ∼ N . As soon as the diagonal disorder W ≪ N , this vector
is delocalized as |EN 〉 ≃ |1〉/

p
N .

This immediately means that

• The width and the profile of the band are the same in the initial and complementary
problems and controlled by the effective node degree deff =min(d, N − d−1);

• The localization and fractal properties Dq are also the same, at least for q > 1/2, where
the power-law localization tails are not important;

• The only difference appears at W ≪ N , when there is the high-energy level at EN ≃ N ,
while the bulk bandwidth is shifted by −1 (due to the same trace of both initial and
complementary matrices).

All these properties have been numerically investigated in Fig. 5(b), please compare with the
panel (a) to see the shift of energy by 1.

5 Conclusion

In this study, we have clarified the mechanism behind the robustness of the delocalized en-
ergy range at arbitrarily large disorder, found in [34]. The system involves coupled clean and
dirty subsystems, and the delocalized region at the (d,β)-parameter plane corresponds to an
effective problem solely on the clean nodes, with the renormalized RRG and tree degrees, at
the large enough disorder. This result has been obtained analytically in the leading approxi-
mation in 1/W and at large but finite node degree, and confirmed numerically for sparse and
extremely dense regimes. In addition, in Appendices, the effects of various perturbations of
β-deformed RRG have been investigated as well.

The pattern of the appearance of the controllable mobility edge we have found provides
additional insights for the account of the topologically protected modes of the interacting
many-body systems in the Hilbert space framework. In this respect it would be of particular
interest to generalize the effect of β-deformation to the many-body Hilbert space structures,
like a hypercube graph in the quantum random energy model [80, 81]. It is also interesting
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Figure 6: The finite-size approximation of the fractal dimension,
Dq(N) = ln [IPR(N)/IPR(2N)]/ ln [2], versus energy for W = 30, d = 3,
and β = 0.5, used to separate the energy windows for the next four figures:
(left) below the mobility edge (localized states), |E| > EM E1; (middle) above the
mobility edge (delocalized states), EM E2 ≤ |E| ≤ EM E1; (right) in the central (not
fully ergodic) part, |E|< EM E2.

to consider a randomly distributed β parameter and the effects of the non-Hermitian diago-
nal disorder, which may lead to the localization enhancement [82–85], unlike the usual non-
reciprocity [86]. If the RRG ensemble is considered as the discrete model for the 2d quantum
gravity, the Anderson model corresponds to the massive field coupled to the fluctuating geom-
etry. The case of the Anderson model on partially disordered RRG corresponds to the situation
when there are zero modes of the field localized at some defects. It would be interesting to
develop this framework further.
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A Multifractal spectrum f (α) and fractal dimensions Dq

In this Appendix, we show the multifractal analysis for the spectrum of fractal dimensions,
Figs. 7 and 8, and for the fractal dimensions, Figs. 9 and 10, on the RRG with d = 3 for two
different values of β in the three distinct part of the spectrum, shown in Fig. 6.

For β = 0.5, smaller than a threshold value, Eq. (19), see Figs. 7, 9, the states in the bulk
part of the spectrum, |E| < EM E2 are delocalized at any available disorder amplitude ( f (0)
stays significantly negative and Dq > 0). Unlike this, above the threshold value, β = 0.75> βc ,
see Figs. 8, 10, all the states tend to the localization eventually at large enough disorder. This
confirms the main claims of the main text.

In addition, one can see some deviations from ergodicity in the delocalized parts (two
rightmost rows in Figs. 7, 9), that may though be finite-size effects. Therefore, in the main
text we don’t claim any fractality or multifractality of these states, focusing on the localization
(leftmost rows) versus the delocalization (the rest).
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Figure 7: The spectrum of fractal dimensions f (α) for different disorder am-
plitudes W , d = 3, and β = 0.5 in different parts of spectrum (see Fig. 6):
(left) below the mobility edge (localized states), |E|> EM E1; (middle) above the mo-
bility edge (delocalized states), EM E2 ≤ |E| ≤ EM E1; (right) in the central (not fully
ergodic) part, |E| < EM E2. Colored symbols show finite-size data, while the solid
purple line shows an extrapolated curve [8,57,58]. Panels show gradual localization
of the states below the mobility edge (left) with increasing disorder W ( f (0) goes
to 0), while both states above it and at the central part stay delocalized ( f (0) stays
significantly negative).
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Figure 8: The spectrum of fractal dimensions f (α) for different disorder am-
plitudes W , d = 3, and β = 0.75 in different parts of spectrum (see Fig. 6):
(left) below the mobility edge (localized states), |E|> EM E1; (middle) above the mo-
bility edge (delocalized states), EM E2 ≤ |E| ≤ EM E1; (right) in the central (not fully
ergodic) part, |E| < EM E2. Colored symbols show finite-size data, while the solid
purple line shows an extrapolated curve [8,57,58]. Panels show gradual localization
of all the states with increasing disorder W , both below the mobility edge, above it,
and at the central part as β > βc = 1− (d − 1)−1, Eq. (19).
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Figure 9: Fractal dimensions Dq , extrapolated from the finite sizes of Fig. 7, (up-
per row) versus disorder for different q and (lower row) versus q for different disor-
der amplitudes W in the partially disordered RRG in different parts of spectrum (see
Fig. 6): (left) below the mobility edge (localized states), |E|> EM E1; (middle) above
the mobility edge (delocalized states), EM E2 ≤ |E| ≤ EM E1; (right) in the central (not
fully ergodic) part, |E| < EM E2. The fraction of disordered nodes is β = 0.5. Panels
show gradual localization of the states below the mobility edge (left) with increasing
disorder W (Dq goes to 0), while both states above it and at the central part stay
delocalized (Dq > 0).
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Figure 10: Fractal dimensions Dq , extrapolated from the finite sizes of Fig. 8, (up-
per row) versus disorder for different q and (lower row) versus q for different disor-
der amplitudes W in the partially disordered RRG in different parts of spectrum (see
Fig. 6): (left) below the mobility edge (localized states), |E|> EM E1; (middle) above
the mobility edge (delocalized states), EM E2 ≤ |E| ≤ EM E1; (right) in the central (not
fully ergodic) part, |E|< EM E2. The fraction of disordered nodes is β = 0.75. Panels
show gradual localization of all the states with increasing disorder W , both below the
mobility edge, above it, and at the central part as β > βc = 1− (d − 1)−1, Eq. (19).
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Figure 11: Representative realizations of the complex-valued spectra in partially
disordered and partially directed RRG of the size N = 1024, with the connectivity
d = 8 for different disorder strengths W and the fraction β of disordered nodes.
Color coding corresponds to the fractal dimension D2 of a product of left and right
eigenvectors in a biorthogonal basis,

¬

ψL
i |ψ

R
j

¶

= δi j , for each point in the parameter
space. The top row corresponds to an undirected Hermitian graph, r = 1, while
the second and third ones – to the directed graphs, with the reciprocity parameter
r = 0.125 determined as the fraction of bidirected connections to all connections.
One can see that small non-Hermiticity does not break the existence of the mobility
edge in the spectral central part along the real part of the energy.

B Further generalizations of the model

In this Appendix we consider various perturbations of the partially disordered RRG model to
the directed non-reciprocal version of it [45], see Sec. B.1, and to the RRG, perturbed by the
presence of short cycles of a length of 3 [22,44], which are almost absent in the standard RRG
case, see Sec. B.2. In the next two subsections we investigate numerically the localization and
multifractal properties of these models.

B.1 Directed partially disordered RRG

In this section, we consider the localization in the Anderson model on a partially directed RRG
with the non-Hermitian spectrum in the partially disordered case, dubbed the β-deformation
of RRG. The two-parametric non-Hermitian model of RRG with standard disorder in full gen-
erality is presented in [45].

The model in [45] uses two parameters that correspond to reciprocity and hopping asym-
metry. In this work only dependence on reciprocity 0 ≤ r ≤ 1 is studied. A traditional way to
define network reciprocity involves the ratio of the number of bidirectional connections to the
number of bidirectional and unidirectional connections. We modify the RRG network as fol-
lows: with the probability r, we replace an undirected edge by two oppositely directed ones,
with weights of 1 each. Otherwise, with probability 1 − r, the undirected edge is changed
to one directed in a random direction, with a weight of 2. Therefore, the total bandwidth of
the link between connected nodes is constant and equal to 2. If r = 0 the graph becomes an
oriented directed RRG graph, while at r = 1 the graph is equivalent to the standard undirected
RRG. At certain ranges of parameters, this model has a tendency to become undiagonalizable
due to the existence of exceptional points, see [45] for more details. To overcome the problem,
small perturbation feedback ε= 2× 10−5 is added to unidirected edges.
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Figure 12: Complex-valued spectra of the partially disordered and partially non-
reciprocal RRG with the node degree d = 8 for different reciprocity parameters
r and disorder amplitudes W at the fraction of disordered nodes β = 0.5. Each
plot is colored by the fractal dimension value D2. For all panels, diagonal disorder
distribution has the same realization from the interval [−1/2;1/2], but multiplied
by W .

