SciPost logo

Generalized toric polygons, T-branes, and 5d SCFTs

Antoine Bourget, Andrés Collinucci, Sakura Schäfer-Nameki

SciPost Phys. 18, 079 (2025) · published 4 March 2025

Abstract

5d Superconformal Field Theories (SCFTs) are intrinsically strongly-coupled UV fixed points, whose realization hinges on string theoretic methods: they can be constructed by compactifying M-theory on local Calabi-Yau threefold singularities or alternatively from the world-volume of 5-brane-webs in type IIB string theory. There is a correspondence between 5-brane-webs and toric Calabi-Yau threefolds, however this breaks down when multiple 5-branes are allowed to end on a single 7-brane. In this paper, we extend this connection and provide a geometric realization of brane configurations including 7-branes. A web with 7-branes defines a so-called generalized toric polygon (GTP), which corresponds to combinatorial data that is obtained by removing vertices along external edges of a toric polygon. We identify the geometries associated to GTPs as non-toric deformations of toric Calabi-Yau threefolds and provide a precise, algebraic description of the geometry, when 7-branes are introduced along a single edge. The key ingredients in our analysis are T-branes in a type IIA frame, which includes D6-branes. We show that performing Hanany-Witten moves for the 7-branes on the type IIB side corresponds to switching on semisimple vacuum expectation values on the worldvolume of D6-branes, which in turn uplifts to complex structure deformations of the Calabi-Yau geometries. We test the proposal by computing the crepant resolutions of the deformed geometries, thereby checking consistency with the expected properties of the SCFTs.

Cited by 1

Crossref Cited-by

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication