SciPost logo

Describing hadronization via histories and observables for Monte-Carlo event reweighting

Christian Bierlich, Phil Ilten, Tony Menzo, Stephen Mrenna, Manuel Szewc, Michael K. Wilkinson, Ahmed Youssef, Jure Zupan

SciPost Phys. 18, 054 (2025) · published 17 February 2025

Abstract

We introduce a novel method for extracting a fragmentation model directly from experimental data without requiring an explicit parametric form, called Histories and Observables for Monte-Carlo Event Reweighting (HOMER), consisting of three steps: the training of a classifier between simulation and data, the inference of single fragmentation weights, and the calculation of the weight for the full hadronization chain. We illustrate the use of HOMER on a simplified hadronization problem, a $q\bar{q}$ string fragmenting into pions, and extract a modified Lund string fragmentation function $f(z)$. We then demonstrate the use of HOMER on three types of experimental data: (i) binned distributions of high-level observables, (ii) unbinned event-by-event distributions of these observables, and (iii) full particle cloud information. After demonstrating that $f(z)$ can be extracted from data (the inverse of hadronization), we also show that, at least in this limited setup, the fidelity of the extracted $f(z)$ suffers only limited loss when moving from (i) to (ii) to (iii). Public code is available at https://gitlab.com/uchep/mlhad.

Supplementary Information

External links to supplemental resources; opens in a new tab.


Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication