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Abstract

We discuss several classes of integrable Floquet systems, i.e. systems which do not ex-
hibit chaotic behavior even under a time dependent perturbation. The first class is associ-
ated with finite-dimensional Lie groups and infinite-dimensional generalization thereof.
The second class is related to the row transfer matrices of the 2D statistical mechanics
models. The third class of models, called here "boost models", is constructed as a peri-
odic interchange of two Hamiltonians - one is the integrable lattice model Hamiltonian,
while the second is the boost operator. The latter for known cases coincides with the
entanglement Hamiltonian and is closely related to the corner transfer matrix of the
corresponding 2D statistical models. We present several explicit examples. As an inter-
esting application of the boost models we discuss a possibility of generating periodically
oscillating states with the period different from that of the driving field. In particular,
one can realize an oscillating state by performing a static quench to a boost operator.
We term this state a “Quantum Boost Clock”. All analyzed setups can be readily realized
experimentally, for example in cold atoms.
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1 General Introduction

In classical systems integrability is a well defined concept [1]. A system with 2N degrees of
freedom is called integrable if there exist N independent functions, which have a vanishing
Poisson bracket with the Hamiltonian. In this sense even trivial Floquet systems containing
only two degrees of freedom like a Kapitza pendulum are nonintegrable because periodic driv-
ing eliminates energy conservation. Nevertheless stable classical Floquet systems are ubiqui-
tous in nature and cover the whole range of scales from living species to planet and galactic
systems. Absence of chaos in these systems guarantees long-term stability of structures around
us. Classical Kolmogorov-Arnold-Moser theory and its ramifications provide rigorous tools for
estimating required conditions for chaos to set up in perturbed classically integrable system.
This theory shows that time-periodic perturbations only weakly affect the system thus preserv-
ing its stability for a long time. This stability can be associated with emergent approximate
(Floquet) energy conservation law, where despite driving the stroboscopic dynamics of these
systems is described by an effective (Floquet) Hamiltonian [2,3].

In quantum systems the very definition of integrability is not uniquely formulated [4]. In
extensive translationally invariant systems an accepted definition of integrability is based on
existence of local or quasi-local integrals of motion e.g. defining the generalized Gibbs ensem-
ble [5], [6]. In general the notion of quantum integrability is defined only as an asymptotic
statement typically either based on the classical or thermodynamic limit. Indeed an isolated
finite dimensional quantum system like two spin 1/2 degrees of freedom can not be deemed
integrable or nonintegrable because they form four discrete energy levels. It seems that in all
known examples quantum integrability can be defined exactly in the same way as the classical
integrability. Namely in the system with N degrees of freedom one can require existence of N
independent functions of canonical operators (like coordinates and momenta or creation and
annihilation operators), which commute with the Hamiltonian. In e.g. Ref. [7] it was shown
how these operators can be explicitly constructed in a broad class of integrable systems. An-
other accepted route to defining quantum integrable systems, especially when integrals of
motion are not a-priori known, is based on the Berry-Tabor conjecture (see Ref. [8] for the
review). According to this conjecture generic integrable systems have Poisson energy level
statistics as opposed to the nonintegrable systems, which have Wigner-Dyson random matrix
statistics. While there is no proof that the two definitions of integrability are identical1, practi-
cally the Berry-Tabor conjecture became a very powerful numerical tool in identifying quantum
integrable systems.

1Moreover it is very easy to construct quantum systems with the Poisson level statistics, which nevertheless
exhibit chaotic behavior in the classical limit.
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Extending the notion of quantum integrability to time dependent, in particular Floquet,
systems becomes even more tricky. One natural possibility is to require that there are integrals
of motion commuting with the Floquet operator, i.e. the evolution operator within one driv-
ing period or equivalently commuting with the Floquet Hamiltonian [2,3]. Despite this seems
like an obvious extension of normal equilibrium integrability, there is an important difference.
Namely in this way one immediately looses connection with the classical integrable systems
(see however [9], [10] for the counterexample when certain time-dependent integrable quan-
tum systems can be connected to some classical integrable systems). Indeed with exception of
trivial linear systems, like harmonic oscillators, the Floquet theorem for classical systems does
not exist. Nevertheless one can construct examples of Floquet integrable systems in the ther-
modynamic limit like various driven band models or spin chains, which can be mapped to free
particle systems [2,11–13]. The second approach based on the Berry-Tabor conjecture is also
possible to extend to Floquet systems by analyzing the statistics of the folded spectrum of the
Floquet operator with the integrable and non-integrable regimes corresponding to the Poisson
statistics and the statistics of the circular random matrix ensemble respectively [14–16]. Using
this criterion any Floquet system, which can be mapped to a static system via a local rotation
(e.g. a static system in the rotating frame) is integrable because its folded spectrum contains
infinitely many level crossings [17, 18]. The Floquet integrable systems defined in this way
do not heat up even at infinite times exhibiting localization in energy space [19–26], which in
many respects very similar to the localization in real space in disordered models.

Defining integrability through the Poisson level statistics or absence of heating might seem
universal, but there is a very important subtlety, which could make this definition different
from traditional ones based on existence of local conserved operators (see e.g. discussion in
Ref. [4] for non Floquet systems). The situation is very analogous to static integrable systems.
For example, many body localized (MBL) systems can be regarded as integrable from the point
of view of the level statistics and existence of quasi-local integrals of motion (see e.g. Ref. [27]
for review). However, the integrals of motion in these systems can not be explicitly written
as smooth analytic functions of the system size and other couplings unlike in integrable sys-
tems solvable by the Bethe ansatz. This is e.g. clear from the absence of the adiabatic limit
(or equivalently absence of continuous transformations between eigenstates) in MBL systems,
which immediately follows if we extend the arguments of Ref. [28] from Anderson insulators
to MBL systems. Likewise the Kapitza pendulum, which has a stable non-heating regime at
high driving frequencies, does not have differentiable smooth differentiable Floquet Hamilto-
nian and for this reason does not satisfy the adiabatic theorem [16, 18]. In particular, under
infinitesimally slow adiabatic transformations the Kapitza pendulum will heat up to infinite
temperature for any initial state [18]. Numerical studies confirm that same applies to inter-
acting systems even in the parameter regimes, where the level statistics is perfectly described
by the Poisson distribution [18]. So whether we discuss MBL systems or the Kapitza pendulum
we are dealing with KAM type systems, which are stable against small integrability breaking
perturbations in the statistical sense. Namely at given fixed parameters they have conserved
local operators with the probability close to one but at the same time these conserved oper-
ators have infinitely dense set of non-analyticities everywhere. From these considerations it
is very hard to formulate general conditions of integrability only based on the level statistics.
Here we will rather focus on a narrower but well defined class of transitionally invariant Flo-
quet integrable systems, where the integrals of motion can be found explicitly and which are
smooth analytic functions of the parameters.

In this work we define and analyze in detail three generic classes of Floquet integrable
systems in which one can define a local unfolded Floquet Hamiltonian. These systems by
construction do not heat up and possess various properties shared with standard non-driven
integrable systems. While these classes are definitely non-exhaustive (see e.g. Ref. [29]), they
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provide a clear pass of constructing such systems. The first class is associated with the Hamil-
tonians, which can be represented as a linear combination of finite-dimensional Lie groups
and their infinite-dimensional extensions. The other two, less obvious classes, are related to
integrable statistical mechanical models. In particular, the second class corresponds to the Flo-
quet operator realizing so called row transfer matrices and the third class, which we term“boost
models”, is associated with the corner transfer matrices. In boost models the Floquet Hamilto-
nian consists form the static part being a generic integrable Hamiltonian and time-dependent
part being a boost operator, which in turn is closely related to the entanglement Hamiltonian.
Although we focus on the Floquet systems, as it will become clear from our discussion, our
results extend to more generic, e.g. non-periodic driving protocols. As a particular example
we discuss emergence of oscillating state after a quench by a boost operator. We term this
state as a “Quantum Boost Clock”.

