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Abstract

Quantum entanglement manifests itself in non-local correlations between the con-
stituents of a system. In its simplest realization, a measurement on one subsystem is
affected by a prior measurement on its partner, irrespective of their separation. For
multiple parties, purely collective types of entanglement exist but their detection, even
theoretically, remains an outstanding open question. Here, we argue that all forms of
multipartite entanglement entirely disappear during the typical evolution of a physical
state as it heats up, evolves in time in a large family of dynamical protocols, or as its
parts become separated. We focus on the generic case where the system interacts with
an environment. These results mainly follow from the geometry of the entanglement-free
continent in the space of physical states, and hold in great generality. We illustrate these
phenomena with a frustrated molecular quantum magnet in and out of equilibrium, and
a quantum spin chain. In contrast, if the particles are fermions, such as electrons, an-
other notion of entanglement exists that protects bipartite quantum correlations. How-
ever, genuinely collective fermionic entanglement disappears during typical evolution,
thus sharing the same fate as in bosonic systems. These findings provide fundamental
knowledge about the structure of entanglement in quantum matter and architectures,
paving the way for its manipulation.

Copyright G. Parez and W. Witczak-Krempa. Received 2025-05-26 )
This work is licensed under the Creative Commons Accepted 2025-12-02 o
Attribution 4.0 International License. Published 2026-01-08 updates.
Published by the SciPost Foundation. doi:10.21468/SciPostPhys.20.1.002
Contents
1 Introduction 2
2 Separable set 3
2.1 Biseparable set and genuine multipartite entanglement 4
2.2 Temperature 4
2.3 Time 5
2.4 Space 6
3 Quantifying entanglement 7
4 Icosahedral molecule
4.1 Full-rank hypothesis and zero temperature phase diagram 8


https://scipost.org
https://scipost.org/SciPostPhys.20.1.002
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.20.1.002&amp;domain=pdf&amp;date_stamp=2026-01-08
https://doi.org/10.21468/SciPostPhys.20.1.002

e SciPost Phys. 20, 002 (2026)

4.2 Temperature 8
4.3 Quench 9
4.4 Separation 9
5 Spin chain 9
5.1 Separation 10
5.2 Quench 11
6 A continent without genuine multipartite entanglement for fermions 11
7 Outlook 13
A Entanglement measures and criteria 14
A.1 Logarithmic negativity 14
A.2 Geometric entanglement 14
A.3 Genuine 3-party entanglement criterion 14
B Test of the full-rank hypothesis 15
C Phase diagram of the molecular quantum magnet 15
D Quench protocols 15
E Genuine multipartite entanglement for fermions 16
E.1 Three parties 17
E.2 Four parties 18
References 19

1 Introduction

Entanglement is a fundamental property of quantum mechanics which can manifest itself in
non-local quantum correlation between two or more systems. In particular, it makes it pos-
sible for a measurement on a subset of the whole system to affect subsequent measurements
on the other parties. The effect of the initial measurement is instantaneous, even if the sub-
systems are distant. Entanglement not only constitutes a fundamental property of nature, but
it is also a resource to perform tasks that would prove impossible without it such as telepor-
tation [1, 2], or more broadly quantum computation [3-5]. This has driven the community
to devise methods to detect and quantify entanglement [6-8]. Unfortunately, it it not known
how to determine with certainty whether a general system is entangled, except in very simple
situations such as with 2 qubits. One can better grasp the complexity of the task by observing
that entanglement can exist between more than two parties. In fact, some systems possess
3-party entanglement but no 2-party entanglement of any sort, such as certain mixed states
constructed from unextendible product bases [9].

In this work, we identify conditions for the existence of multipartite entanglement in quan-
tum many-body systems such as spin models, the fermion Hubbard model, local quantum cir-
cuits, etc. We allow the state to be interacting with an environment: this can take the form
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of a thermal bath, or the neighboring spins/fermions when one considers a subregion. For
instance, we answer the question: at what separations can multipartite entanglement of a
given kind exist in a quantum many-body system/material? We begin by explaining important
properties about the space of physical states, and how these determine the fate of entangle-
ment under the evolution of a system with temperature, time or separation. We then illustrate
these results with a simple yet generic model: the frustrated anti-ferromagnetic Ising model on
an icosahedral molecule. Finally, we discuss the fate of entanglement for fermionic systems,
where the fermion parity superselection rule modifies the geometry of the space of states and
the structure of entanglement.

2 Separable set

We investigate multipartite entanglement of states with m subsystems, as illustrated in Fig. 1a.
We shall argue that in numerous physical situations, the end point of the evolution typically
corresponds to an un-entangled state, which is called separable. The simplest separable state
for a system of m parties is a product,

Pprod =P1®P2®*® Py, 1)

where p; is a physical density matrix for subsystem j. The set of separable sates is convex [6],

(k)
prod

Zk Px = 1, are also un-entangled. In the space of all physical states, separable ones thus form a
“continent” surrounded by an “ocean” of entangled states, see Fig. 1b. We stress however that
this representation does not account for the intricate geometry of the boundary, but it illus-
trates the relevant ingredients for our discussion, namely the fact that the set of separable states
is convex and has a non-vanishing volume. In our schematic representation, highly-entangled
states live in the deep-blue regions, whereas in the center of the separable continent lies the
maximally-mixed state, i.e., the identity. In the following, we focus on finite and discrete sub-
systems, and thus on finite-dimensional local density matrices. In the thermodynamic limit,
the order of limits is chosen such that the total system remains incommensurably larger than
the finite subsystems, which can in turn be large.

