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Abstract

Generative networks are an exciting tool for fast LHC event generation with fixed number
of particles. Autoregressive transformers allow us to generate events containing variable
numbers of particles, very much in line with the physics of QCD jet radiation, and offer
the possibility to generalize to higher multiplicities. We show how transformers can
learn a factorized likelihood for jet radiation and extrapolate in terms of the number
of generated jets. For this extrapolation, bootstrapping training data and training with
modifications of the likelihood loss can be used.
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1 Introduction

Modern LHC physics is defined by precision tests of the fundamental properties of particles
and their interactions, both in and beyond the current Standard Model. The level of precision
is continuously improved by experimental and theoretical progress, accompanied by but not
limited to the rapidly increased LHC luminosity towards the high-luminosity LHC.

In view of this precision program, experimental and theoretical LHC physics are being
transformed through modern machine learning (ML) [1,2]. On the theory and simulation
side, a range of neural network applications are improving every step of our first-principles
simulation chain. This includes phase-space sampling [3-11], scattering amplitude surro-
gates [12-22], end-to-end event generation [23-27], and detector simulators trained on full
simulations [28-50].

The main workhorses behind this transformation are generative networks. They learn
phase space densities or Jacobians from simple distributions given sets of events and can re-
produce these densities through fast sampling. Modern generative network architectures are
normalizing flows, diffusion networks, and autoregressive transformers. Because they are
fast, differentiable, and flexible, generative networks can enable new simulation and analysis
strategies. These networks are reaching new levels of accuracy and can significantly amplify
simulated training data [51,52] and speed up the generation. Given the LHC requirements,
they have to be controlled and precise in encoding kinematic patterns over an, essentially,
interpretable phase space [53-57]. Conditional versions of the forward-generative networks
allow for probabilistic unfolding [58-65] or inference through posterior sampling [66-68].

In this paper we tackle the physics problem of using generative networks to describe jets
radiated from a hard scattering process. In fundamental QCD, jet radiation is described by
successive probabilistic parton splittings. It is an integral part of QCD predictions for hadron
colliders, where final states with a fixed number of jets are not in line with parton densities and
collinear factorization [69-71]. The corresponding splitting kernels and the generated phase
space correlations are approximately universal [72]. The generated number of jets follows
well-defined patterns, also predicted by QCD.

Autoregressive generative networks can, just like with language, generate open-end se-
quences of particles, or events with a variable number of particles. An autoregressive gener-
ation requires a factorized phase space probability [73, 74]. This structure matches the QCD
aspects of universal splittings and well-defined jet numbers. Our generative architecture of
choice is an autoregressive transformer [27,75]. An attractive benefit of this approach is the
possibility of exploiting universal structures across jet multiplicities, which could allow for a
single generative network to be deployed instead of a collection of specialized models. In this
work we establish the fundamental idea by studying extrapolation to higher multiplicities,
highlighting both the challenges and the opportunities.

The goal of this paper is to show, for the first time, that a generative transformer can ex-
trapolate in the number of jets and generate approximately universal jet radiation for higher
jet numbers than seen during the training. In Sec. 2 we describe the QCD structures motivating
an approximately factorized phase space likelihood and its ML-realization, leading to our au-
toregressive generative transformer. We then present extrapolated predictions in the number
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of jets in Sec. 3, using bootstrapped training data in Sec. 3.2, a truncated loss without fixed
stopping condition in Sec. 3.3, and a loss that overrides the stop condition in Sec. 3.4. In Ap-
pendix A we provide additional information on how to improve the accuracy of the generative
transformer through including a classifier in the training, in the spirit of a GAN.

2 Autoregressive jet radiation

Given that jet radiation in QCD is described by universal splitting kernels and well-defined
scalings in the number of jets, we will train an autoregressive transformer with a factorized
likelihood loss to generate QCD jet radiation. The ultimate goal is to show that the transformer
not only describes jet radiation to a number of jets represented in the training data, but that
it can extrapolate to larger jet counts than seen during training.

We first remind ourselves of universal splittings in QCD and the typical scaling in the num-
ber of produced jets. We will then motivate our Z+jets dataset, exhibiting the universal so-
called staircase scaling. To train a generative network we first derive a factorized phase space
probability and then encode it in a loss function for an autoregressive transformer.

2.1 QCD jet radiation

Collinear parton splittings in the initial or final states are the backbone of QCD predictions for
hadron colliders. Their universal nature is the basis of parton densities, parton showers, and
jet radiation, and it defines the structure of LHC events [69-71]. A challenging consequence
of collinear splittings is that any hard scattering process is accompanied by a variable number
of jets in the final state, as described by jet radiation and parton showers in the multi-purpose
event generators [76-79]. Combining parton shower and hard matrix element predictions is
the theory basis for the entire precision physics program at the LHC [80-83].

Universal autoregressive structure

The physics background of our paper is the universal nature of jet radiation from collinear
splittings, reflecting the collinear factorization of the matrix element and the phase space. It
allows us to generate events with n + 1 final-state jets from events with n final-state jets. For
final state radiation this factorization is schematically written as

dp? a
On+1 NJ p2 Z _SP(Z)Un: ¢y
D 27

where p? is the invariant mass of the splitting parton, z is the momentum fraction carried out
of the hard process o, and P(z) are the universal collinear splitting kernels. In the initial
state, this factorization is the basis of the DGLAP equation with the subtracted versions of the
same collinear splitting kernels.

The iterative structure of Eq.(1) allows us to simulate parton splittings as Markov processes,
and it also allows us to describe the underlying densities in an approximately factorized form.
Such a factorized density is most efficiently generated by an autoregressive structure. The
key ingredients are the perturbative QCD splitting functions and the non-splitting probability,
referred to as Sudakov factor.

The actual simulation of, approximately, collinear jet radiation is not expected to be exact:
first, we need to generate final transverse momenta for the radiated partons while keeping
transverse momentum conservation [84]; second, we need to correct for color and spin cor-
relations [85]; finally, the structure of successive (1 — 2)-splittings might not be sufficient for
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the LHC precision [86,87]. Nevertheless, the form of Eq.(1) suggests that in QCD events with
increasing number of jets can be derived from a simple iterative pattern, and such a pattern can
in principle be learned and extrapolated by a neural network with the right (autoregressive)
architecture.