2 Floquet theory: setup

Let us briefly review some details about the Floquet theory and the high-frequency expansion,
which will be important in the subsequent discussion (see Refs. [2, 3] for more details). The
Floquet theorem says that under the influence of a time-periodic Hamiltonian with period T ,
the evolution operator from the initial time 0 to some time t, U(t, 0), can be represented in
the following form

U(t, 0) = P(t)exp(−i tHF ),

where P(t + T ) = P(t) is a unitary periodic operator and the second term exp(−i tHF ) effec-
tively represents the time evolution with respect to the time independent (Floquet) Hamilto-
nian HF . Note that in this form by construction P(nT ) = I, where n is an integer and I is the
identity operator. Therefore the stroboscopic evolution at discrete times equal to integer multi-
ples of the period T is described by the static Floquet Hamiltonian: U(t = nT ) = exp(−i tHF ).
In this paper we will mostly analyze Floquet protocols corresponding to periodic step-like
stroboscopic evolution. At the end we will comment on generalization of these results to
more generic protocols. Note that integrability and absence of thermalization for the strobo-
scopic evolution automatically means integrability at arbitrary times in between simply be-
cause within one period the system does not have time to destroy conservation laws. At a
more rigorous level the choice of the stroboscopic time is the gauge choice, which does not
affect the spectrum of the Floquet operator [3].

For the step like drive between Hamiltonians H1 of duration T1 and H2 for duration T2 the
Floquet Hamiltonian is defined as

exp(−iHF T ) = exp(−iH1T1)exp(−iH2T2), (1)

where T = T1 + T2. Generally, [H1, H2] 6= 0 which is the source of complexity. Here we try to
identify those cases when the effective Floquet operator (and therefore the evolution operator)
can be computed in a closed, yet possibly nontrivial form.

For our discussion of the effective Floquet Hamiltonian we will need one of the forms of
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Figure 1: Periodic quench between non-commuting Hamiltonians H1 and H2 acting for dura-
tions T1 and T2 respectively. The whole system is time periodic with period T = T1 + T2.

the Baker-Campbell-Hausdorff (BCH) formula, namely

Z = log(eX eY ) = X + Y (2)

+
1
2
[X , Y ] +

1
12
([X , [X , Y ]] + [Y, [Y, X ]])

−
1

24
[Y, [X , [X , Y ]]]

−
1

720
([Y, [Y, [Y, [Y, X ]]]] + [X , [X , [X , [X , Y ]]]])

+
1

360
([X , [Y, [Y, [Y, X ]]]] + [Y, [X , [X , [X , Y ]]]])

+
1

120
([Y, [X , [Y, [X , Y ]]]] + [X , [Y, [X , [Y, X ]]]]) + . . . ,

where we identify X ≡ −iH1T1, Y = −iH2T2 and Z = −iHF T . From this general formula it
becomes clear that some internal structure of nested commutators must exist in order to be
able to evaluate it in the closed form. Integrability of HF in this paper will be understood as
existence of enough conserved integrals of motion to be able to diagonalize it.

In this paper we reveal several classes of integrable Floquet many-body quantum systems.
The first class is formed by the models whose Hamiltonians are linear combinations of the
generators of (in principle) arbitrary Lie algebras. For this class of Hamiltonians there is no
distinction between quantum and classical dynamics, both of which map to a closed system
of linear differential equations [31–35]. These generators can be always represented by the
linear and bilinear forms of the creation-annihilation operators, for example using the bosons
or fermions (see the second part of the book [31] and Ref. [36] for applications). The essential
property of the Lie algebra formed by generators {Jk} is existence of the bilinear product
(commutator) which maps bilinear combinations to the linear one. One can generalize this by
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considering the following structures for some operators {Jk j
}

[Jk1
, [Jk2

, . . . [Jkn−1
, Jkn
] . . .] =

∑

k

ck
k1,k2,...,kn

Jk, (3)

where we have n− 1 nested commutators on the left and ck
k1,...kn

are the structure constants.
In case when they vanish for certain n the algebra is called nilpotent of order n. The case of
n = 2 defines the Lie algebra, while n > 2 would define more complicated algebraic struc-
tures. For finite n one can regard the operators that are coming out of n− 1 commutators as
additional elements of the algebra. Then if the Hamiltonian can be represented as a linear
combination of these operators, the BCH expansion is going to produce some closed result.
When n= 3 one can find, for example, a realization of the algebra in terms of bosons (bp, b†

p)
where p = 1, . . . , m and a Clifford algebra defined by the r-dimensional matrix representa-
tion Γµ and satisfying the relations {Γµ, Γ ν} = 2δµν where µ,ν = 1, . . . r. Indeed, defining
Jµ =

∑m
p,q=1(Γ

µ)pq b†
p bq one can show that they satisfy the following condition

[Jµ, [Jν, Jλ]] = 4Jλδµν − 4Jνδµλ, (4)

We will not consider physical realizations of this mathematical structure here, which might be
useful for some parafermion models. The Lie algebras can also be infinite-dimensional, like
e.g. Kac-Moody, Virasoro or W∞ algebras [37]. In this work we will briefly discuss only one
particular representative of these infinite-dimensional families, namely the Onsager algebra
realized in the case of n= 4 and which is relevant for the transverse field Ising model.

The second class of the integrable models we consider here is realized by the non-commu-
ting operators V = exp(αX ) and W = exp(βY ) for some X and Y , such that they correspond
to addition of rows of horizontal and vertical edges in integrable classical 2D (square) lat-
tice models. By standard quantum-classical correspondence this class of Floquet systems can
be identified with 1D quantum integrable lattice models after the analytic continuation of
α = −iT1 and β = −iT2 to the complex plane. In the Floquet language these models corre-
spond to switching between the Hamiltonians realizing the transfer matrices (see Fig. 1).

In the theory of classical integrable lattice models two types of the transfer matrices are
known: row-to row transfer matrices related to the second class and the corner transfer ma-
trices. So, the third class of models we consider here is related to the corner transfer matrices
and is defined in terms of the so-called boost operators. While it does not generate a closed
BCH series, it generates new integrals of motion at every step of the BCH iteration. So in these
systems the Floquet Hamiltonians can be represented as a weighted sum of the boost operator
and all integrals of motion. We note on passing that for the lattice models we mention in this
context the boost operator is equivalent to the entanglement Hamiltonian. It is interesting that
the construction similar to the one which underlies our boost models has recently appeared in
a totally different context of quenches [38]. There after a quench (of arbitrary non-integrable
Hamiltonian) the wave function at all times can follow the ground state of a certain local
time-dependent Hamiltonian. The latter is obtained by applying the BCH series to the original
Hamiltonian2.

We note that these classes likely do not exhaust all possible Floquet integrable systems.
In particular we think that at least some of the known discrete integrable systems, discovered
and studied in the past [39] could be related to some physically-relevant Floquet integrable
systems. These classes of integrable protocols can be realized in different physical settings.
This can be clearly visualized with the Lie-algebraic models and with the Ising-related models
as we will discuss below. As such protocols avoid heating effects they can be very useful for
digital quantum simulations [40] by allowing one to use relatively large Trotter steps.

2We were not aware of this work before our paper was essentially completed.
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Finally let us note that as with any other driven systems the physics can strongly depend on
initial conditions, which can be also integrable or non-integrable. The formalism of integrable
boundaries in integrable models has been introduced by Sklyanin [41] for the lattice models
and extended by Ghoshal and Zamolodchikov [42] for the field-theoretic integrable models
(like e.g. the sine-Gordon model). In the context of Conformal Field Theory these states are
called Ishibashi states, and their special linear combinations are the Cardy states and repre-
sent the subject of the Boundary Conformal Field Theory, see e.g. [43] In string theory they
correspond to the D-branes. In the studies of quench dynamics of integrable models these
states become initial states [44] - in this case the time evolution can be analyzed explicitly. In
the context of integrable lattice Statistical Mechanics models these special states are also well
known - in particular, the six-vertex model with the domain wall boundary condition is also
integrable [45]. In this latter context these states correspond to the integrable initial states
for our second class of integrable Floquet models discussed below. Nonintegrable initial con-
ditions of course will not cause heating in integrable Floquet systems, but generally will make
their time evolution analytically intractable.

The paper is organized as follows. First we discuss a class of Lie-algebraic models of Flo-
quet dynamics and provide an algebraic classification of different Floquet systems which is
complementary to existing topological (cohomological) classification therein. Next we dis-
cuss the second class of the models related to the row-to-row transfer matrices of classical
integrable lattice models. Finally we introduce a third class of models, related to the corner
transfer matrices.