We describe the system’s state by p(s), where s parametrizes the evolution; the final state
is pf = p(ss), and we typically (but not always) consider sy = co. We shall argue that in
numerous situations of physical relevance the final state is separable. Moreover, p; typically
lies in the interior of the separable continent, not on its frontier. Under these conditions, we
thus arrive at our main conclusion: in numerous physically relevant situations, the system
irreversibly looses all forms of multipartite entanglement beyond some stage in the evolution,
as shown in Fig. 1b. Moreover, before reaching land, the system navigates shallow waters,
leading to a rapid decimation of entanglement. During this stage one has an effectively sepa-
rable state. This constitutes a point of significant importance in real-world applications since
determining when a state reaches a very low degree of entanglement is easier than showing
exact separability. Indeed, numerical estimations of the degree of entanglement typically in-
volve optimization procedures which correctly yield small results for low-entangled states, but
do not necessarily perfectly detect exact separability. This phenomenon notably occurs for the
geometric entanglement, discussed later in the text. Nevertheless, we can exploit a mathe-
matical result that tells us when a state is in the interior of the separable continent [10-13].
In the simplest version, the theorem states that a product state (1) lies in the interior if it
has full rank, i.e., none of its eigenvalues vanishes. This is coherent with what is known for
pure product states: these have minimal rank (a single non-zero eigenvalue), and indeed live
on the frontier of the continent as arbitrarily weak perturbations can make them entangled.

namely states composed of a mixture of product states, pge, = >k PxP with p; 2 0 and
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Figure 1: Evolution of multipartite entanglement. a) We consider a general state
of m subsystems, here illustrated for m = 4, which can be in contact with an environ-
ment. b) The state is described by a density matrix p(s) that evolves according to a
parameter s such as temperature, time or separation. The blue region represents the
“sea” of entangled states, where deep-blue regions are more entangled than light-
blue ones. The orange disk is the separable continent.

Furthermore, the theorem yields the radius of a ball in the space of states that lies entirely
on the separable continent; this is represented by the dashed line in Fig. 1b. The radius of
the ball is proportional to the smallest eigenvalue of the state [13], R,, = 2'7™/?A,,;,. Here,
we use the standard notion of distance between two quantum states given by the Frobenius
norm: d(p,p’) = +/Tr(p — p’)2. A more general version of the result holds for a mixture
of product states with a least one having full rank [13]. This implies that the boundary of
the separable continent does not only contain pure product states, but also higher-rank and
full-rank separable states whose product-state components are all rank-deficient.

2.1 Biseparable set and genuine multipartite entanglement

In multiparty states, there is genuine multipartite entanglement (GME) if the state is not bisep-
arable, i.e., if it cannot be written as a convex combination of product states over bipartitions
of the m parties,

Phisep = Zpk Pz, ® pfk 5 2
k

where 7, UT,. are bipartitions labelled by k, p, = 0, and > Px = 1. As an example, for m = 3
parties, the possible bipartitions are (1,23), (12,3) and (13, 2). Biseparable states contain at
most (m — 1)-party entanglement, which is not genuinely multipartite. Similarly to separable
states, biseparable ones form a convex set which includes the separable continent. Using the
same arguments as above, we conclude that during typical generalized evolutions p(s), the
state irreversibly loses GME at a stage prior to the sudden death of entanglement, implying
that non-GME and bipartite entanglement are more robust than GME.

2.2 Temperature

As a warmup case that will be a reference point when we shall discuss thermalisation, we
take the parameter s to represent the temperature T, as would pertain to a Gibbs thermal
state associated with a Hamiltonian H, p(T) = exp(—H/T)/Z, or a reduced density matrix
thereof p,(T) = Trg p(T). Naturally, a very large temperature destroys entanglement, yield-
ing a maximally uncorrelated state. The infinite-temperature end point is a full-rank product
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state, py = DI, where I represents the identity matrix in the D-dimensional space of the
system. This state is located at the center of the separable continent. Hence, there exists
a threshold temperature T,, at which one can rigorously conclude that all forms of entan-
glement between the m subsystems disappear, in agreement with previous results for finite-
dimensional systems [14]. At the threshold, the state at the boundary of the separable con-
tinent will generically have full-rank albeit being in a mixture of only rank-deficient product
states. The minimal eigenvalue of p; being 1/D, one can readily obtain an upper bound for the
temperature above which entanglement is lost. However, the example below will show that
physical many-body systems tend to loose entanglement much faster than this upper bound.
Sudden death of bipartite entanglement at finite temperature has been observed in different
physical systems [15-19]. Later, we will contrast the above behavior with the thermal fate of
entanglement in fermion systems.

2.3 Time

In a dynamical situation, the parameter s is the time t, and we take the final state to be the
state at some time t¢. In dynamical protocols where the system reaches a final state p; which
lies inside the separable continent, one can conclude that there is a sudden-death time ¢ at
which all m-party entanglement is lost until ;. As the structure of the final state depends on
the type of dynamical evolution under study, let us describe an important case in more detail:
a global quantum quench. One prepares a closed system to be in an eigenstate of a given
Hamiltonian Hj, and at some time the Hamiltonian is abruptly changed to a different one, H,
resulting in non-trivial time evolution. We then study the state of a subregion A of the entire
system: the m-party state p(t) is obtained by partially tracing over the unobserved part, B.
When A is small compared to its complement B, the state is expected to effectively thermal-
ize at large times [20-22]. As discussed above, temperature tends to destroy entanglement,
which means that in numerous quench protocols the subregion final state p(t;) will be sep-
arable. Although not all quenches will lead to a sudden death of multipartite entanglement,
one can ask about the typicality of such a fate. For instance, if the initial condition has an
energy expectation value close to the groundstate of H, instead of thermalisation, oscillatory
behavior with persistent entanglement can occur. However, only a minority of eigenstates of
a local Hamiltonian H have an energy near the minimum (or maximum) of the spectrum: the
bulk of the levels lies near the middle of the spectrum. As such, a typical initial condition will
inject enough energy so that the evolution will scramble the quantum information encoded
within A. In many cases one can be more precise: the state of A at large times is accurately
approximated by an effective thermal Gibbs state, Trz(exp(—H/T.g))/Z. When the effective
temperature T is not small (which is typical), an entanglement sudden death for the sub-
region follows. Below we shall rigorously verify the dynamical sudden death with numerous
examples. Another important class of dynamical protocol are the local quenches, where the
Hamiltonian is modified locally, for instance by connecting two different disjoint groundstates
at t = 0. In this case, the difference between the energy expectation value and the post-quench
groundstate energy is not extensive, thus corresponding to a lower effective temperature in
the steady state. It is an important question to understand whether this feature allows local
quenches to generically escape the dynamical sudden death of entanglement, which we leave
for future research.

To complement the discussion of late-time dynamics, we can argue in full generality that
the multiparty entanglement dynamics after a global quench from a pure product state typi-
cally follows a rise-and-fall behavior. For early times, we consider the evolution of the system
with parameter s = t~!. The “final” state of this evolution is the initial state of the quench,
namely a pure product state with rank one, i.e., not full rank. As we previously discussed,
such states lie on the boundary, or the shore, of the separable continent. Therefore, there is
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no entanglement sudden death in this evolution. Looking back at the quench protocol with
time as the parameter, this implies that entanglement is generated at t = 0% after the quench.
As discussed above, in numerous situations, the state typically lands on the continent at late
times, or in very shallow waters at a finite time, yielding an entanglement sudden death or
strong suppression. These early- and late-time behaviors result in the rise-and-fall dynam-
ics of entanglement, which have been observed for simple entanglement measures in various
systems [23-29].

2.4 Space

We now study the fate of entanglement as a function of the separation between the m subsys-
tems by scaling their separations by A, which parametrizes the evolution. At large A, in a local
physical system the state will factorise into a product form, where the description of each sub-
system becomes independent, since all correlations become suppressed at large separations.
If the asymptotic product state is of full rank, there exists a critical scale beyond which all
entanglement vanishes. As a central application, we consider a quantum many-body system
from which we extract the state of a subregion whose m parts, A = A; ---A,,,, become more
separated as A grows, p(A). The state at infinite A satisfies the product form, Eq. (1), where
pj is the reduced density matrix of subsystem j obtained by tracing out the complementary
degrees of freedom. Let us take the entire system to be in equilibrium at a temperature T = 0,
described by the Gibbs state p,z = Z~!exp(—H/T). At large separation, the state of subsys-
tem A, is given by p; =Tra, a p > PulER)(E,|, where we have traced over the environment
B, and the (m — 1) subsystems A;. The sum runs over all eigenstates of the Hamiltonian H.
The thermal Boltzmann probabilities are p,, = e #+/T / Z. We now need to determine whether
p1 has full rank. Let us first examine the restriction of the eigenstates of the Hamiltonian to
A, pgn) = Tta, 4,5 |En){E,|. From the point of view of A,, the degrees of freedom in the com-

plement act as a bath, thus introducing statistical randomness in pgn). Since we take A; to be
sufficiently small compared to the complement and the interactions generic (not fine-tuned),
the bath generically has sufficient resources to induce statistical fluctuations that span the en-
tire Hilbert space of A;. Such ergodicity implies that pgn) will be of full rank. For instance, it is
readily seen to occur for the majority of eigenstates as they live near the middle of the energy
spectrum, and the eigenstate thermalization hypothesis [30-32] then states that the reduced
density matrix on A; is approximately thermal, with the temperature determined by the en-
ergy E,. The approximately thermal density matrix, obtained by restricting the Hamiltonian
to A, then has full rank. Our statement, which we call the full-rank hypothesis (FRH), is more
general: all eigenstates of a generic local Hamiltonian have a full-rank reduced density matrix
associated with a sufficiently small subregion. In practice, the subregion should not exceed
half the system. To complement the physical argument given above, we shall give an example
in a frustrated quantum magnet in the next section.

Now, the reduced density matrix of subsystem 1 is the convex sum p; = ), pnpgn). The
FRH implies that p; inherits full rank from the states pgn). (Since the sum of a full-rank matrix

and an arbitrary one also has full rank, we actually only need to know that at least one pgn)
is of full rank.) As the same holds for the other subsystems, we conclude that the A = oo
product has full rank, and thus lies inside the separable continent (not on its frontier). There-
fore, there exists a scale beyond which all entanglement disappears. The sudden death occurs
irrespective of the number of subsystems or the precise nature of the state; it even holds at
a quantum critical phase transition where quantum fluctuations proliferate to all scales. This
result shows that, although local observables can possess slowly decaying algebraic correla-
tions, entanglement decays drastically faster, to the point of having a finite range. This can
be understood from the monogamy of entanglement: in a typical local Hamiltonian, the in-
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teractions favour entanglement among nearby degrees of freedom, which strongly limits the
capacity to entangle with more distant sites. In analogy with charged impurities in a material,
one could say that “entanglement is screened” by the environment of A=A, ---A,,. Our con-
clusion encompasses and generalises numerous examples of bipartite entanglement sudden
death at finite separation [33-39], which are very specific cases of the general multipartite
phenomenon. Below we illustrate the rigorous finite range of multiparty entanglement in two
models.

3 Quantifying entanglement

In order to illustrate the Fate of Entanglement (FoE) under various evolutions, we will evaluate
powerful quantifiers of entanglement, including for genuine multiparty entanglement. First,
we compute a measure of 2-party entanglement, focusing on a pair of adjacent spins, called
the logarithmic negativity £ [40,41]. In the case of two spins, £ = 0 implies that the reduced
density matrix is separable [42], whereas for entangled states we have £ > 0. Second, we
study multiparty entanglement via the geometric entanglement D [6] defined as the smallest
Hilbert-Schmidt distance between the state and the separable set,

D= UlggElPd(p,o), (3)

where the minimization is over all pg;, living in the set of separable states of m-parties. Simi-
larly, one can define the geometric genuine multiparty entanglement as

Dy —Urer%)lgllapd(p,o), @)
where SEP and bSEP refer to the separable and biseparable sets, respectively. These are pow-
erful quantities: D detect all forms of entanglement, while D, detects all genuine multiparty
entanglement. However, they can be difficult to evaluate due to the optimisation over a large
parameter space. Nevertheless, an efficient method (due to Gilbert) exploiting the convexity of
SEP and bSEP was shown to produce strong results. We will also employ a more direct global
optimisation procedure, which when used in a “layered” fashion can produce better upper
bounds on D, Dy, in certain cases. The values we give below are the best of the two methods
for the given state, and satisfy convergence criteria (see Appendix). Finally, we also employ
a much simpler criterion W which indicates the presence of genuine 3-spin entanglement by
detecting a property that cannot hold for biseparable states (2) [43]. It is defined from the
matrix elements p;;, i,j =1,...,8, of a 3-spin density matrix [43]:

1
W = |pa3l +1pasl + o35l — v/ P11P44 — v/ P11P66 — vV P11P77 — E(Pzz +p33+ps5).  (5)

W > 0 indicates the presence of genuine 3-party entanglement, whereas for W < 0 a definitive
conclusion cannot be made. We thus set W = 0 in this case. As the above expression for the
criterion is basis-dependent, we maximize its value over all possible local unitary transforma-
tions of the state, (U; ® Uy, ® Ug)p(UI ® U;L ® Ug ), where Uj; is a generic 2 x 2 unitary matrix
for the spin j. While it is not a proper entanglement measure, large values of W generically
correspond to stronger genuine 3-party entanglement. For instance, W is maximal for Werner
states, which are maximally-entangled 3-qubit states, and is minimal for the maximally mixed
state (the identity).

In the cases considered below, we obtain values of D) on the order of 107° beyond a
certain point in the evolution, which implies that the corresponding type of entanglement is so
small that it is of no practical relevance. One could stop there and move on. However, we want
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to make rigorous statements regarding the sudden death in order to demonstrate the general
results in the strongest terms. We will thus employ an approach that can rigorously certify
whether a density matrix is (bi)separable: the general trace criterion (GTC) [44]. The idea
is to use filtering and subtractions to bring the original state into an ellipsoid of (bi)separable
states around a reference state; the ellipsoid is strictly larger than the ball referred to above.
The numerical optimisation used is very similar to the one for D).

4 Icosahedral molecule

We first illustrate the above results with a simple quantum system: the anti-ferromagnetic
Ising model on the 12-spin icosahedron, see Fig. 2a, with Hamiltonian

H=J Y. ofoi—h), ol (6)
)

bonds (i,j sitesi

The first term corresponds to an anti-ferromagnetic interaction J > 0 that tends to anti-align
neighboring spins along x, while the second one is a transverse field that polarises all spins
along z. Such a molecular quantum magnet is a combination of identical triangular faces,
and thus possesses strong geometric frustration. In what follows we shall measure energy in
units of the exchange coupling by setting J = 1. We investigate the fate of 2-, 3- and 4-spin
entanglement as a function of magnetic field, temperature, time and separation

4.1 Full-rank hypothesis and zero temperature phase diagram

As a first step, we checked that the FRH holds for subregions of adjacent spins with 1, 2 and
3 sites by obtaining the 2! eigenstates via exact numerical diagonalization, see Appendix B.
We then considered the fate of entanglement with varying magnetic field at zero temperature,
so that the evolution is parameterized by s = h, see Fig. 2b. At h = 0, the 2-spin reduced
density matrix is a full-rank separable state, which suggests the existence of a sudden-death
value h; > 0 of the field below which the state is separable, and hence £(h < h}) = 0. We find
h3 ~ 0.6. In contrast, the 3-spin reduced density matrix is not separable at small h and we
have D > 0 as shown in Fig. 2b. Turning to the GME between the spins on a triangular face,
we find that it becomes very small for h < 0.65, on the order of 107°. Using the GTC, we are
able to certify that the state is biseparable for h < 0.25. Although the certification becomes
more difficult for larger field values, we believe that the true sudden death occurs near 0.65.

In the opposite limit of h — o0, the system becomes fully polarized and is in a pure
product state. Any n-spin density matrix is thus a pure product state, i.e., of rank one, and lies
on the boundary of the separable continent. Entanglement for a general n-spin density matrix
is therefore expected to smoothly decrease with increasing h (at h > 1) without a sudden
death. These features are clearly visible in Fig. 2b for the case of 2- and 3-spin subregions.
In the following we focus on the representative case h = 3, where 2-party and genuine 3-
party entanglement are present at zero temperature. For additional data regarding the phase
diagram of the model, see Appendix C.

4.2 Temperature

Let us now investigate the FoE with temperature at h = 3. From the criterion of the sepa-
rable ball around the infinite-temperature state [13], we determine the temperatures where
m-party entanglement is guaranteed to be absent for m = 2,3. We find T, = 8 and T; = 22,
respectively. However, these do not tell us if entanglement is absent at lower temperatures.
The logarithmic negativity £, as shown in Fig. 2, vanishes at Te = 1.792, implying a sudden

8
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death of 2-spin entanglement at a much smaller temperature than T,. Going beyond 2 spins,
with the GTC we can rigorously certify that T > T3 = 2.5 leads to full separability of the 3-spin
reduced density matrix. This value is close to the point where D becomes small, see Fig. 2c.
GME is expected to disappear before generic multipartite entanglement during the evolution,
and indeed we find T}, < T3. However, we stress that the condition W = 0 is not informative,
so GME could occur for T up to T, but certainly not beyond. Going beyond W, we have used
the generalisation of the GTC to certify the absence of GME beyond a certain temperature,
and have obtained an exact upper bound for the death of GME: T¢,,. < 2.0. In Fig. 2c, the
computed values of D, show a rapid decline of GME, and provide strong evidence that our
upper bound is almost tight. To summarize, we have verified that the multipartite 3-spin en-
tanglement, genuine or not, entirely disappears beyond some temperature, in agreement with
the general expectation.

