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Abstract

We provide a comprehensive picture for the formulation of the perfect fluid in the mod-
ern effective field theory formalism at both the classical and quantum level. Due to the
necessity of decomposing the hydrodynamical variables (ρ, p, uµ) into other internal de-
grees of freedom, the procedure is inherently not unique. We discuss and compare the
different inequivalent formulations. These theories possess a peculiarity: the presence
of an infinite dimensional symmetry implying a vanishing dispersion relation ω = 0 for
the transverse modes. This sets the stage for UV-IR mixing in the quantum theory, which
we study in the different formulations focussing on the incompressible limit. We observe
that the dispersion relation gets modified by quantum effects to become ω∝ k2, where
the fundamental excitations can be viewed as vortex-anti-vortex pairs. The spectrum
exhibits infinitely many types of degenerate quanta. The unusual sensitivity to UV quan-
tum fluctuations renders the implementation of the defining infinite symmetry somewhat
subtle. However we present a lattice regularization that preserves a deformed version
of such symmetry.
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1 Introduction and summary

Our modern understanding is that the laws of physics are fundamentally quantum mechanical
and that classical physics can only emerge, under some circumstances, as an effective approx-
imation. Nevertheless in the everyday practice of theoretical physics and also in its teaching,
we often first present a classical system and then consider its so-called quantization. While this
way of thinking may, in principle, be philosophically incorrect, it does work well in practice for
basically all mechanical systems. The harmonic oscillator, the particle in a coulombic potential
and the electromagnetic field all represent classical systems with a consistent, and interesting,
quantized version.

The present paper considers instead a system, the perfect fluid, for which things do not
appear to work as smoothly as in all those other cases when going to its quantized version.
The difficulty is intrinsically associated with the absolute softness of the vorticity modes, whose
linearized classical dispersion relation around the stationary configuration is just ω = 0 for
arbitrary k. This implies, classically, the failure of the usual association of short wavelengths
and high frequencies, and in fact underlies the phenomenon of turbulence where motions on
long scales evolve into motions at ever shorter scales. In field theoretic terms, such degenerate
dispersion relation indicates that the UV does not fully decouple from the IR. At the same
time, experience teaches that the softer a classical mode the larger its quantum mechanical
fluctuations. All these facts make for a system where UV quantum fluctuations can play a
different and bigger role than in ordinary effective quantum field theory. Finding out how
this difference is realized, and also how dangerously so, seems to us an intriguing question to
explore per se. But the knowledge of situations at the edge of the ordinary EFT arena may
perhaps, in the long run and optimistically, acquire exportable value. For instance, EFT is not
only a solid platform where formulating questions like cosmological constant and Higgs mass
hierarchy, but also a golden cage limiting our imagination to address them. In this last respect
any different instance of the interplay between UV and IR may have value. Finally, it is not
excluded that the question we are considering may have direct phenomenological consequence
for finite density systems: does the universality class of the quantum mechanical perfect fluid
exist?

This is not the first paper trying to address the question we just outlined and it follows
a few studies performed over the last decade [1–4]. As a matter of fact also Landau, in his
original paper on superfluid Helium [5], was faced with the same question, though we think,
his answer was not correct. Luckily also his starting hypothesis was not quite correct, in such a
compensating way that the resulting dynamics correctly described the superfluid universality
class. We will comment in more detail on previous work in the text, but the present article
is a direct follow up to ref. [4], whose results it clarifies and extends in various ways. One
main result is that like there exist two not fully equivalent descriptions of the classical perfect
fluid, there are two not fully equivalent quantum theories. These have the same energy levels,
but in different Hilbert spaces, i.e. with inequivalent multiplicities. Another result is that the
degenerate dispersion relation of the vorticity modes is indeed lifted by quantum effects to
ω∝ k2. However the infinite symmetry strikes back by predicting infinitely many types of
such quanta. A detailed summary of our results is contained in the next two subsections.

Euler’s perfect fluid is arguably the oldest example of a classical field theory; yet, by the
breakdown of the decoupling between UV and IR, its quantum formulation is significantly
more subtle than that of many later-developed examples, such as Maxwell theory. However,
this phenomenon is not unique to Euler’s theory. Recent works have extensively explored
the continuum limit of various lattice models of fractons—excitations with restricted mobility
(see, e.g., [6–9]). Also the universal continuum QFT descriptions of these models depart from
the standard EFT paradigm, and short distance modes do not fully decouple at low energy.
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Similar to the case of fluids, this behavior is often linked to the presence of soft modes in the
naive classical field theory formulation. Other similarities include the existence of infinitely
dimensional exotic symmetries, an extensive degeneracy of low-energy states, and the lack of
(linearly realized) Lorentz symmetry. In this context, our work presents perhaps the most
surprising example of a local quantum system exhibiting exotic UV/IR connections.1

Finally, we must comment on the relation of our work with the vastly more developed do-
main of ordinary imperfect fluids, which are ubiquitous in nature. Technically hydrodynamics
universally describes the transport of energy, momentum and possibly other conserved charges
in systems at finite temperature. In the context of thermal QFT the study has mostly focussed
on linear response theory, where remarkable results have been obtained, for instance, in the
prime principle computation of transport coefficients [11–15] in weakly coupled QFTs. The
study of strongly coupled hot QFT through the AdS/CFT correspondence [16–18] has then
sparked the development of an effective field theory approach to hydrodynamics [19–22].
That is based on a Lagrangian construction but in the Schwinger-Keldysh double time formal-
ism, suitable for describing quantum as well as statistical fluctuations. Although the resulting
Lagrangian shares properties with one of the two perfect fluid descriptions we consider in this
paper, in particular the symmetries, its interpretation and use are quite different. The effective
Schwinger-Keldysh Lagrangian for fluids is just the generator of long range thermal correla-
tors, whose singularities do not have the intepretation of quanta excited from a ground state.
In other words the system described by that Lagrangian “should not be quantized”. That is
the reason why the results of our study do not apply to ordinary fluids, at least not strictly.
Nonetheless, as we mention in the final outlook, our study also invites further questions on
the Lagrangian description of thermal hydrodynamics.

1.1 Summary of part I

In Part I of this work, we provide a detailed discussion of the classical perfect fluid and of
its (inequivalent) Lagrangian formulations. While this is mostly a review, the presentation is
original and includes some novel derivations (such as the derivation of the Clebsch formulation
starting from the comoving coordinates’ description in sec. 4.1). These results will provide the
starting point of our analysis of the quantum perfect fluid(s) in Part II of this work.

The perfect fluid stress tensor is characterized by the energy density ρ, the pressure density
p, and the four-velocity uµ. The pressure is related to the energy density by an equation
of state p = p(ρ). The dynamics is then specified by Euler’s equations, which are nothing
but the conservation of the stress energy tensor. It turns out that such a simple system of
equations admits several nontrivial properties. First, linearized fluctuations consists of a sound
mode, with dispersion relation ω(k) = cs|k|, and a transverse mode with trivial dispersion,
ω(k) = 0. Additionally, the absence of dissipation results into several conservations laws,
including the conservation of a nontrivial current, normally identified with the entropy current,
and the convective conservation of vorticity (Helmholtz theorem). We review these and other
nontrivial consequences of Euler’s equation in sec. 2.

The description of the perfect fluid based on the classical equations of motion is phe-
nomenologically satisfactory from some point of views. However, for our purposes it is impor-
tant to work with a Lagrangian field theory formulation, so as to be able to apply path-integral
methods in our study of the quantum perfect fluid. Additionally, as emphasized in [23, 24],
having a Lagrangian formulation for perfect fluids is also useful at the classical level. This
is because from a modern perspective, hydrodynamics is an effective field theory, and there-
fore Euler’s equations are expected to receive corrections at higher order in derivatives. A

1It was pointed out in [10] that the motion of vortices presents several features common to other fracton
excitations, including the conservation of the dipole and the quadrupole moments. In this light, perhaps, the
similarities between the quantum mechanics of vorticity and that of other fracton systems are not so surprising.

4

https://scipost.org
https://scipost.org/SciPostPhys.20.1.018


SciPost Phys. 20, 018 (2026)

Lagrangian description simplifies and systematizes the task of finding consistent modifications
of Euler’s equations.2

We are therefore led to discuss the construction of Lagrangians for the perfect fluid. It turns
out that cannot be carried out purely in terms of the energy density and of the velocity [26].
This is obvious in odd spacetime dimensions, since Euler’s equation require an odd number of
initial conditions while Lagrangian systems describe canonical pairs, but it remains true also
in even dimensions.3 One is thus forced to introduce additional internal fields, whose physical
interpretations we discuss in the main text.

There are two inequivalent ways to introduce such additional variables, which we review,
respectively, in sec. 3 and sec. 4. These two formulations lead to equivalent equations of
motion for the hydrodynamic variables ρ and uµ, also at higher order in derivatives, but they
have different phase spaces and dynamics as a whole. In these formulations, the properties of
the perfect fluid are encoded in peculiar infinite dimensional symmetry groups that act on the
internal fields. These symmetries ensure that the equations for the fluid’s density and velocity
do not depend explicitly on these variables, and allow recovering the infinitely many stationary
solutions of Euler’s equations (as we discuss in detail in sec. 4.5). We will also show that these
symmetries imply that a generalization of Helmholtz theorem holds to all order in derivatives.

We begin our discussions of fluid Lagrangians in sec. 3 by reviewing the “comoving” for-
mulation following ref. [23]. In this formulation the internal variables ϕ I(t,x) are intuitively
related with the infinitesimal fluid elements, whose trajectory specifies the fluid’s motion. The
defining physical property of the fluid—that its energy remains constant under deformations
that do not involve compression and dilation—is encoded in the invariance of the action un-
der volume-preserving diffeormophisms that act on the fluid elements ϕ I(t,x). This infinite
dimensional symmetry group is spontaneously broken by a specific fluid configuration, and
the internal fields are thus interpreted as the corresponding Goldstones [27]. The nonlinear
realization of the internal symmetry is the origin of the trivial dispersion relation ω(k) = 0 of
the transverse mode. We also show that, reminiscently of some recently studied fractonic sys-
tems [8,9,28], the volume-preserving diff. symmetry is responsible for the existence of a tensor
symmetry in the language of ref. [28], which is equivalent to the convective conservation of
vorticity.

We then move on to discuss the “Clebsch” formulation of the fluid in sec. 4. Focusing on
the physical cases of two and three spatial dimensions, we derive the Clebsch action starting
from the comoving formulation of sec. 3 by requiring that it describes the same hydrodynamic
flows. Also the Clebsch fields are invariant under an infinite dimensional symmetry group,
whose algebra coincides with that of area-preserving diffeomorphisms. However, unlike in the
comoving formulation, such group is linearly realized by the fluid at rest. The most important
technical result of sec. 4 is the action for the fluid in the incompressible limit, which we derive
in sec. 4.4 using the well-known duality between a shift invariant scalar field and a d − 1-
form gauge field. The simplicity of the Clebsch Lagrangian in the incompressible limit will
be one of the main advantages of this formulation when studying the quantum theory. We
also discuss the physical interpretation of the Clebsch variables and the relation between the
area-preserving diff. symmetry and the stationary solutions of Euler’s equations.

We should comment that the situation for the perfect fluid, where there exist several in-
equivalent Lagrangian descriptions that yield Euler’s equations, is completely analogous to
that of a rotating rigid body at fixed center of mass position. In that case as well the equations

2See [25] for a review of the standard approach to (dissipative) fluids based on “constituent relations”. We also
remark that it is known that not all possible non-dissipative modifications of the constituent relation (1) can be
obtained from a Lagrangian description [21]. We take the perspective that a perfect fluid is defined as a system
whose equations of motion can be obtained by a Lagrangian formulation and reduce to Euler’s equations (4) at
leading order in derivatives.

3In three spatial dimensions the problem is related with the conservation of helicity (18) [26].
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of motions are written purely in terms of the three angular velocities, with no reference to
the angular coordinates of the body, which however appear in the Lagrangian. In fact, it is
also possible to write different actions that yield the same Hamiltonian and equations for the
angular velocities, but whose Lagrangian coordinates are not invariant under rotations (but
they are under different symmetry groups) and cannot be thought therefore as the angular
coordinates of a rigid body. We review these basic facts about the rigid body in appendix A.4

1.2 Summary of part II

In Part II we discuss the quantum perfect fluid, or more precisely the different quantum perfect
fluids. Indeed, an important implication of the discussion of Part I of this work is that the theory
of the quantum perfect fluid is itself ambiguous, and depends on which classical Lagrangian
formulation we take as a starting point.5 The difference between the two choices is subtle.
Indeed, both the comoving and the Clebsch systems have formally identical Hamiltonians when
expressed in terms of the fluid variables. This implies that both systems must have the same
energy spectrum at the quantum level. However, the degeneracies of the states—and more
generally the structure of the Hilbert space—need not to match. This is indeed what we will
find.

One might wonder if there is a preferred physical choice between these two options. We
shall be agnostic about this question, and report our results for both the comoving and the
Clebsch fluid.

We also remark that, since the quantization of the longitudinal modes doesn’t present
particular difficulties, in Part II of this paper we focus on the transverse modes by taking the
incompressible limit, in which the sound mode is integrated out.

As reviewed above, the challenges in the quantization of the perfect fluid arise due to the
existence of a mode with flat dispersion relation ωk = 0 for any momentum k. In [4] these
difficulties were overcome for the two-dimensional incompressible fluid in the comoving for-
mulation. The analysis of the quantum fluid in the comoving formulation is however rather
non-straightforward. At the conceptual level, the complications originate in the fact that the
classical spontaneous breaking of the volume preserving diff. symmetry is inconsistent at the
quantum level. Indeed, the absence of gradient energy for the transverse modes makes a per-
turbative treatment based on weakly coupled Fock states inadequate. Correspondingly, quan-
tum effects lead to symmetry restoration analogously to nonlinear sigma models in two space-
time dimensions [1]. To study the comoving fluid, the authors of [4] resorted to a discretized
model of N × N matrices, that approaches the continuum theory for N →∞. It was found
that the ground-state is a singlet of the symmetry group and is unique. The main prediction
of [4] is that such quantum theory includes gapless excitations, dubbed vortons.6 These states
form an infinite dimensional representation of the area-preserving symmetry group, which is
linearly realized at the quantum level, and admit a quadratic dispersion relationωk∝ k2. The
existence of such states, however, is far from obvious from the classical formulation reviewed
in sec. 3.

4Notice that, as for the rigid body, Euler’s eqs. (3) admit a natural Hamiltonian formulation without reference
to additional internal variables, but with Poisson brackets that do not provide an invertible symplectic structure
[26, 29–33]. We will not review the Hamiltonian formulation of the perfect fluid in full generality, but we will
derive and analyze the Hamiltonian for the incompressible fluid in Part II of this work.

5In this work we only deal with perfect, non-dissipative, fluids, and we only consider standard Lagrangian
formulations. For dissipative fluids the EFT is formulated on a Schwinger-Keldysh contour, see [19,20], and thus
admits a less straightforward interpretation in terms of a Hilbert space and includes extra couplings compared to the
perfect fluid. In particular, as well known, the existence of viscosity gives rise to the diffusion pole ω(k) ≃ −iDk2

in the propagator of the pathological mode.
6The quantum vorton excitations that we consider in this work are not related to the homonymous classical

solutions formerly studied, e.g., in [34].
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It turns out that the quantization of the fluid in the Clebsch formulation, whose classical
aspects are reviewed in sec. 4, is a much more straightforward task. The technical simplifica-
tions originate principally from the linear realization of the area-preserving symmetry of the
Clebsch fields on the classical ground state. Quantum mechanically that leads to a tractable
Fock space structure. All the essential results can then be derived directly in the continuum
theory. This is the topic of sec. 5 of this work.

Our results confirm the findings of [4]: the existence of vorton states with quadratic dis-
persion relation ωk ∝ k2. This was a foreordained conclusion: as formerly explained, the
comoving and Clebsch systems have formally identical Hamiltonians when expressed in terms
of the fluid variables. We also find that the vorton states are infinitely degenerate. Such
degeneracy arises however in a different way than in the comoving description: the Hilbert
space admits a familiar Fock structure, but for every integer n > 1 there exist a n-particle
bound state, formally made of vortons with completely overlapping wave-function, which is
degenerate and essentially identical to the single vorton state. We also argue that, unlike the
comoving system, the ground-state breaks spontaneously the symmetry group of the fluid and
is thus infinitely degenerate at finite volume. These predictions are robust consequences of
the symmetries of the model.

The mechanism underlying the existence of these infinitely degenerate bound-states relies
on the fact that the infinite symmetry is valid at arbitrary short-distance, in other words it is
exact and not just emergent in the IR. It is therefore similar to the UV/IR mixing phenom-
ena that occur in certain exotic theories that recently attracted some attention in relation to
fracton physics [8, 9]. As in those cases, it is desirable to have a lattice discretization of the
incompressible fluid, that can be regarded both as a regulated version of the continuum model
and as a specific UV completion.

Motivated by these considerations, in sec. 6 we discuss in detail how the predictions of
sec. 5 are borne out using a version of the discretized model of [4] in terms of the Clebsch
fields. The discretized model is derived by requiring that it preserves a modified version of
the symmetries of the Clebsch theory. Unlike most lattice theories, this requirement forces us
to consider somewhat non-local interactions, i.e. not involving just nearest neighbours, and
reducing to a local system only at very low momenta. Therefore this system is perhaps best
understood as a matrix quantum-mechanics rather than a lattice model. The discretized model
will also allow us to connect the Clebsch and the comoving formulations of the quantum fluid
and to compare the two.

In sec. 7 we discuss two generalizations of our results. First, we discuss a model with
formally the same Hamiltonian as the two-dimensional incompressible fluid, but in which the
vortons are fermions. We will find that also in this case there exist infinitely many bound states
degenerate with the single-vorton particle. We will then argue that the quantum fluid in three
spatial dimensions behaves analogously to the two-dimensional case. In particular, it features
an infinitely degenerate gapless state with quadratic dispersion relation both in the comoving
and in the Clebsch formulation. In sec. 7.3 we compare our findings with previous works.

To summarize, the quantum perfect fluid, both in the comoving and the Clebsch formula-
tion, displays highly unusual features, most notably an infinitely degenerate spectrum. While
theoretically interesting, it seems unlikely that a system with such peculiarities may be realized
experimentally. One might wonder if it is at least possible to construct a system that features
states that resemble the vorton particles in all other aspects but the degeneracy, i.e. states with
the same low energy dispersion dispersion relation and interactions as the vortons.

We report on partial progress on this question in sec. 8, where we show that a particle
anti-particle bound state in 2+1 QED, an analogue of positronium, reproduces some of the
features of the vorton theory. However, the analogy works only up to a point. Indeed, the
2+1 dimensional positronium theory features some contact interactions that are forbidden in
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the vorton model by the area-preserving diff. symmetry. This (expected) mismatch further
illustrates how special the quantum perfect fluid is compared to an ordinary QFT.

Part I

Classical perfect fluid

2 Review of fluid mechanics

2.1 Relativistic fluids

Euler’s equations describe an idealized fluid where viscosity and heat conduction are neglected.
The fluid’s motion is completely specified by conservation of energy and momentum. In detail,
one parametrizes the stress tensor as [35]

Tµν = (ρ + p)uµuν + pgµν , (1)

where ρ is the relativistic energy density and p the pressure of the fluid, while uµ is the rela-
tivistic velocity vector, such that uµuµ = −1. The pressure and the energy density are related
by the equation of state

p = p(ρ) . (2)

The relativistic Euler’s equation are nothing but the conservation of the stress energy tensor:

∂µTµν = 0 . (3)

Combining (1) and (3), we get more explicitly:

uν∂µ(ρuµ) +ρuµ∂µuν + p∂µ(u
µuν) + (gνµ + uνuµ)∂µp = 0 . (4)

In d-spatial dimensions, the equations (4) provide a set of d+1 first order differential equations
for d+1 independent variables (ρ and ui), and thus completely specify the motion of the fluid.7

It is straightforward to solve (3) for small fluctuations around the static flow, expanding
as ρ = ρ0 + δρ(t,x) and uµ ≃ δµ0 + δ

µ
i δui(t,x). One finds that the spectrum of fluctuations

consist of a sound longitudinal mode with dispersion relationω(k) = cs|k|, where c2
s = p′(ρ0),

and (for d > 1) a transverse mode withω(k) = 0. As we will explain in the second part of this
paper, the degenerate nature of the dispersion relation of the transverse mode is what makes
the quantum mechanics of the perfect fluid interesting and non-trivial.

Rather than considering the energy density ρ as an independent field, it is customary to
work in terms of an auxiliary variable T , whose physical interpretation we discuss below. The
equation of state (2) is then replaced by two equations ρ = ρ(T ) and p = p(T ). To specify
such equations in terms of the equation of state, we also introduce another function s(T ) and
demand that

ρ + p = sT , dp = sdT =⇒ dρ = T ds . (5)

7The fluid we are describing is the simplest featureless fluid. One often considers in addition to the system (4)
an extra variable n, associated with a conserved current Jµ = nuµ (see e.g. [24,35]), which is distinguished from
the entropy current that we discuss below. The equation of state then provides one relation between n, ρ and p,
while the conservation of the energy-momentum tensor and Jµ provide d + 2 equations for the d + 2 dynamical
variables (ρ, ui and n). In this work we do not consider such fluids, and restrict ourselves to the minimal setup
consisting solely of d + 1 independent hydrodynamical quantities.
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For instance, given p = p(T ), these relations imply s = p′(T ) and ρ = p′(T )T − p(T ). Equiv-
alently, given ρ = ρ(s), we find T = ρ′(s) and p = sρ′(s) − ρ(s). Using eqs. (5) and the
EOM (3), one can easily prove the existence of a conserved current defined as

Sµ = suµ =⇒ ∂µSµ = −
1
T

uν∂µTµν = 0 . (6)

It is customary to interpret T as the temperature of the fluid, and s as the entropy density.
Eqs. (5) are then the usual thermodynamic relations, and Sµ is the entropy current. The
conservation of the latter indeed ensures the absence of dissipation in a perfect fluid.8

The existence of a conserved current however also allows for an alternative interpretation
of eqs. (5) and (6). Namely, we can suppose we are dealing with a system at zero temperature
possessing a conserved U(1) charge. Then, consistently with eqs. (5), we can identify T with
the chemical potential and s with the U(1) charge density. This viewpoint is less common since
it does not generalize to dissipative fluids, for which ∂µSµ ̸= 0, but is nonetheless discussed
sometimes, see e.g. [23,36,37] and references therein.

For our purposes, it is important to remark that, as long as we are concerned with a perfect
fluid, Euler’s equations imply the existence of a conserved current. For definiteness we shall
refer to Sµ as entropy current, but we shall remain agnostic about its physical interpretation.

Using s and T we can recast Euler’s equations in a different form. To this aim, we define
the antisymmetric vorticity tensor in terms of the quantities above as

ωµν = ∂µ
�ρ + p

s
uν
�

− ∂ν
�ρ + p

s
uµ
�

= ∂µ (Tuν)− ∂ν
�

Tuµ
�

. (8)

It is possible to show that9

ωµαuα = 0 . (10)

Eqs. (6) and (10) provide d+1 independent equations and are therefore equivalent to Euler’s
equations (3).

In perfect fluids, the vorticity is conserved along the fluid’s flow. This property corresponds
to the vanishing of the Lie derivative of ωµν with respect to uµ:

(Luω)µν ≡ uα∂αωµν +ωµα∂νu
α +ωαν∂µuα = 0 . (11)

To prove this relation, one uses that ω is an exact form to rewrite the Lie derivative as
(Luω)µν = ∂ν(ωµαuα) − ∂µ(ωναuα), which vanishes by (10).10 Note that, by the same ar-
gument, (10) also implies that the Lie derivative of the vorticity along any vector parallel to
the fluid velocity vanishes: Lvω= 0 for any vµ∝ uµ.

8Note that, in terms of s, T and uµ, the Euler equations consists of (6) plus the equation
uα∂α
�

T uµ
�

= − 1
s ∂µp = −∂µT . The latter is equivalent, in form language, to the following geometric equation:

Lu(Tu) = −
1
s

dp = −dT . (7)

Here uµ, and hence Tuµ, are one-forms. Remarkably, (7) holds also for fluids with conserved charges.
9This can be shown as follows

suµωµα = suµ∂µ(Tuα)− suµ∂α(Tuµ)

= suµuα∂µT + sTuµ∂µ(uα)− su2∂α(T )− sT∂α(u
2/2)

= uµuα∂µp+ (ρ + p)uµ∂µ(uα) + ∂α(p)

= Euler’s equation= 0 ,

(9)

where we used u2 = −1, ρ + p = sT and dp = sdT .
10As dLv(· · · ) = Lv d(· · · ), (11) also immediately follows from the geometric (7).
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To understand the physical meaning of (11), consider a 1-parameter family of closed curves
C(τ) that is generated from a initial closed curve C(0) nowhere tangent to u by displacing each
point of C(0) by some distance along the field lines of a vector v∝ u.11 Then, considering any
surface S(τ) enclosed by the curve C(τ), i.e. satisfying ∂ S = C, and using Stokes’ theorem, we
have

d
dτ

∮

C(τ)
Tuµd xµ =

d
dτ

∫

S(τ)
ωµνd xµ ∧ d xν = 0 , (12)

where in the last equality we used that Lvω = 0 for any vector v∝ u. Choosing v = u, (12)
states that the circulation of the vector Tuµ around a closed curve is conserved along the fluid’s
flow, and is therefore the relativistic version of Kelvin’s vorticity theorem. (11) is sometimes
referred to as Helmholtz theorem or Kelvin-Helmholtz theorem.

Let us finally make some comments specifically about fluids in two and three spatial dimen-
sions. In two spatial dimensions, there is surprisingly an infinite set of conserved quantities
besides those that follow from the energy-momentum tensor and the entropy current. To see
this, note that in two spatial dimensions (10) may be solved as

ωµν = ϵµνρuρΩs , (13)

where Ω is a scalar defined by this relation and we introduced a factor of s for future conve-
nience. Then, since ω is an exact form, we obtain

∂µ(u
µΩs) = 0

∂µSµ=0
=⇒ uµ∂µΩ= 0 . (14)

It follows that we have infinitely many conserved quantities obtained integrating over an ar-
bitrary spacelike surface Σ as

C (k) =

∫

Σ

d2ΣµSµΩk , (15)

for arbitrary values of k. The quantities (15) are invariant under arbitrary deformations of
the spacelike surface Σ. For k = 0, (15) reduces to the conservation of entropy, while for
k = 1 it gives the conservation of the total vorticity. The C (k)’s are sometimes referred to as
the Casimirs of the fluid (see e.g. [4,26] for further details).

In three spatial dimensions there is only one conserved Casimir, besides the obvious con-
servation laws associated with the spacetime symmetries and the entropy current. This can be
obtained by noticing that from (10) it follows that

ϵµνρσωµνωρσ∝ωµνu
νϵµλρσuλωρσ = 0 , (16)

which, because of the definition (8), is equivalent to the conservation equation

∂µ
�

ϵµνρσTuνωρσ
�

= 0 . (17)

We therefore obtain that the fluid helicity, defined as

C =

∫

Σ

d3Σµϵ
µνρσTuνωρσ , (18)

11Explicitly, parametrizing the curve C(τ) via an affine parameter σ ∈ (0, 1) and coordinates xµ(τ,σ) such that
xµ(τ, 0) = xµ(τ, 1), this means that the tangent vector tµ = ∂ xµ

∂ σ satisfies ∂ tµ

∂ τ = tν∂νvµ.
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is conserved, i.e. it is invariant under deformations of Σ.12

2.2 Non-relativistic and incompressible fluids

A non-relativistic fluid is one where p/ρ≪ 1 over a significant range of s [38], or equivalently
over a significant range of T . As, by (5), p = ρ′(s)s − ρ(s), a non-relativistic fluid is then
defined by the condition sρ′/ρ ≃ 1, which, by conveniently restoring powers of the speed of
light c≫ 1, is solved by writing

ρ(s) = mc2s+ ε(s) +O
�

1
c2

�

. (21)

Here m is an arbitrary constant and ε(s) = O(c0) can be interpreted as the non-relativistic
energy density. Similarly we have p = ρ′(s)s−ρ(s) = ε′(s)s−ε(s) = O(c0) while for the speed
of sound we have

c2
s

c2
=

sρ′′(s)
ρ′(s)

≃
sε′′

mc2
≪ 1 . (22)

Note that if we interpret s as the conserved particle number and m as the mass of the elemen-
tary constituents, (21) simply states that the energy density of the fluid consist of the sum of
the rest mass contribution ρm ≡ ms and the non-relativistic energy.

Using the equation of state (21) and defining the spatial velocity in the usual way,

uµ =
1
p

1− v2/c2

�

1,
v
c

�

, (23)

we obtain the non-relativistic Euler’s equations by taking the limit c→∞ of (3). These consist
of the mass continuity equation13

∂ s
∂ t
+∇ · (sv) = 0 , (25)

and of the momentum conservation equation

Dv
Dt
≡
∂ v
∂ t
+ (v ·∇)v= −

∇p
s

, (26)

where D
Dt is the so-called material derivative. From this equation we derive Kelvin’s theorem:

Γ (t) =

∫

C(t)
v · dx =⇒

DΓ
Dt
= 0 , (27)

12This pattern persists in higher dimensions. For instance, in four spatial dimensions we can construct conserved
quantities similarly to (15) from a scalar Ω defined as

ϵλµνρσωµνωρσ = suλΩ =⇒ uµ∂µΩ= 0 . (19)

In five spatial dimensions we instead have a unique conserved Casimir that follows from the conserved helicity
current, which is now defined as

jδhel = ϵ
δλµνρσTuλωµνωρσ =⇒ ∂µ jµhel = 0 . (20)

Generalizing, we have an infinite number of conserved Casimirs in even dimensions, and only one in odd dimen-
sions.

13Note that the subleading O(c0) order in the large c expansion of (3) for the ν = 0 component of the stress
tensor apparently gives an additional equation,

∂t

�

ρm
v2

2
+ ε
�

+∇ ·
�

v
�

1
2
ρmv2 + ε
��

= −∇ · (vp) . (24)

However, using eqs. (25) and (26), this is automatically solved by p(s) = sε′(s)− ε(s).
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which is the non-relativistic version of (12).
Finally, it will often be convenient for us to work in the incompressible limit. Physically,

this amounts to considering flows where the fluid velocity |v| is much smaller than the speed
of sound so that the propagation of sound waves is effectively instantaneous. Therefore, as
we will make explicit in sec. 4.4, the sound mode can be integrated out [1] and the dynamics
of the fluid is completely specified by the vorticity.

At the technical level, the incompressible limit is obtained by setting s = const. in the
nonrelativistic Euler’s equations (25) and (26), which therefore reduce to

∇ · v= 0 and
Dv
Dt
+
∇p
s
=
∂ v
∂ t
+ (v ·∇)v+

∇p
s
= 0 , (28)

where the transversality condition implies that the pressure can be written in terms of the
velocity as

p
s
= −

1

∇2 ∂i∂ j(vi v j) . (29)

In two spatial dimensions, the constraint on the velocity can be solved as

vi =
ϵi j∂ j

−∇2Ω+ v̄i , Ω=∇∧ v , (30)

where Ω is the non-relativistic vorticity and v̄i = const.14 By acting with ∇∧ on (28) the
equation of motion are also shown to coincide with the convective conservation of vorticity

DΩ
Dt
≡
∂Ω

∂ t
+ v ·∇Ω

=
∂Ω

∂ t
+ v̄ ·∇Ω+∇Ω∧

1

−∇2∇Ω= 0
(31)

(where in the second line we used (30)). In general spatial dimensions, Euler’s equations
state that the time derivative of the vorticity equals minus its Lie derivative with respect to the
velocity. This condition can be written purely in terms of the vorticity tensor using

v i =
1

∇2 ∂ jΩ ji , Ωi j = ∂i v j − ∂ j vi , (32)

along with the Bianchi identity constraint ∂iΩ jkϵ
i jk... = 0.

We conclude this review by providing the expressions of the conserved Casimirs men-
tioned in the previous subsection in the incompressible limit. In two spatial dimensions the
Casimirs (15) reduce to

C (k) =

∫

d2x [Ω(t,x)]k , (33)

while in three spatial dimensions the helicity becomes

C =

∫

d3xv · (∇∧ v) . (34)

14In more general spaces v̄ need only be a closed 1-form. Incompressibility further implies ∇ · v̄ = 0, and hence
v̄ is harmonic. On topologically trivial spaces like R2 it is therefore a constant.
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3 Fluid in the comoving formulation

3.1 The action

In this sec. we review the comoving coordinate formulation of the perfect fluid, following [23].
Let us consider a space-filling medium, such that at each space point there resides just one

(and only one) fluid element. To describe the fluid we parametrize its fluid elements in space by
their initial position (at, say, t = 0), that we denote with d coordinates ϕ I with I = 1, 2, . . . , d.
The ϕ I are the comoving coordinates. In what is normally called the Lagrangian perspective,
one considers the trajectory x(t,ϕ I) of each fluid element as a function of time. Under our
assumptions one can also invert this map and treat the comoving coordinates as fields in the
physical space: ϕ I = ϕ I(t,x). This offers instead the Eulerian perspective, where the flow is
described in terms of variables defined at each point (t,x) in space-time.15 As an example, the
choice ϕ I(t,x) = αx I describes a fluid at rest.

The basic idea is then to write a Lorentz invariant action for the comoving coordinates
ϕ I , now treated as dynamical fields. To specify whether the action we write describes a fluid,
a solid, or some other medium, we need to understand the corresponding symmetries. As
explained in [23], in this formulation, a fluid is defined as a system that is invariant under the
reshuffling of the internal elements. In the continuous limit this symmetry consists of volume-
preserving reparametrizations SDi f f (Mϕ) of the comoving coordinates:

ϕ I → f I(ϕ) , det

�

∂ f I

∂ ϕJ

�

= 1 . (35)

These transformations are just deformations of the fluid that do not involve compression or
dilatation.

It is then straightforward to write the most general Lagrangian invariant under the sym-
metry (35). We introduce the following invariant building block:

vµ =
1
d!
ϵI J ...ϵ

µνρ...∂νϕ
I∂ρϕ

J . . . (36)

An elegant way to prove the invariance of vµ is to write it as a volume form in the comoving
space, as ⋆vµd xµ = 1

d!ϵI J ...dϕ
I dϕJ . . .. The most general relativistic Lagrangian invariant

under the symmetry at leading order in derivatives is given by

L1 = F(vµvµ) . (37)

In app. B.1 we derive the action (37) (in the non-relativistic limit) as the limit N →∞ of a
system of N interacting point-particles.

To identify the fluid variables, we note first that

vµ∂µϕ
I = 0 , (38)

meaning that the comoving coordinates do not change along the vector field vµ. This gives

uµ =
1
p
−v2

vµ , (39)

the natural interpretation of relativistic velocity of the fluid. The stress tensor then takes the
form (1) with the pressure and the density given by

p = F(v2)− 2F ′(v2)v2 , ρ = −F , (40)

15Notice however, just to make the nomenclature cumbersome, that the Eulerian perspective will allow us to
write down an ordinary Lagrangian field theory for the fluid.
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where the prime denotes differentiation with respect to the argument. From this we also see
that we can make the identifications s =

p
−v2 and T = 2F ′

p
−v2. Therefore, the current vµ,

which is topologically conserved
∂µvµ = 0 , (41)

is identified with the entropy current Sµ.
Let us now prove that the equations of motion that follow from the action (37) coincide

with Euler’s equations. Defining, according to the above identification of T and uµ, the vorticity
as

ωµν = ∂µξν − ∂νξµ , ξµ = 2F ′(v2)vµ =
∂L1

∂ vµ
. (42)

the equations of motion are compactly expressed in form notation as:

ω∧ dϕ I1 ∧ dϕ I2 ∧ . . .∧ dϕ Id−1ϵJ I1...Id−1
= 0 , J = 1, . . . , d , (43)

which implies
uαωαµ = 0 . (44)

Eqs. (41) and (44) obviously coincide with eqs. (6) and (10), thus proving that the dynamics
of density and velocity is equivalent to that specified by Euler’s equations.

The system (37) also admits several conserved currents, that in general cannot be written
purely in terms of the density and velocity of the fluid but explicitly depend on the microscopic
fields. Let us briefly describe them here, focusing for concreteness on d = 2. The Noether
currents associated with the SDi f f (Mϕ) symmetry (35) read16

Jµf = ϵ
µνρ2F ′vν∂ρϕ

I∂I f (ϕ) , (45)

where f is an arbitrary function of the fields. In sec. 3.2 we will show that the conservation
of (45) is associated with Helmholtz vorticity conservation law (12). Additionally, there exist
and infinite set of topologically conserved currents, that generalize the entropy current vµ,

jµf = vµ f (ϕ) =
1
2
ϵI Jϵ

µνρ∂νϕ
I∂ρϕ

J f (ϕ) , (46)

for any function f of the comoving coordinates. These currents are topologically conserved as
an immediate consequence of (38) and (41). For f = 1, (46) reduces to the entropy current.
The currents (46) do not admit any obvious physical interpretation, but play an interesting
role in the relation with the Clebsch formulation, that we discuss in detail in sec. 4.3.

Some comments are in order. First, as remarked above, the static flow corresponds to the
solution ϕ I(t,x) = αx I , where α = s

1
d is an arbitrary constant. This solution spontaneously

breaks both the internal SDi f f (Mϕ) (which is indeed non linearly realized by construction)
and the Poincaré group to a subgroup consisting of effective time and spatial translations, and
rotations, generated by diagonal combinations of the internal and spacetime symmetry gener-
ators [27]. The close analogy between this system and the ordinary rigid body is illustrated
in Appendix A. An important difference between the two systems is that the vacuum solution
for the fluid ϕ I(t,x) = αx I , is not uniquely fixed by the pattern of symmetry breaking: here
we have a family of solutions labelled by α, a parameter measuring the entropy density or,
equivalently, compression.