3 Lie-algebraic integrable Floquet Hamiltonians

3.1 Finite-dimensional Lie-algebraic Hamiltonians: dynamical symmetry ap-
proach

One (almost obvious) class of physical models where the BCH expansion can be summed up
and which allows for computing a time-ordered exponent is a class of Hamiltonians which can
be represented as a linear combinations of generators of some finite-dimensional Lie algebra
g,

HLie =
N
∑

k=1

ak(t)Jk, [Jk, Jl] = f p
kl Jp. (5)

Here the structure constants f p
kl (k, l, p = 1, . . . N) define the N -dimensional Lie algebra (pos-

sibly non-compact). Physically relevant examples of Lie-algebraic Hamiltonians are spin in
arbitrary time-dependent magnetic field, quadratic fermionic and bosonic models (with finite
number of different modes) with time-dependent couplings. In particular, non-interacting
topological insulators obviously belong to this class of models. Also obviously all driven finite-
dimensional quantum systems belong to this class. E.g. any Hermitian N × N matrix can be
spanned by the generators of SU(N) group and the identity. In order to distinguish integrable
and non-integrable finite systems one has to require that N is much smaller than the size of
the Hilbert space, which typically scales exponentially with the number of degrees of freedom
(system size). Therefore if N scales linearly (polynomially) with the system size we would still
term the corresponding system integrable.

We can assume that the functions ak(t) are time periodic:

ak(t + T ) = ak(t). (6)
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If the Hamiltonians H1 and H2 belong to the same algebra, the evolution exponents for in-
finitesimal time steps belong to the corresponding Lie group and so their arbitrary product is
also some element of the group. This implies that time-ordered exponent for arbitrary time-
dependent coefficients is some element of the group,

U(t) = T exp

�

−i

∫ t

0

dτHLie(τ)

�

=
N
∏

k=1

exp(−iαk(t)Jk) = exp

�

−i
∑

k

Φk(t)Jk

�

. (7)

Here the set of functions αk(t) and Φk are related to functions ak(t) via solution of the Maurer-
Cartan differential equations [34]. They can be directly obtained by substituting the ansatz
above to the Schrödinger equation:

iU−1(t)∂t U(t) = HLie(t). (8)

In practice one can always compute the disentangling functions αk(t) for the low-N dimen-
sional Lie groups [46], while the functions Φk(t) defining the Floquet Hamiltonian

HF =
1
T

∑

k

Φk(T )Jk

are rigorously speaking defined only close to the group identity. We note that the procedure
of disentanglement of the time-ordered exponent can be traced back to Feynman, see [47].

The operator U(t) realizes unitary representation of the group G whose algebra is g. Ele-
ments of the group act by adjoint action on the elements of the algebra g,

U(g)JkU(g−1) =
∑

p

Skp(g)Jp (9)

for some function Skp(g), which depends on particular representation and group element g.
By the right choice of g and therefore of Skp(g), one can transform the Hamiltonian HF into
some special form. This special form of H is defined in such a way that the Hamiltonian can
be written as a linear combination of generators (let’s call them Rp), H̃ =

∑k
p=1 rpRp which

commute with the Hamiltonian and among themselves. These commuting set of elements
Rp, in the language of group theory, are called elements of the conjugacy classes of different
maximal Abelian subalgebras3. The number k here could be different from the algebra’s rank.
There are several classes of these maximal abelian subalgebras [48], [49]. A very important
sub-class is given by the Cartan subalgebras. In case of the compact or complex groups all
Cartan subalgebras (subgroups) are conjugate (that is can be connected by a transformation
from the group), and so there is only one Cartan subalgebra. In this case the Hamiltonian can
be uniquely diagonalized. It is, however, known to be not true in general [50]. In fact different
classes of conjugate Cartan subgroups are related to different series of unitary representations.
For the real forms of Lie algebras the number of different Cartan subalgebras is not unique.
The number of conjugacy classes of Cartan subalgebras is finite for finite dimension N . Its
characterization for classical algebras of A− B − C − D (as well as for exceptional) types is
given in [51], [52] and summarized in Appendix (see Table 1) (exceptional algebras are not
included there). In practice it implies that depending on the form of coefficients ak(t) adjoint
action of the group elements can bring H to a different Cartan subalgebras. Therefore spectra
of different Floquet systems are in correspondence with different Cartan subalgebras.

Second important class of maximal abelian subalgebras are nilpotent abelian subalgebras.
They generate nilpotent orbits in the group G which have rich topological properties and can
be classified by partitions of N for the complex and real cases [53].

3An Abelian subalgebra m of a Lie algebra g is a maximal Abelian subalgebra if it is equal to its own centralizer
in g: [m, m] = 0, and centg m= m where centg m= {x ∈ g|[x , y] = 0,∀y ∈ m}.
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3.2 Example: Mathieu harmonic oscillator

Let us illustrate these general statements on a simple, yet rich example. Following [54]
we consider the harmonic oscillator H = 1

2(p
2 + ω2(t)x2) with time-dependent frequency

ω2(t) = ω2
0(1 + h cosωt), with −1 < h < 1. This problem can be solved by elementary

methods but we will use it to illustrate the classification scheme. This Hamiltonian is a linear
combination of the generators of the non-compact SU(1,1) algebra spanned by three genera-
tors: J1 =

1
4(p

2/ω0 −ω0 x2), J2 =
1
4(x p+ px), J0 =

1
4(p

2/ω0 +ω0 x2). The Casimir operator
is defined by the indefinite form J2

0 − J2
1 − J2

2 . As noted above, the solutions for the disentan-
glement functions α(t) can be obtained in terms of the solutions of the classical equation of
motion (non-compact analogue of the Bloch equation), ξ̈(t)+ω2(t)ξ(t) = 0 coming from the
Eq. (8), see Refs. [33] and [34] for more details. The evolution operator over a period T (the
monodromy matrix) according to Eq. (7) can be represented as U(T ) = exp (−iΦ · J)), where
Φ≡ Φ(T ). The relationship between components of Φ= Φn and the two linearly independent
solutions (ξ1(t),ξ2(t)) of the classical equation for ξ(t) = C1ξ1(t) + C2ξ2(t), where C1,2 are
defined by the initial conditions (e.g. U(0) = 1) can be most easily obtained as follows. The
form of the defining equations for ξ and for n do not depend on representation. Therefore
one can take the lowest possible one, defined by the Pauli matrices, J0 =

σ3
2 , J1,2 =

iσ1,2
2 and

compare the "spinor" form for the evolution of (ξ(t), ξ̇(t))T from the initial conditions. This
leads to [54]4

n0 =
1
|∆|
(ξ̇1ξ̇2 + ξ1ξ2),

n1 =
1
|∆|
(ξ̇1ξ̇2 − ξ1ξ2),

n2 =
1
|∆|
(ξ1ξ̇2 + ξ̇1ξ2), (10)

where ∆ = ξ1ξ̇2 − ξ̇1ξ2 is the Wronskian which is time independent, and the vector n is
normalized as n2 = −sign(∆2) while Φ = 2Tε

p
n2. Here the Floquet eigenenergy ε is given

by

εν = ν
∆

2T

∫ T

0

d t
|ξ|2

, (11)

where ν is a representation index defined as follows. The group su(1, 1) is non-compact - it is
defined as group of transformations which preserve the bilinear form n2 = n2

0 − n2
1 − n2

2 and
therefore there are three cases depending on the sign of n2. Indeed, the non-compactness
of su(1, 1) implies that the phase space is foliated into three geometrically different situa-
tions: the two-sheet hyperboloid, one-sheet hyperboloid and the cone (see e.g. [31], Chapter
5). This corresponds to three different situations for n2: positive, negative, or zero. The
solutions of the equation for ξ could be either complex (for stable region corresponding to
n2 = 1) when however ξ∗1 = ξ2 or real (for the regions of unstable motion, n2 = −1 or
n2 = 0). The first case of positive n2 corresponds to the discrete series of the su(1,1) repre-
sentation. Then ν = 1

2(n+
1
2), n = 0,1, 2, . . . and the Floquet Hamiltonian HF can be put to

the form proportional to J0 by the adjoint action of Eq. (9) which has, in this case, the form
U(g(1)) = exp(−iα(1)0 (t)J0)exp(−iα(1)2 (t)J2). This is familiar bounded harmonic oscillator cor-
responding to the stable motion. In the second possible case n2 = −1 the Floquet spectrum
εν is a set of continuous real numbers, −∞< εν <∞. This corresponds to the unstable mo-
tion. The operator n · J) can be transformed to the form proportional to the generator J1. In

4Note small inconsistency in Eq. 38 of [54]. It is fixed here.
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Figure 2: Stable (filled) and unstable (white) regions of parameter space of the Mathieu har-
monic oscillator. Here h̄ = −2ω2

0h/ω2. This picture represent three orbits of the su(1, 1)
action: the stable region is the orbit of the J0 Cartan subalgebra while the unstable one is
the orbit of J2 (which can also be represented by J1. The boundary between stability and
instability region correspond to the nilpotent subalgebra.