Jet rate scaling

The number of radiated jets in LHC events does not follow a universal distribution. However,
we can derive two distinct patterns. Both are defined in terms of the ratio of (n+1)-jet to n-jet
events or in terms of the fraction of events with n jets,

Ont+1 On

R(n+1)/n = —— and P(Tl) =

n O tot

o0
, with Oior = Z o, - 2
n=0

The ratios and the probabilities depend on kinematic cuts regularizing the soft and collinear
divergences, typically the minimum transverse momentum of the counted jets, pr pin-

1. The first pattern, Poisson scaling, implies in terms of the expectation value 1,

—n

Aille

n n
Rns1)/n = 1 = P(n)= m

(3)

At colliders, it occurs for processes with large splitting probabilities and large scale dif-
ferences, for instance multi-jet production in e*e™ collisions.

2. We focus on the alternative staircase scaling [88-90] with
Rpspym=e¢" & PaZnyp)=e . @)

While the ratio e~? is the same for the exclusive and inclusive jet counts, the probability
only has a simple form for the inclusive jet count, classifying events with n;, jets or
more. We can use the universal scaling to relate P(n) to a successive or conditional
probability

P(n+1|n)= Ris1y/n - (5)

At colliders, staircase scaling is predicted for smaller splitting probabilities and democratic
scales [91]. In that case, the jet count distributions can be derived from QCD using generating
functionals [92]. For final state radiation we quote the scale-dependent result

Rinsnyn =1-4,(Q%), (6)
with a modified Sudakov factor or non-splitting probability

Q2
R (Q2) = exp | — a0 (1o, 11

To leading-log level the integrand is the QCD splitting function in the collinear approximation.
This QCD derivation of staircase scaling requires democratic scales Q?/ Q% ~ O(1).
At the LHC the standard example is weak boson production with jets,

pp — Z +njets, with n=1{0,1,2,3,...}. (8)

Because the two scaling patterns are different, we will limit ourselves to learning and gener-
ating staircase scaling from datasets described by universal collinear radiation.

4
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Figure 1: Staircase scaling of the number of jets in our pp — Z + n jets dataset.
We show statistical uncertainties and use Gaussian error propagation to estimate the
uncertainties for the ratio Ry, /.

2.2 Z + jets dataset

We follow the above motivation and Refs. [27,53] by generating Z bosons decaying to muons
in association with a variable number of jets. Unlike for earlier studies, we include higher jet
multiplicities to provide a challenge for the transformer

pp — Zy,, +10, -+, 10} jets. )

We use MADGRAPH5 AMC_@NLOv3.5.1 [93] to generate 500M pp events at a center-of-mass
energy of /s = 13 TeV, including ISR and parton shower with PyTHIA8 [77], using CKKW
merging [80] and hadronization, but no pile-up. The jets are defined with FASTJETv3.3.4 [94]
using the anti-k algorithm [95] with R = 0.4 and the basic cuts

The muons and jets are both ordered in descending transverse momentum. Our phase space
dimensionality is three per muon and four per jet. Momentum conservation is not guaranteed,
because some final-state particles might escape for instance the jet algorithm. The distribution
of the number of jets and the corresponding ratios R(1)/, are shown in the two panels of
Fig. 1. We observe an approximately constant ratio for most of the spectrum, confirming a
staircase scaling as defined in Eq.(4). Towards large numbers of jets we start encountering
statistical limitations as well as phase space limitations.

Of our 500M events we use 80% for training, 10% for validation, and 10% for testing. The
number of events per jet multiplicity is given in Tab. 1. To avoid being entirely dominated by
low-multiplicity events, we cap the number of events with n = 0, 1, 2 to match the number of
events with n = 3.

For the jet momenta, we use a minimal preprocessing [27, 53], where each particle i is
represented in standard jet coordinates

{(pTJT)quJm)i}' (11)

We enforce the pr cuts in Eq.(10) using the transformation log(py — pr.min), Which maps al-
lowed transverse momenta to the full real line and leads to an approximately Gaussian shape.
The jet mass is encoded as log m. We express angles ¢ relative to the leading muon and apply
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Table 1: Event counts for our simulated Z+jets dataset. When training networks, we
cap the size of the 0,1,2-jet subsets.

Number of jets 0 1 2 3 4 5 6 7 8 9 10

Number of events 380M 91M 2I1M 4.7M 1.1M 230k 52k 11k 2.3k 510 95
Cap 4.7M 4.7M 4.7M - - - - - - - -

a special treatment described in Section 2.4 to reflect the periodicity. We suppress the leading
muon ¢ angle due to the global rotation symmetry. Finally, we standardize all phase space
variables except ¢ as (x — x)/o(x). For 10 jets this phase space is 45-dimensional.

2.3 Factorized probability

Following the discussion in Sec. 2.1, QCD jet radiation has two features that make it an at-
tractive target for autoregressive generative networks: the universal splitting kernels and the
jet ratio patterns. In case of staircase scaling the ratios of exclusive and inclusive jet rates
are also universal. Equation (1) suggests that the phase space density for an event x can be
constructed as a product of conditional distributions, each taking the form

p(xi |X1:i—1) = pkin(xi |x1:i—1) psplit(xl:i—l) P (12)

where we denote by x;.;_; the sequence of progenitor partons xq, ...,x;_;. For particle i,
Pkin €ncodes the kinematics, conditional on the probability pg; that it will be radiated. Both
probabilities are conditioned on the full previous sequence of particles x;.;_;. This dependence
on the complete previous sequence is necessary to describe non-Markovian corrections to the
universal nature of splitting kernels.

Approximate universality of the splitting kernels and jet ratios translates to universality
of pyin and pgpi respectively. This raises the possibility that, given the right architecture, we
can train a neural network to extrapolate QCD jet radiation patterns in analogy to a collinear
parton shower Monte Carlo approach.

Using the conditional probabilities in Eq.(12) we can build the likelihood of an n-jet event,

p(xlzn) = |:l_[p(xi|x1:i—1):| [1 _psplit(xl:n)]

i=1
= [l_[pkin(xilxlzi—l)] [l_[psplit(xlzi—l):| [1 = pepiic(x1:n) ] (13)
i=1 i=1

where the last term gives the probability that there are no further splittings and the event is
complete. In QCD language it corresponds to a Sudakov factor. In accordance with Eq.(11),
the phase space probability p(x;.,) has a well-defined dimensionality 4". It is normalized both
as a continuous distribution over x; and a categorical distribution over n,

Zjdxl...dxnp(xlm) =1. (14)
n=1

As illustrated in Fig. 2, the generative process can be visualized as a binary probability tree
with a Sudakov stop if no further splitting happens. The combination of pg;; for a splitting or
(1 — pspiie) for no splitting is described by a Bernoulli distribution py;, with expected splitting

probability pgpy

Pbin (.y|psplit) = nght(l _psplit)l_y P with Yy € {O: 1} > DPsplit € [0: 1] . (15)
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Figure 2: Probability tree for variable-length event generation. To disallow empty
events, we assign pgpic(xo) = 1.

It allows us to unify the factors pg,j; and 1 — pgpy in @ completely factorized likelihood
n n
pCrer) = [ [punCxilxricn) [ [Poin(1 = Sinlpspie(r) - (16)
i=1 i=0

The Kronecker delta &, assigns the splitting label zero for the n'® particle and one otherwise.
By keeping the full conditioning on x;, this likelihood is completely general and can capture
non-universal correlations. This is important when we describe full events, including the hard
process. For Z,,+jets events, we also include the muons in the sequence, but explicitly set
their splitting probabilities to one instead of learning them. In addition, we use an additional
one-hot encoded network input to distinguish the two types of muons and the jets.

Similarly to the decomposition of the event likelihood p(x;.,), we autoregressively fac-
torize the likelihood of individual particles py;,(x;4+1/x7.;) in terms of their components. The
ordering of components can affect the network performance [27], however for such small se-
quences this effect is negligible. The elements of the sequence are one-dimensional, and we
parametrize their distributions with mixtures

Prin(Xi411x1:1) = pGM(pT,i+1|x1:i)vaM(¢i+1|X1:i’pT,i+1)

X Pam(Mi+11%1:05 P1iv1> Piv1) Pam(Mig1 [ X1:6 P1 i1, Piv1s Miv1) - 17)

We use Gaussian mixtures pgy for non-periodic variables and von Mises mixtures pyyy for the
periodic variable ¢. Since it is straightforward to sample and to compute densities with these
component-wise mixtures, the same is true for the full event likelihood. We do not generate
the fixed muon mass in Z,,,+jets events. Periodic likelihoods for angular variables inform the
network about this geometric information and therefore improve the performance. This has
been previously shown for normalizing flows [96] and conditional flow matching [19].

In contrast to the autoregressive structure of p(x;.,) in Eq.(13), Eq.(17) is not inspired by
physics and other choices are possible. Examples from the literature are categorical distribu-
tions over bins (which suffer from limited resolution) [27,75,97], normalizing flows [68,98],
and conditional flow matching [68,98].
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We emphasize that this factorized likelihood, built to describe an autoregressive genera-
tion, generalizes the usual factorization p(x;.,) = p(x;.;[i)p(i) [53,68] and previous autore-
gressive approaches [27]. Similar generative approaches have been developed for jet con-
stituent generation [99], and a similar factorization for density estimation has been studied in
Refs. [73,74].

2.4 Autoregressive transformer

Starting from the physics-motivated factorization in Eq.(16), we need to encode these densities
with variable-length inputs x;.; using neural networks. A transformer f, with causal attention
mask will turn these sequences into fixed-sized representations. We use a pre-layernorm trans-
former decoder with GeLU activations, for more information see App. B, and decompose the
transformer output as

fo(x1:) = (pi, v) ERxRY. (18)

The embedding dimension d is a hyperparameter. The p; represent the splitting probabilities
that parametrize the Bernoulli distributions,

Pi %psplit(xl:i)- (19)

The embeddings v; similarly parametrize the kinematic conditionals

Pkin(X;]vi—1) & Prin(3;]x71:121) - (20)

For clarity, we always suppress the dependence of p; and v; on x;.; and on the transformer
parameters 6.

Loss and training

The loss function of the autoregressive network is given by the likelihood in Eq.(16),

Lie = —(l0gp(x1.1))

X~Pdata

n n
= —<Zlogpkm(xilvi_1)+Zlogpbm(1—5in;p1~)> : 2D
i=1 i=0 X~Pdata
The first term is the usual likelihood loss for the kinematic generative network. The second
term is the standard binary cross entropy. In our generative network it implicitly enforces the
correct event multiplicity through a splitting discriminator.

In Sec. 3 we will consider modified training strategies to extrapolate beyond the maximal
multiplicity n,,, of events contained in the training dataset. One strategy is to modify the
cross entropy part of the likelihood loss in Eq.(21), for example by removing the contribution
from the term with highest multiplicity n,,,

X~Pdata

n n
Lirune = <—Zlogpkm(xi|vi_1)—2(1—6inm)logpbm(1—6in;pi)> Ny
i=1 i=0

Using this loss, the splitting prediction for maximum-multiplicity events, p,, _, is not explicitly
trained. Rather, the weight sharing in the transformer allows correlations learned at lower
multiplicity to be recycled.

When training our transformers on the Z+jets dataset from Sec. 2.2, we use the Adam
optimizer with constant learning rate 3 x 10~* and batch size 1024. The batches contain events
with different multiplicities following the distribution in the training data. The validation loss
is tracked every 5k iterations, and we restore the network from the checkpoint with lowest
validation loss after 200k iterations.
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Sampling

To generate full events x, we sequentially sample from the likelihood described in Sec. 2.3, as
visualized in Fig. 2. We sample 10M events in total and split them according to their multiplic-
ities. This procedure generates samples from the exact likelihood learned by the network, but
does not give us explicit control over the generated jet multiplicities. We decide on a maximum
number of jets, and discard events for which the transformer predicts further splittings.

Bayesian network

Because we hope to use the autoregressive transformer for extrapolation beyond the jets
present in the training data, we need to quantify the uncertainty in the predicted phase space
density. We resort to Bayesian neural networks (BNN) [100-103] as a way to learn systematic
and statistical uncertainties together with the mean network predictions. These are a standard
method in LHC physics, for instance for amplitude regression [17], calibration [104,105], and
classification [106]. They can be generalized to the density estimation aspect of generative
networks [27,53,107,108], where they return an uncertainty on the unit event weight.

