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Abstract

Bethe Ansatz equations for spin-s Heisenberg spin chain with s ≥ 1 are significantly
more difficult to analyze than the spin-

1
2 case, due to the presence of repeated roots. As

a result, it is challenging to derive extra conditions for the Bethe roots to be physical and
study the related completeness problem. In this paper, we propose the rational Q-system
for the XXXs spin chain. Solutions of the proposed Q-system give all and only physical
solutions of the Bethe Ansatz equations required by completeness. This is checked nu-
merically and proved rigorously. The rational Q-system is equivalent to the requirement
that the solution and the corresponding dual solution of the TQ-relation are both polyno-
mials, which we prove rigorously. Based on this analysis, we propose the extra conditions
for solutions of the XXXs Bethe Ansatz equations to be physical.
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1 Introduction

The study of Bethe Ansatz equations (BAE) has a history that is as long as Bethe Ansatz itself.
Essentially, Bethe Ansatz trades the problem of diagonalizing a big matrix (the Hamiltonian)
to that of solving a set of algebraic or transcendental equations (the BAE). It is therefore not
surprising that the BAE encodes rich information about the integrable model. Understanding
solutions of BAE is a fundamental task for integrability. Developing efficient methods for solv-
ing BAE in different regimes is a crucial step in almost any applications of integrable models.
At the same time, the algebraic beauty and rich structure have made the study of BAE a subject
of considerable mathematical interest.

Most of studies in the past have focused on the spin-1
2 Heisenberg XXX and XXZ spin chain

[1–9]. Thanks to these efforts, we now have a much deeper understanding about the solutions
of the BAEs. The progress is largely facilitated by considering alternative formulations of BAE,
such as Baxter’s TQ-relation [10] and the rational Q-system [11–16], which was based on
various developments in the analytic TQ and QQ-systems in the past few decades [17–22].
Before turning to the BAE of XXXs spin chain, let us recap the situation in the spin-1

2 case.
It is now well understood that directly solving BAE of the form

�

uk +
i
2

uk −
i
2

�L

=
M
∏

j ̸=k

uk − u j + i

uk − u j − i
, k = 1, . . . , M , (1)

in general gives too many solutions.1 There are two kinds of solutions that are non-physical,
i.e. the corresponding Bethe vectors are not eigenstates of the Hamiltonian. The first kind
are the solutions containing repeated roots; The second kind are the non-physical singular
solutions. The singular solutions are the ones containing an exact Bethe string of length 2
and take the following form {− i

2 , i
2 , u3, . . . , uM}. If the roots {u3, . . . , uM} satisfy the additional

condition
M
∏

j=3

�

uk +
i
2

uk −
i
2

�L

= (−1)L , (2)

the singular solution is physical, otherwise, it is non-physical and should be discarded. It has
been tested numerically that if these two kinds of solutions are excluded, one obtains the
correct number of physical solutions required by the completeness of Bethe Ansatz [23].

The relations of these results to the TQ-relation and rational Q-system are as follows.
Baxter’s TQ-relation reads

τ(u)Q(u) =
�

u+ i
2

�L
Q(u− i) +

�

u− i
2

�L
Q(u+ i) , (3)

where τ(u),Q(u) are polynomials. The zeros of Q(u) are the Bethe roots {uk}. Taking u = uk
in the TQ-relation, we recover BAE. However, this does not mean TQ-relation is completely
equivalent to BAE. When there are repeated roots in {uk}, the fact that τ(u) is a polynomial

1Here we only consider solutions where {uk} are finite. Roots at infinity correspond to SU(2) descendant states.
This is well understood and can be taken into account easily when counting the number of all physical solutions.
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Figure 1: Relations between BAE, TQ and rational Q-system. Polynomiality of τ(u)
and Q(u) imposes extra conditions for the repeated roots, which eliminates them in
the spin-1

2 case; Furthermore, polynomiality of the dual solution P(u) imposes extra
conditions for physical singular solutions. The polynomiality of τ(u),Q(u) and P(u)
in the TQ-relation is equivalent to the rational Q-system.

imposes extra constraints for the Bethe roots. If we work directly with BAE, these extra con-
straints can be derived from the framework of algebraic Bethe Ansatz (ABA), see [24, 25]. It
turns out that for spin-1

2 chain these extra conditions are not compatible with BAE.2 As a result,
we can discard the repeated roots. This implies that if we solve the TQ-relation instead of the
BAE, the repeated roots are automatically eliminated in the spin-1

2 case.
The TQ-relation, however, does not eliminate non-physical singular solutions. For this,

we need the rational Q-system. This method was first proposed as an efficient way to solve
BAE [11]. Surprisingly, it leads to only physical solutions and eliminates also the non-physical
singular solutions automatically. How the rational Q-system achieves this was somewhat mys-
terious at the beginning. Later it was demystified in [12]which also clarified several important
points.

The crucial insight is that the rational Q-system is intimately related to the dual solution
of the TQ-relation. Since TQ-relation (3) is a second-order difference equation. For a given
solution Q(u), there is a dual solution which we denote by P(u) [26]. An important point is
that even τ(u) and Q(u) are polynomials, P(u) is in general not a polynomial when the zeros
of Q(u) correspond to singular solutions. Requiring P(u) to be a polynomial imposes extra
conditions for Q(u), which turns out to be precisely (2). One can prove that the rational Q-
system is nothing but an ingenious reformulation for the requirement that τ(u), Q(u), and
P(u) are polynomials. At the same time, it has been proven rigorously that the solutions of the
TQ-relation with both Q(u) and P(u) being polynomials give the complete physical solutions
for the corresponding BAE [5]. This explains why the rational Q-system works. The relations
between BAE, TQ, and rational Q-system can be summarized in Figure 1.

Given the success of the spin-1
2 case, it is a natural next step to extend the insights and

techniques to the more general XXXs spin chain. However, such an attempt meets an immediate
difficulty: repeated roots are allowed in the XXXs chain. This simple fact complicates the analysis
considerably. To start with, a generic non-singular solutions can take the following form

{u1, . . . , u1
︸ ︷︷ ︸

n1

, u2, . . . , u2
︸ ︷︷ ︸

n2

, . . . , uM , . . . , uM
︸ ︷︷ ︸

nM

} ≡ {(u1)
n1 , (u2)

n2 , . . . , (uM )
nM } , (4)

where n1, . . . , nM are the multiplicities. Therefore in addition to the BAE, we need to impose
extra conditions in order to find physical solutions, similar to the spin-1

2 case. The explicit

2For the BAE of Lieb-Liniger model, this can be proven rigorously. For the XXX spin chain, we have good
numerical evidence, but to the best of our knowledge, this has not been proven rigorously.
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form of the extra conditions depends on the multiplicities {n1, . . . , nM}. If we were to derive
these extra conditions using ABA, we would have to analyze all possible cases in principle.
However, there is strong evidence that such requirements are again encoded automatically in
the spin-s TQ-relation [27].

The situation for the singular solutions is even more complicated. The spin-s singular
solutions contain a Bethe string of length 2s+ 1:

{is, i(s− 1), . . . ,−is} . (5)

A generic singular solution can take the following form

{(is)m0 , (i(s− 1))m1 , . . . , (−is)m2s , u1, u2, . . . , uMr
} , (6)

where {u1, . . . , uMr
} are the regular roots and might contain repeated roots. In principle, one

needs to perform an ABA analysis similar to the spin-1
2 and derive extra physicality conditions

for {u1, . . . , uMr
}. Since we do not have a complete understanding of the possible values of

{m0, . . . , m2s}, we have to analyze each case a priori, which is a complicated task. The sim-
plest case for s = 1 has been investigated in [27], which is already non-trivial. Based on the
experience of spin-1

2 , one can also try to derive these conditions from the rational Q-system, if
it exists.

The goal of the current work is to construct such a rational Q-system for the XXXs spin
chain with periodic and twisted boundary conditions, which generalizes naturally their spin-1

2
counterparts. As we shall see, some minor but crucial modifications are required in the higher
spin case. The proposed Q-system has undergone the following tests: (i) For given L, M , s, the
number of solutions match the ones required by completeness; (ii) The numerical Bethe roots
obtained from Q-system reproduce all the eigenvalues of the Hamiltonian obtained by a direct
digonalization; (iii) Physicality conditions for some simple singular solutions obtained in [27]
can be reproduced from the Q-system.

The rest of the paper is structured as follows. In section 2, we present the spin-s rational Q-
system and numerical tests. In section 3, we first prove that the rational Q-system is equivalent
to the polynomiality of TQ-relation. Based on this, we then prove the completeness of the
proposed rational Q-system. In section 4, we derive extra conditions for the physical singular
solutions. We conclude in section 5 and discuss future directions.