this case, the adjoint action U(g(2)) = exp(−iα(2)0 (t)J0)exp(−iα(2)2 (t)J2). Finally, in the third
possible case, when n2 = 0 the operator n · J can be transformed to the form J0 + J1 = p2/2ω
by the adjoint action of U(g(3)) = exp(−iα(3)0 (t)J0). The operator p2/2ω0 has a continuous
spectrum 0 ≤ εν < ∞ and corresponds to the boundary between the stable and unstable
regions. The whole picture is illustrated on Fig. (2), where the regions of unstable motion
(white areas) penetrate into the stable regions (filled). We note that this stability diagram
has been recently confirmed experimentally in Ref. [55] with an extremely high accuracy. If
we consider 2× 2 matrix representation of the su(1,1) algebra one can connect those special
forms mentioned above with Cartan and nilpotent subalgebras. The domain of stable motion
correspond to the Cartan subalgebra generated by J0 while the unstable motion correspond
to the Cartan subalgebra generated by iσ. The stability boundary correspond to the nilpotent
subalgebra generated by σ+. If we were to use the language of symplectic group we would
have to multiply the Hamiltonian by the matrix J of the symplectic form H →J H. Then the
stable region correspond to the elliptic block

�

cos(2Tεn) sin(2Tεn)
− sin(2Tεn) cos(2Tεn)

�

, (12)

while the unstable region correspond to the hyperbolic block Finally, parabolic blocks are ob-
tained by considering nilpotent subalgebras and correspond to the boundary between stable
and unstable motions. For more information about Floquet analysis in terms of sumplectic
block we refer to [56] (in particular see Sec. E. 2.2). Approach, similar to ours is developed
in [48].

The main message of the example above is the following. Depending on the position in the
phase diagram of Fig. (2) we can, by applying a suitable similarity transformation, diagonalize
our Floquet Hamiltonian to one of the three types of the matrices considered above - elliptic,
hyperbolic or parabolic. These matrices can not be continuously connected by the transforma-
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tion from the su(1, 1) - they correspond to different equivalence classes. This can be visualized
geometrically: the su(1, 1) consist of two regions (corresponding to stable and unstable mo-
tions) disconnected by the light cone (boundary situation). This example illustrates a general
scheme for an arbitrary number of bosonic degrees of freedom when the Hamiltonian has a
quadratic form. We note that the su(1,1) is isomorphic to the sp(2, R). For several (say M)
bosonic degrees of freedom one can extend the above analysis of equivalence classes for the
group Sp(2M , R). This has been done in [50], [52] and summarized in the Appendix A (see
also [48] for M = 1, 2,3). According to the Table 1 there are (M + 2)2/4 different Cartan
subalgebras in the case of even M and (M + 1)(M + 3)/4 in the case of n odd. Our simplest
example above has two non-equivalent Cartan subalgebras corresponding to the elliptic and
hyperbolic blocks respectively.

3.3 Infinite-dimensional algebras

3.3.1 Self-dual systems and Onsager algebra

If the rank of the algebra is infinite and the algebra is not nilpotent, such that infinite number of
commutators survive the BCH expansion (2) then in general the Floquet Hamiltonian can not
be found in the closed form. However, there is a special class of infinite-dimensional algebras,
where the integrability can still be established. This happens when the commutators have a
certain recursive structure. In particular, this is the case for Onsager algebra [57] which is an
underlying algebraic structure of the 2D Ising model. The "seeds" of the Onsager algebra is
given by two operators

A0 =
L
∑

n=1

σx
n , A1 =

L
∑

n=1

σz
nσ

z
n+1, (13)

which generate an infinite dimensional algebra spanned by the basis {Am, Gm}, n ∈ Z

[Al , Am] = 4Gl−m, l ≥ m

[Gl , Jm] = 2Jm+l − 2Jm−l ,

[Gl , Gm] = 0. (14)

Note that G−m = −Gm.
In a remarkable paper [58] it was shown that the algebraic relations of the form

[A0, [A0, [A0, A1]]] = 16[A0, A1],

[A1, [A1, [A1, A0]]] = 16[A1, A0], (15)

and those which follow from them, supply sufficient conditions for demonstrating integrability
of the self-dual Hamiltonian H = α0A0 + γA1 (with real α, β) such that there is a linear map˜
(duality relation) which connects A0 and A1: A1 = Ã0 such that A0 =

˜̃A0. Relations (15) and
duality map provide sufficient condition to systematically construct an infinite number (for
infinite system) of conserved charges Qm. In particular, the transverse field Ising Hamiltonian

H = A0 + γA1 (16)

belongs to the family of conserved charges

Qm = Am + A−m + γ(Am+1 + A1−m). (17)

Moreover in Ref. [59] it was shown that the relations (15) and the closure relations (e.g. spec-
ification of the boundary conditions) are enough to determine the form of the spectrum. We
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note that all these constructions work for any type of the dual system (discrete or continuous)
and in arbitrary number of dimensions.

There are two possible extensions of this self-dual model. One is related to the sl(N) gen-
eralization of Onsager algebra [60] (a traditional Onsager algebra discussed above is related
to the sl(2) loop algebra, see [57]). In this case one can construct spatially inhomogeneous
Floquet models of higher symmetry. A second extension is related to the ZN generalization of
the Ising model (Ising model is a Z2 model), a so-called chiral Potts model [61]. The latter is
defined in terms of the generators Xn, Zn, where n = 1, . . . , L, which satisfy X N

n = 1, ZN
n = 1,

ZnXn =ωXnZn where ω= exp(2πi/N). In this case the Hamiltonian

H(N) = H(N)0 + hH(N)1 , (18)

H0 =
L
∑

n=1

N−1
∑

m=1

(1−ω−m)−1X m
n , (19)

H1 =
L
∑

n=1

N−1
∑

m=1

(1−ω−m)−1Zm
n ZN−m

n+1 . (20)

The generators of the Dolan-Grady relations (15) in this case are given by A0 = 4N−1H0 and
A1 = 4N−1H1, where H0,1 are defined in (18). This model has potential relevance to the
parafermions in 1D [62].

3.3.2 Onsager algebra and the transfer matrix

To make contact with the next Section we point out a connection between Onsager algebra
and the traditional transfer matrix approach for statistical system. Namely, while the transfer
matrix of the Ising model

T (β1,β2) = exp(β1A0)exp(β2A1) (21)

does not commute with the integrals Qm’s defined in (17), one can easily find a different set
of integrals Im which do commute with T (β1,β2). These integrals are combinations of ele-
ments of the Onsager algebra and can be determined by considering commutativity condition
[T (β1,β2), Im] = 0. If we rewrite this condition in the form of eβ2A1 Ime−βA1 = e−β1A0 Imeβ1A0 ,
then assuming certain expansion for Im =

∑

p apAp + gpGp one can use the BCH formula to
determine the coefficients ap and gp in terms of β1,2. Since the operators Am and Gm involve
m+ 1 consecutive spins on the lattice we write here only the lowest order in m result,

I0 = A
∑

n

σx
nσ

x
n+1 + B

∑

n

σz
n (22)

+ C
∑

n

(σx
nσ

y
n+1 +σ

y
nσ

x
n−1) (23)

A= cos(2J T1) sin(2hT2), (24)

B = sin(2J T1) cos(2hT2), (25)

C = sin(2J T1) sin(2hT2). (26)

This Hamiltonian, since it commutes with the log(exp(β1A0)exp(β2A1)) has the same system
of eigenstates as the Floquet Hamiltonian. Note that the complete Floquet Hamiltonian in-
volves infinite number of commuting integrals of motion. The explicit form of these conserved
charges was obtained in [63], [64]. However, since the Floquet Hamiltonian commutes with
the Ising transfer matrix, it shares the same structure of the phase diagram and the same
critical indexes at the phase transition line. We note that one can locate the phase transition
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by self-duality. We mention that recently, periodically driven Ising-type chains have attracted
a lot of attention as a viable platform for dynamical generating of critical and topological
states [65], [66].

Comparing (21) with (1) it becomes clear that the Floquet Hamiltonian HF (T ) is related
to the log of the Ising model transfer matrix with analytically continued parameters β1 and
β2,

HF ∼ logT (β1,β2), (27)

β1,2 = −iT1,2, (28)

where T1,2 are the driving periods (see Fig. (1) and Eq. (1)). The eigenvalues Λ of the Ising
transfer matrix are known for the finite-dimensional case [59]. From that the eigenvalues of
HF are obtained by analytic continuation. These observations lead us next to consider the
models related to the transfer matrices of integrable models.