Now, expanding around the rest configuration as ϕ I(t,x) = αx I + πI , we obtain the
quadratic action

L(2) = 2α2(d−1)F ′(−α2)

�

1
2

˙⃗π2 −
c2
s

2
(∇ · π⃗)2
�

, (47)

16These are derived considering an infinitesimal transformation of the dynamical fields δϕ I ∝ ϵ I J∂J f for an
arbitrary function f (ϕ I ).
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which clearly shows that the transverse modes have no gradient energy. As emphasized
in [1], the absence of a gradient term is directly connected to the nonlinear realization of
the SDi f f (Mϕ) symmetry. That is because under the linearized SDi f f (Mϕ) action, π⃗ trans-
forms according to π⃗(t,x)→ π⃗(t,x) + f⃗⊥(x) with ∇ · f⃗⊥(x) = 0: this forbids a gradient term
for the transverse mode π⃗⊥.

It is also straightforward to consider higher derivative modifications of the action (37).
Invariance under the SDi f f (Mϕ) transformations implies that the action in general is a func-
tion of vµ and derivatives ∂ν. Therefore, we find that the equations of motion read as in (43),
but with the definition of ξµ in (42) generalized to

ξµ =
δS
δvµ

. (48)

This modification implies that at higher order in derivatives (10) takes the form

Sµωµν = 0 . (49)

The difference with respect to (44) arises because the entropy current Sµ and ξµ are, in gen-
eral, no longer parallel once higher derivative corrections are taken into account. Indeed,
in this formulation Sµ is topologically conserved and thus its functional form in terms of the
fields ϕ I is not modified by higher derivatives. Interestingly, (49) implies that Helmholtz the-
orem (11) is modified to

(Lūω)µν = 0 , ūµ = Sµ/
p

−S2 . (50)

In the non-relativistic limit, this expression implies that the circulation is conserved along the
displaced flow defined by ūµ = Sµ/

p
−S2. Notice that when including higher derivatives, the

energy momentum tensor also depends on derivatives of ūµ.17

Finally, we briefly comment on the incompressible limit of the action (37). To this aim, it
is simplest to use the Lagrangian perspective, invert the map ϕ I = ϕ I(t,x) and treat x(t,ϕ I)
as the dynamical variables. The action now reads [23]

S =

∫

d tddϕ

�

�

�

�

∂ x
∂ ϕ

�

�

�

�

F

�
�

�

�

�

∂ x
∂ ϕ

�

�

�

�

−2
�

1− ẋ2
�

�

. (51)

In [1] it was argued that nonrelativistic incompressible fluids are described by configurations
ϕ I(x, t) that at fixed time are area-preserving diffs of x. In this regime the sound mode may
be consistently integrated out to give the action

Sinc. =

∫

d tddϕ
ρm

2
ẋ2 , (52)

where ρm = ms is the constant mass density, and the fields x = x(t,ϕ I) are constrained to
satisfy

�

�

�

�

∂ x
∂ ϕ

�

�

�

�

= 1 . (53)

It is this constraint that makes the dynamics nontrivial despite the simplicity of the Lagrangian.
The incompressible fluid was first studied using this functional by Arnold [41, 42]. We refer
the reader to [4] for a detailed analysis of the action (52).

17As an example, refs. [39,40] proposed that certain higher-derivative operators may be understood as a mani-
festation of the microscopic polarization of the constituent degrees of freedom.
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3.2 Tensor symmetry and Kelvin’s circulation theorem

As reviewed in sec. 2, the perfect fluid enjoys a number of nontrivial conservation laws, in
particular Kelvin’s circulation theorem (12). One of the advantages of the comoving La-
grangian formulation is that such conservation laws admit a natural explanation in terms of
the SDi f f (Mϕ) invariance (35) [23]. In this section we briefly review this connection in
the modern language of tensor global symmetries introduced in [28]. We also provide the
expressions of the associated conserved currents in two dimensions for future purposes. This
section is not relevant for the analysis of the quantum fluid that will follow in part II, and may
be skipped at a first reading.

Let us first review the concept of tensor global symmmetry. Consider in d spatial dimen-
sions a theory invariant under translations and spatial rotations, but without boost invariance.
Assume there exists an antisymmetric k-tensor current {J0i1...ik−1 = J0[i1...ik−1], J i1...ik = J [i1...ik]}
(where i1, . . . , ik denote spatial indices in the range 1, . . . , d) satisfying

∂0J0i1...ik−1 + ∂ jJ
ji1...ik−1 = 0 , (54)

but, in general and crucially, such that

∂ jJ
0 ji1...ik−2 ̸= 0 . (55)

This last condition distinguishes the tensor current J from a relativistic k − 1-form symmetry
current [43]. It follows that for every codimension-k−1 closed surface C there exist a conserved
charge given by18

QC =

∫

C
J0i1...ik−1 n(1)i1

. . . n(k−1)
ik−1

, (56)

where the n( j)’s form a basis of normal vectors on C. Note that in the relativistic case the
condition ∂ jJ

0 ji1...ik−2 = 0 implies that QC is independent of the surface C. When k = d the
conserved charges (56) are simply contour integrals of the form

QC =

∮

C
d x iJ0

V,i , J0
V, j =

1
(d − 1)!

J0i1...id−1ϵ ji1...id−1
. (57)

We now show that Kelvin’s circulation theorem can be understood as a consequence of
a tensor symmetry current of the fluid in the comoving formulation. To this aim, note that
the curve C(τ) in (12) (displaced along the field lines of vµ = uµ) corresponds to a time in-
dependent curve in ϕ space. It is therefore natural to consider the formulation (51). The
SDi f f (Mϕ) symmetry acts as x(t,ϕ)→ x′(t,ϕ) = x(t, ϕ̄(ϕ)), where |∂ ϕ̄/∂ ϕ| = 1. Consid-
ering an infinitesimal transformation with spacetime-dependent coefficient

ϕ̄ I = ϕ I +α(t,ϕ) f I(ϕ) , ∂I f I = 0 , (58)

and picking the therms proportional to ∂ α in the variation of the action, we obtain the asso-
ciated Noether’s currents

j0 =
δL
δ ẋk

∂I xk f I(ϕ) , j I =
δL

δ
�

�

�

∂ x
∂ ϕ

�

�

�

f I(ϕ) , (59)

where L is the Lagrangian. Choosing f I = ϵ I J ..., we see that the current (59) reduces to a
conserved antisymmetric tensor as in the discussion above

J0J ... =
δL
δ ẋk

∂I xkϵ I J ... , J I J ... =
δL

δ
�

�

�

∂ x
∂ ϕ

�

�

�

ϵ I J ... =⇒ J0
V,I =

δL
δ ẋk

∂I xk . (60)

18The condition (56) is equivalent to the conservation at any point of G i1 ...ik−2 = ∂ j J
0 ji1 ...ik−2 .
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It is then simple to verify that the associated conserved charges (57) coincide with the inte-
grals (12).19

We stress that the conservation of the Noether currents (59) with local Lie parameter f I(ϕ)
not only implies the conservation of the tensor current (60), but is completely equivalent to
it.20 Therefore the contour integrals (12) provide a complete basis for the conserved charges
associated with the SDi f f (Mϕ) symmetry of the comoving fields.

Finally we also comment that it may be shown that the conserved integrals (15) for the
two dimensional fluid coincide with the conserved Casimirs of the SDi f f (Mϕ) symmetry -
see e.g. [4].

4 Fluid in the Clebsch formulation

4.1 From comoving coordinates to Clebsch fields

In [23] the authors showed that all solutions of the EOMs deriving from the action (37) with
zero vorticity can be mapped to the solutions of a superfluid action. Below we provide a
generalization of that argument to solutions with non-zero vorticity, and use it to derive the
Clebsch formulation of the fluid. We will focus on two and three spatial dimensions, for which
the action is formulated in terms of three real fields.21

To this aim, we rewrite the action (37) as

L= P(ξ2)− ξµvµ , (62)

where ξµ is here an independent vector field and vµ is given in (36). Integrating out ξµ,
we recover the action (37) and recognize P as the Legendre transform of F ; i.e. P is the
thermodynamic pressure. Therefore, ξµ = Tuµ on a solution, and its value completely specifies
the fluid flow.

In what follows we first write the general form of ξµ that is determined by the equations
of motion of ϕ from (62). It is here that the Clebsch variables make their first appearance.
Secondly we show that the complete system of equations of motion can be derived using a
Lagrangian that is purely written in terms of the Clebsch variables. While the end-result is the
same, the argument leading to it is slightly different in two and three spatial dimensions. We
therefore discuss these two cases separately, starting from the former.

In two spatial dimensions, the equations of motion for ϕ that follow from (62) are

ϵµνρ∂µξν∂ρϕ
I = 0 , I = 1, 2 . (63)

19We have

QC =

∮

C
dϕ I J0

V,I =

∮

C(t)
d x j ∂ ϕ

I

∂ x j

δL
δ ẋ k

∂ x k

∂ ϕ I
=

= −
∮

C(t)
d x j2F ′
�

�

�

�

∂ x
∂ ϕ

�

�

�

�

−1

ẋ j =

∮

C(t)
d x i2F ′
�

�

�

�

∂ x
∂ ϕ

�

�

�

�

−1

∂I x iϕ̇ I

=
1

(d − 1)!

∮

C(t)
d x i2F ′ϵI J1 ...Jd−1

ϵi j1 ... jd−1∂ j1ϕ
J1 . . .∂ jd−1

ϕJd−1 ϕ̇ I

=

∮

C(t)
d x i 2F ′vi =

∮

C(t)
d x i Tui ,

(61)

where we used the explicit form of the current, ẋ j + ∂I x iϕ̇ I = 0, and expanded the determinant
�

�

�

∂ x
∂ ϕ

�

�

�

−1
=
�

�

�

∂ ϕ

∂ x

�

�

�.

The conservation of (61) coincides with (12) for vµ = uµ.
20To verify that the conservation of the Noether current follows from that of the tensor, we write the Noether

currents via j0 = 1
(d−1)! J

0I J ...ϵ Ī J ... f
Ī (ϕ) and j Ī = 1

d! J
I J ...ϵI J ... f

Ī (ϕ), and then use ∂I f I = 0.
21In d = 2p and 2p+ 1 dimensions, one generally needs 2p+ 1 fields.
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A theorem by Pfaff [44] states that the most-general three-vector ξµ can be parametrized
(locally) in terms of three fields χ̄, Φ̄ and Φ̄† in the so-called Clebsch form:

ξµ = ∂µχ̄ +
i
2

�

Φ̄†∂µΦ̄− Φ̄∂µΦ̄†
�

. (64)

Using this parametrization, eqs. (63) reads

ϵµνρ∂µΦ̄∂νΦ̄
†∂ρϕ

I = 0 , I = 1,2 , (65)

whose general solution implies22

Φ̄†∂µΦ̄= ∂µψ+ gI(ϕ)∂µϕ
I , (67)

where gI(ϕ) is a generic function of ϕ1 and ϕ2, I = 1,2 and ∂µψ is an arbitrary gradient term.
Redefining χ = χ̄ +ψ, we thus obtain that the ξµ that solves (63) may always be written as

ξµ = ∂µχ +
i
2

�

Φ†∂µΦ−Φ∂µΦ†
�

, where Φ= Φ(ϕ) . (68)

We now use that the equations of motion for ξµ imply that

2P ′ξµ = vµ , (69)

from which it follows
∂µ(2P ′ξµ) = 0 , ξµ∂µϕ

I = 0 . (70)

For all physical flows, theϕ I ’s define a non-degenerate volume form v and ξ is a non-vanishing
vector. As Φ is just a (complex) function of the ϕ I ’s, the second of eqs. (70) is equivalent to:

ξµ∂µΦ= ξ
µ∂µΦ

† = 0 . (71)

We therefore conclude that the most general solution to the EOMs for ξµ can be written as

ξµ = ∂µχ +
i
2

�

Φ†∂µΦ−Φ∂µΦ†
�

, (72)

satisfying the constraints

∂µ(2P ′ξµ) = ξµ∂µΦ= ξ
µ∂µΦ

† = 0 . (73)

Note that (70) implies (71), but the converse is not true when Φ(x) is not an invertible map.
Thus (73) contains slightly less information than (70). However, if one only considers the fluid
flow (that is ξµ), the two sets of equations imply the same set of solutions.

It is finally straightforward to realize that eqs. (72) and (73) coincide with the EOMs as-
sociated with the action:

Lξ = P(ξµξµ) , ξµ = ∂µχ +
i
2

�

Φ†∂µΦ−Φ∂µΦ†
�

, (74)

22It is convenient to work in comoving coordinates (t,ϕ1,ϕ2), in which (65) reads

det
�

∂ (ReΦ̄, ImΦ̄)
∂ (t,ϕ I )

�

= 0 , I = 1, 2 . (66)

Eqs. (66) imply that the map (t,ϕ I ) → (ReΦ̄, ImΦ̄) is non-invertible, for both I = 1, 2. This condition can be
solved in two ways. First, (66) is obviously satisfied when Φ̄ depends on the ϕ I but not on time; in that case
we have Φ̄†∂µΦ̄ ≡ gI (ϕ)∂µϕ I . Alternatively, when Φ̄ depends on time, the noninvertibility conditions imply
ReΦ̄ = ReΦ̄
�

f (t,ϕ1,ϕ2)
�

and ImΦ̄ = ImΦ̄
�

f (t,ϕ1,ϕ2)
�

for some function f ; in this second case Φ̄†∂µΦ̄ ≡ ∂µψ is
a total derivative. (67) compactly encompasses both cases.
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with χ, Φ and Φ† taken as independent fields. (74) is the fluid’s action in the Clebsch formu-
lation at leading order in derivatives.

Let us now discuss three spatial dimensions. The most general four-vector can be
parametrized (locally) in terms of four scalar fields rather than three as in (64) [44]:

ξµ = α∂µβ + γ∂µδ . (75)

However, as it turns out, it is enough to work with the parametrization (68) in terms of three
fields. The reason for that is tied to the conservation of the fluid helicity (17) and can be seen
by considering the equations of motion for ϕ, which in three dimensions read:

ϵµνρσ∂µξν∂ρϕ
I∂σϕ

JϵI JK = 0 , K = 1, 2,3 . (76)

As ∂ρϕ
I is a rank 3 matrix, this equation implies thatωµν = ∂µξν−∂νξµ cannot have maximal

rank.23 In form notation that can be expressed as ω ∧ ω = 0, which is precisely helicity
conservation as expressed in eqs. (16), (17), and which further implies that the fields in the
parametrization (75) must satisfy

dα∧ dβ ∧ dγ∧ dδ = 0 . (77)

This relation implies that locally there exists a coordinate system (τ, ϕ̃ I) such the fields of
the parametrization (75) depend only on the ϕ̃ I . In this coordinate system ξµ consists of
a vanishing τ-component and a three-vector, and thus we may resort to the former Clebsch
parametrization (64). The rest of the argument proceeds as in the two dimensional case, and
we find again that the action (74) describes all possible solutions for the density and for the
velocity of the perfect fluid.

An action similar to (74) was first proposed in [45], and is frequently used in the literature,
see e.g. [26,32,33]. In the next subsections, we will analyze in some detail its properties and
symmetries. Before doing that we would like to make some remarks on this derivation.

First, the parametrization (64) admits an intuitive interpretation as a minimal modification
of the superfluid theory. In a superfluid, all flows have trivial vorticity and may therefore
be parametrized by a shift invariant scalar Tuµ = ∂µχ [46], where χ is thus interpreted as
the Goldstone boson of a spontaneously broken U(1) symmetry. The parametrization (64)
therefore provides the minimal modification of the theory of a superfluid that can account for
a nontrivial vorticity. In particular, note that configurations with nonzero vorticity necessarily
require {Φ,Φ†} to be nontrivial.24

The above derivation can be generalized to include higher derivative terms in the ac-
tion (37), as long as such terms are treated perturbatively in the spirit of effective field the-
ory.25 One finds that the resulting Clebsch action (74) is written as a function of ξµ and its
derivatives:

Sgen =

∫

d3 x Pgen

�

∂ν,ξµ
�

. (78)

The EOMs that follow from (78) read

∂µSµ = Sµ∂µΦ= Sµ∂µΦ
† = 0 , Sµ =

δSgen

δξµ
, (79)

23Like in the d = 2 case the implications of this equation are most directly analyzed in comoving coordinates
(t,ϕ1,ϕ2), where the constraint simply reads ω0I = 0 for I = 1, 2,3.

24Similar actions are used in the EFT of a non-relativistic rotating superfluid in a vortex lattice state [47–49]. In
the vortex lattice however one does not impose the area preserving diffeormophism symmetry (81) that we will
soon discuss, and thus the action includes additional invariants besides ξµ, such as |∂iΦ|2.

25In this discussion we neglect potential Wess-Zumino terms, that may not be written in terms of vµ and deriva-
tives in d+1 dimensions, as the one considered in [50–52] for baroclinic fluids (fluids with a nontrivial conserved
current besides the entropy current).
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where we identified the conserved current with the entropy current. Note that in this formu-
lation Sµ is a conserved current associated with the U(1) shift symmetry of χ, and in general
is a function of ξµ and derivatives thereof. The other eqs. in (79) imply that at higher order
in derivatives (10) gets generalized to

ωµνS
ν = 0 , ωµν = ∂µξν − ∂νξµ = i

�

∂µΦ
†∂νΦ − ∂νΦ†∂µΦ

�

. (80)

This last result formally coincides with (49) obtained in the previous section. The difference
is that in the Clebsch formulation the expression of the entropy current in terms of the fields
depends on the action, while ξµ and thus the vorticity ω retain the same form in terms of the
Clebsch fields to all orders in the derivative expansion.

We stress again that we have only proven that the EOMs for the hydrodynamic density
and velocities that derive from the actions (74) and (37) are the same, but the dynamics
of the two systems are different as a whole. That is obvious in three spatial dimensions,
where the comoving system describes three canonical pairs, while the Clebsch Lagrangian
only has two, since Φ and Φ† are canonically conjugated as we shall see below.26 Even if
less obvious, the two systems are inequivalent also in two spatial dimensions where both the
comoving and the Clebsch formulations describe two canonical pairs. This is because, as we
shall illustrate concretely in the next section, one generally cannot build an invertible map
between the comoving and the Clebsch fields and consequently (71) contains less information
than (70).

That said, the relationship between the comoving and Clebsch descriptions of the fluid
shares many qualitative features with classical dualities, such as the particle-vortex duality be-
tween a scalar and a gauge field, particularly in two spatial dimensions. To some extent, this
is because the Clebsch action is simply the Legendre transform of the comoving one, as made
clear by (62). We provide a more detailed comparison of the two formulations in sec. 4.3,
where we argue that, in d = 2, for some special flows the map between the comoving coor-
dinates and the Clebsch fields is actually invertible, allowing all observables to be translated
between the two descriptions.

4.2 The Clebsch description around the static flow

Let us now analyze some properties of the system described by (74). First, we note that the
vector ξµ is inherently invariant under the following infinitesimal transformation

Φ→ Φ+ ∂Φ† f (Φ†,Φ) ,

Φ†→ Φ† − ∂Φ f (Φ†,Φ) ,

χ → χ +
i
2

�

2 f −Φ∂Φ f −Φ†∂Φ† f
�

,

(81)

where f † = − f , such that we preserve the identity (Φ†)† = Φ. For f = const., this symme-
try reduces to a U(1) shift of χ. The remaining transformations form a representation of the
area preserving diffeomorphism of the (Φ,Φ†) manifold, which we will call MΦ. As the La-
grangian (78) is a function of ξµ, this is trivially a symmetry of the action (78) to all order in
derivatives. Since hydrodynamic variables are invariant under (81), it is this symmetry that
ensures that the equations of the fluid can be expressed solely in terms of thermodynamic
objects.

26This is not a contradiction, since only the dynamics for the fluid’s density and velocity is equivalent, which
require d + 1 initial conditions in d spatial dimensions. Note that from this perspective, for d = 3 the Clebsch
parametrization realizes Euler’s equations with the minimal number of fields, corresponding to 2 canonical pairs.
Instead for d = 2 (in fact for all even d) the Clebsch parametrization introduces one too many variables.
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The static configuration ξµ∝ δ0
µ admits a large classical degeneracy in terms of the Cleb-

sch fields. This degeneracy can be parametrized in terms of an arbitrary function α = α(x) of
the spatial coordinates and an arbitrary function of a single variable β = β(α) as










χ = T t +
1
2
α(x)β(α(x))− B(α(x)) ,

ReΦ=
1
p

2
α(x) , ImΦ= −

1
p

2
β(α(x)) ,

where B(α) =

∫

dααβ ′(α) . (82)

For Φ = α = β = 0, (82) reduces to χ ∝ t up to a constant, and therefore breaks spon-
taneously the U(1) shift symmetry and time translations to a diagonal subgroup: this is the
superfluid symmetry breaking pattern [46]. Notice however that the SDi f f (MΦ) invariance
is only partially broken over the large manifold of classical vacua (82). That is rendered clear
by considering the point Φ = 0, which is invariant for all f (Φ†,Φ)’s that are at least quadratic
at the origin, so that SDi f f (MΦ) is basically unbroken.

That is different from what happens in the comoving description, where the static flow can
be described by the solution ϕ I = αx I , and all the other field solutions describing the same
static background flow are related to this solution by a SDi f f (Mϕ) transformation. There is
thus a one-to-one correspondence between solutions and the elements of SDi f f (Mϕ), which
is fully non-linearly realized. Note that these considerations imply that on a generic flow it is
not possible to reconstruct the value of the Clebsch fields in terms of the comoving ones in two
spatial dimensions, even if we mod out by the action of the symmetry groups, as anticipated in
the previous section. This is to be contrasted with known examples of classical dualities, such
as that between a scalar and a gauge field in two dimensions, which we review in sec. 4.4.
In that case, the scalar profile fully determines the dual gauge field and vice versa, up to the
action of global and gauge symmetries, thereby enabling a complete mapping of observables
between the two descriptions.

Expanding around the static fluid background (82) we obtain the following quadratic ac-
tion

L(2) = 1
2

�

2P ′ + 4T2P ′′
�

π̇2 − P ′(∇π)2 + 2iT P ′δΦ†δ̇Φ , (83)

where we discarded a total derivative and π is the fluctuation of χ. From (83) we also see
that π describes the phonon mode with sound speed c2

s = dp/dρ, while Φ† and Φ describe
a single mode with trivial momentum independent dispersion relation ω(k) = 0. Note again
that while the existence of a mode with trivial dispersion relation was expected, the existence
of this flat direction is not related to the nonlinear realization of a symmetry. In other words,
while invariance of the Lagrangian under the group (81) forbids a gradient term for Φ, the
time independent solutions with ω(k) = 0 are not obtained from the action of the symmetry
on the static solution, unlike in the comoving formulation.

4.3 High vorticity configurations and duality emergence in two dimensions

Let us now briefly discuss configurations with non-vanishing vorticity. This will enable us to
give a physical interpretation of the Clebsch variables in (74) and the symmetry (81). The
discussion in this section is not crucial for the analysis of the quantum fluid that will follow in
part II, and may be skipped at a first reading.

As made clear by 80, Φ and Φ† are directly related to vorticity. Following well-known ideas
(see e.g. [37,53]), for the case of two dimensional fluids, we make this relation more concrete
in app. B.2. In short, we consider the motion of N ≫ 1 pointlike vortices in a superfluid,
and show that ReΦ and ImΦ naturally emerge as the continuum limit of the vortex labels,
while χ is simply the superfluid Goldstone (more precisely, we work in the dual formulation
in terms of a gauge field, which we review below). We find that the action (74) describes
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the hydrodynamics of such system in the regime where the vortices are sufficiently dense, in
such a way that there effectively exist an invertible map between the spatial coordinates x
and the vortex labels Φ, Φ†. Invariance under SDi f f (MΦ) thus emerges as a consequence of
the possibility of reshuffling the individual vortex labels, without changing the macroscopic
properties of the fluid. This symmetry is spontaneously broken in a flow with macroscopic
vorticity, and thus the Clebsch formulation of the fluid follows by the requirement that this
symmetry is nonlinearly realized. Note that, in light of this interpretation, ω∧ dΦ= 0 implies
that the vortices move with velocity proportional to ⋆ω.

The above interpretation of the SDi f f (MΦ) symmetry of the Clebsch formulation is there-
fore analogous to that of the SDi f f (Mϕ) symmetry of the comoving formulation, which we
discussed in sec. 3.1. The difference is that in the Clebsch case such physical interpretation is
justified only for flows in which ωµν is nowhere vanishing, and breaks down near the static
background which we discussed before. This suggests, as we now show, that in d = 2 at high
vorticity, the map between the two descriptions becomes invertible.

The regime of high vorticity consists concretely in the flows where the vorticity spatial
volume form is non-degenerate:

ω(x) = idΦ∧ dΦ† ̸= 0 , ∀x . (84)

In this case, we can construct an invertible map x(t,Φ,Φ†), representing the trajectory of the
vortices; this map is unambiguous up to the SDi f f (MΦ) action (81). At the same time, for
all physical flows there exists an invertible map x(t,ϕ I) in terms of the comoving coordinates,
specified by Sµ = 1

2ϵI Jϵ
µνρ∂νϕ

I∂ρϕ
J , up to the SDi f f (Mϕ) action. Combining the two maps

we obtain an invertible map Φ = Φ(t,ϕ I) between the Clebsch and the the comoving fields,
modulo the action of the symmetries. When such a map exists, it is possible to map all the
observables from one formulation to the other following the derivation in sec. 4.1.27

To appreciate this map in greater detail, it is useful to note that both the comoving and the
Clebsch descriptions admit two infinite sets of conserved currents. In the comoving formula-
tion, these are the Noether currents (45) and the topologically conserved currents (46).

In the Clebsch formulation we also have two similar sets of currents. First, the Noether
currents associated with the area-preserving diff. transformations (81) are given by

jµf = 2P ′(ξ2)ξµ f (Φ,Φ†) = Sµ f (Φ,Φ†) , (85)

for any arbitrary real function f . In addition to the Noether currents, the theory (74) also
admits a set of trivially conserved topological currents

Jµf = ϵ
µνρξν∂ρ f (Φ,Φ†) . (86)

Conservation of these follows from the trivial identity ϵµνρ∂µξν∂ρΦ= ϵµνρ∂µξν∂ρΦ† = 0 .
Using the correspondence Tuµ = 2F ′vµ = ξµ and Sµ = vµ = 2P ′ξµ and the existence

of an invertible map ϕ I(Φ,Φ†) for flows such that (84) holds, we immediately see that the
comoving Noether currents (45) map to the topological ones (86) in the Clebsch formulation.
Viceversa, the Clebsch Noether currents (85) become the trivially conserved vectors (46) in
the comoving description. Note that the interchange of Noether and topological currents is a
standard hallmark of dualities.

In the tab. 1 we summarize the comparison between the comoving and the Clebsch formu-
lations of the two-dimensional fluid. The first entries in tab. 1, that do not refer to the currents
discussed above, are true also in three spatial dimensions.

Some comments are in order. First, we have seen in sec. 3.2 that the conservation of the
Noether currents (45) of the comoving Lagrangian is associated with Kelvin’s theorem. In the

27In other words, for flows in which the vorticity volume form is non-degenerate, (70) and (71) are equivalent.
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Table 1: Comparison of the two theories describing a perfect fluid. Both theories
realize Euler’s equations as the conservation of the stress-energy tensor. First, all
hydrodynamical quantities are expressed in terms of the variables of the theories.
Second, the dynamically and topologically conserved quantities are displayed in both
cases. Finally the classical solution for a fluid at rest is displayed in both cases. The
solution is not invariant under the full symmetry group of each theory, however the
breaking is significantly different in each case. While the solution only breaks shifts
of the fields in the Clebsch description, the full symmetry group is broken in the
comoving description.

Clebsch Comoving

Lagrangian P(ξ2) F(v2)

fundamental fields χ,Φ,Φ† ϕ1,ϕ2

vorticity ωµ = εµνρ∂νξρ, with ξµ = ∂µχ +
i
2(Φ

†∂µΦ−Φ∂µΦ†) ξµ = 2F ′vµ

entropy current vµ = 2P ′ξµ vµ = 1
2ϵI Jϵ

µνρ∂νϕ
I∂ρϕ

J

energy density ρ = 2ξ2P ′(ξ2)− P(ξ2) ρ = −F(v2)

pressure p = P(ξ2) p = F(v2)− 2F ′(v2)v2

symmetry SDi f f (MΦ) SDi f f (Mϕ)

Noether Currents jµf = vµ f (Φ,Φ†) Jµf = ϵ
µνρξν∂ρϕ

I∂I f (ϕ)

Topological Currents Jµf = ϵ
µνρξν∂ρ f (Φ,Φ†) jµf = vµ f (ϕ)

Solution for fluid at rest χ = µt, Φ† = Φ= 0 ϕ I = αxI

spontaneously breaks shifts: χ → χ + cχ , Φ→ Φ+ cΦ SDi f f (Mϕ)

regime where the duality holds, the same relation holds for the topological currents (86) of
the Clebsch description. One might ask if the Clebsch description’s infinitely many Noether
currents (85) are similarly associated to some property of Euler’s equations. However, in
app. C.1 we show that no new physical conservation law for the fluid density and velocity is
inferred from the conservation of (85).

The considerations of this section are certainly mathematically amusing and help clarify
the relation between the comoving and the Clebsch formulation of the fluid. Yet, it is unclear
to us if the “emergence of duality” for the high vorticity flows discussed here has any physical
consequence. First, as remarked above, the existence of a map between the two fluid formu-
lations that we discussed appears to be an accident of two dimensions. Second, this relation
becomes singular when working around the static flow, which will be the starting point of
our analysis of the quantum fluid. As we argue in Part II of this work, the two Lagrangian
formulations of the fluid will lead to two inequivalent quantum fluids, with the same Hamil-
tonian spectrum but different Hilbert spaces (i.e. different degeneracies of the Hamiltonian
eigenstates).

4.4 The non-relativistic and incompressible limits

An important technical advantage of the Clebsch formulation is that it allows for a simple
formulation of the incompressible limit. An elegant and straightforward derivation of the latter
uses the well known duality between a scalar and a d − 1-form gauge field. Below we discuss
such derivation in two spatial dimensions. The analogous derivation in three dimensions is
discussed in app. C.2 - we will simply report the final result at the end of this section.
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The idea is to trade the scalar χ for an Abelian gauge field Aµ, and thus obtain a dual
description of the system (74). This is done by treating ξµ as an independent field and adding
a Lagrange multiplier Aµ to impose the dependence of ξµ on the fundamental fields:

L̃ξ = P(ξµξµ)−
1

2π

�

ξµ −
i
2
(Φ†∂µΦ−Φ∂µΦ†)

�

ϵµνλ∂νAλ . (87)

Integrating out Aµ sets ξµ −
i
2(Φ

†∂µΦ − Φ∂µΦ†) = ∂µχ and we get back the action (74) as
intended. Integrating out ξµ, and discarding a total derivative, we instead get

LA = F
�

vµvµ
�

+
i

2π
Aµϵ

µνλ∂νΦ
†∂λΦ , vµ =

1
4π
ϵµνλFνλ =

1
2π
ϵµνλ∂νAλ , (88)

where F is simply the Legendre transform of P with respect to ξµ,

F = P − ξ · v|2P ′ξ=v . (89)

In view of (62), F is the same function we started with in the comoving description in (37).
In particular F = −ρ is minus the energy density of the fluid at rest. The map between χ and
the gauge field is always invertible up to the action of the global and gauge symmetry, unlike
in the procedure showed in sec. 4.1. A gauge theory formulation of the fluid similar to (88)
was used in [54] to study coastal Kelvin waves.

As usual in particle-vortex duality, the entropy current Sµ = vµ, which was a Noether
current in the original Clebsch formulation, is now a topological current. The static back-
ground (82) now corresponds to a constant magnetic field F i j = ϵi jB = const., while
SDi f f (MΦ) defined in (81) now acts only on Φ:

Φ→ Φ+ ∂Φ† f (Φ†,Φ) , Φ†→ Φ† − ∂Φ f (Φ†,Φ) , Aµ→ Aµ . (90)

Consider now the non-relativistic limit of the action (88). Recalling the discussion that led
to (21) and the relations F = −ρ and

p
−v2 = s, this limit corresponds to F of the form

F
�

vµvµ
�

= −mc2
p

−v2 + FNR

�p

−v2
�

+O
�

1
c2

�

= −mc2v0 +
mvi vi

2v0
+ FNR (v0) +O
�

1
c2

�

,
(91)

where FNR does not depend on c, we used −v2 = v2
0 −

1
c2 vi vi (restoring powers of c), and

we assumed for concreteness v0 > 0 on the background.28 Writing vµ in terms of E i and B
according to (88) and dropping total derivatives, the action becomes

LA = FNR (B) +
mE2

4πB
+

i
2π

Aµϵ
µνλ∂νΦ

†∂λΦ , (92)

while the mass density is

ρm = m
B

2π
. (93)

As explained in sec. 2, in the incompressible limit we retain only the field modes with
ω≪ cs|k|. These include the longitudinal fields Φ, Φ†, and the Coulomb potential mediated
by the electric field, but not the photon. Therefore, to obtain the Lagrangian in the incom-
pressible limit, it is convenient to work in coulomb gauge ∇ · A = 0 and neglect fluctuations
of the spatial components of the gauge field when expanding around solution with constant

28We refer the reader to [55] for a systematic discussion of the constraints imposed by Galilean symmetry beyond
leading order in derivatives.
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density ρm = const.. After discarding total derivatives, replacing the magnetic field with its
background expectation value (93), and canonically normalizing the fields Φ →

q

m
ρm
Φ and

A0→ (2π)
p
ρm
m A0, we obtain

L3 =
1
2
(∇A0)

2 +
i
p
ρm

�

∇Φ† ∧∇Φ
�

A0 + iΦ†Φ̇ . (94)

The Gauss law is then given by

∇ · E(x) =
i
p
ρm
∇Φ†(x)∧∇Φ(x) =

1
p
ρm
ω(x) , (95)

where in particular we see from the right-hand side that the charge density in the electromag-
netic picture can be identified with the vorticity in the fluid picture.

Using the Gauss law, we can further integrate out the Coulomb field. This leads to the
following non-local Lagrangian

LΦ = −
1

2ρm

�

∇Φ† ∧∇Φ
� 1

∇2

�

∇Φ† ∧∇Φ
�

+ iΦ†Φ̇ . (96)

This Lagrangian, with Φ and Φ† dubbed vorton fields, was formerly obtained in [4] in a
different way. Our discussion shows that it naturally arises as the non-relativistic and incom-
pressible limit of the most general theory invariant under the internal SDi f f (MΦ) of the
Clebsch fields.

As a consequence of the large internal symmetry group, the theory (96) has several peculiar
features. First, as noted already before, there is no quadratic kinetic terms for the vorton
fields. Additionally, the leading interaction is non-local and can be interpreted as a dipole-
dipole potential. This is reminiscent of the analysis of [56], and suggests that the vorton
fields should be associated with the density of small vortex-antivortex pairs, whose leading
interaction is indeed dipolar. We will make this intuition sharper in the second part of this
work, where we will take the action (96) as the starting point for the analysis of the quantum
perfect fluid.

We conclude this section with the promised result for the Clebsch Lagrangian in the in-
compressible limit in three spatial dimensions:

LΦ =
1

2ρm
ωi 1

∇2ω
i + iΦ†Φ̇ , ωi = iϵi jk∂ jΦ

†∂kΦ , (97)

that we derive in app. C.2. Comments analogous to the ones above apply in this case. We will
use the action (97) to analyze the quantum perfect fluid in three dimensions in sec. 7.2.

4.5 The hurricane solution and the role of symmetries

As shown in (82), the static fluid can be represented by the configuration χ = T t, Φ= Φ† = 0.
This is a solution thanks to the χ → χ+ c shift symmetry, which, combined with ordinary time
translations, guarantees the survival of an effective time translation invariance. In this respect
the static fluid corresponds to a superfluid state of the χ-shift U(1), with T playing the role
of chemical potential. A similar phenomenon and involving the full SDi f f (MΦ) is indeed at
play over more general stationary solutions, as we now illustrate.

The distinctive property of Euler’s equations is that they admit infinitely many stationary
solutions [57]. This is a direct consequence of the infinite symmetry of the Lagrangian formula-
tions, comoving or Clebsch: all stationary solutions break spontaneously both time translation
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and the internal symmetry, while preserving an effective linear combination He f f = H +Q,
with Q an internal generator. More explicitly, stationary solutions satisfy

DtΦstat ionar y = ∂tΦstat ionar y +δQΦstat ionar y = 0 . (98)

The variety of stationary solutions is parametrized by the variety of the possible Q’s, while the
effective Hamiltonian He f f = H +Q characterizes their spectrum of fluctuations.

Let us illustrate these abstract considerations discussing a concrete example: the hurricane
solution for the incompressible fluid in 2d. In spherical coordinates (r,θ ), this corresponds to
velocity and vorticity given by

vr = 0 , vθ = v(r) =⇒ ω(r) = −ρm
v(r) + rv′(r)

r
, (99)

which is easily seen to solve Euler’s equation (28) in the incompressible limit. Note that the
profile v(r) ∝ 1/r describes a localized vortex ω ∝ δ2(x). On the other hand v(r) ∝ r
describes a rigid flow with constant angular velocity and constant vorticity.

In the Clebsch description (96), this solution is obtained by considering the ansatz

Φ=
p

ρm g(r)ei(θ−ν(r)t) , (100)

which yields the vorticity

ω(r) =
−2ρm

r
g(r)g ′(r) , (101)

from which we identify
g(r) =
Æ

rv(r) . (102)

The equations of motions then constrain ν(r) to coincide with the flow’s angular velocity:

ν(r) =
v(r)

r
, (103)

so that the hurricane solution takes the form

Φ=
Æ

ρmrv(r) ei
�

θ− v(r)
r t
�

. (104)

It is now simple to check that (104) satisfies (98) with (recall (90))

δQΦ= i
∂ f
�

ΦΦ†
�

∂Φ†
, δQΦ

† = −i
∂ f
�

ΦΦ†
�

∂Φ
, (105)

with f the solution of the differential equation

f ′ (ρmrv(r)) =
v(r)

r
, (106)

which may be solved for generic v(r). For instance, if v(r) = αr for some constant α, we
have f (x) = αx . However, the form of f varies with the velocity profile, which elucidates
the relation between the infinity of the class of stationary solutions and the infinity of the
SDi f f (MΦ) symmetry. An explicit breakdown of SDi f f (MΦ) to a finite dimensional sub-
group would necessarily reduce the class of stationary solutions to a finite set. In view of
that, when considering the quantum theory, we will be driven to consider a UV regulation that
preserves as much symmetry as possible.