2 Rational Q-system

In this section, we present the rational Q-system for the XXXs spin chain. We first briefly review
some basic facts about spin-s BAE.

2.1 BAE and conjecture for completeness

The BAE for spin-s Heisenberg spin chain of length L with M magnons reads
�

u j + is

u j − is

�L

=
M
∏

k ̸= j

u j − uk + i

u j − uk − i
, j = 1, . . . , M . (7)

Here s can be any positive half integer. There are two types of solutions that need special
care. One is the solution with repeated roots and the other is the so-called singular solution. As
we emphasize in the introduction, for s ≥ 1, there are physical solutions that contain repeated
roots. They are called strange solutions. As for the singular solutions, some of them are physical
while others are not. The physical ones satisfy additional constraints, which in principle can
be derived using ABA [27].
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Singular solutions For singular solutions we have the following important result. Suppose
{uk} is a solution of BAE (7) and there exist two Bethe roots, say u1, u2 whose difference
is exactly i, namely u1 − u2 = i, then the solution {uk} must contain an exact Bethe string
{is, i(s − 1), . . . ,−is}. The proof of this statement comes from a straightforward but slightly
tedious analysis of the zeros and divergences of both sides of (7), which follows closely the
spin-1

2 case [12] and can be found in the appendix.
For the spin-s BAE, since repeated roots are allowed, a generic singular solution takes the

following form
{(is)m0 , (i(s− 1))m1 , . . . , (−is)m2s , u1, u2, . . . , uMr

} , (8)

which means we have mk-fold singular root i(s− k) for k = 0, 1, . . . , 2s and Mr regular roots.
Notice that in the general case, the regular part {u1, . . . , uMr

} can also contain repeated roots.
This means a priori we have to analyze all the cases with m0, m1, . . . , m2s ≥ 1 and derive addi-
tional constraints for {u1, . . . , uMr

}. At the moment, we do not have a complete understanding
about what are the possible values for m0, . . . , m2s. What we know for sure is that they cannot
be arbitrary. We will derive some constraints for the choices of {m0, . . . , m2s} in section 4.2.
For the special case where m0 = m1 = . . . = m2s = 1 and {u1, . . . , uMr

} all distinct, the extra
physical condition derived in [27] is very similar to (2)

Mr
∏

k=1

�

uk + is
uk − is

�L

= (−1)L . (9)

We will see that this condition can be reproduced from the rational Q-system. In addition, we
will derive extra conditions for the generic situation (8) in section 4.1.

Completeness conjecture In [27], the authors formulated the following conjecture for the
completeness of spin-s Bethe Ansatz

N (L, M)−Ns(L, M) +Nsp(L, M) +Nstrange(L, M) = n(L, sL −M) , (10)

where
n(L, r) = b(L, r)− b(L, r + 1) , (11)

and

b(L, r) =
L
∑

k=0

(−1)k
�

L
k

��

(s+ 1)L + r − (2s+ 1)k− 1
sL + r − (2s+ 1)k

�

. (12)

The sum is restricted so that sL+ r − (2s+1)k ≥ 0. On the left-hand side of (10), N , Ns, Nsp,
and Nstrange denote the number of solutions, singular solutions, singular physical solutions and
strange solutions. The authors checked this conjecture numerically for a number of cases.

We have tested extensively that the rational Q-system gives exactly n(L, sL −M) solutions
for given L, M , and s, which is exactly what is required by the completeness of Bethe Ansatz.

2.2 Rational Q-system

Let us first introduce two polynomials for later convenience,

α(u) =
2s−1
∏

k=1

(u− i(s− k))L , qα(u) =
2s−1
∏

k=0

�

u− i(s− k− 1
2)
�L

. (13)

In particular, for s = 1
2 , we have α(u) = 1 and qα(u) = uL . To construct the rational Q-system,

we need the following ingredients:
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Figure 2: Rational Q-system for XXXs spin chain.

1. A Young tableaux on which we define Q-functions;

2. QQ-relations which relate the four Q-functions defined on each box;

3. Boundary conditions which specify the Q-functions partially or completely on the left
and upper boundary of the Young tableaux.

Young tableaux The Young tableaux has two rows and is given by (2sL − M , M). On each
node, we define a function Qa,b(u), as is shown in Figure 2.

The QQ-relation The QQ-relation is the same as the spin-1
2 case,3

Qa,b+1Qa+1,b =Q+a,bQ−a+1,b+1 −Q−a,bQ+a+1,b+1 . (14)

Here and in what follows, we have introduced the standard shorthand notation
F±(u)≡ F(u± i

2).

Boundary conditions The Q-functions at the upper and left boundary of the Young tableaux
are given by

Q2,b = 1 , b = 0, 1, . . . , M , (15)

Q1,0 =Q(u) ,

Q0,0 = qα(u) ,

where qα(u) has been defined in (13). The zeros of Q(u) are the Bethe roots that we want to
find. In the generic situation, we can write

Q(u) = f (u)Q(u) , f (u) =
2s
∏

k=0

(u− i(s− k))mk , Q(u) =
Mr
∏

j=1

(u− u j) , (16)

such that the zeros of f (u) and Q(u) contain singular and regular roots respectively. We have

Mr +m0 +m1 + . . .+m2s = M . (17)
3Notice that the QQ-relation is defined up to proportionality, so multiplying any constant on the right-hand side

defines the same Q-system.
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2.3 Twisted boundary condition

It is straightforward to generalize the spin-s rational Q-system to a slightly different case, the
XXXs chains with the twisted boundary condition. For a length-L spin chain, instead of the
periodic boundary condition, we impose

Sz
L+1 = Sz

1 , S±L+1 = e±iθS±1 , (18)

with a twisting angle θ . Here Sαn (α = ±, z) is the local spin-s generator of SU(2) symmetry
acting on site-n. In the untwisted limit θ → 0, one recovers the periodic spin chain. The twisted
boundary condition breaks the SU(2) symmetry of the closed spin chain into U(1), which
preserves the number of magnons. For the spin-1

2 case, it is known that one can equivalently
consider the following Hamiltonian for the twisted spin chain, (see e.g. [21])

Hθ = 4
L
∑

j=1

�

1
4
− S3

j S3
j+1 −

eiθ/L

2
S+j S−j+1 −

eiθ/L

2
S−j S+j+1

�

, (19)

which describes a circular spin chain with a magnetic flux passing through. The XXXs spin
chain with twisted boundary condition (18) (corresponding to the so-called diagonal twist)
still preserves U(1) symmetry and can be solved by algebraic Bethe Ansatz, leading to the
slightly modified BAE

eiθ
�

ui + is
ui − is

�L M
∏

j=1, j ̸=i

ui − u j − i

ui − u j + i
= 1 . (20)

One can check readily that the above BAE can be derived from a slightly modified Q-system
where the QQ-relation (14) becomes

Qa,b+1Qa+1,b =Q+a,bQ−a+1,b+1 −κaQ−a,bQ+a+1,b+1 , (21)

with κ1 = 1 and κ0 = eiθ , encoding the twisted angle. The boundary conditions remain the
same as (15).

By solving the above proposed rational Q-system for the twisted case, we have checked
extensively that the Q-system indeed gives complete and only physical solutions of the twisted
BAE (20), more details can be found in section 2.5. However, proving this fact rigorously
like in the periodic case is beyond the scope of the current work. Indeed, one of the main
results that we use for the proof of completeness in the periodic boundary condition is that
both solutions of the TQ-relation are polynomials. This is no longer the case for the twisted
boundary condition, see for example [28] for the spin-1/2 case and [29] for the higher spin
case. Therefore it is non-trivial to generalize the proof in this paper to the twisted case and
we prefer to present a more detailed discussion elsewhere [30].

2.4 Solving rational Q-system

For the spin-1
2 case, in order to solve the rational Q-system, we first make an Ansatz for Q(u)

and then require all the Q-functions on the Young tableaux to be polynomials. For the spin-s
case, this has to be modified slightly.

For the BAE with M magnons, we make the usual Ansatz

Q(u) = uM +
M−1
∑

k=0

ckuk . (22)

We then require Q0,1/α(u) and Q0,b (b = 2,3, . . . , 2sL − M) to be polynomials. Notice that
the first condition is special. In the spin-1

2 case, α(u) defined in (13) is trivial, so we do
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not see this difference. At the moment it might seem a bit strange that the first Q0,1 is treated
somewhat differently. However, we will prove that the condition Q0,1/α(u) being a polynomial
is equivalent to the TQ-relation.