4 Models related to solvable statistical mechanics

Here we focus on two more non-trivial classes of models. They are related to fundamental
objects in statistical mechanics - transfer matrices. In the theory of 2D exactly solvable models
of lattice statistical physics [67] Baxter defined two types of the transfer matrices: (i) the row
transfer matrix (RTM), denoted as TR(λ), and the (ii) corner transfer matrix (CTM), denoted
as TC(λ). The latter, in particular, is extremely useful in computing a one-point function of
local spin variables of 2D lattice models. First we remind construction of integrable models
and corresponding transfer matrices and then apply them to Floquet systems.

4.1 Row and corner transfer matrices

By the quantum-classical correspondence 1D integrable quantum chain models are equivalent
to the 2D integrable lattice classical statistical systems, see e.g [68]. Let us briefly summarize
some key notions of quantum integrable systems, which will become important later. By saying
that the Hamiltonian Hint is integrable we mean that this Hamiltonian can be derived from
the transfer matrix TR(λ), which is a product of local Lax operators L j(λ) defined at every

lattice site j: TR(λ) =
∏N

j=1 L j(λ), where N is the system size. Here λ is a complex parameter
called rapidity. Typically, the Lax operator can be defined as a matrix with operator-valued
entries which satisfy a certain algebra. In the simplest case of the XXZ spin-1/2 chain the
Lax operator is a 2× 2 matrix with entries which belong to the spin-1/2 representation, e.g.
L(12)

j ∼ σ−j , L(21)
j ∼ σ+j while the diagonal elements are the functions of σz [69]. The size

of the Lax matrix defines dimension of the auxiliary space d. Therefore TR(λ) can be viewed
as a d × d matrix with operator entries, which in turn are complicated functions of the spin
operators of the whole lattice. The Yang-Baxter integrability structure is fixed by the structure
of the so-called R-matrix R1,2(λ,µ) which intertwines two copies of TR(λ) operators (indexes
1, 2 refer to two quantum spaces), R1,2(λ,µ)TR(λ)TR(µ) = TR(µ)TR(λ)R1,2(λ,µ). Moreover,
the R matrix satisfies the famous Yang-Baxter equation

R1,2(λ,µ)R1,3(λ,ν)R2,3(µ,ν) = R2,3(µ,ν)R1,3(λ,ν)R1,2(λ,µ), (29)

which is a consequence of the consistency of the RT T = T TR relation above. Another conse-
quence of the latter is that the traces of the transfer matrices over the auxiliary space

τ(λ) = TraTR(λ), (30)
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where Tra, a = 1, . . . d, denotes trace over the auxiliary space, commute for different values of
the spectral parameters λ,µ, [τ(λ),τ(µ)] = 0. This commutativity and therefore existence of
the R-matrix ensures that there is a set of N commuting conserved operators Qn, n = 0, . . . N
such that the local physical Hamiltonian Hint is usually chosen to be Q1, while Q0 is identified
with total momentum. Here the label n corresponds to the n-th derivative of the logarithm of
the transfer matrix with respect to λ. These integrals are local (i.e. have a local support on a
lattice) and are mutually commuting because matrices τ commute at different λ, namely

logτ(λ)∼
∑

n=1

λn

n!
Qn. (31)

Another property which follows from integrability is the existence of the so-called boost oper-
ator B which we are going to discuss now.

In a 1D quantum formulation of the 2D statistical model, the RTM is nothing but the
transfer matrix TR(λ) introduced above, which satisfies the Yang-Baxter equation, while the
CTM TC(λ) is acting on TR(λ) by a shift of the spectral parameter as follows

τ(λ+µ) = T −1
C (µ)τ(λ)TC(µ). (32)

The CTM can be shown to satisfy a group property, TC(µ)TC(λ) = TC(µ+ λ). This allows to
write CTM as

TC(λ) = exp(−λB), (33)

where B is called the boost operator. In a sense it plays the role of the CTM Hamiltonian,

B ≡ HC T M . (34)

In terms of B, Eq. (32) takes a differential form

[B,τ(λ)] =
∂

∂ λ
τ(λ). (35)

For the lattice models, substituting expansion (31), we observe that application of the boost
operator generate new conserved quantities from the old ones [70]

[B,Qn] = iQn+1. (36)

(we assume that all Qn’s are Hermitian). The CTM plays crucial role in relating six vertex
model (quantum XXZ model) with quantum affine algebras [71–74]. This connection implies
that the spectrum of the CTM defined on half of the 1D chain belongs to a representation of the
quantum algebra Uq( ˆsl2). Moreover, it was suggested in [75] that the eigenstates of B on the
whole chain are given by the Fourier transform of the Bethe eigenstates. The eigenvalues of
the boost operator are parametrized by integer numbers j = 0, 1, . . . with the zero eigenvalue
corresponding to the ground state and a single parameter ε, which is a function of the model’s
parameters. This, in particular implies that TC(2πi/ε) is an identity so τ(λ+ 2πi/ε) = τ(λ).
While the proof of this statement is not known to us for the general case of XXZ, it is supported
by numerical computations in the Ising and XXZ cases [76,77] and by the Baxter’s conjecture
[67] that there is an intertwining operator I , which transforms the spectrum of CTM into the
one for the Ising model. Summarizing these, the spectrum of the boost operators is of the Ising
type [78]

HC T M =
∞
∑

j=0

ε jn j , (37)
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where n j = 0, 1,2 . . . is an integer and

ε j =

�

(2 j + 1)ε for γ < 1
2 jε for γ > 1.

(38)

Here γ is defined in Eq. (16). For the transverse field Ising model

ε= π
K(
p

1− k2)
K(k)

, k =min[γ,γ−1], (39)

where K(k) is the complete elliptic integral of the first kind. For the anisotropic (XXZ) Heisen-
berg model (considered below) the spectrum has the same form with

ε j = 2 jε, ε= arccosh∆, (40)

where the anisotropy parameter is∆> 1. It is interesting to note that the lattice version of the
Virasoro algebra is constructed using the boost operator with B ∼ L0 [79, 80] . While as we
mentioned we are not aware of a general proof that the spectrum of the Boost operator always
has a linear dispersion (37), there are no counterexamples showing otherwise. Therefore we
will use this assumption to make some general statements about Floquet boost models below.
Note also, that some spin chains at criticality may have a quadratic spectrum as well [81].

If we represent our integrable lattice Hamiltonian Hint ≡Q2 in terms of the local densities
hi j as Hint =

∑

j h j, j+1 the generic form of the boost operator is then [70]

B =
∑

j

jh j, j+1. (41)

In general (for example in the presence of magnetic field) the above expression should be
modified by a local term:

∑

j h′j , with some local h′. Since [Qn,Qm] = 0, ∀m, n one can in
principle consider a "Hamiltonian"

He f f =
∞
∑

n=2

anQn + bB (42)

for some parameters an and b. We will show below that this is a generic form of the Floquet
Hamiltonian for this class of models.

In the continuum (field theory) limit the boost B, the Hamiltonian H and the momentum
P operators form a Poincare algebra [82], [83],

[H, P] = 0, [B, P] = iH, [B, H] = iP. (43)

It is interesting that the continuum limit from the lattice conserved charges goes as follows:
Q2k ∼ H while Q2k+1 ∼ P for any integer k.

The boost operator plays an important role in computing the entanglement entropy in
recent studies of this object in field theory [84,85]. In fact the Hamiltonian HC T M = B is iden-
tified with the entanglement Hamiltonian [86]. The same interpretation applies to the lattice
models where it has been used for DMRG-based studies of entanglement [78, 87–89]. Note
that the relation between the entanglement Hamiltonian and corner Hamiltonian in critical
spin chains has been intensively studied recently [90] for a broad class of SU(N) symmetric
spin chains.
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4.2 Floquet models related to the row transfer matrix

The driven Ising model from the previous section is a particular example of much more general
class of models. In fact, transfer matrices T of majority (if not all) classical two-dimensional
solvable statistical mechanical models can be represented in the following form (see chapters
6 and 7.2 in Ref. [67] and also Ref. [91]):

TR = VW VW . . . VW
︸ ︷︷ ︸

M

, (44)

where V is the transfer matrix which adds a row of horizontal edges to the square lattice and
W adds a row of vertical edges to the same lattice. There are M products of VW in (44). Each
of the matrices V and W have the following structure,

V = X1X3X5 . . . X2N−1,

W = X2X4X6 . . . X2N , (45)

where N is even. This construction applies, in particular to the square lattice model of M rows
and N/2 columns, where X2 j−1 is a local transfer matrix that adds to the lattice a vertical edge
in column j while X2 j is a matrix which adds a horizontal edge between columns j and j + 1.
For the lattice models for which local variables take q values (e.g. q = 2 for the Ising model),
these matrices are of dimension qN/2. It is assumed here that matrices X j ≡ X j(x) are the
functions of some parameters x related to the Boltzmann weights of the model.