To conclude this section, notice that the effective time translation generator He f f = H +Q
of (98) involves a generator Q of an internal non-Abelian symmetry. In this situation the modes
associated with the (vast) set of broken generators not commuting with Q feature gaps purely
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controlled by the symmetry algebra. Upon quantization the associated quanta are an instance
of the so-called gapped Goldstone discussed in [58–61].

Part II

Quantum perfect fluid

5 Continuum quantization of the perfect fluid in 2d

5.1 The classical incompressible fluid in the Hamiltonian formalism

The action for the incompressible perfect fluid in the Clebsch formulation was given in (96).
It reads

LΦ = iΦ†Φ̇+
1

2ρm

�

∇Φ† ∧∇Φ
� 1

−∇2

�

∇Φ† ∧∇Φ
�

. (107)

As already noted, the key feature of the action (107) is the absence of a quadratic kinetic term
|∇Φ|2 due to the SDi f f (MΦ) symmetry, which acts as

Φ→ Φ+ i∂Φ† f (Φ†,Φ) ,

Φ†→ Φ† − i∂Φ f (Φ†,Φ) ,
(108)

for an arbitrary real function f † = f .
In preparation of the discussion of the quantum fluid, let us briefly review the Hamiltonian

description of the system (107). The Hamiltonian reads

H =
1

2ρm

∫

d2xω(x)
1

−∇2ω(x) , where ω(x) = i∇Φ†(x)∧∇Φ(x) , (109)

and the Poisson brackets are given by

−i{Φ†(x),Φ(y)}= δ2(x− y) . (110)

The symmetry (108) is then seen to be generated by the following charges

Q f =

∫

d2x f (Φ(x),Φ†(x)) , (111)

with f a real valued function. For future references, we explicitly write the associated algebra

{Q f ,Qg}= iQ[ f ,g] , [ f , g] = ∂Φ f ∂Φ† g − ∂Φ† f ∂Φg . (112)

We can take as a basis of the symmetry algebra (real combinations of) monomials of the
form:

Q(n,m) =

∫

d2x(Φ†(x))nΦm(x) . (113)

In particular, Q(1,1) =
∫

d2xΦ†(x)Φ(x) generates the U(1) symmetry corresponding to particle
number conservation. The algebra then becomes

−i
�

Q(n,m),Q(k,ℓ)
	

= (nℓ− km)Q(n+k−1,m+ℓ−1) . (114)

One should also note that the set of vorticities ω(x) at each point x in space closes onto
itself under the action of the Poisson brackets, forming the algebra

{ω(x),ω(y)}=
∫

d2z∇zδ
2(z − x)∧∇zδ

2(z − y)ω(z) . (115)
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This is important as it ensures that the equations of motion forω, i.e. Euler’s equation (31), do
not depend on additional variables, in particular not the microscopic fields Φ(x). The Poisson
brackets (115) define the algebra of volume preserving diffeomorphism SDi f f (Mx) of the
spatial manifold Mx . Indeed, one can easily see that the commutation relation (115), when
rewritten in momentum space, is identical to the one given in (112).

It is important to remark that while SDi f f (MΦ) is a symmetry of the theory, this is not
the case for SDi f f (Mx).

5.2 The spectrum of the quantum incompressible fluid: Infinitely many vortons

Let us now try to quantize the action (107) directly in the continuum limit.29 This section will
be partly heuristic in nature, in particular concerning the treatment of short-distance singu-
larities, postponing to section 6 a more rigorous technical justification of the results using a
lattice regulator.

To this aim we simply promote the brackets (110) to commutation relations in the standard
way

�

Φ(x),Φ†(y)
�

= δ2(x− y) , (116)

so that Φ and Φ† act as, respectively, annihilation and creation operators of a non-relativistic
field theory. We additionally introduce a regulator function in the Hamiltonian to take care of
UV divergences

H = −
1

2ρm

∫

d2x
�

∇Φ† ∧∇Φ
� F
�

−∇2/Λ2
�

−∇2

�

∇Φ† ∧∇Φ
�

, (117)

where Λ is the cutoff scale and F
�

k/Λ2
�

= 1+O
�

k2/Λ2
�

at small momentum. In the quan-
tum theory however the commutation relation (116) introduces ordering ambiguities and we
need to specify a certain ordering in the Hamiltonian (117). This choice is important as the
appearance of a quadratic gradient term, which is protected by symmetry at the classical level,
depends on ordering at the quantum level. This indicates that also the fate of the defining
SDi f f (MΦ) symmetry is decided by operator ordering.

Indeed, at the quantum level, the algebra of the generators (113) of the symmetry group
is also modified. To illustrate that, let us choose to work with generators Q(n,m) specified by
normal ordered products of the form (113). We then see the quantum algebra, compared to
the classical one, acquires several new singular terms proportional to powers of δ2(0):

�

Q(n,m),Q(k,ℓ)
�

=
∞
∑

r=0

f (n+k−1−r,m+ℓ−1−r)
(n,m),(k,ℓ) Q(n+k−1−r,m+ℓ−1−r)

�

δ2(0)
�r

, (118)

where the structure constants are given by

f (n+k−1−r,m+ℓ−1−r)
(n,m),(k,ℓ) =

�

k!
(k− 1− r)!

�

m
r + 1

�

−
n!

(n− 1− r)!

�

ℓ

r + 1

��

, (119)

which reduces to the former result (114) for r = 0. Note that the first and second terms
in the square parenthesis of (119) vanish, respectively, for r > min (k− 1, m− 1) and
r > min (n− 1,ℓ− 1). Therefore the sum in (118) always truncates after a finite number
of terms.

In this section we shall be cavalier about these issues. Whenever necessary, we will assume
that the cutoff regulates delta function singularities as δ2(0) → Λ2, and we will not worry
about the quantum corrections to the symmetry algebra.

29The discussion in this section bears some technical similarities with that in app. A of [28].
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We shall however insist that the algebra (115) of SDi f f (Mx) generated by the vorticity
ω = i∂Φ† ∧ ∂Φ – is not modified by the ordering of the fields and is thus unchanged at the
quantum level, replacing Poisson brackets by commutators

[ω(x),ω(y)] = −i

∫

d2z∇zδ
2(z − x)∧∇zδ

2(z − y)ω(z) , (120)

Writing the Hamiltonian (117) solely in terms of the vorticity ω thus ensures that the Heisen-
berg picture quantum equations of motion for ω still do not depend on any additional vari-
ables. This demand unambiguously resolves the ordering ambiguity: the Hamiltonian should
be understood as written in (117), and thus, not normal ordered. Somewhat reassuringly,
since the combination

�

∂Φ† ∧ ∂Φ
�

commutes with all the Q(n,m)’s, this ordering choice implies
that the Hamiltonian still commutes with all the charges. We will provide a more careful justi-
fication of this prescription in the next section, where will analyze a discretized model, where
the algebra is regulated and where (117) is recovered in the continuum limit.

With these preliminaries in order, it is now straightforward to analyze the spectrum of
the theory. To obtain the single-particle states spectrum, it is simplest to rewrite the Hamilto-
nian (117) in momentum space:

Φ(x) =

∫

d2k
(2π)2

eik·xΦk . (121)

We obtain

H =
1

2ρm

∫

d2p2d2p1d2k2d2k1

(2π)6
δ2 (p1 + p2 − k1 − k2) (122)

×
(p2 · k1)(k2 · p1)− (p2 · p1)(k2 · k1)

(p1 − k1)2
F

�

(p1 − k1)2

Λ2

�

Φ†
p2
Φk2
Φ†

p1
Φk1

.

Upon writing the Hamiltonian in normal ordered form we find

H =
Λ2 F̃(0)

4ρm

∫

d2p
(2π)2

p2Φ†
pΦp+ : H : , (123)

where we defined the Fourier transform of the regulator function

Λ2 F̃(Λ2x2) =

∫

d2k
(2π)2

eik·xF

�

k2

Λ2

�

x→0∼ Λ2 , (124)

and : H : is the normal ordered quartic Hamiltonian, which annihilates single particle states.
The dispersion of single vorton states is thus purely controlled by the first (quadratic) term
in (123) and reads

ωp =
Λ2 F̃(0)

4ρm
p2 . (125)

Note that the exact coefficient upfront F̃(0) is not calculable from the low energy action alone.
Yet the momentum dependence and the lack of a gap are a robust feature of the system.

Before discussing the symmetries of the quantum theory, it is worthwhile to briefly recall
the properties of the vortons, which were already studied in ref. [4]. Consider single vortons
states first. According to (95) (Gauss’s law), the vorticity ω(x)/pρm can be interpreted as a
charge density. It is then interesting to consider the lowest charge (or vorticity) multipoles of
a single vorton. Considering then a normalizable single vorton state

|Ψ〉 ≡
∫

d2xψ(x)Φ†(x)|0〉 ,
∫

d2x|ψ(x)|2 = 1 , (126)
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one has
〈Ψ|ω(x) |Ψ〉=
p

ρm(∇iψ
∗∇ jψ)ε

i j , (127)

so that, integrating by parts, monopole and dipole are respectively found to be

m=
1
p
ρm

∫

d2x 〈Ψ|ω(x) |Ψ〉=
1
p
ρm

∫

d2x∇i(ψ
∗∇ jψ)ε

i j = 0 , (128)

d i =
1
p
ρm

∫

d2x x i 〈Ψ|ω(x) |Ψ〉=
i
p
ρm

∫

d2x x iψ∗(x)∇iψ(x)ε
i j =
−εi j〈P j〉
p
ρm

. (129)

The vortons can thus be viewed as vortex-antivortex pairs [4] carrying vanishing total vorticity
and a vorticity dipole proportional but orthogonal to the total momentum.30

While the quadratic part of (123) controls the propagation of the asymptotic free vortons,
the quartic part controls their scattering [4]. For instance, for 2 → 2 scattering, working at
tree level and at small incoming momenta k1 and k2, the scattering amplitude is

M(k1,k2,p1,p2) =
1
ρm

(k1 ∧ p1)(k2 ∧ p2)
(k1 − p1)2

+ k1↔ k2 . (130)

We are now ready to discuss the consequences of the infinite symmetry at the basis of our
construction. The main result here is that such symmetry implies the existence of an infinite
set of independent asymptotic states which are formally composed of multiple vortons, but
which behave in practice as single vortons. In order to see that, consider first a two particle
state

|ψ2(k)〉=
∫

d2x eik·x
∫

d2yΨk(y)Φ
†
�

x+
1
2

y
�

Φ†
�

x−
1
2

y
�

|0〉

=

∫

d2p
(2π)2

Ψ̃k(p)Φ
†
k+p

2

Φ†
k−p

2

|0〉 ,
(131)

where k is the total momentum and Ψ(y) is the wave-function. Then the Schrödinger equation

H|ψ2(k)〉= Ek|ψ2(k)〉 , (132)

results in the following

EkΨk(x) =
Λ2k2

8ρm

�

F̃(0) + F̃(Λ2x2)
�

Ψk(x)−
Λ2∇2

x

8ρm

��

F̃(0)− F̃(Λ2x2)
�

Ψk(x)
	

−
1

4ρm

�

kik j + ∂ i
x∂

j
x

� �

Vi j(x)Ψk(x)
�

,
(133)

where we defined

Vi j(x) =

∫

d2q
(2π)2

eiq·x qiq j − q2δi j/2

q2
F

�

q2

Λ2

�

. (134)

30It behoves us to compare (125) to what was concluded by Landau in his famous paper on superfluidity. Landau
based his study on the quantum mechanical transcription of Euler’s equation, with ρ and v promoted to quantum
operators. Upon noticing that the vorticity satisfies a non-Abelian algebra, he argued that there should be a dis-
continuity between states of null vorticity and states with some vorticity, hence the latter should be gapped. By
dimensional analysis, the gap, he concluded, should be of order Λ5/ρm in d = 3, corresponding to Λ4/ρm in our
d = 2 case. We think Landau’s argument is incorrect because the algebra is infinite and the commutation relation
Abelianizes at zero momentum. In fact, as (127) shows, vortons exhibit a vanishing vorticity at zero momentum.
Moreover, just by the shift symmetry Φ→ Φ+ c of the Clebsch lagrangian it is clear that vortons should be gapless.
By wrongly concluding that the Φ’s should be gapped, Landau’s system reduced to the theory of the derivatively
coupled χ around the background χ = µt. That is precisely the EFT of the superfluid [46], the system Landau
could have started with in the first place.
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Note that
δi jVi j(x) = 0 and Vi j(0) = 0 . (135)

Surprisingly we see that a solution of (133) is given by a completely localized wave-function

Ψk(x)∝ δ2(x) and Ek =
Λ2 F̃(0)

4ρm
k2 , (136)

which is exactly degenerate with the single particle vorton state! Note that this is a very
unusual feature, since normally a wave-function localized at such short distances is not under
control within EFT (indeed the wave function (136) is not normalizable, because of its singular
UV property). Yet, we claim that the existence of this two-particle bound state, degenerate with
the single-vorton state, is a robust feature of the perfect fluid in the Clebsch formulation. In
fact, we claim that there is a similar n-vorton bound state for any n > 0! This is because, as
we explain below, these results originate from the invariance of the Hamiltonian under the
charges (111). Moreover the regulated model we will present in the next section offers an
example where the result is robust with respect to UV effects.

The intuitive reason for the existence of such bound states was anticipated in [4]. At
the quantum level, not all symmetry charges (111) annihilate the vacuum. In particu-
lar, even working in conventions such that all charges are normal ordered, all charges
Q(n,0) =
∫

d2x(Φ†(x))n act nontrivially and generate a state that is degenerate with the vac-
uum. Taking a wave-function Ψk(y)∝ δ2(y) in (131) we create a state that in the k→ 0 limit
approaches the degenerate vacuum Q(2,0)|0〉. The argument we are offering here is just a fast
description of Goldstone’s theorem,31 but it simply generalizes the argument for the existence
of a single-particle vorton state starting from the charge Q(1,0). By further generalizing the
argument, we conclude there exists a similar vorton bound-state for all charges Q(n,0), given
they do not annihilate the vacuum.32 No other universal light states are expected, since in the
normal ordered basis the remaining charges, which all possess at least a destruction operator,
form a subalgebra that annihilates the vacuum and is left therefore unbroken.33

The symmetry algebra also explains the exact degeneracy of the single particle state and
two-particle bound state. That is because the state (131) is obtained acting on a single particle
state |ψ1(k)〉= Φ

†
k|0〉 with the charge

Q(2,1) =

∫

d2x
�

Φ†(x)
�2
Φ(x) . (137)

This argument immediately explains the degeneracy of the two-particle bound state with the
single-particle state. By considering similar charges we see that all such multi-particle bound
states are degenerate with the single-vorton states (and are essentially identical to a single-
particle vorton state in all aspects but the particle number charge).

We remark again that the vorton bound states that we just constructed are very unusual
from the viewpoint of effective field theory. Indeed we found that by bringing single-particle
states very close to each other - a naively illegal operation within EFT - we obtain a low energy
state, which can be thought of as a Goldstone boson due to the spontaneous breaking of the
symmetry algebra. It is not possible to create such bound states via low energy scatterings
of single vortons. That is because these states transform non-trivially under the unbroken
symmetry group. For instance the two-vorton bound state is an eigenstate of Q(2,2), which
instead annihilates states made of two vortons at finite distance from each other:

Q(2,2)Φ
†(x)Φ†(y) |0〉= 2δ2(x− y)Φ†(x)2 |0〉

x ̸=y
= 0 . (138)

31Indeed Q(n,0)|0〉 is not normalizable at infinite volume, so that strictly speaking it sits outside the Hilbert space.
32We thank Dam Son for asking the mandatory simple question that forced us to figure this out.
33Going to a real basis of generators, this implies that there is a Goldstone boson for each two broken generators
{Q(n,0) +Q†

(n,0), iQ(n,0) − iQ†
(n,0)}, in agreement with the non-relativistic counting rules [61–63].
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This situation is reminiscent of the UV/IR mixing phenomena which are observed in certain
exotic field theories of fractons [8,9]. As in those cases, the unusual behaviour is made possible
by the infinitely large symmetry group, which forbids operators - such as ∼ |Φ|4 - which would
lift the bound states up to the cut-off.

In conclusion, we argued that the perfect quantum fluid in the Clebsch formulation admits
infinitely many light vorton bound states, one for each particle number n > 0, with energy
given by (125). Their existence and degeneracy is a robust consequence of the symmetry al-
gebra. Yet, the EFT in unusually sensitive to the UV physics. The dispersion relation depends
on all the Wilson coefficients, (associated with the series expansion of the function F in (117))
and receives in particular important contributions from the physics at the cut-off scale where
the EFT is strongly coupled. Although eventually the dispersion relation depends on a sin-
gle parameter, the above state of affairs makes the naive low energy Lagrangian description
unusually incomplete, in the sense that the Lagrangian Wilson coefficients are not enough to
determine all low energy observables.

To gain a better understanding, one might want to study the regularization of the EFT
divergences in a mass independent scheme such as dimensional regularization. To extend the
model at hand to d spatial dimensions, it is convenient to get rid of Levi-Civita tensors in the
Hamiltonian and rewrite it as in (122):

H =
1

2ρm

∫

ddp2ddp1ddk2ddk1

(2π)3d
δd (p1 + p2 − k1 − k2) (139)

×
(p2 · k1)(k2 · p1)− (p2 · p1)(k2 · k1)

(p1 − k1)2
Φ†

p2
Φk2
Φ†

p1
Φk1

,

where we extended the integration to d-dimensional space and we eliminated the cutoff-
regulator function F(k2/Λ2). Then upon normal ordering we find that the dispersion relation
of the vorton is trivial as in the classical theory:

ωp2 =
p2

4ρm
×
∫

ddk
(2π)d

= 0 , (140)

where we used that scaleless integrals vanish in dimensional regularization. One can also
check that dimensional regularization preserves the symmetries of the model. Therefore we
naively conclude that the dimensionally regulated model possesses an infinite set of gapless
degenerate states, with arbitrary spatial momentum.

The dimensionally regulated model therefore looks even more exotic than the cutoff reg-
ulated one. Additionally, the absence of asymptotic states with nontrivial dispersion relation
makes the dimensionally regulated theory strongly coupled; it is thus unclear how to define
and study the Hilbert space in general. It might be possible to overcome these difficulties,
but we were not able do so. In the following we will not consider further the dimensionally
regulated theory.

In the next section we will rederive the results obtained with the cutoff approach within
the lattice model introduced in [4], which reduces to (117) in the continuum limit. We will
confirm the results of this section on the spectrum and on the degeneracy of the vortons.