4.3 Quench

Next, we consider the evolution of entanglement with time during a quantum quench. We
initialize the system in a pure product state of up and down spins in the o*-basis at t = 0
(in the following, we refer to this quench protocol as Ico-1), and let it evolve under the Ising
Hamiltonian discussed above with h = 3, see Appendix D for details regarding the initial
state. In Fig. 2d we show the evolution of various measures, including D for 4-spin subregion
composed of two adjacent triangular faces. All quantities rapidly rise, reach a maximum, and
fall to zero, with D for 4 spins being the longest lived. We thus see a clear illustration of the
dynamical sudden death of entanglement for the case of m = 2, 3,4 spins. For 3 spins, we can
rigorously and tightly bound the sudden death to occur when t3 < 0.369, while for 4 spins we
find t < 1.5. To reach a stronger conclusion regarding the fate of GME for 3 spins, we use
Dy, to obtain a rigorous upper bound on the sudden death time of GME: t,,. < 0.25. Finally,
an interesting observation is that the non-equilibrium evolution can generate stronger 2- and
3-party entanglement compared to what is found in equilibrium, even at zero temperature,
see Fig. 2c. In order to show that the above behavior is generic, we have studied two other
quenches for the icosahedral molecule. Ico-2 corresponds to a time evolution using the h = 3
Hamiltonian with a distinct initial product state of up and down spins in the ¢* basis. Ico-3
corresponds to the sudden change of the transverse field, h = 0.04 — 3; as such, the initial
state possesses entanglement (see Fig.2b) in contrast to Ico-1 and Ico-2. For both Ico-2 and
Ico-3 protocols, we rigorously show that the 3- and 4-spin states becomes fully separable in
finite time, as for Ico-1, see Appendix D.

4.4 Separation

As a final example, we consider the evolution of entanglement with separation, working in the
groundstate at h = 3. First, for m = 2 spins, we find that entanglement disappears when the
spins become separated by 2 bonds. Second, for m = 3 spins, we scale the minimal triangle by
A = 2 so that the sides have bond-length two. We find that the state is fully separable using the
GTC. We thus see a striking illustration of the short-ranged nature of entanglement, genuine
or not, even in a small many-body system.

5 Spin chain

We next consider a one-dimensional spin chain with anisotropic nearest-neighbour interactions

N

— X X y Yy z .z 7 =
Hyy, = Z(Jxai Oy TJy0; 05y 0007, —h- Ui) ) )
i=1
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Figure 2: Icosahedral molecule and its entanglement evolutions. a) Illustration
of the quantum molecular magnet with icosahedral geometry. b) Dependence of
the geometric entanglement D, the 2-spin logarithmic negativity £ and the genuine
3-party entanglement criterion D}, in the icosahedral molecule as a function of the
transverse field at zero temperature. ¢) Evolution of the same quantities and the
criterion W as a function of temperature with h = 3. d) Same quantities as a function
of time in the quench protocol Ico-1, where the system is prepared in a product state
and evolves under the anti-ferromagnetic Ising Hamiltonian with h = 3. In panels b)-
¢)-d), the open shapes indicate that the corresponding distance measure is rigorously
certified to vanish: the state is fully (bi)separable.

with periodic boundary conditions such that N +1 = N. For our example, we randomly pick
in the range [—1, 1] the 3 exchange couplings J;, and 3 components of the Zeemann magnetic
field h;: J = (—0.443,0.0938,0.915) and h = (0.930,—0.685,0.941). We work with N = 14
sites. The groundstate is unique with energy gap AE = 2.0007. We have verified that the
FRH holds for all 214 eigenstates by computing the smallest eigenvalue of the reduced density
matrix for a subregion made of 4 adjacent spins, as shown in Appendix B, which confirms the
generic nature of Hyy,.

5.1 Separation

We first examine the FoE with respect to separation in the groundstate. Two spins are separable
if they are next nearest neighbours or further apart. For three spins, the GTC certifies the
reduced density matrix of sites (1,3, 5) to be biseparable, while it certifies full separability for
sites (1, 3,6). These findings illustrate the short-ranged nature of entanglement in equilibrium.
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Figure 3: Quench for the spin chain. Geometric entanglement D and D, as a
function of time after a quench in the spin chain defined in Eq. (7). The open shapes
indicate that the state is rigorously certified to be fully (bi)separable.

5.2 Quench

We consider a quench by initializing the chain in a random full product state. Fig. 3 shows the
temporal evolution of D, Dy, for 3 adjacent sites. Interestingly both quantities oscillate at early
times, with D showing a small revival around t = 5 before finally becoming zero. Using the
GTC, we can certify that for t = 5.4 the subregion becomes fully separable. The GME shows
a faster decline, and we can certify biseparability for t = 2.4. We have also been able to show
that the subregion of 4 adjacent spins becomes fully separable for t = 13 via the GTC. As above,
computing D is easier than exact certification, and we have obtained D(t = 9) = 3.3 x 107/,
which strongly suggests that exact separability occurs at earlier times. Finally, to put the non-
equilibrium results in context, we give the geometric entanglement of 3 adjacent spins in the
groundstate: D = 0.196, which is much less than the maximal value achieved during the
quench.