The key property of matrices X j(x) is that they satisfy the Yang-Baxter equation, see
Ref. [91] and also Chapter 12.4 in Ref. [67],

X j(x)X j+1(x
′)X j(x

′′) = X j+1(x
′′)X j(x

′)X j+1(x) (46)

where X j(x) can be identified with P R12(λ−µ) from the algebraic Bethe ansatz introduction
to this section, where P is the permutation operator acting between two (quantum) spaces.
This ensures integrability of the lattice statistical model.

For a broad class of models the operators X j ’s can be chosen in the following form, see
Ref. [91] (up to an overall multiplication factor),

X2 j−1 = 1+ x1U2 j−1, X2 j = 1+ x2U2 j , (47)

where x1,2 are two independent parameters. Here the matrices U j satisfy so-called Temperley-
Lieb algebra,

U2
j =QU j ,

U jU j+1U j = U j ,

U jUk = UkU j , | j − k| ≥ 2 (48)

where Q is a number (we assume it to be real here). Because of this algebra the matrices V
and W can be put into exponential forms,

V = exp [α(U1 + U3 + U5 + . . .+ U2n−1)] ,

W = exp
�

β(U2 + U4 + U6 + . . .+ U2n)
�

, (49)

such that
x1 =Q−1[exp(αQ)− 1], x2 =Q−1[exp(βQ)− 1]. (50)
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Representation theory of the Temperley-Lieb algebra is well developed. We mention here
a few interesting cases. For the lowest-dimensional representations in terms of the Pauli ma-
trices two cases are known. Defining Q = q + q−1 we have for q = exp(iπ/4) the Ising-like
representation,

U (I)2 j =
1
p

2

�

1+σz
jσ

z
j+1

�

, (51)

U (I)2 j−1 =
1
p

2

�

1+σx
j

�

. (52)

The second one is related to the X X Z model and is given by

U (X X Z)
j = −

1
2

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + cos(η)(σz

jσ
z
j+1 − 1) + i sin(η)(σz

j −σ
z
j+1)

�

, (53)

where q = exp(iη). As we are focusing on Hamiltonian Floquet systems the operators U j
should be Hermitian ensuring that the evolution operators V and W are unitary. Thus we
have to assume that the parameter η is purely imaginary, η = iκ. If we set η = 0 (note
that another possible choice of η = π results in an equivalent model) we obtain the isotropic
Heisenberg form for the Temperley-Lieb generators U ’s

U (X X X )
j = −

1
2

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 + (σ

z
jσ

z
j+1 − 1)

�

. (54)

For imaginary η one can, in principle, generate anisotropic spin chain with a special form of
magnetic field (namely, the Hamiltonians H1,2 would have a staggered magnetic fields). Here
we focus on the isotropic case, however.

We thus see that in the Ising case the Hamiltonian H1 of the Floquet protocol can be iden-
tified with

∑

j U (I)2 j−1, H1 ≡
∑

j=1 U (I)2 j−1 which is the z − z coupling term of the transverse

Ising model while the H2 =
∑

j=1 U (I)2 j is proportional to the traverse field part of the Ising
Hamiltonian. Moreover the next term of the BCH expansion generates the term Eq.(23) in
the expansion for I0, and so on. We are thus obtaining the same type of the protocol and
the corresponding Floquet Hamiltonian as in the previous Section. This similarity is a pecu-
liarity of the Ising model (probably rooted in its super-integrability). On the other hand the
corresponding Floquet system related to the XXX model is a new one. The Floquet protocol
consists of switching between even and odd links of the uniform Heisenberg model and the
Hamiltonians H1,2 of the Floquet protocol are defined as

HX X X
1 ≡

N
∑

j=1

U (X X X )
2 j−1 ,

HX X X
2 ≡

N
∑

j=1

U (X X X )
2 j . (55)

It is interesting that the Floquet integrability ensures that we are getting an integrable
model in each order of BCH expansion (2). For example setting α= β = iT/2 in Eq. (49) we
find that in the leading order in this (high frequency) expansion

H0
F =

1
4

∑

j

~σ j · ~σ j+1 (56)

is just the standard Heisenberg model. In the next leading order

H0+1
F = H0

F +
T
4

∑

j

(~σ j × ~σ j+1) · ~σ j+2, (57)
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Here, the second term of the expansion is proportional to the conserved charge Q3 of the
isotropic Heisenberg model.

Thus summarizing, in order to construct integrable Floquet Hamiltonians related to the
RTM we need to identify V with the evolution exponent of H1 = U1 + U3 + . . . U2n−1 and the
operator W with the evolution exponent of H2 = U2 + U4 + . . . U2n. The constants α= −iT1
and β = −iT2 are identified with the time intervals for H1 and H2. In the language of statis-
tical mechanics this corresponds to the lattice model with the complex Boltzmann weights x1,2
defined in (50). If the analytic continuation to the complex domain can be done safely, we are
getting an integrable Floquet system.

Physical interpretation of the Floquet protocol goes as follows. In the case of the Heisen-
berg model the system which would realize the integrable protocol is defined as a periodic
modulation (switching "on" and "off") of even and odd links of the spin chain. The same pro-
tocol of switching between even and odd links has been suggested before in [92] as a way to
generate long-range spin entanglement and resonating valence bond spin liquid in a double
well ultracold atomic superlattices.

In the Ising case this protocol corresponds to a periodic switching between the transverse
field and the Ising interaction. It is interesting that for Floquet integrable models there is
no need to send the driving period to zero with increasing system size as e.g. is required in
generic implementation of digital quantum simulation to avoid heating (see e.g. Ref. [40]).
Thus implementing integrable Floquet protocols can serve as a guide of developing stable
Trotterization schemes and hence stable digital quantum simulators.

We note that the line x1 x−1
2 = 1 is self-dual (in a sense of the Kramers-Wannier duality,

see [67]) and corresponds to the critical CFT models [93]. Whether this survives after the
Wick rotation is, to our knowledge, an open problem. One more interesting aspect is that this
class of models has quantum Uq(sl2) symmetry. At the special point

T1Q = π+ 2πn, T2Q = π+ 2πm, (58)

where n, m are integers, the Boltzmann weights x1,2 become real again. In Ref. [93] the phase
diagram of these vertex models with real exp(αQ) has been studied for x1 x−1

2 = 1 (in our
notations). Applying these results one can observe that when the self-duality condition is
satisfied, the condition (58) leads to the horizontal line on a phase diagram of [93–95]. This
line meets a critical "antiferromagnetic line" at Q = 2 (Q = 4 in the notations of [93]). This
formally corresponds to the Conformal Field Theory with the central charge c = −∞. We
note that x1 x−1

2 = 1 for (58) when Q = 2. On the other hand Q = 2 is the case of the isotropic
Heisenberg chain protocol, suggesting that the protocol (55) realizes a critical Floquet system.

As we can see, in this class of models the operators X j(x), after an appropriate Wick rota-
tion, are identified with the local evolution operator of the quantum problem. Their alternating
product represent a Floquet evolution operator. One can ask a more general question, namely
what are the solutions of the condition on operator X j(x) to satisfy the Yang-Baxter relation and
to have an exponential form (to ensure the local semigroup relation X j(x)X j(y) = X j(x+ y))?
This question has been addressed in Refs. [96, 97], where several classes of solutions have
been identified. It would be interesting to construct corresponding Floquet systems associated
with these solutions.

4.3 Floquet models related to the corner transfer matrix: “boost models”

Here we focus on a class of models generated by the boost operator generating CTMs. Specif-
ically we consider a model defined in such a way that one of the parts of the Floquet system,
namely H2 is an integrable (in the Yang-Baxter sense) lattice Hamiltonian, H2 ≡ Hint, while H1
is proportional to the corresponding boost operator, H1 = bB. Lets analyze the BCH formula
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(2) and identify X ≡ −iT1B and Y ≡ −iHintT2. By looking at the structure of (2) it becomes
clear that, according to (36) in the n-th order of the expansion we will be generating new
integrals of motion Qn coming from the commutator of the Qn−1 with the Boost operator. It is
clear that the only part of the BCH formula which survives contains the original Hamiltonians
H1 ∼ B, H2 = Hint and the nested commutators

[B, [B, . . . [B, H2] . . .]] (59)

of arbitrary length. Then, clearly, the Floquet Hamiltonian will be given by the form (42)
above with

an =
Bn−2

(n− 2)!