BNNs replace the network parameters 6 by learnable distributions q(6), usually assumed
to be uncorrelated Gaussians. Their loss consists of a sampled likelihood term and a regular-
ization with a prior-width hyperparameter,

Lo =—(logp()) _ +Dy.[q(6),p(0)]. (23)
~Pdata,¥ ™4

To evaluate the BNN we sample from the learned weight distributions, in our case generating
10 samples, with a given number of 10M events each.

3 Results

Even though we are interested in extrapolating towards unseen jet numbers, we first bench-
mark the accuracy of our transformer in Sec. 3.1. We also show how without modifications
the generative network does not actually extrapolate. For a successful extrapolation we first
use a bootstrap approach in Sec. 3.2 and then show in Sec. 3.3 and Sec. 3.4 how truncating
or overriding the likelihood loss allows the network to generate larger jet numbers than seen
during training.

3.1 Generating without extrapolation

We begin by demonstrating that our transformer learns the phase space density precisely across
event multiplicity. We train a Bayesian version of the transformer using all Z + n jet events,
from the hard process only, or n =0, up to n = 10. We sample 10M events each from 10 BNN
predictions. The jet multiplicity distribution is shown in the left panel of Fig. 3, showcasing
that the generator can learn the universal staircase scaling. In Fig. 4, we see that the network
reproduces the kinematic distributions with precision down to the statistical uncertainty of the
test set. The transverse component of the vector sum of all particle momenta, pry, provides a
sensitive test of learned global correlation among all particles. All deviations from the training
data are captured by the Bayesian uncertainty.

Next, we inspect whether the network has learned universal structure in the probability to
generate additional jets. In the right panel of Fig. 3 we show the distributions of py;; predicted
during the autoregressive sampling steps. We train the network on the entire dataset, with up
to 10 jets. We ignore the learned p;; for the first two jets, because we manually capped the
number of training events for up to two jets, as shown in Tab. 1. For more than 6 jets, the
distribution stabilizes within the Bayesian uncertainty band, indicating that between 6 and 10
jets we do not observe a significant effect from the parton densities [92].

9
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Figure 3: Jet multiplicity distribution (left) and splitting probabilities (right) for sam-
ples generated with the transformer trained on the full dataset up to 10 jet events.
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Figure 4: Selection of features in Z + 7 and 8-jet events for the generative network
trained on the full dataset, including 7 and 8-jet events.

Naive extrapolation

Because the termination of the number of jets is implemented probabilistically, we can naively
extrapolate to higher jet numbers. For instance, we can train the networks with up to 6 jets and
assess the small number of 7-jet and 8-jet events they generate. While the quality of 7-jet and
8-jet events should be worse than for jet numbers seen during training, we want to know if the
transformer can leverage universal properties of the QCD jet radiation. We show the generated
jet multiplicity distribution in the left panel of Fig. 5. Indeed, the network generates events
with more than 6 jets, albeit with much lower probability than expected from staircase scaling.

10
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Figure 5: Jet multiplicity distributions for samples generated with the transformer
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1071 102
el —2 | el
[ S 1073
5 3
£ 1074 E . 4
3 S 10775
Z. Z
10744 105
v1= 1.25 vjs 1.25
2(21.00 1 2(21.00
2IE 575 | ZI=0.75
20 0 100 200
prj7 [GeV] prx [GeV]
10°4 Z+8j 1074 Z+8j
10714 ] ] —— Truth i — |1ruth
el el _ e el
g g 1074 M —— Naive .g 10725 — [Naive
g 107 E ! S
B E 107 £ 1071
2 10 z z H
| 10734 10744
10744 - |
2515 25155t o —
52 1. =t E[E 1. = EIERR
== 0.75 - == 0.75 i 20754 L
20 40 60 20 30 40 0 100 200
Prj7 [GeV] Pr,js [GeV] Prx [GeV]

Figure 6: Selection of features in Z + 7 and 8-jet events for a generator trained on
up to 6-jet events.

For perfect training, we expect the rate for events with more jets than the training set to
approach zero. This is because the transformer output p; is trained to match the probability
that another jet follows particle i, p; & pgyi(x1.;).- In a given training set, with maximum
event length n_,.,, one always has

psplit(xlznmax) =0. (24)

The optimal network would learn p, = 0, and the transformer can ignore physical cor-
relations. The reason we do not observe exact zero splitting probabilities is that the weight
sharing in the autoregressive transformer imparts a bias to reuse the pattern learned at low
multiplicities.

Given the small but finite rate of 7-jet events generated through naive extrapolation, we
want to see if the transformer has generalized the jet kinematics. In Fig. 6, we show the

11
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kinematic features as for the extrapolated 7-jet events. Among 100M generated events, the
transformer only generates three 8-jet events, so we cannot assess their quality. However,
the 7-jet events look qualitatively reasonable. In particular, the slightly broken transverse
momentum conservation is reproduced with an accuracy similar to the baseline in Fig. 4.
Given that the p; of the 7 jet is approximately the same scale as the level of momentum non-
conservation, this is a non-trivial result. It suggests that the transformer indeed generalizes
kinematics, and we should mainly address the learned jet multiplicity.

3.2 Extrapolation with bootstrap

A simple modification to increase the fraction of learned 7-jet events is to bootstrap them, i.e.
add generated 7-jet events to the training data. This way, we dynamically break the condition
Pspiie(X1:n,, ) = 0 of Eq.(24) and allow the network to adapt its multiplicity distribution. By
repeating this bootstrapping, we can also generate 8 jets and beyond. The fraction of gen-
erated events introduced to the training dataset is a hyperparameter. It controls the learned
multiplicity distribution.

200k
200k 50 50 50 50

start ——» Warm-up ——>¢_“_> l J’ i
777 -

Figure 7: Training workflow for extrapolation with bootstrap. The upper horizontal
arrows denote iterations within the training process, and vertical arrows denote mov-
ing bootstrapped events to update the buffer and include buffered events in training.
Additional information is given in the text.
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Figure 8: Selection of features in Z + 7 and 8-jet events for a generator trained on
up to 6-jet events using the bootstrap technique.
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The training workflow is visualized in Fig. 7. We start to add bootstrapped events after
a warm-up stage of 200k iterations, corresponding to a full-length training in the approach
of Sec. 3.1. Without this warm-up stage, the network memorizes the poor-quality samples of
the freshly initialized network. After the warm-up, we generate a buffer of 1k 7-jet events.
For every generated batch we sample a new deterministic network from the learned weight
distribution, making sure that we cover the full range of the weight posterior distribution.
We then add a single 7-jet event to each batch of 1024 events, corresponding roughly to the
fraction of 7-jet events in the training dataset, and train for another 200k iterations with these
settings. After every 50 iterations, we generate a batch of 32768 events, extract the 7-jet events
and add them to the buffer. Once the buffer contains 50k events, we start to replace its oldest
events with newly generated events. This allows the network to dynamically adapt the quality
of 7-jet events. We observe that the network has to be trained for a sufficient amount of time
in the bootstrapping mode to adapt to the changed multiplicity distribution.