TQ-relation For XXXs chain, Baxter’s TQ-relation reads

τ(u)Q(u) = (u+ is)LQ(u− i) + (u− is)LQ(u+ i) , (23)

where τ(u) is the eigenvalue of the transfer matrix, which is a polynomial of degree L. Taking
u = uk where uk are the zeros of Q(u), we recover the BAE. The TQ-relation can be viewed
as a second-order difference equation for the unknown function Q(u). In general, there are
two linearly independent solutions. Therefore for each polynomial solution Q(u) with degree
M ≤ [sL], there exists a dual solution of the TQ-relation, which we denote by P(u). As usual,
P(u) and Q(u) satisfy the Wronskian relation

P+Q− − P−Q+ = qα(u) . (24)

We shall prove this result in the next section.

Solution of QQ-relation Using the dual solution P(u), we can write down the solution of
the QQ-relation

Q1,n = DnQ , n= 0, . . . , M , (25)

Q0,n = DnP+DnQ− − DnP−DnQ+ , n= 0, . . . , 2sL −M ,

where we have introduced the operator D such that

D f (u)≡ f
�

u+ i
2

�

− f
�

u− i
2

�

. (26)

The solution of Q1,n is obvious. The solution of Q0,n can be proved by mathematical induction.
Notice that for n= 0, it is nothing but the Wronskian relation (24).

A sequence of TQ-relations In what follows, it is useful to introduce a sequence of T -
functions, defined as

Tn =Q+0,n +Q−0,n −Q0,n+1 , n= 0, 1, . . . (27)

In particular, we have

T0(u) = τ(u)α(u) . (28)

This can be proven as follows. Multiplying both sides of the TQ-relation by α(u), we obtain

τ(u)α(u)Q(u) = q+αQ−− + q−αQ++ . (29)

Plugging the Wronskian relation (24) in the right-hand side of the above equation leads to

τ(u)α(u) = P++Q−− − P−−Q++ . (30)

On the other hand, taking n= 0 in (27), we have

T0 =Q+0,0 +Q−0,0 −Q0,1 . (31)
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Plugging in the solution of the QQ-relation (25), we find

T0 = P++Q−− − P−−Q++ . (32)

Comparing (30) and (32), we have (28). Using Tn, the rational Q-system can be written in
terms of a sequence of TQ-like relations

TnQ1,n =Q+0,nQ−−1,n +Q−0,nQ++1,n , n= 0, . . . , 2sL −M . (33)

Tn can also be expressed compactly in terms of P(u) and Q(u)

Tn = (D
nP)++(DnQ)−− − (DnP)−−(DnQ)++ . (34)

This can be proven straightforwardly by mathematical induction from the definition of Tn and
the solution of Q0,n.

Why is Q0,1 special Now we can explain why we divide Q0,1 by α(u). We have

T0(u) = τ(u)α(u) =Q+0,0 +Q−0,0 −Q0,1 . (35)

Notice that TQ-relation requires that τ(u) instead of T0(u) to be a polynomial. We have

τ(u) =
Q+0,0

α
+

Q−0,0

α
−

Q0,1

α
=

q+α
α
+

q−α
α
−

Q0,1

α
(36)

= (u+ is)L + (u− is)L −
Q0,1

α
,

which implies that τ(u) is a polynomial if and only if Q0,1/α is a polynomial. Therefore we
see that the QQ-relations on the box colored green in Figure 2, together with the requirement
that Q0,1/α being a polynomial is equivalent to the TQ-relation.

2.5 Numerical checks

In order to test the correctness of the proposed Q-system, we have performed extensive nu-
merical checks for various L, M , s. There are two direct tests we can perform: one is to count
the number of physical solutions, i.e. testing the completeness of the results obtained from the
proposed Q-system; the second one is to calculate the energy spectrum of the corresponding
XXXs spin chain and compare with the results obtained from a brute-force diagonalization of
the Hamiltonian.

Number of solutions The expected number of physical solutions for a spin-s L-site chain
with M magnons is given by [31,32]

Ns(L, M) = cs(L, M)− cs(L, M − 1) , (37)

with

cs(L; M) =
⌊ L+M−1

2s+1 ⌋
∑

j=0

(−1) j
�

L
j

��

L +M − 1− (2s+ 1) j
L − 1

�

. (38)

Note that in (37) we only consider M ≤ sL in order to count the number of the highest-weight
states. The number of SU(2) descendant states can be taken into account straightforwardly
from representation theory. We checked the matching of the number of solutions in spin-1
chains up to L = 6 sites, spin-3

2 chains up to L = 5 and spin-2 chains up to L = 4 for all
M ≤ sL. For M = 1,2, 3, we checked the matching in spin-1 chains up to L = 12 sites, spin-3

2
chains up to L = 10, and spin-2 chains up to L = 8. Some more precise information about the
solutions that are difficult to access in traditional approaches is listed in Table 1 and 2.
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Table 1: Number of physical singular solutions and repeated singular solutions in
spin-1 chains. Nphys, Nsing and Nrep. sing respectively denote the number of all phys-
ical solutions, physical singular solutions and repeated singular solutions obtained
from the Q-system.

Nphys Nsing Nrep. sing

L = 3, M = 1, s = 1 2 0 0
L = 3, M = 2, s = 1 3 0 0
L = 3, M = 3, s = 1 1 1 0
L = 6, M = 4, s = 1 40 1 1
L = 6, M = 5, s = 1 36 3 0
L = 6, M = 6, s = 1 15 2 2
L = 9, M = 1, s = 1 8 0 0
L = 9, M = 2, s = 1 36 0 0
L = 9, M = 3, s = 1 111 1 0
L = 9, M = 4, s = 1 258 0 0

L = 12, M = 3, s = 1 274 1 0
L = 12, M = 4, s = 1 869 1 1

Table 2: Number of physical singular solutions and repeated singular solutions in
spin-3

2 and spin-2 chains. Nphys, Nsing and Nrep. sing respectively denote the number
of all physical solutions, physical singular solutions and repeated singular solutions
obtained from the Q-system. We notice that in [27] it was suspected that there is a
repeated singular solution in the case of L = 8, M = 6, s = 3

2 , but in our approach, it
is easy to see that all the singular solutions have no repeated Bethe roots.

Nphys Nsing Nrep. sing

L = 8, M = 4, s = 3
2 202 1 0

L = 8, M = 6, s = 3
2 700 4 0

L = 9, M = 4, s = 3
2 321 0 0

L = 10, M = 4, s = 3
2 485 1 0

L = 6, M = 5, s = 2 120 1 0
L = 6, M = 6, s = 2 180 1 1
L = 7, M = 5, s = 2 245 1 0
L = 7, M = 6, s = 2 420 0 0
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Physical spectrum In the brute-force diagonalization approach, we directly compute the
eigenvalues of the XXXs Hamiltonian [1,33]

H =
N
∑

j=1

Q2s(S⃗ j · S⃗ j+1) , (39)

where

Q2s(x) :=
2s
∑

j=1

h( j)
2s
∏

l=0
l ̸= j

x − x l

x j − x l
, x l =

1
2

l(l + 1)− s(s+ 1) , (40)

and h( j) is the j-th harmonic number given by

h( j) =
j
∑

k=1

1
k

. (41)

To compare with the spectrum computed from the Bethe Ansatz equation [1,33,34]

Es =
M
∑

i=1

s
u2

i + s2
, (42)

where {ui}Mi=1 is the set of Bethe roots, we normalize the Hamiltonian such that the pseudovac-
uum has zero energy. For s = 1, 3

2 , 2, the explicit expressions of the Hamiltonian are

H1 = −
1
4

L
∑

j=1

�

S⃗(1)j · S⃗
(1)
j+1 + (S⃗

(1)
j · S⃗

(1)
j+1)

2
�

, (43)

H 3
2
=

1
432

L
∑

j=1

�

27S⃗
( 3

2 )
j · S⃗

( 3
2 )

j+1 − 8(S⃗
( 3

2 )
j · S⃗

( 3
2 )

j+1)
2 − 16(S⃗

( 3
2 )

j · S⃗
( 3

2 )
j+1)

3
�

+
3L
8

Id4L×4L , (44)

H2 = −
1

864

L
∑

j=1

�

234S⃗(2)j · S⃗
(2)
j+1 + 43(S⃗(2)j · S⃗

(2)
j+1)

2 − 10(S⃗(2)j · S⃗
(2)
j+1)

3 − 3(S⃗(2)j · S⃗
(2)
j+1)

4
�

+
L
4

Id5L×5L , (45)

with S⃗(s) = 1
2(X

(s), Y (s), Z (s)). By our convention, the matrices read

X (1) =
p

2





0 1 0
1 0 1
0 1 0



 , Y (1) =
p

2





0 −i 0
i 0 −i
0 i 0



 , Z (1) =





2 0 0
0 0 0
0 0 −2



 , (46)

X (
3
2 ) =









0
p

3 0 0p
3 0 2 0

0 2 0
p

3
0 0

p
3 0









, Y (
3
2 ) =









0 −i
p

3 0 0
i
p

3 0 −2i 0
0 2i 0 −i

p
3

0 0 i
p

3 0









, (47)

Z (
3
2 ) =







3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3






,
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and

X (2) =













0 2 0 0 0
2 0

p
6 0 0

0
p

6 0
p

6 0
0 0

p
6 0 2

0 0 0 2 0













, Y (2) =













0 −2i 0 0 0
2i 0 −i

p
6 0 0

0 i
p

6 0 −i
p

6 0
0 0 i

p
6 0 −2i

0 0 0 2i 0













, (48)

Z (2) =











4 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 −2 0
0 0 0 0 −4











.