The representative realizations of complex-valued spectra for RRG with the connectivity
d = 8 for different r, W , and for β = 0.5 and β = 1.0 are shown in Fig. 11. All the points in
these plots are colored by the value of the fractal dimension D2 of a product of left and right
eigenvectors in a biorthogonal basis,

¬

ψL
i |ψ

R
j

¶

= δi j . For more details, please see Fig. 12, 13.
Let us summarize the effects of competition of β and r parameters at large W .

• Instead of the mobility edge of the undirected case, r = 1, for r < 1, β < 1, we have
the mobility curve in the complex plane. At β = 0.5 and large W , the spread of the
imaginary parts of the delocalized states is independent of W . The imaginary part of
the localized states at large W vanishes. The latter is natural as the diagonal disorder,
which is dominant, is real, see [86].

• With the parameter r, the width of the delocalized region along the real axis varies in
the same order as the initial model.
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Figure 13: Complex-valued spectra of the fully disordered (β = 1) and partially
non-reciprocal RRG with the node degree d = 8 for different reciprocity parameters
r and disorder amplitudes W . Each plot is colored by the fractal dimension value
D2. For all panels, diagonal disorder distribution has the same realization from the
interval [−1/2;1/2], but multiplied by W .

• At r < 1, β < 1, the non-reciprocity leads to the emergence of the island of the local-
ized states inside the delocalized region. Similarly to [45], this island is related to the
emergence of the topologically equivalent nodes (TEN) as well as the nodes with only
incoming edges (node inflows). This localized island disappears at large enough r.

B.2 Effect of enhanced number of the 3-cycles

For completeness, let us consider the effect of the deformation of the RRG by a chemical
potential µ3 of the 3-cycles on the localization of the partially disordered RRG. We focus on
the RRG ensemble, where the degrees of all nodes are fixed to d and the partition function is
considered Z(µk) =

∑

RRG exp(
∑

k µkMk), where Mk is the number of the length-k cycles in
the graph without the back-tracking and µk are the chemical potentials counting the number
of these k-cycles. Cycles of length k are paths on a graph with length k, where all edges are
different and the start and end vertex are the same.
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Figure 14: Color plot of the fractal dimension D2 across energy E and versus
(a) disorder W or (b) chemical potential µ3 of 3-cycles in the partially disor-
dered RRG of the size N = 1024, with β = 0.5. Panel (a) shows the clustered
phase with µ3 = 2, while panel (b) corresponds to strong disorder W = 1000. Each
point of a color plot is averaged over totally 100 structural and disorder realizations.
From both panels, one can see that the mobility edge picture survives fully in the
unclustered phase, µ3 < 1.3 and at least partially even in the clusterized one.

For the β = 1, some observations concerning the localization in µ3-deformed theory can
be found in [22] and a thorough analysis that uncovered quite a rich phase structure has been
performed in [44] for various system sizes N , node degrees d, and cycle lengths k, correspond-
ing to µk. The number of 3-cycles can be derived from the graph adjacency matrix M3∝ TrA3.
There are four different phases in (µ3, d) parameter space: unclustered, µ3 < µ3,T EN , TEN-
scarred, µ3,T EN < µ3 < µc , and two clustered ones, µ3 > µc ,µ3,T EN : ideal and interacting

ones. At leading terms in N , the above critical lines are given by µ3,T EN ∼
(d−2) ln N
(d−1) and

µc ∼
3(d−2) ln N

d(d−1) , see [44] for more details.
Here we shall numerically consider some effects of the β-deformation in the µ3-deformed

RRG. In Figure 14(a) we present the localization pattern for fractal dimension at β = 0.5 in
the (W, E)-plane, while in Fig. 14(b) we show its behavior in the (µ3, E)-plane.

Figure 14(b) shows the effect of µ3 on the partially disordered RRG. At small µ3 < µc in
the unclustered phase, both the dependence of D2 on the parameters and the position remain
the same as in Figure 1. At µ3 > µc (see Fig. 14(b) at µ3 > 1.3), the system undergoes the
clusterization transition [44]. The W -dependence of D2 changes, as shown in Fig. 14(a). The
localization in the β-deformed RRG model occurs in each cluster separately. This effectively
replaces N by d + 1 and suppresses Dq value in Fig. 14(b). In the clustered phase, the center
of the continuous spectrum part shifts to −1 because the graph consists of dense clusters of
triangles and narrows due to the change of DOS from KM distribution to triangular shape
distribution, like in the diagonal disorder-free case.
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