It would be desirable to study quenches in larger systems, where recent tensor network
methods designed to track the reduced density matrix of small subregions [45] could, at least
partially, allow one to study the fate of entanglement in a wider class of physical systems.

6 A continent without genuine multipartite entanglement for
fermions

The above discussion holds for systems of quantum spins. Crucially, spin operators at different
sites are independent (they commute with each other) so that they obey bosonic statistics.
However, there exist other particles in nature that do not commute, instead they acquire a
minus sign upon exchange: fermions, like electrons or protons. Individual fermion operators
possess this relative non-locality with other fermions, but observers nevertheless witness a local
world since physical operators are made of an even number of fermions, and are thus bosonic.
We shall consider fermions hopping on a lattice, as would pertain, for instance, to the fermionic
Hubbard model that is used to describe various quantum materials. The density matrix of a
physical fermionic system made of m subsystems thus possesses even fermion parity. But how
does fermion parity affects the definition of entanglement by constraining viable separable
states? A natural notion follows from declaring that a fermionic m-party state is un-entangled
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if it can be written as pfep =D pkpgk) ® pgk) Q- ® pf,f), where each pj(.k) has even parity

and the p; form a probability distribution [46-48]. This definition guarantees that the state
has no quantum correlations among the m components, and can thus be prepared locally.
Certain states can be brought to this form, but where some p(.k)do not have even parity. These
states cannot be prepared locally and their non-local correlations can be exploited for quantum
tasks such as quantum teleportation or quantum data hiding [49-51]. Moreover, we define
biseparable fermionic states as states of the form (2) where each p7_and pz, commute with
the local fermionic parity of the subsystems they pertain to. Fermionic states thus possess GME
if they are not fermionic biseparable.

Given an un-entangled fermionic physical state pfep, can we find an entanglement-free
region around it as was the case for bosons? We show that the answer is no, and then analyze
the same question but for the more interesting case of GME. The argument, adapted from
Ref. [52] and generalized to the multipartite case, is the following. Without loss of generality,
it suffices to consider the case with m = 2 components (we can always bipartition the initial
multiparty Hilbert space) by performing a small deformation, pfep + 6p, where 6p has zero
trace and contains terms of odd fermion parity for subsystem 1. For example, one can hop
an odd number of fermions between subsystems 1 and 2, e.g., 6p = €(|01)(10] + |10)(01|)
with positive € < 1. The deformed state does not have even parity for subsystem 1, and
hence is not separable, even for arbitrarily small €. Therefore, no entanglement-free region
exists around a fermionic separable state since nearby states arbitrarily close to pfep contain
entanglement between any two subsystems. In the fermionic world, there is thus no separable
continent. Pictorially, separable states lie on a zero-width sand beach, surrounded by an ocean
of entangled states arbitrarily close by. However, we find that entangled states in the vicinity
of fermionic separable states are fermionic biseparable by direct construction, see Appendix
E. The proof involves taking an un-entangled fermionic physical state, and showing explicitly
that a generic small perturbation around it can always be brought into a fermion biseparable
form. This implies the existence of a fermionic biseparable continent surrounding the separa-
ble beach, and in turn that fermionic systems experience a sudden death of GME during typical
evolutions with temperature, time or space. Hence, only non-GME and bipartite entanglement
are robust in fermionic systems. We give a schematic illustration of these features in Fig 4.

Turning the tables around, non-GME fermionic entanglement is more robust than in
bosonic systems since the state cannot land on a continent upon evolution. Let us say that
we heat a fermion system that contains multipartite entanglement at low T. The infinite tem-
perature state is un-entangled, but non-GME entanglement will decay gradually as a function
of temperature without a sudden death. This behavior was observed for integer quantum
Hall states [53] and free-fermion systems [46, 54]. Analogous conclusions hold for tempo-
ral or spatial evolution. For instance, the bipartite entanglement between disjoint regions in
fermionic quantum critical systems in arbitrary dimensions decays as a power-law with the
distance, without a sudden death [39]. In contrast, we predict that any measure of GME in
such systems will suffer a sudden death.

The geometry of the space of states acquires a distinct structure due to the presence of a
superselection rule, which is due to the fermion parity symmetry. By the same argument, a
similar structure arises with other superselection rules, where a symmetry becomes enforced.
Requiring the symmetry to hold for subsystems constrains states that can appear in separa-
ble decompositions, thus leading to the disappearance of separable continents. Symmetry-
enforced entanglement is thus more resilient.
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Figure 4: Structure of the space of states for fermions. For fermions, because of
the fermion-parity superselection rule, there is no separable continent. Instead, sep-
arable states form a zero-width sand beach with entangled states arbitrarily close.
This beach is surrounded by a light-blue region of biseparable fermionic states, be-
yond which states possess GME.

7 Outlook

In this paper, we discussed how the structure of the space of physical states, and in particular
the presence of a separable continent, leads to the sharp disappearance of entanglement in
various physical situations, under very generic assumptions. For fermionic systems, the parity
superselection rule forbids the existence of a separable continent and modifies the fate of en-
tanglement. Interestingly, we showed that there is a continent without genuine multipartite
fermionic entanglement, which is the richest form of entanglement. So, although fermionic
systems do not experience an entanglement sudden death, their genuine multipartite entan-
glement suffers the same fate as for bosons: it irreversibly disappears during evolution. The
same conclusion holds for other types of superselection rules, providing a generic recipe for
the creation of robust entangled states.