T n−2
1 T2

T
, n≥ 2, (60)

where Bn are Bernoulli numbers. Some first nonzero Bn’s from the so-called second sequence
(exactly those which enter the BCH formula) are B0 = 1, B1 =

1
2 , B2 =

1
6 , B4 = −

1
30 , B6 =

1
42 , . . ..

By construction, the effective exact Floquet Hamiltonian (42) is integrable. Using the gener-
ating function for Bernoulli’s numbers one can, in principle, convert an expression for HF into
the form of the integral transform. However, the convergence of this formal expression should
be checked for every state |Ψ0〉 separately. For this reasons we avoid presentation of these
formal expressions. In Appendix B we demonstrate convergence of the expectation value of
the Hamiltonian (42) for several initial product states |Ψ0〉 and two particular protocols λ(t).

Another problem with this effective representation is that while the first term is diagonal
in the basis of Bethe states, it is not clear at this point how to deal with the boost term. Note
also that direct evaluation of the expectation value for the boost operator, 〈Ψ0|B|Ψ0〉 leads to
the divergent result in the thermodynamic limit. This divergence stems from the fact that the
boost operator is similar to a uniform electric field. However, in integrable dynamical systems
we are considering here periodic application of the Boost operator does not lead to heating and
thus to divergencies in physical observables. For the Boost models the results of this section
can be extended to more general driving protocols by going to the rotating frame, which we
will discuss next.

Rotating frame

One can start first with somewhat more general time-dependent Hamiltonian,

H = Hint + b(t)B (61)

and assume that b(t) is a periodic function of time b(t + T ) = b(t). Then by construction
we are dealing with a Floquet problem. We note that we can also consider an arbitrary func-
tion b(t) in the interval [0, T], where T is the time of interest at which we want to evaluate
observables, and then periodically continue it for t > T . So our general results will equally
apply to FLoquet systems, quantum quenches or any other arbitrary time dependences. It is
convenient to rewrite the Hamiltonian as

H = Hint + b̄B +δb(t)B, (62)

where

b̄ =
1
T

∫ T

0

b(t)d t mod
2π
Tε

,

δb(t) = b(t)− b̄, (63)
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where ε is the parameter defined below Eq. (37) Note that δb(t) is also a periodic function of
time. Here we use the fact that the spectrum of the boost operator is proportional to integer
numbers, see Eqs. (38), (40).

Next let us go to the rotating frame with respect to the last, time-dependent term generated
by the unitary

V (t) = exp(−iF(t)B),

F(t) =

∫ t

t0

δb(t ′)d t ′. (64)

We note that by construction F(0) = 0 and for integer m, F(mT ) = 2πnm/ε, where n is also
an integer defined by

∫ T

0

b(t)d t = T b̄+
2πn
ε

. (65)

Then, using that all eigenvalues of B are integer multiples of ε, we see that

V (mT ) = exp[−2πinmB/ε] = Î (66)

is the unity operator such that V (t) is a periodic function of time. Thus the transformation to
the rotating frame does not break periodicity in time. The Hamiltonian in the rotating frame
is [98]

Hrot = V †(t)HV (t)− iV †(t)∂t V
† = V †(t)(H2 + b̄B)V (t) = b̄B + V †(t)(H2)V (t) (67)

for generic H. When the Taylor series for the last expression converges in the operator sense
the rotating frame Hamiltonian in our case is equivalent to

Hrot = b̄B +
∞
∑

n=1

[F(t)]n−1

(n− 1)!
Qn. (68)

Here we identify Q1 ≡ Hint. The last expression is formally related (see Eq. (31)) to the
derivative of the RTM τ(λ)

Hrot = b̄B + ∂λ logτ(λ)|λ=F(t), (69)

where F(t) is defined in (64). The question of convergence of this formal sum for arbitrary
time should be considered separately. We discussed several convergent examples in Appendix
B.

A particularly simple expression for the Floquet Hamiltonian and hence the evolution op-
erator over the period appears when b̄ = 0 i.e. when

∫ T

0

b(t)d t =
2πn
ε

, (70)

where n is an (arbitrary) integer. In this case, the Floquet Hamiltonian is simply equal to the
time average of Hrot :

HF = ∂λ logτ(λ)|λ=F(t), (71)

where the over line denotes the period averaging. This follows e.g. by observing that all terms
in Hrot commute with each other at different times and thus one can omit time-ordering in
the evolution operator

U(T ) = exp

�

−i

∫ T

0

Hrot(t)d t

�

= exp[−iT H̄rot]. (72)
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The Floquet Hamiltonian in this case is thus explicitly written as the sum of integrals of motion.
In particular, there are two interesting classes of driving protocols for which the condition

b̄ = 0 above is satisfied:

• Periodic Floquet protocols: b(t) = b0 cos(ωt). Then b̄ = 0 when

Tn = 2πn/ω (73)

with an arbitrary integer n.

• Quench protocols b(t) = b0θ (t), where θ (t) is the step function. Then b̄ = 0 at

Tn =
2πn
εb0

. (74)

At these special times (73), (74) the energy of the system as well as all other conserved quan-
tities exhibit full many-body revivals irrespective of the initial state of the system |Ψ0〉

〈Ψ(Tn)|Qn|Ψ(Tn)〉= 〈Ψ(0)|Qn|Ψ(0)〉. (75)

In particular at these times the driving protocol performs exactly zero work on the system. It
is interesting that the wave function does not necessarily return to itself. Indeed if we expand
the wave function in the basis of the eigenstates of all integrals of motion, each component will
generally acquire a different phase. For this reason if the system is initialized in a pure state,
which is not an eigenstate of the Hamiltonian, the observables, which do not commute with
the Hamiltonian will not be periodic in time. On the other hand if the system is initialized in
an equilibrium state of the Hamiltonian, e.g. in an eigenstate of H or in the Generalized Gibbs
Ensemble then after times Tn there will be complete revivals of the initial density matrix.
Indeed in any equilibrium state phases of the wave functions are random and it does not
matter if they are periodic or not. It is highly plausible that after long time any wave function
at these discrete times will relax to the Generalized Gibbs Ensemble as in standard quench
protocols but this question requires more careful investigation. Let us note that for the quench
protocol these revivals at times given by Eq. (74) generalize Bloch oscillations to more generic
integrable systems. The revivals are reminiscent of “quantum time crystals” actively discussed
in the literature (see e.g. Ref. [99].) However, we can not escape from the similarity of the
time-periodic state after a quench with an ordinary clock or any other frequency generator like
a laser or maser, which have much longer history than time crystals. To avoid any injustice we
decided to term this periodic state as a “Quantum Boost Clock” (QBC). It is clear that QBC can
be extended to other driving protocols creating various periodic and aperiodic revivals at times
satisfying Eq. (70). While strictly speaking Boost operators only exist in integrable models, it
is intuitively clear that weak integrability breaking can only induce small heating such that the
oscillating phases can exist for long but finite times. Moreover it is plausible that the heating
can be reduced further by using the ideas of the counter-diabatic driving to find approximate
local Boost operators [100]. Then QBC regimes will be analogous to prethermalized time
crystals or simply to cuckoo clocks, which can only run for a finite amount of time determined
by the gravitational energy stored in the weights and the energy dissipation in the clock.

5 Discussions and conclusions

In this paper we discussed and identified three classes of integrable Floquet models. The first
class is defined by the Hamiltonians which are the linear combinations of the generators of
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some classical Lie algebras. Possible Floquet systems in this case are in one-to-one correspon-
dence with different conjugacy classes of Cartan subalgebras (or series of representations). In
this way one can provide an algebraic classification of Lie-algebraic Floquet systems. Exten-
sions of this class of models are related to infinite-dimensional algebras and algebras of a more
complicated structure. The second and the third classes of models are related to classical lat-
tice statistical mechanical models defined either by the row-to-row transfer (RTM) matrix or
by the corner transfer matrix (CTM). While RTM-models are defined via Wick’s analytic con-
tinuation of their Boltzmann weights, the CTM-models are defined through the boost operator,
which in known cases coincides with the entanglement Hamiltonian.