The obtained jet multiplicity distribution is shown in the right panel of Fig. 5. We now
get significantly more 7-jet and 8-jet events, indicating that the network indeed adapts the
multiplicity distribution. The fraction of 8 jet events is significantly lower than in the training
data, because we only bootstrap 7 jet events. The kinematical distributions of the generated
events are shown in Fig. 8. They show that the bootstrapping generator yields valid kinematic
configurations. However, there are deviations in the kinematic features from the truth that are
not covered by the Bayesian uncertainty. We remark, however, that Bayesian uncertainties are
not expected to cover out-of-distribution deviations.

SciPost Phys. 20, 004 (2026)

3.3 Extrapolation with truncated loss

A complementary way to combat the suppression of events with more jets than the training
set is to modify the likelihood loss. As discussed in Sec. 3.1, the cause of the suppression is
the constant pgy;(x1.,, ) = O represented by a training dataset with at most np,, jets. A
simple solution is to omit the final Bernoulli contribution from the loss and truncate the loss
as described in Eq.(22),

n n
Etrunc = <_Z logpkin(xi | Vi—l) - Z(l - 5inmax) IOngin(l - 5in; pi)> (25)
i=1 i=0

X~Pdata

It differs from the complete likelihood loss of Eq.(21) in the addition of the factor 1 — 5inmax in
front of the Bernoulli component. Now, the splitting prediction for maximum-length events,

—— Truth —— Truth
10714 10714 .
—— Truncated —— Override
o o
81077 1072
< S
E g
3 5
Z. 10—3< Z 10—3<
1074 1044
0O 1 2 3 4 5 6 7 8 0 2 3 4 5 6 7 8
Jet multiplicity Jet multiplicity

Figure 9: Jet multiplicity distributions learned using L. (left) and £ yepige (right)

trained on events with up to 6 jets.
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Figure 10: Selection of features Z 4+ 7 and 8-jet events, trained with the truncated
loss.

Pn, - is notexplicitly trained. Rather, the weight sharing in the transformer allows correlations
learned at lower multiplicity to be recycled. When sampling a network trained in this way, the
splitting predictions beyond n,,,, are pure extrapolation.

Using the truncated loss, we again train a transformer on events with up to 6 jets and
again sample up to 8 jets. The generated multiplicities are shown in Fig. 9 (left). Indeed, the
network learns and extrapolates the staircase scaling. We show the extrapolated kinematic
correlations in Fig. 10. The only deviation exceeding the BNN uncertainty is a slightly larger
transverse momentum imbalance than expected in 7-jet events. This result demonstrates that
the generative transformer described in Sec. 2 has learned the universal pattern of jet radiation.

3.4 Extrapolation with override

In the previous section we have shown how truncating the final Bernoulli term from the likeli-
hood loss allows the network to generate high-quality 7-jet and 8-jet events. However, the ex-
trapolation can be mis-calibrated. Because the transformer splitting predictions p; are trained

with a binary cross entropy, the optimal solution in terms of the non-splitting probability is the
posterior

p(xy.;|stop at i)
zngip(x1:i|3top at n) ’
assuming a uniform prior for simplicity. When training on a dataset with maximum multiplicity
Nmax> the estimate is biased since the sum over n is missing terms above n,,,,. The same effect
causes the transformer to stick to a constant splitting probability p, = 0.

In an alternative approach we show that transverse momentum conservation can be used
as an extra handle on the posterior. A violation of transverse momentum conservation can be
induced by removing particles beyond the hard process and first k jets. The spread in center
of momentum scales with k, so we can use transverse momentum conservation to statistically
separate complete and incomplete events. Secondly, we note that the p, 5, and p, 5 distri-

butions are roughly Gaussians with zero mean, and hence fully specified by their standard
deviation.

1—p; ~ p(stop at i|x;,;) = (26)
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Figure 11: Standard deviations of p, 5, for the muons and first k jets in Z + n-jet
events. Filled circles indicate complete events, with k = n, while empty circles are
incomplete. Points in the gray region are not used in any fit, but show the agreement
of the extrapolation.

In Fig. 11, we show the widths of the p, 5. distributions as a function of the jet number, for
complete events and for the hard process plus k jets. The widths obey an approximately linear
scaling when considering a fixed number of jets, for complete events or otherwise. We can
perform a linear fit to estimate the standard deviations for higher-multiplicity events, giving
analytic expressions for the likelihoods in Eq.(26). We arrive at

o(n;k)=(n—k)m +o(k;k), with o(k;k)=3.14k+9.97,
and 1/m; = 0.0088k + 0.056. 27)

The widths of completed events, o(k; k), are fit from the bottom row of filled circles in Fig. 11
up to n = 6. The gradients m,, of lines with constant k are fit using events up to n = 5. The
fits are shown as dotted lines in Fig. 11, and we see that they extrapolate well to all partial
k values in 7-jet and 8-jet events. Due to the rotation symmetry around the beam axis, the
same values hold for p, 5, and we can assume that the joint likelihoods are the product of 1D
Gaussians.

O,U(n;k))N(py’E(xlzk) 0,0(n; k)) . (28)

Using Eq.(28) we can calculate target posteriors for an arbitrary maximum number of jets.
This allows us to modify the likelihood loss by generalizing the Bernoulli splitting variable §;,
to a continuous variable y; € [0, 1] and override the troublesome pp;; = 0 label for particle
Nmax DY this estimate weighted by a hyperparameter A,

Pric(x7.|stop at n) = N(px,Z(xlzk)

n n
Loverride = <_Z 108 Pin (X vi—1) — Z Ai10g prin (i3 Pi)> , (29)
i=1 i=0 X~Ddata
1—96:,), [ < Nay >
with  y;(x1.,) = (1~ i) . LS Mma (30)
1—pg(stop atifxy;;), 1 =npay,
and A'i = 1_(1_1)5”1 . (31)

max
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Figure 12: Selection of features Z + 7 and 8-jet events, trained with L,e;rige ON UP
to 6 jets.