These new insights regarding the structure of entanglement in many-body states will have
strong impact for quantum simulation and computation. For instance, efficient algorithms
used to simulate quantum matter should incorporate the fact that distant particles are not
entangled in spin/boson systems, which strongly constrains the variational space of many-body
wave functions. Our work also paves the way for numerous outstanding research avenues. For
instance, it will be essential to investigate how multipartite entanglement evolves in a plethora
of realistic model Hamiltonians, and to determine the criteria that govern its demise under
evolution. It would also be desirable to investigate systems which could escape the fate of
entanglement. In parallel, we need a better understanding of violations of the FRH by certain
systems with topological order or quantum many-body scars, for instance. Finally, we have
also seen examples of how quantum matter out-of-equilibrium generates stronger multipartite
entanglement than in equilibrium. This is the tip of iceberg: we expect that non-equilibrium
dynamics can lead to rich entanglement structures that await to be discovered.
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A Entanglement measures and criteria

We give the definitions of the entanglement-related quantities we discuss in the main text,
namely the logarithmic negativity £, the geometric entanglement D and the genuine 3-party
entanglement criterion W.

A.1 Logarithmic negativity

We consider the density matrix p matrix pertaining to two subsystems 1 and 2. The logarithmic
negativity [40,41] is
&€ =log || ph

) (A1)

where ||X|| = Tr vVXXT is the trace-norm, and p ' is the partially-transposed density matrix
with respect to subsystem 1. This entanglement measure is related to the Peres separability
criterion for density matrices [55]. In full generality, a vanishing logarithmic negativity is
only a necessary condition for separability, but in the case of two spins (or qubits), it is both
necessary and sufficient [42].

A.2 Geometric entanglement

The geometric entanglement [6] is the distance between the state p and the closest separable

state,
D =min/Tr(p — psep)2 . (A.2)
Psep

D, is analogously defined as the distance to the biseparable set. For a small number of spins,
we can perform the optimization to get good upper bounds. We have used Dy, for 3 spins,
while the Gilbert algorithm was used to obtain D for 4 spins owing to the larger parameter
space. In performing the optimization for D in the case of 3 spins, we search over the set
Z?Zl K; with a fixed number of components u, where K; = pi ® pé ® pé is a general product
state (not necessarily pure). We begin with a low u, such as u; = 5, find the optimum by a
brute force search (we employed the global routine “fmincon” in Matlab) using many initial
points. Once the closest separable state is found, we used as the starting guess for the search
with a larger number of components, 1, = u; + 1. Once the variation of D between successive
u-values becomes less than a given threshold, we stop the process. We have found that we can
get excellent upper bounds by going up to u = 12. The values obtained were cross-checked
with the Gilbert approach. An analogous approach yields Dy, but now the product states are
replaced by p; ® py3 + 05 ® 015 + 03 ® 014, Where the subscript denotes the spins of the
corresponding physical density matrix.

The separability/biseparability certification through the GTC is obtained via an optimiza-
tion over the same u-component set, as described in [44].
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Figure 5: Test of the full-rank hypothesis. Minimal eigenvalue A,;, of the reduced
density matrices for three adjacent spins in the icosahedral molecule at h = 3 (top),
and for four adjacent spins in the spin chain (bottom) for the whole spectrum, labeled
by the corresponding energy E. We note that the groundstate has the smallest A;,
in the top panel, while it is the second smallest in the bottom one.

A.3 Genuine 3-party entanglement criterion

The criterion W is defined from the matrix elements p;;, i,j = 1,...,8, of a 3-spin density
matrix. It reads [43]

1
W = |pasl + |pasl + 35| — v/ P11P44 — v/ P11P66 — v/ P11P77 — E(Pzz + P33+ pss). (A3)

Positive W > 0 indicates the presence of genuine 3-party entanglement, whereas for W < 0
a definitive conclusion cannot be made. We thus define W = 0 in this case. The criterion W
is basis-dependent. Numerically, we thus maximize its value over all possible local unitary
transformations (U; ® U, ®Us )p(UI@U;' ®U§ ), where Uj is a generic 2 x 2 unitary matrix for the
spin j. While it is not an entanglement quantifier, large values of W generically correspond to
stronger genuine 3-party entanglement. For instance, W is maximal for Werner states, which
are maximally-entangled 3-qubit states, and is minimal for the maximally mixed state (the
identity).

B Test of the full-rank hypothesis

We test the full-rank hypothesis (FRH) for the icosahedral molecule at a representative value
of the transverse field, h = 3, for three adjacent sites, as well as for four adjacent sites in the
spin chain. In Fig. 5 we plot the minimal eigenvalues A ;, of the 3- and 4-spin reduced density
matrices for each eigenstate of the Hamiltonian, labeled by the corresponding energy E. All
the minimal eigenvalues are strictly positive, which indicates that the FRH is satisfied. For the
icosahedral molecule, the groundstate has the smallest A,;,, whereas it is the second smallest
in the spin chain.

C Phase diagram of the molecular quantum magnet

We report the zero-temperature connected correlation functions of adjacent spins in the anti-
ferromagnetic Ising model on the icosahedral molecule as a function of the transverse field h,
see Fig. 6. By symmetry we have (c*) = 0. The point h = 3 corresponds to a generic point
of the phase diagram.
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Figure 6: Spin correlations in the icosahedral molecule. Various spin correlation
functions versus the transverse field in the icosahedral molecule at zero temperature.

Figure 7: Initial states in the quench protocols. Blue sites are initialized in a spin-
up state, whereas orange ones are initialized in a spin-down state. We study the
colored face during the time evolution. The left panel represents the initial stat for
the Ico-1 protocol, and the left panel pertains to the Ico-2 protocol.