To simplify the computation in the Q-system approach, it is more convenient to rewrite the
expression of the energy (42) in terms of the coefficients ck of the Q-function defined in (22).
For example, for M = 2, we have

Es(c0, c1) =
2s3 − 2sc0 + sc2

1

s4 − 2s2c0 + s2c2
1 + c2

0

. (49)

The calculation becomes tricky for physical singular solutions. Apparent divergence appears in
the evaluation of the energy when two Bethe roots take the value {u1 = is, u2 = −is}, but the
energy can be regularized to a finite value if we set u1 = is+ ε, u2 = −is+ ε, and by keeping
the ε0-order, we obtain a regularized expression of the energy in terms of the remaining M−2
Bethe roots,

Ēs =
M
∑

i=3

s
u2

i + s2
+

1
2s

. (50)

One can further define the elementary symmetric polynomial of the remaining M − 2 Bethe
roots as

dk = eM−2−k({−ui}Mi=3) , (51)

then it is easy to derive the relation between dk and ck,

cM−k = dM−2−k + s2dM−k , (52)

and the regularized energy is given by

Ēs({ck}M−1
k=0 ) = Es({dk}M−3

k=0 ) +
1
2s

. (53)

We checked that in the case of spin-1 chains for L = 2, 3,4, 5, in spin-3
2 chains for L = 2,3, 4

and in spin-2 chains for L = 2,3, the energy spectra match perfectly between the brute-force
diagonalization and the Bethe Ansatz Q-system. As an example, we list the energy spectrum
of L = 3, s = 1 chain: {0, 3

4 , 3
2 , 7

4 , 5
2}.

Twisted boundary condition We also performed numerical checks for the Q-system of
twisted XXXs spin chain, (21). When the twisted boundary condition (18) is imposed, the
symmetry is broken from SU(2) to U(1), and the solutions to the BAE are no longer the highest-
weight states of SU(2). The solutions to the BAE in the twisted case thus recombine into SU(2)
highset-weight multiplets in the untwisted limit θ = 0 following the rule of the representation
theory, (37). We verified the number of solutions given by the Q-system agrees with the ex-
pected number cs(L, M) from the representation theory, for s = 1 M = 1,2, 3,4 up to L = 12,
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and s = 2 M = 5, 6 up to L = 7, and for s = 5
2 we checked the matching for M = 3, 4 up to

L = 9.
We have some interesting observations from our numerical results. For the Q-system with

a generic twisted angle, namely θ ̸= 0,π, it seems that there are no physical singular solutions
or strange solutions (i.e. solutions containing the exact string {−is,−i(s− 1), . . . , is}). This is
in contrast to the untwisted case (for spin-1

2 , it has been conjectured in [21]). So far we do not
have a proof for this fact. If this were the case, the analysis of XXXs spin chains with twisted
boundary will be largely simplified, and the completeness problem of the periodic spin chains
of arbitrary spin can thus be accessed from the analysis of the twisted case. More numerical
results and discussions will be presented in [30].

3 TQ-relation and polynomiality

In this section, we prove the following results rigorously

1. The Wronskian relation (24);

2. P(u) is a polynomial if and only if Q0,1/α and Q0,2s+1 are polynomials.

We shall formulate the two results as two theorems. From the second result, we can infer the
minimality condition for the rational Q-system. Namely, if Q0,1/α and Q0,2s+1 are polynomials
it follows that the rest of the Q0,n are also polynomials. This shows that in the spin-s case,
the rational Q-system we proposed is also equivalent to imposing polynomiality of τ(u), Q(u),
and P(u).

3.1 Dual solution and Wronskian relation

Thoerem 1 (Wronskian relation) Consider TQ-relation

τ(u)Q(u) = (u+ is)LQ(u− i) + (u− is)LQ(u+ i) , (54)

where τ(u) is a polynomial. For each polynomial solution Q(u) with degQ ≤ [sL], one can
construct a function P(u) which satisfies the following Wronskian relation,

P+Q− − P−Q+ = qα . (55)

As a result of (54) and (55), P(u) is the other solution (the dual solution of Q(u)) of the
TQ-relation with the same τ(u).
Proof The polynomial Q(u) in general has the following structure

Q(u) =
2s
∏

k=0

(u− i(s− k))mk ×Q(u)≡ f (u)Q(u) , (56)

where we have separated the singular and regular roots. Let us denote degQ= Mr , we have

degQ = degQ+ deg f = Mr +
2s
∑

k=0

mk . (57)

We start with the TQ-relation (multiplied by α(u) on both sides)

ταQ = q+αQ−− + q−αQ++ . (58)
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Dividing both sides by Q−−QQ++, we obtain
τα

Q−−Q++
= R+ + R− , R≡

qα
Q−Q+

. (59)

We perform the partial fraction expansion for R(u)

R(u) =
qα

f + f −Q+Q−
= π(u) +

q+
Q+
+

q−
Q−
+

qs

f + f −
, (60)

where π(u), q±(u) and qs(u) are polynomials. Plugging back to (59), we have

τα

Q−−Q++
= π+ +π− +

q++
Q++

+
q−−
Q−−

+
q−+ + q+−

Q
+

q+s
f ++ f

+
q−s

f f −−
. (61)

Let us first consider the non-singular roots {uk}. Suppose uk has multiplicity nk. The left-hand
side of (61) is regular at u = uk. As a result, the right-hand side should also be regular at
u= uk. The term (q−+ + q+−)/Q seems to have an nk-th order pole at u= uk. We thus conclude
that this pole must be spurious, which implies the following nk constraints,

∂ n

∂ un

�

q+
�

u− i
2

�

+ q−
�

u+ i
2

���

�

u=uk
= 0 , n= 0, 1, . . . , nk − 1 , (62)

at u = uk. Similarly, at all regular roots we have constraints like (62). Since
deg(q±) < Mr(= deg(Q)), it is easy to see that the only way to fulfill all the constraints is
that this term vanish, i.e. q+(u) + q−(u) = 0. We can therefore write the two polynomials
q+(u) and q−(u) in terms of only one polynomial q(u) as follows,

q+(u) = q
�

u+ i
2

�

, q−(u) = −q
�

u− i
2

�

. (63)

After this analysis, we find that

τα

Q−−Q++
= π+ +π− +

q++

Q++
−

q−−

Q−−
+

q+s
f ++ f

+
q−s

f f −−
. (64)

Now we analyze the part that contains exact strings. Let us define

U(u)≡
qs

f + f −
= qs

2s
∏

k=0

1
�

u− i(s− k+ 1
2)
�mk

�

u− i(s− k+ 1
2)
�mk

(65)

=
qs

�

u− i(s+ 1
2)
�m0

�

u+ i(s+ 1
2)
�m2s

2s
∏

k=1

1
�

u− i(s− k+ 1
2)
�nk

,

where nk = mk−1 +mk for k = 1, . . . , 2s. We now perform the partial fraction decomposition
for U(u)

U(u) =
2s
∑

k=1

nk
∑

m=1

b(m)k
�

−iu− s+ k− 1
2

�m +
m0
∑

m=1

b(m)0
�

−iu− s− 1
2

�m +
m2s
∑

m=1

b(m)2s
�

−iu+ s+ 1
2

�m . (66)

Our goal is to write U(u) in a difference form U(u) = V+(u) − V−(u) for certain properly
defined V (u). For the last two terms in (66), we can add and subtract terms to bring them in
difference forms. The new terms we introduced in the process can be combined with the first
sum, leading to some shifts on the parameters b(m)k . More explicitly, we have

U(u) =
2s
∑

k=1

nk
∑

m=1

b̃(m)k
�

−iu− s+ k− 1
2

�m −
m0
∑

m=1

�

b(m)0
�

−iu− s+ 1
2

�m −
b(m)0

�

−iu− s− 1
2

�m

�

(67)

+
m2s
∑

m=1

�

b(m)2s
�

−iu+ s+ 1
2

�m −
b(m)2s

�

−iu+ s− 1
2

�m

�

,
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where the last two sums are in the difference form and the coefficients b̃(m)k in the first line
have been shifted.4 To write the first sum in a difference form, we introduce the polygamma
functions

ψ(n)(z) =
dn+1

dzn+1
ln Γ (z) , n= 0, 1, . . . (68)