The posterior pg(stop at i|x;.;) is calculated using Egs.(26) and (28) up to 8 jets. In practice,
we find the best performance by including a staircase scaling prior when calculating the poste-
rior. To match the dataset, we take R, 1)/, = 0.225 and cap the probabilities for n < 3. Note
that the hyperparameter A multiplies only the p;;, contribution for particle n,.

We train a network using the override loss with A = 0.2 and sample events in the same
manner as before. In Fig. 9 (right), we show the event multiplicity distribution. Similarly
to the truncated loss, this override approach significantly increases the fraction of higher-
multiplicity compared to the naive extrapolation. Looking at the kinematics of the network
samples, shown in Fig. 12, the p; distributions now display an excess toward low values, but
the global momentum correlation pr 3y, is reproduced to greater accuracy compared to the case
with the truncated loss. This is to be expected, since the override loss is specifically designed to
match the global momentum distribution. Once again, this demonstrates that autoregressive
transformers can learn the universal nature of jet radiation.

Code availability

The code is available as part of the public Heidelberg hep-ml code and tutorial library https:
//github.com/heidelberg-hepml/jetgpt-splittings. The dataset is available upon request.

4 Outlook

The universality of splitting kernels and jet ratios in QCD provides the perfect physics question
to see if appropriate generative networks can extrapolate. As an example, we study Z-+jets
events and the established staircase scaling of the jet number. The same procedure can be
applied to generate the full set of jet constituents.
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We employ an autoregressive transformer to learn a factorized likelihood for events across
varying jet multiplicity. This autoregressive transformer sequentially predicts the kinematics
of an additional jet along with the probability to radiate it. When trained the standard way,
the transformer learns the kinematics of up to the 6 jets included in the training data with
high fidelity. It also produces a small number of higher-multiplicity events with reasonable
kinematics.

The first path towards extrapolation is to modify the training data with bootstrapping.
This approach is straight-forward to adapt the multiplicity distribution, but some kinematic
distributions are not learned very precisely.

Another way to extrapolate is to truncate the loss function and remove the explicit learning
of the hard Sudakov factor for the highest multiplicity. Alternatively, we can override the
hard Sudakov factor using physics information. We find that both of these approaches are
equally capable of generating high-quality events. These results establish that autoregressive
transformers can learn the universal nature of jet radiation.

We emphasize that our study only shows that generative networks can extrapolate, given
the right QCD properties of the training data. We expect the performance of all extrapolating
networks to improve with technical advances. One idea for such an improvement might be the
synchronous training of a transformer generator with a classifier, as described in Appendix A.
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A Improving likelihood training with dynamic reweighting

The traditional way to achieve ultimate precision in distributions obtained via generative net-
works has been via reweighting. However, this comes at the cost of having weighted events.
These weights typically span orders of magnitude which, in turn, translate into small efficien-
cies € = (w)/wp.x when performing accept-reject unweighting [109]. These inefficiencies
imply a reduction in statistical power, and thus reweighting might render the original moti-
vation of speeding up event generation invalid, since now one might need to generate many
more weighted events to obtain a similar number of unweighted events. One way to reduce
event weights is to incorporate the discriminator information into the generator training. In
the following sections we introduce and showcase the DiscFormer algorithm, inspired by the
DiscFlow developed in Ref. [53] for normalizing flows.
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Figure 13: Distributions of the Z boson mass (left) and AR i4.j5 (right) from the initial
generator (green), the corresponding reweighted distribution w-pg(x) (orange) and
the DiscFormed distribution wy - pg.a(x) (purple).

A.1 Dynamic discriminator reweighting

The main idea behind the dynamic discriminator reweighting is to extend the usual log-
likelihood loss with an event-dependent weighting factor w(x)

L= <_Wa(x)logp9(x)>x~pdata > (Al)

where a > 0 is a tunable hyperparameter and py(x) is the learned likelihood that depends
on learnable network parameters 8. The weighting factor w(x) approximates the likelihood
ratio py.a(x)/pe(x) and is obtained from the score D(x) of a neural discriminator. In practice,
the weighting factor w(x) in Eq.(A.1) amplifies the loss in regions where the generator is not
precise enough. Intuitively, this can be thought of as modifying the training data distribution
Ddata to increase the difference between pg,:,(x) and pg(x). This discriminator transformation,
or DiscFormation, is visualized in Fig. 13.

The neural discriminator D(x) is trained to distinguish true samples, drawn from p4,.,(x),
from generated samples, drawn from pg(x)

£ = (~10gD(x)) 4p,,. + (~10g(1 = D())) xnp,
=- f dxPara(x) log D(x) — f dxpy(x)log(1—D(x)). (A2)

We use variational calculus to find the minimum of this objective, yielding [53,110]

o= 9L __ Paaa(¥) _Pe(x)
&D(x) D(x) 1—D(x)

(x): D(X) :pdata(x)
1-D(x)  pe(x)

The assumption that w(x) correctly approximates the likelihood ratio pg..(x)/pe(x) can be
validated by checking that the reweighted distributions correctly close onto a test set. We
perform this test in Sec. A.4, and plot the resulting reweighted distribution as the orange
histogram in Fig. 13.

With this assumption, we can prove that the extended generator loss (A.1) has the unique
minimum pg(x) = pgaa(x). To this end, we insert the perfect discriminator criterion (A.3)
into the generator loss (A.1) and add a Lagrange multiplier term to enforce the normalization
of the learned likelihood pg, leading to the objective

L= —J dx pgata(x) (1?(—5(1()) logpg(x)+ A (f dx pg(x)— 1) . (A4)

and (A.3)
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In real-world implementations the learned likelihood pg is constructed to satisfy the normal-
ization constraint and the explicit Lagrange multiplier is not needed. For instance, we will
construct py as a product of Gaussian mixture models which are normalized by construction.
We now use variational calculus to find the minimum of this objective, yielding

— oL :_( D(x) )a pdata(x) +)L:_(pdata(x))a+1 +.
6pg(x) 1-D(x)) pe(x) po(x)
In the second equality we have again used the assumption of a perfectly trained discriminator,

immediately yielding the unique solution pg(x) = pgaa(x), and A = 1. We shall now discuss
the behavior of this solution for several values of a:

(A.5)

* The usual log-likelihood loss @ = 0 emerges as a smooth decoupling limit where the
discriminator weight does not contribute to the loss.