D Quench protocols

In the quench protocols Ico-1 and Ico-2, we initialize the system in a pure product state of
up and down spins in the o* basis, and let it evolve under the icosahedron Ising Hamiltonian
discussed above with h = 3. We illustrate the initial states in Fig. 7. This is a planar represen-
tation of the icosahedral molecule, where blue sites are initialized in a spin-up state, whereas
orange one are initialized in a spin-down state. The colored face represents the 3-spin subsys-
tem for which we compute various metrics during the time evolution. For the Ico-3 protocol,
the initial state is the groundstate of the Ising Hamiltonian with h = 0.04 and it evolves under
the Hamiltonian with h = 3. The time-evolution of the geometric entanglement D for both
Ico-2 and Ico-3 quenches is represented in Fig. 8. We have further studied the 4-spin subre-
gion made of two adjacent triangular faces, and were able to certify full separability for ¢t = 4
(Ico-2) and t = 1.5 (Ico-3).
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Figure 8: Icosahedron quench protocols Ico-2 and Ico-3. The geometric entangle-
ment D and D), for the quench protocols Ico-2 and Ico-3. The open shapes indicate
that the 3-spin state is rigorously certified to be fully (bi)separable.

E Genuine multipartite entanglement for fermions

In this appendix, we show that fermionic separable states are surrounded in their close vicin-
ity by regions of fermionic biseparability, implying the sudden death of genuine multipartite
entanglement (GME) in fermionic systems.

E.1 Three parties

Let us first consider the case of m = 3 fermionic modes. A fermionic separable state has the

form

k k k
pho=>pmrPepepl, (E.1)
k

0
j
semi-definite operators with even local fermion parity: (—1)" pgk)(—l)"i = p](.k), where the

with p; = 0 and Zk Pr = 1. The 1-mode states p;’ are normalized, Hermitian and positive

number operator n; = c;'cj is defined in terms of the mode annihilation operator c;. The
generic form for such states is

wW_l., w1l w1

i —2]I+aj o*, z\aj <3 (E.2)

We take pfep to lie in the interior of the fermion separable set, for otherwise entangled states

would lie in the immediate vicinity of the state. By inclusion, pfep also lies in the interior of
the bosonic separable continent. Using convexity of separable states, we are thus guaranteed
that there exists a region surrounding pfep where states have a (bosonic) separable form. We
parametrize them by

ple)= Zpk (pgk) +e co(lk)) ® (pgk) +e wgk)) ® (pgk) +e wék)) , (E.3a)
k

with
&

where € = 0 is a positive but small parameter. These states satisfy p(0) = pfep. In principle,

one could consider a more generic perturbation where »® also contains a o* component.
However, this would be equivalent to considering a state p(e€) as in (E.3a) but centered around
(k)

another fermionic separable state ﬁfep. We thus consider the case where w ; only contains
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terms breaking the local fermion parity. We stress that the 1-mode states in (E.3a) break local
fermion parity, and therefore p(e) corresponds to an entangled fermionic state.

The constants b and d](k) in (E.3b) are not entirely free however. They must be chosen
such that (i) the individual states in the convex combination (E.3a) are positive semi-definite
(they are normalized and Hermitian by definition), and (ii) the total state commutes with the
total fermion parity, (—1)", where n = i1y These conditions translate to, respectively,

(W) e (o) e (4 <

1
-, E.4
2 (E.4a)

and

k k k k k k k k k k k k
Zpke(w(l)®pg)®pg)+pg)®cu(2)®pg)+p§)®pg)®wg))+2pk63wg)®w(2)®wg)=0.
k k

(E.4b)
The first condition (E.4a) can always be satisfied for small enough ¢, unless the local fermionic
state in pfe » 18 p](.k) = %(]Ii o*). In those situations, no parity-breaking perturbation on pJ(.k) is

allowed and »® = 0.
Because all the odd-parity terms have to cancel, see (E.4b), we recast p(e€) as

k k k k k k k k k
p(e)zpfep+ezzpk(p§)®w(2)®wg)+co(1)®pg)®wg)+w(1)®o)(2)®pg)). (E.5)
k

For each k in the sum for p(e€), we recast the corresponding term (dropping the indices and
tensor product symbols for readability) as

1 1 1
pppt+e(pwwtwpwtwwp) = §p(pp+362ww)+§(ppp +362wpco)+§(pp+362ww)p .

(E.6)
We thus have
Pk k k k k k k
p(e)= Z 3 (p§ '® pég)(E) + pgg)(e) ®p ) +pBe)® pé )) , (E.7a)
k
with
pg()(e) = pfk) ® p](.k) + 362w§k) ® wg.k) . (E.7b)

For 0 < € < €* and €* > 0 small enough, this state is guaranteed to be positive semi-definite
for all i, j, k. The only potential obstacle would be if one pJ(.k) were of the form %(]I +0%) (with
avanishing eigenvalue), but in that case the corresponding perturbation would have to vanish,
w® = 0, as explained above. Moreover, it is direct to show that condition (E.4a) is fulfilled.
We thus conclude that for 0 < e < €*, the state p(¢) has a biseparable form (2), where each
state involved in the convex combination is normalized, Hermitian, positive semi-definite and
commutes with its local fermion parity. It it thus fermionic biseparable.

E.2 Four parties
For m = 4, the argument is similar. The even terms in the sum for p(€), following the notation
of (E.6), have the form

1
pppp +etwwww+e}(ppww +perm.) = ;(pppp +7e*wwww)
1 (E.8)
+ {;(pppp +7€2ppww) + perm.} .
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We recast the terms as

1
pppp +7etwwww = E(pp +V7e2ww)(pp + V7e(ww)

1
+ E(pp —V7e2ww)(pp —V7e¢ww), (E.9)
pppp +7¢ppww =pp(pp +76*ww),

and similarly for the other five permutations involving two p and two w. As for the case
m = 3, there are small but non-vanishing values of € for which all states above are positive
semi-definite. Since they commute with their local parity, it means that the total state p(e€) is
fermionic biseparable. The argument readily generalises to arbitrary values of m = 3.
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