We then have
1

�

−iu− s+ k− 1
2

�m = v(m)k

�

u+ i
2

�

− v(m)k

�

u− i
2

�

, (69)

where

v(m)k (u) =
(−1)m

(m− 1)!
ψ(m−1)(−iu− s+ k) . (70)

Therefore we can write
U(u) = V

�

u+ i
2

�

− V
�

u− i
2

�

, (71)

with

V (u) =
2s
∑

k=1

nk
∑

m=1

b̃(m)k v(m)k (u)−
m0
∑

m=1

b(m)0

(−iu+ s)m
+

m2s
∑

m=1

b(m)2s

(−iu+ s)m
. (72)

Combining (63) and (71), we have

qα
Q+Q−

= π(u) +
q+

Q+
−

q−

Q−
+ U(u) (73)

= ρ+ −ρ− +
q+

Q+
−

q−

Q−
+ V+ − V− ,

where we have introduced another polynomial ρ(u) to write π(u) in a difference form. Such
a polynomial always exist and is defined up to a constant. We can write the right-hand side of
(73) in the form

qα
Q+Q−

=
P+

Q+
−

P−

Q−
=

P+Q− − P−Q+

Q+Q−
, (74)

where
P(u) = [q(u) f (u) +Q(u)ρ(u)] +Q(u)V (u) = P0(u) +Q(u)V (u) . (75)

Comparing the numerator of both sides of (74), we have

P+Q− − P−Q+ = qα . (76)

Now we show that P(u) is the solution of TQ-relation. Multiplying both sides of (54) by α(u)
we obtain

τ(u)α(u)Q(u) = q+αQ−− + q−αQ++ . (77)

Plugging in the Wronskian relation (55), we obtain

τ(u)α(u) = P++Q−− − P−−Q++ . (78)

Now multiply both sides of (78) by P(u), we have

τ(u)α(u)P(u) = (P++Q−− − P−−Q++)P (79)

= P++
�

Q−−P −QP−−
�

+ P−−
�

P++Q− PQ++
�

= q+α P−− + q−α P++ .

4In fact, only b(m)1 and b(m)2s are shifted, the rest coefficients are not modified. But this is not relevant for our
proof.
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Figure 3: Potential poles of P(u). The red bullets denote Type-I poles and the blue
bullets denote Type-II poles.

Dividing both sides of the above relation by α(u) leads to

τ(u)P(u) = (u+ is)L P−− + (u− is)L P++ . (80)

This proves that P(u) is the dual solution of the TQ-relation.
A few remarks are in order. First of all, the dual solution P(u) is not unique. Any shift of

the form P(u)→ P(u) + βQ(u) leaves the Wronskian relation invariant. Secondly, due to the
presence of the term Q(u)V (u) which contains polygamma functions, P(u) is in general not a
polynomial.

3.2 Polynomiality condition for P(u)

From the construction of P(u) in the previous subsection, we see that it is not a polynomial in
general. In this subsection, we give the condition under which P(u) becomes a polynomial.
We have the following key result.

Theorem 2 (Polynomiality condition) P(u) is a polynomial if T0(u)/α(u) and T2s(u) are
polynomials, where Tn has been defined in (27).

Our strategy for the proof is as follows. Since P(u) is the sum of polynomials and
polygamma functions, its analytic property is rather simple. The only singularities are poles
on the complex u-plane. We will show that if T0/α and T2s are polynomials, P(u) becomes
regular at all these potential poles, which implies that P(u) is a polynomial.

From the explicit form of P(u) (75), we can write down the potential poles. It is convenient
to classify them into two types, which we shall call type-I and type-II. They are given by

Type-I : u= is, is− i, . . . ,−is , (81)

Type-II : u= −is− ni , n= 1, 2, . . . ,

as is shown in Figure 3. We have the following two lemmas concerning these two types of
poles.

Lemma 1 P(u) is regular at Type-I poles if T0/α is a polynomial.
Proof. We have the following relations

T0(u) = τ(u)α(u) = P++Q−− − P−−Q++ , (82)

qα(u) = P+Q− − P−Q+ .

Eliminating Q(u) from the previous two equations, we obtain

q+α P−− + q−α P++ = P T0 , (83)

which can be written as

P−−(u) = P(u)
τ(u)
(u+ is)L

− P++(u)
�

u− is
u+ is

�L

, (84)
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where we have used T0(u) = α(u)τ(u). Taking u= is in (84), we obtain

P(i(s− 1)) = P(is)
τ(is)
(2is)L

. (85)

By our assumption T0/α = τ(u) is a polynomial, so it is regular on the whole complex plane.
Notice that P(u) is in fact regular at u = is because the pole in V (u) cancelled neatly with
the zero in Q(u) so that Q(u)V (u) in (75) is regular at u = is. It then follows from (85) that
P(i(s− 1)) is finite. From (84), taking u= i(s− k), we have the following recursion relation,

P(i(s− k)− i) = P(i(s− k))
τ(i(s− k))
(2is− ik)L

− P(i(s− k) + i)
�

k
k− 2s

�L

. (86)

This can be used to prove recursively that P(i(s − k) − i)’s are finite for k = 1,2, . . . , 2s − 1.
Therefore P(u) is regular at u= is, is− 1, . . . ,−is, which completes the proof.

In fact from the assumption that T0/α is a polynomial, we have a stronger result. We can
actually prove that all Tk are polynomials for k = 1, . . . , 2s − 1. The proof is slightly involved
and can be found in the appendix.

Lemma 2 If T2s(u) is also a polynomial, P(u) is a rational function and is regular at Type-II
poles.
Proof. T2s(u) can be written in terms P(u) and Q(u) as

T2s(u) = (D
2sP)++(D2sQ)−− − (D2sP)−−(D2sQ)++ . (87)

From which we have

T2s(0) = (D
2s P̄)++(D2sQ̄)−− − (D2s P̄)−−(D2sQ̄)++ , (88)

where Dn F̄ is defined as the value of DnF(u) at u = 0. From the definition of D, it is straight-
forward to derive that

DnF(u) =
n
∑

k=0

(−1)k
�

n
k

�

F
�

u+ i
2(n− 2k)

�

, (89)

and therefore

Dn F̄ =
n
∑

k=0

(−1)k
�

n
k

�

F
� i

2(n− 2k)
�

. (90)

Plugging into (88), we find that on the right-hand side of (88), (D2s P̄)++ is finite due to
Lemma 1. (D2sQ̄)++ and (D2sQ̄)−− are also finite because Q(u) is a polynomial. The only
potential divergence is contained in

(D2s P̄)−− =
2s
∑

k=0

(−1)k
�

2s
k

�

P(i(s− k− 1)) = (−1)2sP(−is− i) + finite terms, (91)

where the ‘finite terms’ are finite due to Lemma 1. By our assumption, T2s(0) is finite, it
then follows that P(−is− i) is also finite. Knowing that P(−is) and P(−is− i) are finite, we can
again use the recursion relation (86) for k = 2s+ 1,2s+ 2, . . . to prove that all P(i(s− k− 1))
are finite for k ≥ 2s+ 1. This proves that P(u) is regular at Type-II poles.

To show that P(u) is a rational function, notice that we can write P(u) in the form

P(u) = P0(u) +Q(u)
M−1
∑

m=0

s
∑

j=−(s−1)

a(m)j ψ(m)(−iu+ j) . (92)

17

https://scipost.org
https://scipost.org/SciPostPhys.16.4.113


SciPost Phys. 16, 113 (2024)

This can always be done by formally adding some terms with zero coefficients to (75) and
(72) so that the upper limit of the sum over m for each j is the same. Using the infinite series
representation of polygamma functions

ψ(m)(z) =



















− γ+
∞
∑

n=0

�

1
n+ 1

−
1

n+ z

�

, m= 0 ,

(−1)m+1m!
∞
∑

k=0

1
(z + k)m+1

, m= 1 , 2, . . .

(93)

we find that

ψ(m)(ε+ n) =
(−1)m+1m!
εm+1

+ · · · , ∀n= 0,−1,−2, . . . , (94)

for ε→ 0 where the ellipsis denotes regular terms. As a result, at u= −is− in with n> 0, we
have

P(−i(s+ n)) = P0(−i(s+ n)) +Q(−i(s+ n))Ψε + finite terms, (95)

where Ψε is defined as

Ψε =
M−1
∑

m=0

 

s
∑

j=−(s−1)

a(m)j

!

(−1)m+1m!
εm+1

, (96)

with ε → 0. We have proven that P(u) is regular at type-II poles if T2s is a polynomial. At
the same time, we know that Q(u) is non-zero at type-II poles due to the Proposition in Ap-
pendix A.1. It then follows from (95) that Ψε must vanish. This is equivalent to the conditions

s
∑

j=−(s−1)

a(m)j = 0 , (97)

for all m. Plugging (97) into (92) and using the following property of the polygamma function

ψ(m)(z + 1)−ψ(m)(z) =
(−1)m+1m!

zm+1
, (98)

we see that P(u) must be a rational function.
From Lemma 1 and Lemma 2, if T0/α and T2s are polynomials, P(u) must be a polyno-

mial. On the other hand, under the assumption that T0(u)/α is a polynomial, T2s(u) being a
polynomial is equivalent to P(u) being a polynomial. Therefore Theorem 2 is proven.

Since the polynomiality of Tn is equivalent to the polynomiality of Q0,n via (27), Theorem
2 has the following equivalent formulation

Theorem 2’ P(u) is a polynomial if Q0,1(u)/α(u) and Q0,2s+1(u) are polynomials.
As mentioned before, this theorem encodes the minimality condition of the rational Q-

system. In fact, we have shown that the essential condition is the polynomiality of Q0,1/α and
Q0,2s+1, requiring the rest of Q0,n to be polynomial is redundant. This is consistent with the ob-
servation in the spin-1

2 case that we only need to consider the first two column (corresponding
to Q0,1 and Q0,2) of the rational Q-system [12].
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3.3 Completeness of rational Q-system

Based on the results of the previous subsection, we can prove the completeness of our rational
Q-system based on the result of V. Tarasov [35]. Let us define the subspace of highest weight
states in the N -magnon sector

HN =
�

|ψ〉 ∈H |S+|ψ〉= 0 , S3|ψ〉= (sL − N)|ψ〉
	

. (99)

We quote Theorem 6.2 of [35],5 which states: a polynomial τ(u) is an eigenvalue of the transfer
matrix T (u) on HN if and only if the difference equation

τ(u) f (u) = (u+ is)L f (u− i) + (u− is)L f (u+ i) , (100)

has two polynomial solutions Q(u), P(u) such that deg(Q) = N < deg(P). Moreover, the corre-
sponding eigenvector is unique up to proportionality. In particular, if T (u) is diagonalizable on
HN , then there exist exactly dimHN polynomials τ(u) such that (100) has polynomial solutions
Q(u), P(u).

From the results of the previous subsection, especially Theorem 2’, we see that our ratio-
nal Q-system is equivalent to requiring that both solutions Q(u) and P(u) of the TQ-relation
are polynomials. Thanks to the results in [35], the solutions of the rational Q-system give com-
plete physical solutions of BAE. This is also supported by our numerical checks in the previous
section.

4 Physical singular solutions

In this section, we derive physicality conditions for singular solutions from the rational Q-
system, based on the assumption that the rational Q-system gives all physical solutions.

4.1 Physicality conditions

From the Wronskian relation, we have

P+

Q+
−

P−

Q−
=

qα
Q+Q−

, (101)

from which follows

P+

Q+
=

P[−2n−1]

Q[−2n−1]
+

n
∑

k=0

q[−2k]
α

Q[−2k+1]Q[−2k−1]
, n= 0,1, 2, . . . (102)

Taking u= u+ i(s+ 1
2) and n= 2s+ 1 in the above relation, we obtain

P[2s+2]

Q[2s+2]
−

P[−2s−2]

Q[−2s−2]
=

2s+1
∑

k=0

q[2s−2k+1]
α

Q[2s−2k+2]Q[2s−2k]
. (103)

Multiplying both sides by Q[2s+2]Q[−2s−2] leads to

P[2s+2]Q[−2s−2] − P[−2s−2]Q[2s+2] =
2s+1
∑

k=0

Q[2s+2]Q[−2s−2]

Q[2s−2k+2]Q[2s−2k]
q[2s−2k+1]
α . (104)

5To be more precise, while the theorem works for general inhomogeneous spin chain, here we focus on the
homogeneous limit. We also modified the notations slightly in order to be consistent with the current paper.
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The left-hand side is regular at u= 0, therefore the right-hand should also be the case. Let us
define

Bs(u)≡
2s+1
∑

k=0

Q[2s+2]Q[−2s−2]

Q[2s−2k+2]Q[2s−2k]
q[2s−2k+1]
α . (105)

We find that the physical condition for the singular solution can be compactly given by

Bs(u) is regular at u= 0 . (106)

This requirement might seem a bit strange at first glance. In fact, under the assumption that
T0(u)/α(u) is a polynomial, (106) is equivalent to the requirement that P̄[−2s−2] is regular,
which is equivalent to the polynomiality of P(u), as can be seen from (104) and the proof of
Lemma 2.

To test this proposal, let us consider a few examples.

Example 1. Consider the spin-1
2 case with s = 1

2 and qα(u) = uL . The Q-polynomial takes
the form

Q(u) =
�

u− i
2

� �

u+ i
2

�

Q(u) , (107)

and we have

B 1
2
(u) =

Q[3]

Q−
(u− i)L +

Q[−3]

Q+
(u+ i)L +

Q[3]Q[−3]

Q+Q−
uL (108)

=
(u− i)L−1(u+ i)(u+ 2i)Q[3]

uQ−
+
(u+ i)L−1(u− i)(u− 2i)Q[−3]

uQ+

+ uL−2(u− 2i)(u+ 2i)
Q[−3]Q[3]

Q−Q+
.

For spin chains with L ≥ 2, which we assume here, the last term is regular at u= 0. There are
spurious poles at u= 0 in the first two terms on the right-hand side of (108). We have

Res
u=0

B 1
2
(u) = −2(−i)L−1Q[3]

Q−
− 2(i)L−1Q[−3]

Q+
. (109)

Requiring the residue to vanish leads to the condition

Q[3]

Q[−3]

Q+

Q−
=

Mr
∏

j=1

�

u j +
3i
2

u j −
3i
2

��

u j +
i
2

u j −
i
2

�

= (−1)L , (110)

which is precisely the physicality condition for singular solutions in the spin-1
2 . Notice that our

derivation is different from the one presented in [12].

Example 2 We consider the spin-s singular solution which contains exactly one length-2s+1
Bethe string {is, i(s − 1), . . . ,−is}. Namely, there are no repeated singular roots. In this case,
we have

Q(u) = (u− is)(u− i(s− 1)) . . . (u+ is)Q(u) , (111)

and

Bs(u) =
Q[−2s−2]

Q[2s]
q[2s+1]
α +

Q[2s+2]

Q[−2s]
q[−2s−1]
α + · · · , (112)
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where the ellipsis denotes terms that are regular at u = 0. Plugging in Q(u) and qα(u), the
residue is given by

Res
u=0

Bs(u) = i(2s+ 1)(−i)2s[(2s)!]L
�Q(i(s+ 1))

Q(−is)
(−i)2sL −

Q(−i(s+ 1))
Q(is)

i2sL
�

. (113)

We see that the requirement that the residue vanishes leads to

Q(i(s+ 1))
Q(−i(s+ 1))

Q(is)
Q(−is)

= (−1)2sL . (114)

This is a generalization of (110), which is equivalent to (9) after taking into account the rest
BAE and matches the result from [27].

Example 3 In this example we consider s = 1 with repeated singular roots. We have

Q(u) = (u− i)m0um1(u+ i)m2 Q(u) , mi ≥ 1 . (115)

Bs(u) is given by

Bs(u) = (u− 3i)m0(u− 2i)m1(u− i)m2(u+ i)L−m1(u+ 2i)L−m2
Q(u− 2i)

um0Q(u+ i)
(116)

+ (u− 2i)L−m0(u− i)L−m1(u+ i)m0(u+ 2i)m1(u+ 3i)m2
Q(u+ 2i)

um2Q(u− i)
+ · · · ,

where the ellipsis denotes two terms which are regular at u = 0. We can see the change due
to repeated roots. If m0, m2 > 1, there are higher order poles at u= 0 and we need to impose
more than one condition to ensure that Bs(u) is regular.

At the same time, since it contains repeated roots, we also need to take into account possi-
ble extra conditions from the polynomiality of Q0,1/α, which is equivalent to the polynomiality
of τ(u). In our case,

τ(u) = (u+ i)L
Q(u− i)

Q(u)
+ (u− i)L

Q(u+ i)
Q(u)

(117)

= (u− 2i)m0(u− i)m1−m0(u+ i)L−m2
Q(u− i)

um1−m2Q(u)

+ (u− i)L−m0(u+ i)m1−m2(u+ 2i)m2
Q(u+ i)

um1−m0Q(u)
.

We see that if m1 > m0, m2, there are extra conditions coming from the requirement

Res
u=0
τ(u) = 0 . (118)

Let us now consider the case m0 = 1, m1 = 2, m2 = 1. From the regularity of B1(u), we do not
have extra conditions. Equation (114) specified at s = 1 gives

Q(2i)
Q(−2i)

Q(i)
Q(−i)

= 1 . (119)

From the regularity of τ(u) at u= 0, we have an extra condition, which reads

Q(i)
Q(−i)

= (−1)L . (120)
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Combining (119) and (120), we find the singular solutions containing {−i, 0, 0, i} are physical
if the regular roots satisfy the following two constraints

Mr
∏

k=1

�

uk + i
uk − i

�

= (−1)L ,
Mr
∏

k=1

�

uk + 2i
uk − 2i

�

= (−1)L . (121)

The second constraint matches Equation (B16) of [27].
To summarize, when repeated singular roots occur, we need to impose regularity condition

for both τ(u) and Bs(u) at u = 0. We have seen that, depending on the multiplicities, the
conditions can be different. It is unlikely that any choice of the multiplicities have solutions.
Therefore it is an interesting and important question for given L, M , s, what the possible values
of the multiplicities are. We will derive some of the constraints in the next subsection.

4.2 Constraints for multiplicities

In this subsection, we derive constraints for the possible values of {m0, . . . , m2s} for given L.
These constraints are derived from a careful analysis of the TQ-relation at the singular roots
{is, . . . ,−is}. Recall the TQ-relation reads

τ(u)Q(u) = (u+ is)LQ(u− i) + (u− is)LQ(u+ i) . (122)

We consider the singular solution

Q(u) = (u− is)m0(u− i(s− 1))m1 . . . (u+ is)m2s Q(u) . (123)

Taking u = is + ε in the TQ-relation, focusing on the leading power of ε on each term, we
obtain

t0 ε
m0 = α0 ε

m1 + β0 ε
L , (124)

where t0,α0,β0 are some constants and α0,β0 ̸= 0. Taking u = i(s − j) + ε for j = 1, . . . , 2s,
we will obtain similar relations, which can be written collectively as

t j ε
m j = α j ε

m j+1 + β j ε
m j−1 , j = 0,1, . . . , 2s , (125)

where we have defined m−1 = m2s+1 = L. In what follows, it is important to use the fact that
α j ,β j ̸= 0. We shall rule out the ‘forbidden zone’ for the values of m j−1, m j , m j+1. Dividing
both sides by εm j+1 in (125), we find

t j ε
m j−m j+1 − β j ε

m j−1−m j+1 = α j . (126)

Now in the limit ε → 0, if m j+1 < m j and m j+1 < m j−1, the left-hand side is zero
while the right-hand side is a non-zero number. This is clearly a contradiction which
shows that (m j+1 < m j) ∧ (m j+1 < m j−1) is forbidden. Similarly, we can prove that
(m j−1 < m j) ∧ (m j−1 < m j+1) is also not allowed. In terms of words, it means neither m j−1
nor m j+1 can be strictly smaller than the rest two values in the tuple {m j−1, m j , m j+1}.

It is possible to have m j strictly larger than the rest two. In this case, the first term in (126)
t jε

m j−m j+1 → 0. It then follows that we must have m j−1 = m j+1, otherwise, the second term
β j ε

m j−1−m j+1 either goes to zero or diverges in the limit ε→ 0, which is inconsistent with the
right-hand side.

Furthermore, let us denote

m=min{m0, m1, . . . , m2s} . (127)

Concerning m, we have the following two results
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Figure 4: Possible configurations for multiplicities.

• 2m< L
Proof. We have

sL ≥ M =
2s
∑

j=0

m j +Mr ≥ (2s+ 1)m , (128)

which implies that
L ≥ (2+ s−1)m> 2m . (129)

• m0 = m2s = m.
Proof. Suppose m0 > m. Consider the tuple (L, m0, m1). It is clear that L > m. If m1 ≤ m,
m1 would be strictly smaller than the rest of the other two elements, which is against
the forbidden rule. Therefore we must have m1 > m .

Now we consider the tuple (m0, m1, m2). We have m0 > m and m1 > m. By a similar
argument to the previous step, we conclude that we must have m2 > m. Continuing in
the same way, we conclude that m j > m for all j = 0, 1, . . . , 2s. This is in contradiction
with the assumption that m = min{m0, . . . , m2s}. Therefore, we must have m0 = m.
Similarly, we can prove that m2s = m.

These considerations already give some constraints on the multiplicities. In order to visu-
alize the possible values of the multiplicities, we can consider the following chain

(m0, m1, . . . , m2s) , (130)

and make a plot of their values. Our constraints imply that taking any three consecutive sites
m j−1, m j , m j+1, the possible configurations for the values can only be one of the 7 configura-
tions in Figure 4. An example of the possible6 values of the multiplicities is given in Figure 5.
It is easy to see that the allowed configurations for multiplicities must take the shape that is
formed by a number of ‘peaks’.

Before ending this section, let us comment that the constraints we found here are still
preliminary and might not be complete. It is interesting to deduce for given L, M , s, what the
possible values of m0, . . . , m2s are. We wish to come back to this important point in the future.

6Here by ‘possible’ we only mean that this configuration is not against the forbidden rules which we derived.
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Figure 5: One possible configuration for the multiplicities.

5 Conclusions and outlook

In this paper, we proposed the rational Q-system for the XXXs spin chain. This Q-system is a
natural generalization of the spin-1

2 case, but with important modifications. We tested numeri-
cally that the solution of the Q-system gives all and only physical solutions of the corresponding
Bethe Ansatz equations.

We proved rigorously that the rational Q-system is equivalent to the requirement of poly-
nomiality of τ(u), Q(u), and the dual solution P(u) of the TQ-relation. Based on this, we are
able to prove the completeness of the proposed rational Q system, and derive extra conditions
for the singular solutions to be physical. In the spin-s case, these constraints are much more
involved and highly non-trivial for different multiplicities of the singular roots.

Finally, we initiated the investigation of the possible values of the multiplicities for the
singular roots based on a careful analysis of TQ-relation at singular roots, which leads to a set
of non-trivial constraints.

Our current work marks a solid step towards a deeper understanding of Bethe equations
for spin-s integrable spin chains, which is more difficult to analyze due to the presence of
repeated roots. There are several important open questions and further directions to explore
in the future.

Firstly, we have proposed the additional constraints for the singular roots based on our
rational Q-system. It would be very desirable to derive these constraints directly from ABA
with a proper regularization of the Bethe states and confirm that such constraints indeed coin-
cide with physicality condition from the Q-system. Related to this question, it is important to
classify all possible multiplicities of the singular roots {m0, . . . , m2s}. We have only performed
a preliminary analysis in the current work, a more systematic approach is called for.

At the same time, generalizations of the rational Q-system to other spin chains should also
be considered. Some immediate cases include XXZs chain with periodic and open boundary
conditions, as well as their higher rank generalizations. In the XXXs case, we have proven
that the rational Q-system is equivalent to the polynomiality of the TQ-relation and the dual
solution. It is important to see whether this is still the case in the more general context.

Finally, let us mention that since the Q-system gives only physical solutions for the spin-s
chain, it can be applied to compute interesting quantities. Examples of this kind range from
supersymmetric gauge theories [16, 36, 37] to statistical mechanics [38–40]. In particular in
the context of the Bethe/gauge correspondence [41, 42], it is natural to consider XXXs spin
chains as the dual integrable models to the generic 2d supersymmetric gauge theories, but
most of the relevant studies have been focusing on the case dual to spin-1

2 . For example,
the Bethe wavefunction and the R-matrix have been only constructed for XXX 1

2
chain and its

nested version from the gauge theory side [43,44]. The rational Q-system proposed for XXXs
spin chains in this article may help the future study of more general cases, e.g. singular loci
appearing in supersymmetric gauge theories with a special FI parameter and θ -angle [45]
might be understood better with such powerful tools developed in the dual Bethe side.
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A Proof of some results

In this appendix, we give the proofs for two claims in the main text.

A.1 Singular roots

For the spin-s BAE
�

u j − is

u j + is

�L

= −
M
∏

k=1

u j − uk − i

u j − uk + i
, (A.1)

we have the following result for the singular roots.

Proposition 1 Suppose sol= {uk|k = 1,2, ..., M} is a solution of BAE (A.1). ∃u1, u2 ∈ sol,
such that u1 − u2 = i, if and only if sol ⊃ {−is,−i(s− 1), ..., is}.

Proof. We start by analyzing the BAE for u1. If u1 ̸= is, the left-hand side of (A.1) is non-zero.
In order for the right-hand side of (A.1) to be non-zero, there must exist an element in sol,
which without loss of generality is denoted by u3, such that u1 − u3 = −i. We then analyze
the BAE of u3 in a similar way and conclude that if u3 ̸= is, there must exist a u5 such that
u3 − u5 = −i and so on and so forth.

Similarly, for the BAE of u2, if u2 ̸= −is, there ∃u4 ∈ sol, such that u2 − u4 = i. We then
consider the the BAE of u4. In this way, we get a chain of roots

{. . . , u2n, . . . , u6, u4, u2, u1, u3, u5, . . . , u2m+1, . . .} ⊂ sol, (A.2)

where the difference between each two adjacent elements is −i. Because the number of el-
ements in sol is equal to M <∞, the length of the chain must be less than or equal to M .
For the chain to truncate, the must ∃u2n, u2m+1 such that u2n = −is and u2m+1 = is, that is,
sol ⊃ {−is,−i(s− 1), ..., is}. For u1 = is or u2 = −is, the proof is similar.

One important consequence of this proposition that we used in the main text is that
u = ±i(s + 1) cannot be contained in the solution if sol ⊃ {−is,−i(s − 1), ..., is}. Other-
wise by analyzing the BAE for u = ±i(s + 1), we would find the chain of roots (A.2) do not
truncate and contain infinitely many elements, which is in contradiction to the fact that we
have M Bethe roots.

A.2 Polynomiality of Tn for n < 2s

In this appendix, we prove that if T0/α is a polynomial, then in fact Tn with n < 2s are
polynomials. It is useful to introduce the following quantities

Sn ≡ P[n]Q[−n] − P[−n]Q[n] , n= 1, 2, . . . (A.3)
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In particular, we have

S1(u) = qα(u) , S2(u) = T0(u) . (A.4)

We have the following lemma.

Lemma 3 Tn can be written as a linear combination of qα, T0, T1, . . . , Tn−1 and Sn+2 as

Tn = (−1)nSn+2 +
∑

k

cα,kq[2k]
α +

n−1
∑

j=1

∑

k

c j,kT [2k]
j , (A.5)

where cα,k, c j,k are constants and 2k ∈ Z. These constants can be worked out explicitly, but
are not relevant to our proof.

Proof We write

DnP =
n
∑

k=0

ck P[n−2k] , DnQ =
n
∑

j=0

d j Q
[n−2 j] , (A.6)

where ck, d j are constants. In particular, c0 = d0 = 1 and cn = dn = (−1)n. We then have

(DnP)++(DnQ)−− = (−1)nP[n+2]Q[−n−2] +
∑

(k, j)̸=(0,n)
ckd j P[n−2k+2]Q[n−2 j−2] . (A.7)

Noticing that in the sum each term can be written as

P[n−2k+2]Q[n−2 j−2] =
�

P[m]Q[−m]
�[2k]

, (A.8)

with
n− 2k+ 2= m+ 2k , n− 2 j − 2= −m+ 2k . (A.9)

It is then obvious that we can write

Tn = (D
nP)++(DnQ)−− − (DnP)−−(DnQ)++ (A.10)

= (−1)nSn+2 +
n+1
∑

j=1

∑

k

c̃ j,kS[2k]
j ,

where c̃ j,k are constants. This tells us that Tn can be written as a linear combination of
S1, S2, . . . , Sn+2, with proper shifts in the spectral parameter. Using (A.4) as initial conditions,
we can solve the linear system recursively and write Sn as a linear combination of Tk and qα.
This proves (A.5). Now we can prove the main result.

Proposition 2 If T0/α is a polynomial, Tn with n< 2s are all polynomials.

Proof We shall prove the result by induction. According to Lemma 3 we just proved. What we
need to show is that if T0/α and S3, S4, . . . , Sn+1 are polynomials, then Sn+2 is also a polynomial
for all n< 2s.

Plugging in the explicit form of P(u) into the definition of Sn, we obtain

Sn+2 = P[n+2]
0 Q[−n−2] − P[−n−2]

0 Q[n+2] (A.11)

+Q[n+2]Q[−n−2]
M−1
∑

m=0

s
∑

j=−(s−1)

a(m)j

�

ψ(m)(−iu+ j + n+2
2 )−ψ

(m)(−iu+ j − n+2
2 )
�

.

26

https://scipost.org
https://scipost.org/SciPostPhys.16.4.113


SciPost Phys. 16, 113 (2024)

Therefore, the potential poles of Sn+2 from polygamma functions are
�

−i(s+ n
2 ),−i(s+ n

2 − 1), . . . , i(s+ n
2 )
	

. (A.12)

From Lemma 3, we find that if T0/α, S3, S4, . . . , Sn+1 are polynomials, Tn and Sn+2 have the
same potential poles. It is also clear from (A.11) that Sn+2(u) is a rational function. So if we
can prove that Sn+2 are regular at the potential poles, then Sn+2 must be a polynomial.

Let us first prove that S3(u) is a polynomial. Taking u at the value of the potential poles,
we obtain

S̄[−2s−1]
3 = P̄[−2s+2]Q̄[−2s−4] − P̄[−2s−4]Q̄[−2s+2] , (A.13)

S̄[−2s+1]
3 = P̄[−2s+4]Q̄[−2s−2] − P̄[−2s−2]Q̄[−2s+4] ,

S̄[−2s+3]
3 = P̄[−2s+6]Q̄[−2s] − P̄[−2s]Q̄[−2s+6] ,

S̄[−2s+5]
3 = P̄[−2s+8]Q̄[−2s+2] − P̄[−2s+2]Q̄[−2s+8] ,

. . . . . .

S̄[2s+1]
3 = P̄[2s+4]Q̄[2s−2] − P̄[2s−2]Q̄[2s+4] .

Since P(u) is regular at Type-I poles by Lemma 1, S̄[n]3 is regular at n=−2s+3,−2s+5, . . . , 2s+1.

S̄[−2s−1]
3 and S̄[−2s+1]

3 in (A.13) are special because the right-hand side involve P(u) at Type-II
poles (the two factors in blue color). On the other hand, Q(u) have zeros at the same points.
We shall show that the potential divergences in P(u) are cancelled neatly by the corresponding
zeros in Q(u), leaving a finite result. To this end, recall the relations

Tn DnQ =Q+0,nDnQ−− +Q−0,nDnQ++ , (A.14)

and
Tn =Q+0,n +Q−0,n −Q0,n+1 . (A.15)

Taking n= 0 in (A.15), we see that Q0,1 is a polynomial since by assumption T0 is a polynomial.
Now taking n= 1 in (A.14),

T1 DQ =Q+0,1 DQ−− +Q−0,1 DQ++ . (A.16)

The right-hand side is a polynomial, therefore T1 DQ is also a polynomial. This implies that
the potential poles of T1 must be cancelled by the zeros of DQ. We have

DQ =
�

u− i(s− 1
2)
�m0

�

u− i(s− 3
2)
�m1 . . .

�

u+ i(s+ 1
2)
�m2s Q+ (A.17)

−
�

u− i(s+ 1
2)
�m0

�

u− i(s− 1
2)
�m1 . . .

�

u+ i(s− 1
2)
�m2s Q− ,

from which we see that u = −i(s + 1
2) cannot be the zero of DQ, otherwise this would imply

that −i(s + 1) is a zero of Q(u), which is in contradiction with Proposition 1. This in turn
implies that T1(u) cannot have a pole at u = −i(s+ 1

2). By (A.5), we conclude that S̄[−2s−1]
3 is

regular.
Now we continue to show that S̄[−2s+1]

3 is regular. From the first equation of (A.13) and

the fact that S̄[−2s−1]
3 is regular, it follows that P̄[−2s−4]Q̄[−2s+2] is regular. Using (95), we

conclude that Q̄[−2s+2]Ψε is regular. This implies that εm2s−1Ψε is regular. At the same time,
we know that P̄[−2s], which implies that Q̄[−2s]Ψε and εm2sΨε are regular. We have proven in
section 4.2 that neither m2s nor m2s−2 can be strictly smaller than the rest two values in the
tuple {m2s, m2s−1, m2s−2}. This implies that εm2s−2Ψε must also be regular, otherwise m2s−2
would have to be smaller than both m2s and m2s−1. Now εm2s−2Ψε being regular is equivalent
to Q̄[−2s+4]Ψε being regular, which in turn implies that S̄[−2s+1]

3 is regular.
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Similarly, we can prove that εm2s−3Ψε, . . . ,εm0Ψε are regular, which are equivalent to
Q̄[−2s+6]Ψε, . . . , Q̄[2s]Ψε being regular. These can be used to show that S4, . . . , S2s+1 are reg-
ular at all the potential poles. Therefore Tn with n< 2s are all polynomials.

Finally, let us make a remark. In fact, if T0/α is a polynomial, we have shown that εmkΨε
is regular for k = 0, 1, . . . , 2s. Therefore we obtain the upper bound of the summation over m
in Ψε. Namely, if we denote m=min{m0, m1, . . . , m2s}, we have

Ψε =
m−1
∑

m=0

 

s
∑

j=−(s−1)

a(m)j

!

(−1)m+1m!
εm+1

. (A.18)
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