* In the limit @ — —1, Eq.(A.5) becomes —1 + A = 0 and the optimization problem has no
longer a unique solution. This is easy to understand, as the loss becomes

L= (_logPG(x)>x~p9 5 (A6)
where no information on pg4,.,(x) is included.

* For a+1 < 0, the second derivative of the loss becomes negative. This means we can no
longer train pg(x) to approximate pg,,(x), since pg(x) = Pgata(x) is now a maximum
of the loss:

2
oL =(a+1)

pdata(x) )a+2
= <0, Vx. (A.7)
&pg(x)

pdata(x) ( Pe(X)

In our experiments, we always set @ = 1.0 for the better training stability this choice
offers, after checking that qualitatively the results behave in similar fashion for 0 < a < 5.
In the subsections below, we describe in more detail how the DiscFormer training works, and
demonstrate the capabilities of this approach in learning the full phase-space density of the
Z + 5 jets dataset.

A.2 TIterative DiscFormer algorithm

To train a generator with the DiscFormer approach described above, we require a discriminator
W(X) = Pgara(x)/pe(x) that tracks the state of the generator py throughout the generator
training. Clearly, training such a discriminator for each generator update step is not a scalable
approach. Ref. [53] proposed a GAN-like approach where the generator and discriminator are
trained jointly. Similar to GANSs, this approach requires careful hyperparameter tuning to train
the two networks jointly.

We propose an iterative procedure using discriminator checkpoints to avoid a joint train-
ing. To this end, we extract a checkpoint generator pg o(x) and use it to train a discriminator
Dy(x) to obtain the weights wy(x). Using the saved likelihoods of the checkpoint generator
Po o(x) and the likelihoods of the current generator state py(x), we can reweight the check-
point weights wy(x) to obtain the full weights w(x)

Paaa(x) _ Do(x)

Pe,o(x) 1 — Dy(x) ’

wix) = Pdata(X) _ Pdata(x) Po,0(x) — o) Po,o(x) .
po(x)  pgolx) po(x) po(x)

wo(x) =

(A.8)
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Figure 14: The iterative implementation of the DiscFormer algorithm. The re-training
of the generator is done with the loss detailed in Eq.(A.1).

We emphasize that this checkpoint reweighting is exact, thanks to the fact that we can extract
likelihoods from the generative model. The only approximation is in the assumption that the
checkpoint discriminator Dy(x) learns the likelihood ratio perfectly. Whenever the generator
po(x) approximates the truth distribution pg,.,(x) significantly better than the checkpoint
generator py o(x), it is important that we update the checkpoint generator to py 1(x) to avoid
numerical issues from cancellations between wy(x) and pg o(x)/pg(x). This leads us to the
loss function in the i™ DiscFormer iteration

£y = <—wa(x)logp9(x)>x~pdm=<—( Dilx) _Posi)

1—D;(x) po(x)

The implementation of the DiscFormer algorithm is depicted in Fig. 14. We will describe
now how the first iteration in the algorithm takes place. The process starts with an initial
training of the generator, until its convergence is reached at state pg o(x). From this point, we
start the DiscFormer iteration, represented as a black rectangle in Fig. 14. We first draw sam-
ples from the generator, and train the discriminator to learn the likelihood ratio of pg,.,(x) to
Pg o(x). To conclude the DiscFormer iteration, we re-train the generator using the DiscFormer
loss, warm-starting it from py o(x). This procedure can be repeated until convergence.

) logpg(x)> . (A.9)
X~Pdata

A.3 Autoregressive transformer

The DiscFormer formalism developed above can be applied to any generative network that
allows us to extract likelihoods pg(x). Particularly attractive approaches are normalizing flows
and parametric models like the generative transformer used in the main body of this work due
to their ability of fast likelihood evaluation. We use an autoregressive transformer [27], which
is designed to interpret the phase space vector x = (x1,...,X,) as a sequence of elements, and
factorizes the n-dimensional probability into n probabilities, successively conditioned

n
pQ(x)=l_[p9(xi|x17"'7xi—l)7 (A]-O)
i=1
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The sequence elements are the kinematical quantities (py, ¢, n, m), preprocessed as described
in Sec. 2.2. This autoregressive approach is mainly beneficial to our case because we can
use our physics knowledge to group challenging phase space directions early in the sequence
X1,...,Xy. In contrast to the autoregressive transformer used in the main body of this work,
this approach does not include splittings.

The network learns the factorizing conditional probabilities over phase space using a Gaus-
sian mixture representation G:

po (xil™) = > wi™N (xi;ugi_l),ogi_”) ; (A11)
Gjeg

where {w}, u;,o;} are the components of the j-th gaussian. In terms of architecture, our gen-
erator contains 80k parameters, consisting of 2 transformer decoder blocks, 4 self-attention
heads and 50 Gaussian mixture elements. For more details, we refer the reader to Tab. 4. The
network is trained on approximately 80k and tested on 40k events from the Z + 5 jets dataset.
We choose this working point to demonstrate the capabilities the DiscFormer approach can
have when training data is scarce, compared to standard log-likelihood loss training. The
challenges that the autoregressive generator faces for the Z +5 jets dataset are: achieving per-
cent level precision in the Z mass peak and resolving the several hard AR boundaries between
jets. For the latter, 5 jets originate a total of 5(5 — 1)/2 distinct AR features and the gener-
ator has to learn the subtle differences between them. The feature ordering in the sequence
X1, ..., X, plays here a significant role in obtaining good performance for these features. We
find that the best precision is achieved with

{xi} ={d,prsmm}i i s iny O 1P P My - (A.12)

We check that the Z mass peak precision, on the other hand, is affected less by changes in the
feature ordering.

A.4 Results

Discriminator reweighting

In the derivation of the DiscFormer loss, we have made the assumption that D(x) is a discrim-
inator that correctly approximates the likelihood ratio of pg,.,(x)/pg(x). We demonstrate in
this subsection that the discriminator network is indeed capable of identifying failure modes
of the generator pg(x). Our discriminator is a transformer with 4 transformer-decoder blocks
and 4 self-attention heads, summing up to about 800k parameters. We use the kinematic
quantities (pr, ¢,n, m) for the final-state particles and the virtual Z boson as input tokens,
preprocessed in the same way as described in Sec. 2.2. Additionally, we add tokens for the
pairwise AR to inform the discriminator about this challenging correlation. Each time we
train the discriminator, we do so with early stopping and a patience of 10 epochs. After each
training, we check that the discriminator learns the correct likelihood ratio by reweighting
the generated samples and checking that they close onto a test set. In Fig. 13 we show such
closure test for the iteration 0 of one DiscFormer run. In this case, we find that the reweighted
distribution wy(x) - pg o(x) correctly matches the truth.

DiscFormer

Finally, we discuss the details of the DiscFormer experiment, where we modify the standard
likelihood loss by incorporating discriminator information during training. The setup de-
scribed below is designed such that we can compare the results from the DiscFormer approach
directly to the standard likelihood loss training:
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1. To start, we train the initial generator for 2500 epochs and extract the network with the
best validation loss. We name this generator pg o(x).

2. From the pg o(x) checkpoint, we compare two options: DiscFormer iterations, and stan-
dard training.

* DiscFormer trainings cover 3 iterations, each consisting of generator sampling, dis-
criminator training and generator training with DiscFormer loss. The discriminator
is trained from scratch at each iteration with early stopping and a patience of 10
epochs. The discriminator with best validation loss is also loaded for evaluation.
The generator, on the other hand, is warm-started from the final state of the pre-
vious iteration and trained for 500 epochs. We call the final state of the generator
at the end of the run peD,Fg(x).

¢ Standard generator trainings are continued from the same py o(x) checkpoint for
the same number of epochs as in the DiscFormer algorithm, i.e. 3 x 500 = 1500.
We name this generator py 3(x).

The final states of the generator py’s(x) and pg 5(x) are thus directly comparable, in the
sense that they have been trained for the same number of epochs, and differences in their
performance can be, in principle, attributed to the different training modalities. We find that
the performance of the DiscFormer approach saturates after 3 iterations.

To systematically check whether performance is gained through the DiscFormer approach,
we perform 9 identical runs where we compare the DiscFormer training versus the standard
training. For these runs, we train discriminators with identical architecture to distinguish true
data from samples generated from the corresponding pg(x), and show the Area Under the
Curve (AUC) of the Receiver-Operating Characteristic (ROC) curve obtained from evaluating
these classifiers on a test set in Tab. 2. We find that the discriminators trained to distinguish
pg,FB(x) from truth data have systematically lower AUC values than those trained to distin-
guish py 3(x) from truth. In particular, we observe that standard likelihood training improves
the quality of the samples only marginally according to the discriminators, i.e. pgo(x) and
Po 3(x) showing very similar AUC values, whereas we observe a systematic improvement for
the DiscFormer training peDg(x).

Table 2: AUC values as quality metrics to study the DiscFormer performance, evalu-
ated on 9 independent seeds. We show, from left to right, the initial generator pg ,
the final generator pgg(x) after 3 discformer iterations, and the generator py 3(x)
trained for the same number of epochs with a standard likelihood loss.

Run \ AUC  pgo(x) Pgs(x) Po,3(x)
1 0.737 0.712 0.743
2 0.754 0.711 0.766
3 0.695 0.639 0.682
4 0.701 0.675 0.686
5 0.713 0.633 0.704
6 0.696 0.651 0.710
7 0.699 0.664 0.671
8 0.730 0.657 0.680
9 0.676 0.629 0.707

avg. £std 0.711£0.023 0.663+0.029 0.706£0.029
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Figure 15: Distributions of the Z boson mass (left) and ARjy js (right) obtained from
the standard generator training (blue) and from the generator after training for 3
DiscFormer iterations (red). Both networks have been trained for the same number
of epochs.

0.80 27.8

0.75 1 { r27.6
9 | | 3
5 0.70 } } 27.4 =

0.65 1 r27.2

t

- -
DF
Po,o Pos Po,3

0.60

27.0

Generator states

Figure 16: Mean and standard deviation of the AUC and negative log-likelihood
(NLL) values evaluated on the same test set for the 9 runs from Tab. 2.

We can also check the performance of pg 3(x) and pgg(x) on two challenging phase space
features, the Z mass and AR 4 5, shown in Fig. 15. We observe that the generator trained with
the DiscFormer approach performs slightly better in some of the regions near the peak of the
m distribution, whereas the generator trained with the standard likelihood loss has become
better in the tails. On the other hand, the AR}, ;5 sharp boundary seems to be slightly better
resolved by the standard generator than by the generator trained with DiscFormer loss. More
generally, we find no systematic performance differences in those phase space distributions.

As a third metric, we evaluate the negative log-likelihood (NLL) of all 3 generator stages
on the same test set, and compute the mean and the standard deviation for the same 9 runs
shown in Tab. 2. These, along with the mean and standard deviation of the AUC values, are
shown in Fig. 16. We observe that the best NLL is generally obtained for the initial generator
Po o(x). This makes sense, as this network was trained to minimize the NLL until the validation
loss started to increase. In contrast, py 3(x) was trained beyond that point, leading to larger
NLLs for the test data. The DiscFormer pgg(x) was trained as well beyond the minimum but
with the target to minimize the DiscFormer loss. Nonetheless, the NLL is significantly better
for the generator trained with the DiscFormer approach than for the generator trained with
standard likelihood loss.
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B Network hyperparameters

Table 3: Architecture and training hyperparameters. We use 3 blocks each for the
particle-level transformer and the component-level transformer.

Parameter Value
Optimizer Adam
Learning rate 3-107%
LR schedule constant
Batch size 512

# Iterations 200k

# Transformer Blocks 3+3
Latent space size d 128

# Attention heads 8

# Mixture model elements 42

# Trainable parameters 1.2M

Table 4: Training hyperparameters and architecture for DiscFormer generator and

discriminator.
Parameter Generator Discriminator
Optimizer Adam Adam
Learning rate 1-107% 3-107%
LR schedule (initial) OneCycleLR -
LR schedule (DiscFormer) constant ReduceLROnPlateau
Batch size 512 512

# Iterations (initial)

until early stopping -

# Iterations (DiscFormer) 5x75k until early stopping
# Transformer Blocks 2 4
# Attention heads 4 4
# Mixture model elements 50 -
# Trainable parameters 80k 800k
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