6 2d fluids as SU(∞)-matrix model

6.1 Vorton matrix model

It is simpler to study the theory in finite volume, by going on the torus, so x i ∈ [−πr,πr], for
i = 1, 2 and r fixed. We further introduce a square lattice discretization x = 2πr m/N , where
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N is a large integer, m = (m1, m2) ∈ N2, and a ≡ 2πr/N is the lattice spacing, such that for
N →∞ we recover the continuum. It will be convenient to consider N odd, so that the mi
cover all integers in the range [−(N − 1)/2, (N − 1)/2].

It will be simpler to work in momentum space. This is also the latticed torus, like position
space, with the components of the wave vector n= (n1, n2) taking integer values in the range
[−(N − 1)/2, (N − 1)/2]. The Fourier transform of the vorton fields is thus defined as

Φ(x) =
1

(2πr)2
∑

n

Φnei n·x
r , Φ†(x) =

1
(2πr)2
∑

n

Φ†
ne−i n·x

r , (141)

where the sum runs over the above mentioned range of n.34 Notice that, consistently with
the above, the momentum modes Φn and Φ†

n are invariant under the shift n ∼ n + (N , 0),
n ∼ n+ (0, N). Like for the space coordinates, also the physical momentum p = 1

r n, has then
entries pi taking discrete values in the range pi ∈ [−(N − 1)/2r, (N − 1)/2r] ∼ [−π/a,π/a].
The lattice version of the canonical commutation relations (116) is

[Φm,Φ†
n] = (2πr)2δm

n . (143)

All we have to do then is to write a lattice Hamiltonian that reduces to (117) in the limit
N →∞. To this aim note that (117) can be written purely in terms of the vorticity.

The obvious guess for the lattice Hamiltonian is simply

H =
1

2ρm(2π)2
∑

n

F(n2/Λ̄2)
n2

ωnω−n , Λ̄≡ rΛ , (144)

where the vorticity is obtained by discretizing ω(x) = i∇Φ†(x)∧∇Φ(x):

ω̂(x) = i∆1Φ
†(x)∆2Φ(x)− i∆2Φ

†(x)∆1Φ(x) . (145)

Here ∆ is the lattice derivative, defined as

∆kΦ(x) =
1

2a
[Φ(x+ an̂k)−Φ(x− an̂k)] , n̂k =

¨

(1,0) for k = 1 ,

(0,1) for k = 2 .
. (146)

Therefore in momentum space we obtain

ω̂n =
iN2

(2πr)4
∑

m

Φ†
m+nΦ

m
h

sin
�

2π
m1 + n1

N

�

sin
�

2π
m2

N

�

− sin
�

2π
m2 + n2

N

�

sin
�

2π
m1

N

�i

(147)
where ω(x) and its Fourier transform ωn are related as in (141).

In the continuum limit, this expression reduces to

ω̂n
N→∞
−−−−→ωn =

i
(2π)2r4

∑

m

(n∧m)Φ†
m+nΦ

m , (148)

and the commutation relations of ωn reproduces the algebra (120) of SDi f f (Mx), which in
momentum space reads

[ωn,ωm] =
i

r2
(n∧m)ωn+m . (149)

34This normalization for the Fourier transform is convenient because in the continous limit one recovers the
standard relation

Φn =
(2πr)2

N 2

∑

i

φ(xi)e
−i

n·xi
r →
∫

d2 x Φ(x)e−i n·x
r . (142)
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There are however some issues with these expressions, in particular (145). At the techni-
cal level, the issue is that the commutator [ω(x),ω(y)] can no longer be expressed in terms
of the vorticity itself at finite N ,35 and reduces to the SDi f f (Mx) algebra only for N →∞.
This in turn implies that the equation of motion for the vorticity operator depends explicitly
on the microscopic variables Φ, Φ†, unlike the continuum theory where Euler’s equation (31)
can be written purely in terms of ω(x). Relatedly, but at the more conceptual level, the lattice
Hamiltonian (144) is not invariant under the action of all the charges (113). The shift sym-
metry Φ→ Φ+ c, generated by {Q(1,0), Q(0,1)}, and the SL(2,R) subgroup, generated by the
charges {Q(2,0), Q(0,2), Q(1,1)}, are the only surviving internal symmetries of the model.

In principle, we could work with the naive model described above. However, as we dis-
cussed in sec. 4.5, the infinitely many conserved charges of the Clebsch theory ensure the exis-
tence of the many stationary flows that characterize what we commonly mean by a (classical)
fluid. Therefore, already at the classical level, the naive model above, which only possesses a
finite symmetry group, may at most mimic the behaviour of a fluid for a finite range of scales
and times, which we expect to become larger and larger as we increase the cutoff. While it
would be interesting to quantify these considerations, in the present work we take a differ-
ent approach. Below we construct a different lattice model, with infinitely many conserved
charges, that may be thought as deformations of the continuum ones (113).

To this aim, we use that the algebra of area-preserving diffeomorphism SDi f f (Mx) on
the torus can be seen as the limit N →∞ of the SU(N) algebra [65]. The key insight of [4]
is that this mathematical fact can be used to define a different discretized model, where the
commutator algebra of the vorticity is closed and coincides with SU(N). It turns out that this
model is also invariant under the action of a modified version of the charges (113).

Let us briefly review the basic facts about SU(N) that are needed for our construction. Like
for the latticized model we shall focus on the case of odd N . For our purposes it is convenient
(in fact necessary) to work in the ’t Hooft basis of the SU(N) algebra (see [64–68]), in which
the generators are labelled by a non-null vector n = (n1, n2) with integer entries in the range
[−(N − 1)/2, (N − 1)/2]. Notice that this set consists indeed of N2 − 1 elements. In the
fundamental representation [68] the generators are N × N traceless matrices satisfying

TnTm =ω
n∧m

2 Tn+m , (150)

where ω= e2πi/N , and
Tr(TnTm) = Nδn+m,0 . (151)

The explicit form of the Tn can be found in the above mentioned papers, but is immaterial for
this discussion. What matters is (150), which implies the commutator is

[Tn, Tm] = 2i sin
�π

N
n∧m
�

Tn+m . (152)

Now, rescaling Tn = 2πT̃n/N and formally taking the limit N → ∞ we obtain
[T̃n, T̃m] = i(n∧m)T̃n+m, which coincides with the SDi f f (Mx) algebra (120) (in momentum
space).

In order to encompass also the zero mode of the field, we will actually need to extend the
’t Hooft construction to U(N). That is simply accomplished by extending the ’t Hooft basis to
include the identity matrix, with label n = (0,0), i.e. T0 = 1N×N . With this identification in
place, it is simple to check that eqs. (150), (151) and (152) hold unchanged for U(N).

35Mathematically (147) has the same structure Φ†
IΦJ FI JK as the Jordan-Schwinger realization of a Lie algebra

via harmonic oscillators shown in (A.10). For the algebra to close the structure constants FI JK should satisfy the
Jacobi identity, but the coefficient function in 147 fails this test. A similar remark already appeared in [64].
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We can now leverage these results to formulate a discretized model suitable to our pur-
poses. First, starting from the canonically conjugated Fourier modes in (141), we build com-
plex matrices Φi j and Φ†

i j as

Φ̄i j =
∑

n

(Tn)i jΦ
n ,

Φ̄†
i j =
∑

n

Φ†
n(T−n)i j ,

(153)

where the sums run over all the elements of U(N) including the U(1) factor, corresponding to
0-mode Φ0. We then identify the vorticity with the, suitably normalized, SU(N) charges36

ω̃n =
1

(2π)3r4
Tr(Φ̄†[Tn, Φ̄]) =

1
(2π)3r4

Tr(Tn[Φ̄, Φ̄†]) , (154)

where we used the cyclicity of the trace in the last step. (154) implies that ω̃0 = 0, cor-
responding to vorticity being a total derivative. By construction, ω̃n generates the adjoint
SU(N) action on Φ and Φ†:

ei
∑

n αnω̃nΦ̄e−i
∑

n αnω̃n = UΦ̄U† , (155)

with αn the SU(N) Lie parameter and U the corresponding SU(N) element in the funda-
mental representation. Notice that vorticity acts trivially on the SU(N) singlet zero-mode Φ0.
Using (152), we can write (154) explicitly as

ω̃n =
i

(2π)2r4
f k
nm Φ

†
kΦ

m

=
i

(2π)2r4

∑

m

N
π

sin
�π

N
n∧m
�

Φ†
m+nΦ

m .
(156)

It also follows immediately that the commutator of the vorticity yields the SU(N) algebra

[ω̃n, ω̃m] =
i

r2

N
π

sin
�π

N
n∧m
�

ω̃n+m . (157)

Eqs. (156) and (157) reduce to the continuum expressions (149) for |n|, |m| ≪
p

N . This
suggests to define a regulated Hamiltonian by simply making the replacementω→ ω̃ in (144):

H =
1

2ρm(2π)2
∑

n

F(n2/N̄2)
n2

ω̃nω̃−n . (158)

Indeed in order for the dynamics to approximate that of the perfect fluid we should also choose
F(n) to have support in the range of n where the SU(N) algebra (157) approximates the
SDi f f (Mx) algebra, that is for |n|≲ N̄/2≲

p
N/2. That way (158) reduces to the continuum

Hamiltonian (117) when acting on states with |n| ≪ N̄ . We then get back the fluid Hamilto-
nian (117) in the limit N →∞ for states with low momentum. When restoring dimensional
units, the wave number cut-off corresponds to a physical momentum cut-off Λ = N̄/r. This
construction corresponds to the SU(N) matrix model of [4]. It should however be stressed
that, even though the Hamiltonians expressed in term of the regulated vorticity coincide in
the two constructions, ref. [4] was based on the comoving formulation in such a way that ωn
was not represented in terms of vorton fields. The description in terms of vorton variables was
there obtained sort of inductively in a second step. Here we have instead followed a deductive

36Recall the Jordan-Schwinger construction and that, from 143, the {Φn,Φ†
n} are a set of independent ladder

operators.
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procedure, starting from the Clebsch formulation, which from the start features the vorton
variables.

In the next subsection we will study the spectrum of the model (158) in detail, while below
we comment on its symmetries. However, before doing that, we would like to remark that the
regulated vorticity (156) matches the continuum result (148) only for field configurations that
are smooth on lengths ≲ O(

p
N) lattice spacing. Equivalently: when expressed in position

space, (156) is dominated by fields at relative lattice distances ranging up to O(
p

N). That is
significantly more non-local than the naive discretization (147). In practice, as already hinted
above and as amply discussed in [4], the role of regulator length is played by a

p
N . This makes

the matrix model at hand quite peculiar compared to more standard constructions where only
fields separated by a few lattice steps are coupled.

Two facts determine the symmetries of the system: 1) the Hamiltonian (158) is purely a
function of the SU(N) generators, 2) the vorton matrices Φ̄, Φ̄† transform as SU(N) adjoints,
see (155). It then follows that any SU(N) singlet built out of Φ̄ and Φ̄† commutes with ω̃n,
hence with the Hamiltonian. The singlets are now simply the traces of any product of Φ̄ and
Φ̄†. Like in sec. 5 we can pick a basis of normal ordered operators:

Q̃(n,m) =
1

(2πr)2n+2m−2N
Tr
�

(Φ̄†)n(Φ̄)m
�

=
1

(2πr)2n+2m−2

∑

k1...kn+m

δ0
ktot

�

Φ†
−k1

...Φ†
−kn
Φkn+1 ...Φkn+m
�∏

i< j

ω−
1
2 ki∧k j ,

(159)

where, in the second line, we used the properties of the ’t Hooft matrices. Note that the
elements Q̃(1,0) and Q̃(0,1) coincide with the field zero modes Φ†

0 and Φ0, that do not appear
in the Hamiltonian and thus trivially commute with it. For N →∞ we can, at least naively,
take ω = e2πi/N → 1 finding that the lattice charges reduce to those of the continuum theory
shown in (113):

Q̃(n,m)→Q(n,m) =
1

(2πr)2n+2m−2

∑

k1...kn+m

δ0
ktot

�

Φ†
−k1

...Φ†
−kn
Φkn+1 ...Φkn+m
�

=

∫

dx(Φ†(x))nΦm(x) .

(160)

Stating things more precisely: Q̃(n,m) reduces to the continuum result (113) if we formally
restrict the sum to momenta n≪

p
N , and therefore by considering matrix elements of Q̃(n,m)

over states supported on such low momentum range. The exact expression of Q̃(n,m) is however
different since the sum in (159) includes large momenta. One can verify directly that, also at
finite N , that H is unaffected by the transformations generated by Q̃(n,m):

Φn→ Φn + (2πr)2Tr((T−n)i j∂Φ̄†
ji
Q̃(n,m)) = Φ

n + (2πr)2∂Φ†
n
Q̃(n,m) ,

Φ†
n→ Φ

†
n − (2πr)2Tr((Tn)i j∂Φ̄ ji

Q̃(n,m)) = Φ
†
n − (2πr)2∂ΦnQ̃(n,m) .

(161)

This discussion holds unchanged at the quantum and at the classical level. The invariance
under the charges (159) is what makes the Hamiltonian (158) technically natural.

Rather embarassingly, we have been unable to identify the symmetry group generated by
the Q̃(n,m), either at the classical or at the quantum level. Let us explain the issue, starting
from the simplest case: the SU(2) matrix model. Note that this limiting case is equivalent to
a different formulation of the rigid body as we explain in app A.

For N = 2, neglecting the zero modes that are anyhow decoupled, there are three inde-
pendent traces: Tr(Φ̄2), Tr((Φ̄†)2) and Tr(Φ̄Φ̄†). Their algebra closes and coincides with the
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SL(2,R) algebra. Thanks to the properties of Pauli matrices, all other traces with higher power
of the fields can be decomposed into product of these SL(2,R) generators, and therefore do
not generate independent transformations and do not form a group when exponentiated. The
algebra generated by the higher traces, and more in general the algebra generated by the
products of some symmetry charges, is the universal enveloping algebra (see e.g. [69]).

For N > 2 there are N2 − 1 independent traces. These always include the SL(2,R) gener-
ators, but also traces with higher powers of the fields. For instance, for N = 3 for the 5 addi-
tional generators we could take Tr(Φ̄3), Tr((Φ̄†)3), Tr(Φ̄†Φ̄2), Tr((Φ̄†)2Φ̄) and Tr((Φ̄†)2Φ̄2).
The Poisson brackets (or the commutator) between an operator with n fields and one with m
fields result into an object with n+m−2 fundamental fields (unless it vanishes). Therefore it is
clear that any algebra generated by a finite number of traces with n> 2 fields is not closed. It
might perhaps be possible to construct a closed algebra considering non-polynomial functions
of the fields, but we were not able to achieve that.

6.2 Spectrum of the matrix model

In view of the infinite symmetry identified in the previous section we expect the spectrum of
our system to feature severe degeneracies. As the conserved charges (159) come in all powers
of the ladder operators Φ†

n, Φn, the degeneracies will be among states with different vorton
number. We will still organize our discussion starting from the states with fixed vorton number.

In order to proceed, it is convenient to normal order the Hamiltonian:

H =
2N2

(2πr)6ρm

∑

n

Φ†
nΦ

n
∑

m̸=0

F(m2/N̄2)
m2

sin2
�π

N
(m∧ n)
�

+
2N2

(2πr)8ρm

∑

n

F(n2/N̄2)
n2

:ωnω−n : .

(162)

We can now work out the spectrum starting from the Fock vacuum, which satisfiesΦn|0〉= 0∀n
and which obviously has vanishing energy. Consider then the action of the conserved charges
(159) on |0〉. While the vast majority of them annihilates the vacuum, the subset Q̃(n,0)∀n,
acts non-trivially producing multivorton states that are exactly degenerate with the vacuum.
Notice that for n > N the Q̃(n,0) are not independent and can be written in terms of products
of the Q̃(n,0) with n≤ N . We thus conclude that the set of independent states with zero energy
is given by

n=N
∏

n=1

(Q̃(n,0))
qn |0〉 , qn ∈ N . (163)

The infinity of this degeneracy is associated to the non-compactness of the symmetry algebra,
which already for N = 2 coincides with SL(2, R). The existence of an infinite degeneracy of
ground states at finite volume sets our system apart from ordinary systems with internal global
symmetry which at finite volume normally have a single vacuum, albeit with level splittings
controlled by the inverse power of the volume. However, in practice, this property may not be
an issue once one takes the infinite volume limit. On the one hand, the charges are not local
operators, so that all these states sit outside the Hilbert space that is constructed by the algebra
of local observables. On the other hand, we can always consider, as it is standard in ordinary
condensed matter systems, the presence of symmetry breaking effects at the boundary, which
fully lifts the degeneracy. In particular the zero vorton state |0〉 may result as the true and
unique ground state. But of course, even if the degeneracy of vacua does not survive the
infinite volume limit, the existence of the symmetry still has consequences, encapsulated by
Goldstone’s theorem, as we shall see below.
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Consider now the generic single vorton state |n〉= Φ†
n |0〉. One easily sees it is an eigenstate

of the Hamiltonian with energy

En =
2N2

(2πr)4ρm

∑

m̸=0

F(m2/N̄2)
m2

sin2
�π

N
(m∧ n)
�

=
CN̄2

(2πr)4ρm
n2

�

1+O

�

N̄2n2

N2

��

=
CΛ2p2

16π2ρm

�

1+O

�

N̄4

N2

p2

Λ2

��

,

(164)

where in the second line we expanded for |n| ≪ N̄ ≲
p

N and used that F is supported at
m ≲ N̄ , while C is an O(1) parameter that depends on the precise form of F . We see that for
N →∞, with N̄ fixed we recover the result (125). On the other hand if we keep the ratio
N̄/
p

N fixed we recover the same continuum theory up to higher derivative terms controlled
by Λ̄.

Sticking to the finite N case, we recall that Φ†
n decomposes as the SU(N) singlet, Φ†

0, and
adjoint Φ†

n̸=0. The state Φ†
0|0〉 is degenerate with the vacuum and coincides with special case

Q̃(1,0)|0〉 in the class of (163). Focussing instead on the genuine vorton adjoint states Φ†
n̸=0|0〉,

we can again, like for the vacuum, construct an infinite class of states with precisely the same
energy. The charges that serve that purpose are the Q̃(m,1) with m ≥ 2. Notice, as before that
for m> N the Q̃(m,1) are not independent and can be written in terms of products of one Q̃(n,1)
and in principle several Q̃(ki ,0) all with n and ki less or equal to N . Very much like for (163)
the set of states that are exactly degenerate with a single vorton are given by

|q,n〉 ≡ Q̃(q,1)Φ
†
n|0〉=

1
(2πr)2q−2N

Tr(Tn(Φ̄
†)q)|0〉 , 2≤ q ≤ N , (165)

together with those obtained by acting with products of Q̃(n,0) (where in the last equality we
have used the definition of the charges and the commutation relations). There is however
a crucial difference between the states in (165) and those obtained by further action of the
Q̃(n,0). As we shall momentarily show explicitly (for the case q = 2) the former class of states
is associated with the action of a local operator on the vacuum. Stated equivalently, it is
obtained by acting with an unbroken charge, Q̃(n,1), on a single particle state, which is itself
associated with the action of a local operator. Instead the Q̃(n,0) that generate all the other
states correspond to integrals with weight 1 over the whole volume, see (160), and thus map
to non-local operators in the infinite volume limit. These other states are obviously associated
with the degenerate vacua we already mentioned before and are therefore outside the Hilbert
space at infinite volume.

We can now check that the states (165) not only correspond to the action of local operators
but they also map, at infinite N , to the degenerate multi vorton states we found already in the
continuum. We work out explicitly the case q = 2, but one can easily extend the result to
arbitrary q. One finds

|2,n〉=
1

(2πr)2
∑

m

cos
�π

N
m∧ n
�

Φ†
n/2+mΦ

†
n/2−m |0〉 , (166)

which, by taking the naive N →∞ limit and by setting the cosine to 1, matches precisely the
continuum state

∫

d2x eip·x(Φ†(x))2|0〉 upon identifying p ≡ n/r. Notice, however, that the
full expression of the wave-function at finite N also includes contributions from single-particle
modes with large momentum, and is thus UV sensitive. The difference with the continuum is
due to the modified form of the charges.

We can continue the procedure by considering the general class of two vorton states
Φ†

nΦ
†
m |0〉. Given Q̃(1,0) = Φ0, the states (Φ†

0)
2|0〉 and Φ†

0Φ
†
n̸=0|0〉 correspond to the previously
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encountered degenerate vacuum and single vorton state on top of a degenerate vacuum. The
remaining case of n,m ̸= 0, corresponds to the tensor product Adj⊗Adj which, taking into ac-
count the Bose symmetry of vortons, decomposes into 1⊕Adj+R1⊕R2, with R1,2 SU(N) irreps
of size ∼ N2 (see discussion in ref. [4]). Again the singlet is a degenate vacuum associated
with the action of Q̃(2,0) while the adjoint is the state in (166). The remaining R1,2 genuinely
correspond to two vorton states once the infinite volume limit is taken. The Hamiltonian is
not trivially diagonalized on these states and time evolution is more effectively described in
terms of an S-matrix. Equivalent states, and identical scattering amplitudes in the infinite vol-
ume limit, can here be obtained by acting on these states with the conserved charges Q̃(q,1).
However a detailed description does not seem enlightening at this point.

6.3 Connection with the comoving coordinates

As emphasized before, the energy spectrum of the theory is determined by the algebra of the
vorticity, irrespectively of its realization in terms of microscopic fields. This gives us the op-
portunity to relate our discussion to the comoving coordinates’ description of the fluid. This
is possible because the Hamiltonian’s building block is the vorticity (see (144)), and the spec-
trum of the theory ultimately relies on the commutation relations (120) and follows directly
from group theory as was described in [4]. The realization of the vorticity in terms of the fields
Φ, Φ† makes the analysis of the spectrum simple as we detailed in the previous sec.s, but it
is not necessary. A different, perhaps less intuitive, realization instead gives us the comoving
fluid, which differs from the Clebsch formulation only in the degeneracy of the eigenstates.

The story was developed in [4] and roughly goes as follow. As emphasized in Part I of this
work the main difference between the Clebsch and the comoving formulation is that in the
latter the internal symmetry group SDi f f (Mϕ) (working again on a torus for simplicity) is
spontaneously broken to the trivial group. When dealing with a mechanical system describing
the (classical) spontaneous breaking G → ; for some internal symmetry group G, the Peter-
Weyl theorem dictates the structure of the Hilbert space of the theory.

More in detail, the comoving coordinate formulation describes a mechanical system where
the fields ϕi(x), i = 1,2 describe an area preserving map of the torus T2 onto itself.37 The
physical configurations of this mechanical system therefore span the SDi f f (T2) manifold.
This also means that there are two ways to act with the SDi f f (T2) group, either on the
physical coordinates x (the right action) or on the comoving coordinates ϕ (the left action).
While the left action is a symmetry as explained in sec. 3, the right action is not: it just spans
the manifold of possible configurations – as the action (52) makes clear. The Hamiltonian is
purely a function of the right charges, which in this case coincide with the vorticity. This is
analogous to the rotating rigid body, and more in general to any mechanical system describing
a coset G→ ; – the Lie algebra of the symmetry group G (left action) is isomorphic the algebra
of the right charges, i.e. the conjugated momenta in terms of which the Hamiltonian reads as
a simple quadratic form.

Resorting to the SU(N) regularization (157) of the vorticity algebra, corresponds to replac-
ing the fluid with a mechanical model whose configuration space coincides with the SU(N)
group manifold. Indeed it more precisely corresponds to a system on SU(N)/ZN . That is be-
cause on the SU(N) group manifold (discrete) translations only commute modulo the action
of the center ZN [4]. A proper realization of translations is therefore obtained by working on
SU(N)/ZN . In this situation, the Hilbert space takes the structure dictated by the Peter-Weyl
theorem and it decomposes into the direct sum of blocks of the form (r, r) where r is any rep-
resentation of SU(N)/ZN . The latter consists of the subset of SU(N) representations that can

37Again, we decide to work in finite volume with periodic boundary condition for simplicity and to be able to
implement the SU(N) regularization.
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be written as tensor products of multiple adjoints. In particular the fundamental and antifun-
damental representations are barred. Thus each (r, r) block consists of d2

r states, each with
a drdegeneracy. The ground state is unique, while vorton states naturally correspond to the
adjoint, and are N2 − 1 times degenerate. In the continuum limit we thus recover an infinite
vorton degeneracy. Notice though that the Hilbert space of the comoving fluid is not a Fock
space. Moreover at finite N the degeneracies of the two discretized models do not match.

Thus, while it appears in a different form, the infinite degeneracy of the vortons is a prop-
erty of both the comoving and the Clebsch description, and thus seems a robust feature of the
quantum perfect fluid. We will find that this remains true also in the different formulations
that we will consider in sec. 7.

Note that, instead, the ground state is drastically different in the two formulations, and
perhaps surprisingly, it’s unique only in the comoving formulation, despite the spontaneous
symmetry breaking in the classical theory. This is analogous to Coleman’s mechanism pre-
venting spontaneous symmetry breaking in relativistic two-dimensional models, and was an-
ticipated in [1]. We also comment that the fact that the Clebsch and the comoving fluid have a
different structure of the vacuum, but admit similarly degenerate vorton states in the contin-
uum limit, is qualitatively similar to the discussion at the end of sec. 4.1 and in app. 4.3. There
we argue that for fluid flows with nowhere vanishing vorticity the comoving coordinates and
the Clebsch fields are completely equivalent, while they are not around the static flow (even
if they yield the same equations for the fluid density and velocity).

7 More quantum fluids

7.1 Fermionic vortons in 2d

The Hamiltonian of the incompressible quantum fluid is simply a function of the vorticity
ω(x). Thus any realization of the vorticity algebra in terms of fundamental fields yields the
same energy spectrum, if not the same multiplet degeneracies.

An interesting possibility suggested in [4] is to write the vorticity in terms of fermionic
degrees of freedom. In this section we will consider such fermionic vorton theory. We will
show in particular that the fermionic model possesses as well an infinite set of symmetries,
though the charges have a more intricate structure than in the bosonic model. The SU(N)
regularization introduced in the previous section will play a key role in their understanding.

The Hamiltonian keeps the same structure as before

H =

∫

d2p
(2π)2

F(p2/Λ2)
p2

ω f
pω

f
−p , (167)

where the f index means that we replace the charges ωp with

ω f
p = i

∫

d2k
(2π)2

(p∧ k)ψ†
p+kψ

k . (168)

Here ψk and ψ†
p are quantum fields obeying the anticommutation relations

[ψk,ψ†
p]+ = (2π)

2δ2(p− k) . (169)

It is straightforward to check that the operators ω f
p still satisfy the SDi f f (Mx) algebra38

[ω f
p ,ω f

k] = i(p∧ k)ω f
p+k . (170)

38As emphasized in [4], both the expression ωp = i
∫

d2k
(2π)2 (p ∧ k)φ†

p+kφ
k and (168) can be seen as different

Jordan-Schwinger representations of the area preserving diffeomorphism algebra, using the adjoint representation.
This is made clear in the SU(N) matrix model [4].
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Note that this model cannot arise from a canonical relativistic fluid Lagrangian like those
considered in part I of this work, but it nonetheless provides a nontrivial, purely quantum-
mechanical, realization of the Hamiltonian of the perfect incompressible fluid.

In light of our considerations, the spectrum of the theory is unchanged. It is indeed simple
to verify that single-particle states ψ†

p|0〉 have the vorton dispersion relation (125).
It is less trivial to understand the symmetry of the Hamiltonian, and hence the degeneracy

of the fermionic vorton states. Indeed, as in the bosonic case, canonical transformations of
ψ(x),

ψ(x)→ψ(x) + [ψ(x),
∫

d2 y f (ψ(y),ψ†(y))] ,

ψ†(x)→ψ†(x) + [ψ†(x),

∫

d2 y f (ψ(y),ψ†(y))] ,
(171)

leave the charges ω f (x) invariant. However, the most general function of the Grassmanian
variables is f = 1 + aψ + a∗ψ† + bψ†ψ, where a is Grassmanian parameter. The (super-)
symmetry generated by these charges corresponds to shifts by a Grassmanian parameter and
to U(1) particle-number. That amounts to a finite number of parameters, in stark contrast to
the infinity of the corresponding symmetry in the bosonic case.

The above result is surprising, as it would appear that the goal of constraining the action to
the very specific form of vorton QFT, is achieved in the fermionic case with much less symmetry
than in the bosonic case. The story is however not complete. Indeed, unlike the bosonic theory,
the fermionic theory possesses symmetry transformations involving derivatives. That is more
easily seen in the SU(N) regulated theory, which is defined by simply replacing the vorton
fields of sec. 6.1 with their fermionic counterparts. The matrix model formulation allows for
a systematic construction of all the charges.

As in the bosonic case, the Hamiltonian is built out of a representation of the U(N) gener-
ators by fermionic bilinears

ω̃ f
n = i
∑

m

N
π

sin
�π

N
n∧m
�

ψ†
m+nψ

m . (172)

The field ψn decomposes into the SU(N) single zero mode ψ0 and and SU(N) adjoint ψn̸=0.
As in the bosonic case, the symmetries of the Hamiltonian are obtained considering all the
SU(N) singlets. It is convenient to revert to the matrix notation:

Ψi j =
∑

n

(Tn)i jψ
n ,

Ψ†
i j =
∑

n

ψ†
n(T−n)i j .

(173)

Under a finite U(N) transformation U = exp
�

i
∑

nα
nω̃

f
n

�

generated by exponentiating the
action of the discretized vorticity Ψ transforms as

Ψ→ UΨU† . (174)

The singlets are then simply given by the trace of any product of the matrices Ψ and Ψ†.
However, due to the anticommuting nature of the fields, some of the traces vanishes. For in-
stance, at the quadratic level we find Tr

�

Ψ2
�

= Tr
�

(Ψ†)2
�

= 0, and thus the SL(2,R) symmetry
present in the bosonic theory is reduced to the U(1) symmetry generated by

Tr[Ψ†Ψ] =ψ†
kψ

k , (175)
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as we found directly in the continuum. However traces with a higher number of fields are
generically non-vanishing and may be written using the SU(N) commutator.39 At cubic order
we find

Tr(Ψ3)− h.c.= fnmkψ
nψmψk − h.c. ,

Tr(Ψ2Ψ†)− h.c = fnmkψ
nψmψ†

k − h.c. ,
(176)

where fnmk are the structure constants of SU(N). In the N →∞ limit, they can be rewritten
in position space as
∫

d2xϵi j∂iψ(x)∂ jψ(x)ψ(x)− h.c. and

∫

d2xϵi j∂iψ(x)∂ jψ(x)ψ
†(x)− h.c. (177)

Contrary to the bosonic case, these tranformations involve derivatives of the fields, but they
are nonetheless local.

Consider now invariants that involve only powers of Ψ†. In a normal ordered basis these
are the only conserved charges that act non-trivially on the Fock vacuum |0〉. They control
the degeneracy of the ground state and the occurrence of gapless modes. The results below
should be compared to the bosonic case where there is an infinite number of such charges
acting non-trivially on the vacuum.

First, using the cyclicity of the trace, it is easy to see that

Tr((Ψ†)n) = (−1)n−1Tr((Ψ†)n) , (178)

such that only traces with an odd number of fermions are non-vanishing. This is interesting
as it implies that the gapless vortons should all be fermionic. Now we know that at finite N ,

Tr(Tn1
...Tnn

) =ω
1
2

∑

i< j ni∧n j Nδ∑
i ni ,0 . (179)

If we take the limit N →∞, this naively becomes Tr(Tn1
...Tnn

) = (1/Na2)(2π)2δ2(
∑

i ki)with
ki ≡ ni/r. This is what we used in the bosonic vorton theory to argue that the charges (159)
reduce to their continuum counterpart (113).

However, in the fermionic model, only the fully antisymmetric combination of all the per-
mutations survives. More explicitly, we have

Tr((Ψ†)n) =ψ†
−k1

...ψ†
−kn

Tr(Tk1
...Tkn

)

∝ψ†
−k1

...ψ†
−kn

Tr(T[k1
...Tkn]) .

(180)

Therefore in order to obtain a non vanishing result we must expand the prefactor ω
1
2

∑

i< j ni∧n j

in (179) to high enough powers of momentum to produce an antisymmetric combination. Fol-
lowing this program, we obtain the following charges with respectively 3, 5, 7 and 9 fermions
in the continuum theory:

Q(3,0) =

∫

d2xψ†(x) · ∂xψ
†(x)∂yψ

†(x) ,

Q(5,0) =

∫

d2x∂xψ
†(x)∂yψ

†(x) · ∂ 2
xψ

†(x)∂x∂yψ
†(x)∂ 2

yψ
†(x) ,

Q(7,0) =

∫

d2xψ†(x) · ∂xψ
†(x)∂yψ

†(x) · ∂ 3
xψ

†(x)∂ 2
x ∂yψ

†(x)∂x∂
2
yψ

†(x)∂ 3
yψ

†(x) ,

Q(9,0) =

∫

d2x∂xψ
†(x)∂yψ

†(x) · ∂ 2
xψ

†(x)∂x∂yψ
†(x)∂ 2

yψ
†(x)

× ∂ 3
xψ

†(x)∂ 2
x ∂yψ

†(x)∂x∂
2
yψ

†(x)∂ 3
yψ

†(x) .

(181)

39As in the bosonic case, the zero mode single componentψ0 is dealt with trivially, so our focus is on the adjoint
component, which is also the one with implications at infinite volume.

42

https://scipost.org
https://scipost.org/SciPostPhys.20.1.018


SciPost Phys. 20, 018 (2026)

Note that these are all scalars under rotations due to the Grassmanian nature of the fields.
Proceeding, one can find a similar symmetry charge for each odd number of fields.

We stress that, as in the bosonic model, there is at most one charge made out of n creation
operators, both in the SU(N) regulated theory and in the continuum one. The only difference
is that, for fermions, in the limit N → ∞ we cannot simply replace ω → 1 as we did in
the previous section, since the leading term in the expansion in powers of momentum always
vanishes (but for Q(1,0)). Therefore, in the continuum bosonic vorton theory there are no
symmetry charges involving derivatives and, similarly, in the fermionic continuum theory there
are no additional charges made out of 3, 5,7, 9 powers of Ψ† and more derivatives than those
given in (181).

Using these charges we therefore conclude that both the ground-state of the fluid at finite
volume, and the vortons, are infinitely degenerate. The only significant difference compared
to the bosonic Clebsch formulation is that the vorton states are now fermionic.

7.2 The perfect quantum fluid in 3d

Another technical advantage of the Clebsch formulation over the comoving one is that it allows
to straightforwardly generalize the analysis of sec. 5 to the 3d case, as we now discuss.

Let us start from the action (97) in the incompressible limit. Upon canonically normalizing
the fields, the action reads

LΦ = iΦ†Φ̇−
1

2ρm

�

ϵi jk∂ jΦ
†∂kΦ
� 1

∇2

�

ϵilm∂lΦ
†∂mΦ
�

. (182)

Like in the 2d case, the action is invariant under the SDi f f (MΦ) group, generated by the 3d
analogue of (111).

The analysis of the quantum theory is almost identical to the two dimensional case. The
canonical commutation relations are

�

Φ(x),Φ†(y)
�

= δ2(x− y) , (183)

so that Φ and Φ† act again as, respectively, annihilation and creation operators of a non-
relativistic field theory. Introducing a regulator function as in (117), the Hamiltonian reads

H = −
1

2ρm

∫

d3 x
�

ϵi jk∂ jΦ
†∂kΦ
� F
�

−∇2/Λ2
�

−∇2

�

ϵi jk∂ jΦ
†∂kΦ
�

. (184)

As in sec. 5, we resolve the ordering ambiguities by demanding that the Hamiltonian is writ-
ten purely in terms of the vorticity ωi = iϵi jkϵi jk∂ jΦ

†∂kΦ, and thus commutes with the
charges (113). Therefore, upon normal ordering the fields, we obtain again that single-particle
states have a quadratic dispersion relation

ωp =
Λ3 F̃(0)

4ρm
p2 , (185)

where F̃ is defined in full analogy to (124). Invariance under the charges (113) further im-
plies that the dispersion relation (185) is also satisfied by infinitely many degenerate “bound-
states”, one for each number of vortons n > 1. The particles forming such bound state have
completely overlapping wave-functions (in the continuum). The existence of these gapless
states is associated to the spontaneous breaking of the symmetry.

Because of the equivalence of the Hamiltonians between the Clebsch and the comoving
formulation, the vorton states (185) are the only light states of the incompressible fluid also
in the comoving formulation. We did not study that case in detail, but we expect that the
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comoving three-dimensional fluid admits a unique ground state as in two dimensions,40 and
that the vortons are again infinitely degenerate. Note, however, that the symmetry group
SDi f f (Mφ) of the comoving fluid in three dimensions is larger than in two, and we do not
know how to construct a discretized lattice model that preserves this group, or a suitable
deformation of it.

7.3 Comparison with other works

We believe that the results of [4] and this work provide a complete assessment of the structure
of the perfect quantum fluid(s). The most physically relevant prediction is the existence of
an infinitely degenerate light state, the vorton. This state and its degeneracy were not pre-
dicted before. Nonetheless, the question of how to quantize the perfect fluid has appeared in
a number of previous works. We compare our results to some of them below.

Some of the struggles to make sense of the perfect quantum fluid are reviewed in [26],
which mostly focuses on the Clebsch variables formulation. In the comoving formulation,
to the best of our knowledge, the question of how to make sense of the quantum perfect
fluid was first raised in [1]. There the authors identified the origin of the peculiar dispersion
relation of the transverse mode in the nonlinear action of the SDi f f (Mϕ) symmetry group,
as reviewed in sec. 3. As a first attempt at making sense of the quantum theory, the authors
introduced a symmetry breaking term giving a sound speed cT to the transverse mode, thus
lifting the degeneracy implied by the classical dispersion relation ωk = 0 and allowing for the
construction of a Fock space. It was found however that several physical observables, including
various cross sections, become singular in the limit cT → 0; more precisely, the theory analyzed
in [1] is arbitrarily strongly coupled at a scale which approaches zero in the limit cT → 0.
This is unsurprising in light of the analysis of [4], that we reviewed in sec. 6.3: in the limit
cT → 0 the Hilbert space is not a Fock space, but rather arranges in linear representations of
the symmetry group - the vortons’ being the only light states.