We expect that our models contain interesting physics which will be studied elsewhere.
It could be as much complicated as the physics of traditional equilibrium integrable models.
In particular, it would be interesting to apply the recently obtained results for the XXZ spin
chain for which the generating function of commuting integrals of motion has been computed
explicitly [101, 102] for several relevant initial states. Quench dynamics similar to the one
studied in [103], [104], [105], [106] is also possible to implement in the Floquet context,
and we can also expect deviations from the predictions given by the Generalized Gibbs En-
semble. We hope in the future to address the physics of Floquet evolution from these initial
states. We also showed that the class of Boost models can be extended to generic non-periodic
protocols, in particular, quenches, where one can realize interesting phenomena like exact en-
ergy revivals, which realize QBC. Interestingly, boost models bear many parallels with recent
work [38], where it was suggested that in related setups the system’s wave function after a
quench can follow the ground state of some local time-dependent Hamiltonian. We expect
that other classes of integrable Floquet systems are possible. It would be interesting to find
those which have no equilibrium counterparts.
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A Conjugacy classes of Cartan subalgebras of real Lie algebras

Kostant and Sugiura developed classification of conjugacy classes of Cartan subalgebras of real
Lie algebras. While in the case of complex Lie algebras there is unique Cartan subalgebra, the
case of real Lie algebras is much more involved. The following table summarize the number
of Cartans for different classical Lie algebras:

Consider, for example, the symplectic case, Λ ∈ Sp(2n,R). In this case one can introduce a
symplectic structure Ωkl . Different type of orbits of maximally abelian subalgebras correspond
either to (i) hyperbolic (direct and inverse), (ii) elliptic, (iii) loxodromic and (iv) parabolic
types. According to the Table 1 there are (n+ 2)2/4 different Cartan subalgebras in the case
of even n and (n+1)(n+3)/4 in the case of n odd. Every Cartan subgroup Λk,s = exp(hk,s) is
parametrized by two numbers (k, s) such that k ≥ 0, s ≥ 0 and k+ 2s ≤ n. The matrix hk,s has
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class number of Cartans

AI, Al(B l
2
) [ l

2] + 1

AII, Al(C l+1
2
) 1

AIII, Al(A j−1 ⊕ Al− j ⊕ D1) j + 1

BI Bl(B 2l− j
2
⊕ D j

2
), j even ( j+2)2

4

BI Bl(B j−1
2
⊕ D2l− j

2
), j odd ( j+1)( j+3)

4

DI, Dl(D j
2
⊕ D2l− j

2
), j even 1

2([l/2] + 1)([l/2] + 2)

DI, Dl(B j−1
2
⊕ B 2l− j−1

2
), j odd 1

2([m/2] + 1)([m/2] + 2)

DIII, Dl(D1 ⊕ Al−1) [ l+2
2 ]

CI, Cl(D1 ⊕ Al−1), l even (l+2)2
4

CI, Cl(D1 ⊕ Al−1), l odd (l+1)(l+3)
4

CII, Cl(C j ⊕ Cl− j j + 1

Table 1: Number of conjugacy classes of Cartan subgroups according to Cartan classification.

a general form [52]















0 0 0 Ak 0 0
0 Bs 0 0 0 0
0 0 C 0 0 0
−Ak 0 0 0 0 0

0 0 0 0− Bs 0
0 0 0 0 0 −C















, (76)

where diagonal block matrices A, B, C are defined as Ak = diag(h1, h2, . . . , hk),
C = diag(hk+2s+1, hk+2s+2, . . . , hn), Bl = diag(b(1), b(2), . . . , b(l)), where

b(r) =

�

hk+s+r −hk+r
hk+r hk+l+r

�

. (77)

Here h j , ( j = 1, . . . n) are the real numbers. The matrix Λ has therefore 2k eigenvalues of
the unit circle type λm = exp(±ihm) (m = 1, . . . , k) which define the elliptic blocks, then
2(n−k−2s) real eigenvalues λ j = e±h j , (k+2s+1≤ j ≤ n) defining the hyperbolic blocks, and
4l complex eigenvalues λr = exp(±ihk+r ±hk+s+r), r = 1, . . . l which define loxodromic block.
Note that if only elliptic blocks are present this correspond to the maximal compact Cartan
subgroup, while the opposite case of only hyperbolic blocks correspond to the maximally non-
compact case. Parabolic blocks are obtained by considering nilpotent subalgebras. For example
(2× 2) parabolic blocks are generated by the nilpotent matrix

P = ±
�

0 1
0 0

�

→ eκtP =

�

1 κt
0 1

�

, (78)

where κ is a constant.
There is a connection between unitary representations and abelian subgroups. As we have

seen in the main text, the elliptic blocks correspond to the discrete series of representations
while the hyperbolic and parabolic blocks correspond to continuous series.

It would be interesting to construct Floquet systems corresponding to cases of the Lie al-
gebras different than sp(2n, R).
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We also note that this algebraic analysis in terms of subalgebras and block is very important
for stability analysis of system under nonlinear perturbation. This, in particular, is a subject of
the periodic orbit theory. In the semiclassical approach based on the Gutzwiller trace formula,
hyperbolic and loxodromic blocks characterize unstable directions of periodic orbits. Parabolic
blocks are marginally unstable and exhibit a linear growth of the perturbation along the direc-
tion spanned by the eigenvector. Elliptic blocks describe stable motion under perturbation if
all the eigenvalues are mutually irrational (for review see [56]). These and many other results
constitute the Krein-Gelfand-Lidskii-Moser theory of structural stability under perturbations.
Under a perturbation the parabolic block bifurcates into a hyperbolic (κ > 0) or elliptic (κ < 0)
blocks. The Morse index is a topological invariant which can be used to quantify stability of
the Floquet dynamics under nonlinear perturbation.

B Matrix elements of Floquet Hamiltonian in the product states
for the boost class of models: example of the X X Z spin chain

The XXZ model is a model for anisotropic spin chain

HX X Z =
J
4

L
∑

j=1

(σx
j σ

x
j+1 +σ

y
j σ

y
j+1 +∆(σ

z
jσ

z
j+1 − 1). (79)

Eigenstates and eigenvalues are described by the system of Bethe ansatz equations. They
can be solved only numerically. Many things drastically simplify in the thermodynamic limit.
Therefore from now on we proceed with L→∞ and with a gapped regime ∆> 1.

The generating function of commuting integrals of motion has been computed explic-
itly [101], [102] for several relevant initial states and can be directly used in our context.
Namely, using the notations and conventions for the generating function of [101,102], which
is obtained from the logarithmic derivative of the trace of the transfer matrix

ΩΨ0
(λ) = −i

∞
∑

k=1

�

η

sinhη

�k λk−1

(k− 1)!
〈Ψ0|Qk|Ψ0〉

L
, (80)

where ∆ = coshη. Here we identify Q1 as a physical Hamiltonian. It is easy to see that it is
obviously related to the expectation value of our Hamiltonian in the rotating frame (68). In
particular, for a given initial state |Ψ0〉

〈Ψ0|Hrot |Ψ0〉=
�

sinhη
η

�

ΩΨ0
(λ)|λ=λ∗ + b̄〈Ψ0|B|Ψ0〉, (81)

λ∗ = F(t)
η

sinhη
. (82)

This implies that, assuming the convergence of the series expansion in (68) (which allows for
exchange of summation and time average), the Floquet Hamiltonian is

〈Ψ0|HF |Ψ0〉= i
sinhη
η

1
T

∫ T

0

ΩΨ0

�

F(t)
sinh(η)
η

�

d t

(83)

provided that the condition b̄ = 0 has been met. Explicit expressions for several initial states
|Ψ0〉 were computed in [101] and in [102]. We focus here on three interesting examples:
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1. Ferromagnet in x-direction,
|x ,↑〉= ⊗L

j=1
1p
2
(| ↑〉 j + | ↓〉 j)

Ωx ,↑(λ) =
iη sinh(η)

2+ 2 cos(ηλ) + 4 cosh(η)
; (84)

2. Neel state in z direction,
|N〉= 1p

2
(| ↑↓↑ . . .+ | ↓↑↓ . . .〉

ΩN (λ) =
iη sinh(2η)

2 cosh(2η) + 2− 4 cos(ηλ)
; (85)

3. Dimer (Majumdar-Ghosh) state
|D〉=

∏L/2
j=1

1
2(| ↑〉2 j−1| ↓〉2 j − | ↓〉2 j−1| ↑〉2 j)

ΩD =
i sinh(η)

2
4cosh(ηλ)α(η) + β(η)
4[cosh(2η)− cos(ηλ)]2

, (86)

where [101], [102]

α(η) = sinh2(η)− cosh(η), (87)

β(η) = cosh(η) + 2 cosh(2η) + 3cosh(3η)− 2.

To be more specific, one can focus on two driving protocols discussed in the main text. We
have numerically checked that for all these states and protocols the expression (83) is well
defined and convergent.
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