The question was then rivisited in [2]. There it was proposed that the comoving fluid EFT
should only be used to compute correlation functions of SDi f f (Mϕ) invariant operators, such
as the density and velocity of the fluid. The authors computed a variety of such correlators
in the naive vacuum at one loop, finding, remarkably, that the EFT expansion remains valid
in the naively expected regime and that the UV divergences are consistently renormalized via
counterterms invariant under the symmetries.

We disagree with the proposal of [2]: we argued that the perfect quantum fluid admits
states that are charged under the symmetry group, the vortons. The EFT can also be used to
compute observables with these states in the external legs, such as their scattering amplitude
as considered in [4], not just correlation functions of invariant operators. Nonetheless, the fact
that the vorton states are charged under the symmetry group implies that their number is con-
served, and therefore they are never created acting on the vacuum with invariant operators. In
other words, due to the non-relativistic nature of the vortons it is possible to work consistently
in the zero vorton sector of the theory, in which they can be ignored and the fluid’s dynamics
is essentially equivalent to that of a standard superfluid. We believe that is the reason why the
authors of [2] did not find any issues with strong coupling nor hints of the existence of vorton
states in their explicit calculations. One plausible interpretation of the calculations in [2] is
that they describe correlators on the ground state of the transverse variables, where all effects
of vorticity are absent and all that remains is the compressional mode. On such a state the
fluid is equivalent to a superfluid.

More recently, [53] studied the two-dimensional perfect quantum fluid using the Clebsch

40This is motivated by the discussion in [1], where it was argued that a mechanism analogous to Coleman’s
theorem forbids symmetry breaking in the quantum formulation of the comoving fluid.
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description. However, the regime of interest of the analysis of [53] is very different from our
focus: the author studied flows with large and everywhere nonvanishing vorticityω, physically
describing a superfluid bucket with many pointlike vortices moving around chaotically. In that
regime the transverse mode dispersion relation is non-degenerate already at the classical level,
ω(k) ̸= 0, and thus there is no conceptual subtlety in describing the quantum theory.41 The
main result of [53] is that quantum effects are responsible for a higher derivative correction
of the form ∝ (∇ logω)2 in the Hamiltonian (117) of the incompressible fluid, which may
otherwise be treated classically. Note that this term indeed makes sense only for macroscopic
vorticity ω ̸= 0.

8 An attempt at a physical realization: 2d positronium

We have seen that the quantum perfect fluid displays highly unusual features, including UV/IR
mixing and an infinitely degenerate spectrum. While these properties make the system at hand
non-trivial and interesting from a theoretical point of view, it is unclear if and how the quantum
perfect fluid may be realized experimentally.

Perhaps, a less ambitious goal is to forget about the infinite degeneracy discussed in sec. 5
and just ask the following question: can we construct a system possessing asymptotic states
with the same dispersion relation and scattering amplitude as the vortons?

The most obvious way to tentatively realize the vorton theory is through the dual electro-
magnetic description of the perfect fluid discussed in section 4.4. In that formulation the fluid
at rest corresponds to a homogeneous background magnetic field B (see (88)) while vorticity
corresponds to electric charge density (see (95)). Furthermore, as discussed in section 5.2, the
vortons here correspond to neutral particles carrying a momentum dependent electric dipole
d i = −εi j p j/

p
ρm. Intuitively, the latter properties are matched by bound states of oppositely

charged particles in 2+1 QED when considering the effect of the homogeneous magnetic field.
Indeed such a neutral bound state, when moving with velocity v i , will experience, in its rest
frame, an electric field E i = −εi j v jB ∝ −εi j p j . That will cause the creation of an electric
dipole precisely analogous to that of the vorton.

In this section we shall make this analogy more precise by studying the simplest case,
where the role of the vorton is played by a particle anti-particle bound state, the 2+1 QED
analogue of positronium.

As we shall see the analogy works only up to a point. When considering scattering at
low momentum we do find that the non-local part of the amplitude, associated with the long
range nature of the electromagnetic interaction, nicely matches the result of the vorton theory.
However this case also features hard contact terms in the amplitude, which arise from distances
of the order of the Bohr radius. These effects are not present in our vorton theory. This
mismatch is perhaps not so surprising given that 2+1 QED does not seem to possess the infinite
symmetry of the quantum fluid. In that view one could perhaps say that our attempt here is
useless. We nonetheless have considered it worth of a discussion, because it sort of concretely
illustrates how special the vorton system is compared to an ordinary QFT.

41To make this concrete one can consider a stationary regime, where the time evolution of the comoving fields
consists of a SDi f f (Mϕ) transformation as in (98): ϕ̇ I = f I (ϕ) with ∂I f I = 0 in terms of the comoving fields. As
emphasized in sec. 4.5, the fact that the unbroken time translation He f f = H +Q f involves a linear combination
of the generators of a non linearly realized non-Abelian internal symmetry, implies that the associated Goldstone
bosons have a non-vanishing gap fully controlled by the algebra [58–61]. More explicitly, considering a Goldstone
fluctuation ϕ I +πI with πI (x) = ξI (ϕ(x)) an infinitesimal SDi f f (Mϕ), one has that the gap is controlled by the
equation

Dtξ
I = δtξ

I −δ f ξ
I = f J∂Jξ

I − ξJ∂J f I = { f ,ξ}I , (186)

upon suitable diagonalization of the Lie product.
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8.1 Hamiltonian description for positronium

Let us consider two non-relativistic particles of mass m and opposite electric charge e in (2+1)-
electrodynamics. As we are in two spatial dimension, the electric coupling e has mass dimen-
sion 1

2 and the magnetic field is a scalar. Indicating by r1, r2 and p1,p2 the particle positions
and canonical momenta, the Hamiltonian reads

Hposi t ronium =
(p1 + eA(r1))2

2m
+
(p2 − eA(r2))2

2m
+

e2

2π
log
� |r1 − r2|

a0

�

. (187)

The constant a0 only induces a constant shift in the energy and thus it is not physical. We
can fix it to coincide with the Bohr radius a0 = (2me2)−

1
2 . Choosing the symmetric gauge, the

(magnetic) background gauge field is

Ai(x) = −
1
2

Bεi j r j . (188)

It is convenient to work in the center of mass frame, with X = r1+r2
2 and x = r1 − r2, and

similarly for the momenta. Because of the presence of the magnetic field, the center of mass
coordinate and the relative one do not decouple, so that the Hamiltonian depends explicitly
on X. To remedy this state of affairs we make a change of canonical momenta

p′ i = pi +
e
2

Bεi jX j , P ′ i = P i −
e
2

Bεi j x j , (189)

which preserves the canonical commutation relations:

[x i , p′ j] = [X i , P ′ j] = iħhδi j , (190)

with all the other commutators vanishing. The Hamiltonian now reads,

Hposi t ronium =
1

2m

�

P′2 + 2p′2 +
1

2πa2
0

log
�

|x|
a0

�

+
x2

r4
L

− 2
x∧ P′

r2
L

�

, (191)

with rL = (eB)−1/2 the Landau radius. The Hamiltonian does not depend anymore on X, but
the kinetic energy of the center of mass mixes P′ and x.

The dynamics strongly depends on the relative size of a0 and rL . In the regime where
a0≫ rL , magnetic effects dominate: the spectrum is approximately given by the Landau levels
of the individual particles, while their mutual Coulombic attraction is just a small perturbation.
In this regime there is nothing resembling a vorton state. We will thus focus on the case
a0 ≲ rL . Here the Coulomb potential gives a dominant contribution and the resulting bound
states can plausibly be interpreted as vortons. Indeed that is clearly the case for a0 ≪ rL ,
where magnetic effects can be treated as a perturbation on the lowest lying positronium states
for which the wave function is localized in a region where x ≲ a0 (see (191)). In what
follows we shall assume that a0 is comparable to, but sufficiently smaller than, rL for the
lowest level to resemble a bound positronium. The case of a single scale a0 ∼ rL also makes
for a straightforward matching with the vorton theory which is also characterized by a single
length scale 1/Λ.

As the Hamiltonian commutes with P′, we can label the eigenstates by the continuous
P′ and by the discrete levels associated with the relative motion, i.e. with p′ and x. After
having constructed such eigenstates we will be considering positronium scattering in the low
momentum regime, which corresponds to the regime of momenta below Λ in the vorton EFT.
We will thus focus on |P′| ≪ r−1

L , a−1
0 . In this limit, the dipole term Vd ≡ −x ∧ P′/(mr2

L)
can be treated as a small perturbation. In first approximation, neglecting Vd , the potential
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is spherically symmetric, which is best studied by going to polar coordinates (r,θ ) and by
expanding the wave-function in angular harmonics

ψ(x , X ) = eiP′·X
∑

l,n

cl,nψl,n(x) , with ψl,n(x) =
1

a0
p

2π
eilθ fl,n(r/a0) . (192)

with l the angular momentum and n the orbital quantum number. At P′ = 0 the Schrödinger
equation for the angular momentum eigenstates then reads

1
m

�

−
�

∂ 2

∂ r2
+

1
r
∂

∂ r

�

+
1
r2

l2 +
1

πa2
0

ln
�

r
a0

�

+
1
4

r2

r4
L

�

fn,l(r/a0) = εn,l fn,l(r/a0) , (193)

where the eigenvalues can be written as

εn,l =
2

ma2
0

ε̂n,l (y) = e2ε̂n,l (y) , y ≡
rL

a0
, (194)

with ε̂n,l dimensionless functions of y ≡ rL/a0.
Because of the logarithmic term, the Schrödinger equation can only be solved numerically.

However, as our considerations will not depend on the exact values of the ε̂l , we will spare the
reader the details of the numerical analysis. The main feature of the spectrum in the regime
of interest (y ≳ 1), is the O(e2)∼ 1/ma2

0 separation between the lowest levels.
Let us now consider the case of small but finite P′. For that purpose we write the Hamilto-

nian as Hposi t ronium = H0+Vd and treat Vd as a perturbation. In each subspace at fixed P′, the
effect of Vd is the same as that of an external electric field Ei ∝ εi j P

′
j coupled to the atomic

electric dipole: its lowest order effect is to mix states that differ by one unit of angular momen-
tum. By inspecting (191) one straightforwardly concludes that the perturbative expansion is
controlled for |P′|a0/y2 ≪ 1. We will restrict our study to the groundstate n = 0, l = 0. At
first order in the perturbation, the ground state becomes

|ψP′〉=
�

�ψn=0,l=0

�

+
∑

n

c(n)1

�

�ψn,l=1

�

+
∑

n

c(n)−1

�

�ψn,l=−1

�

, (195)

where the coefficients c(n)1 and c(n)−1 are given by

c(n)±1 =




ψn,±1

�

�Vd

�

�ψ0,0

�

ε0,0 − εn,1
= −

1

r2
L(ε̂0,0 − ε̂n,1)

(P2 ± iP1)χ(n)±1,0 . (196)

Here we defined

χ
(n)
±1,0 =

∫

drr2 f ∗n,±1

�

r
a0

�

f0,0

�

r
a0

�

≡ a3
0χ̂
(n)
±1,0 , (197)

where χ̂(n)l,l ′ = O(1) for arbitrary y ≳ 1. We checked numerically that the sum over n converges,
so that perturbation theory works as expected.

The energy of the ground state is only affected at second order in Vd , and at that order
reads

EP′ = e2ε̂0(y) + c(y)
P′2

2m
+O
�

a2
0

y8

P′4

m

�

, (198)

where the coefficient of the kinetic energy is

c(y) = 1+
2
y4

∑

n

|χ̂(n)1,0 |
2 ε̂0
�

ε̂n,1 − ε̂0,0

�2 . (199)
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The dipole moment arises instead at first order and is expectedly∝ εi j P ′ j:

di = e 〈ψP′ |xi |ψP′〉

=
∑

n

p
2a0|χ̂

(n)
1,0 |

2

p
m y2(ε̂0,0 − ε̂n,1)

εi j P ′ j +O
�

a3
0

y6
p

m
P′3
�

.
(200)

We can now compare our findings to the vorton EFT. First of all we note that the dispersion
relation (198) involves a O(P′0) term, which is instead absent in the gapless result (125) of the
vorton. However this is not a significant difference; indeed, because of the non-relativistic na-
ture of the fluid theory in the incompressible limit, we may always perform a field redefinition
Φ → e−imtΦ in the action (96) and obtain a gapped dispersion relation.42 Up to this sub-
tlety, we obtain for small P′ a quadratic dispersion relation like for the vorton. The dispersion
relations are then matched for

m= 2c(y)

�

ρm

F̃(0)Λ2

�

∼
ρm

Λ2
. (201)

Similarly, (200) matches the vorton result in (129) provided we make the identification

ρm =
my4

2a2
0

�

∑

n

|χ̂(n)10 |
2

(ε̂0,0 − ε̂n,1)2

�−2

∼
my4

a2
0

. (202)

We stress that while in the vorton case the energy and the dipole are respectively
quadratic and linear in P′, in the case of positronium the result also involves higher pow-
ers of P′2(a0/y2)2. The absence of these corrections in the vorton theory is due to the exact
SDi f f (MΦ) symmetry. Therefore, even if these corrections are small at low momentum, their
presence in eqs. (198) and (200) is a first indication of the difference between the positron-
ium system and the vorton model. On the other hand also the SU(N) completion of the vorton
model discussed in sec. 6 features higher derivative terms, in association with the “deforma-
tion”, not the breaking, of the symmetry.

Now eqs. (201) and (202) imply that the vorton QFT cut-off is matched by

Λ2 =
c(y)y4

F̃(0)a2
0

�

∑

n

|χ̂(n)10 |
2

(ε̂0,0 − ε̂n,1)2

�−2

∼
y4

a2
0

. (203)

Notice that y2/a0 also coincides with the scale of P′ beyond which Vd can no longer be
treated as a small perturbation. What expectedly happens in this regime is that the Lorentz
force pulls the electron and positron apart at distances larger that the Bohr radius, in such
a way that the state no longer resembles a bound positronium. This is in full analogy with
the behaviour of adjoint states of momentum p ≳ Λ in the SU(N) regulated vorton theory
analyzed in detail in [4].

8.2 Positronium scattering

After having matched the properties of single positronium and single vorton, let us now con-
sider 2→ 2 positronium scattering, focussing on the low momentum region p≪ y2/a0. Indi-
cating the position of the electron and positron of the two positronia respectively by (x1,x2)
and (y1,y2) the relevant Hamiltonian takes the form

H = Hposi t ronium,x +Hposi t ronium,y + Vint , (204)

42More precisely, we obtain a gapped dispersion relation according to a different Hamiltonian which is a linear
combination of H and the unbroken U(1) charge Q(1,1).
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where the first two terms consist of two copies of the two body Hamiltonian (191) while the
interaction terms is purely due to the residual Coulomb potential. The latter reads

Vint =
e2

4π
log

�

|x1 − y2|2|x2 − y1|2

|x1 − y1|2|x2 − y2|2

�

= dy,i
1

2π

�

δi j

(Y−X)2
− 2
(Yi −Xi)(Y j −X j)

(Y−X)4
−πδi jδ

2(X− Y)

�

dx , j + ... ,

(205)

where in the second line, aiming at the low momentum regime, we have performed the multi-
pole expansion at the lowest order with dx = e(x1−x2) and dy = e(y1−y2), and the positronia
centers of masses are X= (x1+x2)/2 and Y= (y1+y2)/2. As Vint decays at large distances, the
above split is suited to describe asymptotic states consisting of the bound states of Hposi t ronium,x
and Hposi t ronium,y.

While the full Hamiltonian H is valid for any configurations of the four charges, the splitting
of the six coulomb interaction terms into Hposi t ronium,x/y and Vint is arbitrary. It only becomes
meaningful when considering scattering events where the asymptotic states are the bound
states (x1,x2) and (y1,y2). Of course, during the scattering, recombinations can happen, so
that the proper splitting of H may be different for incoming and outgoing states. Keeping
track of the relevant splitting, one can still employ the Lippman-Schwinger methodology and
compute scattering amplitudes in the Born-approximation, with minor modifications of the
procedure. The precise treatment can be found in chapter 16 of [70] for example.

For bound states of all distinguishable particles, each option for the asymptotic states is
described by a unique splitting of the type in (204). On the other hand, in the extreme case of
identical pairs of constituents with the same statistics, for which the bound states are identi-
cal bosons, the asymptotic states are obviously symmetrized linear combinations of the wave
functions associated to 4 equivalent splittings. They thus take the form

ψPAPB
(x1, x2, y1, y2) =

1
p

4

�

ψPA
(x1, x2)ψPB

(y1, y2) +ψPA
(y1, x2)ψPB

(x1, y2)

+ψPA
(x1, y2)ψPB

(y1, x2) +ψPA
(y1, y2)ψPB

(x1, x2)
�

,
(206)

where ψP(x1,x2) is the wavefunction for a single postronium as defined in equation 192.

The S-matrix
¬

ψ
(−)
PC PD

�

�

�ψ
(+)
PAPB

¶

amounts then to the sum of 16 terms, 8 with particle recombi-

nation and 8 without. The 16 terms, and each subgroup of 8 amplitudes, can also be grouped
in pairs whose elements are related by a permutation of the initial, or final, momenta. These
elements correspond diagrammaticaly to the t- and the u-channel. The amplitudes without
recombination arise from both long- and short-range effects. On the other hand, those with
recombination are purely controlled by short range effects, i.e. by the overlap of the incoming
bound states over a region of the order of the Bohr radius. In view of that, their contribu-
tion to the action is expected to be local, i.e. polynomial at low momentum. Moreover these
contributions cannot be dealt with in perturbation theory as recombination is a genuinely non-
perturbative effect. We will thus focus on the other class of terms, whose long range part is
under perturbative control, and can also stand out because of its non-polynomial behaviour.

The computation of this class of terms, as one can easily see, works with the same splitting
(see (204)) for the in and out states, which simplifies the computation. Working in the Born
approximation, we get

(2π)2δ2(PA+ PB − PC − PD)MAB→C D ≃



ψPC
ψPD

�

�Vint

�

�ψPA
ψPB

�

, (207)

where MAB→C D consists of the sum of a t-channel

Mt
AB→C D =

2a2
0

my4

�

∑

n

|χ̂(n)10 |
2

(ε̂0,0 − ε̂n,1)

�2
�

(PA∧ PC)(PB ∧ PD)
(PA− PC)2

�

+ . . . , (208)
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and of a u-channel obtained from Mt
AB→C D by exchanging C ↔ D. The dots stand for

higher powers of momenta. This result matches precisely equation (130) with the identifica-
tion (202), to leading order in the momentum. Notice also that while the amplitude vanishes at
zero momentum, compatibly with the weakness of the interaction and hence with the applica-
bility of the Born approximation, the individual amplitudes for the two channels are non local.
Technically that means that, given that the non-perturbative and strong short distance contri-
bution is purely local, the partial waves in each channel at arbitrarily high angular-momentum
are nicely dominated by this perturbative vorton-like contribution. But, alas, summing the
leading Mt

AB→C D and Mu
AB→C D, one somewhat magically obtains a polynomial result

Mtot
AB→C D =

a2
0

2my4

�

∑

n

|χ̂(n)10 |
2

(ε̂0,0 − ε̂n,1)

�2
�

(PA− PB)
2 − (PC + PD)

2
�

+ . . . (209)

This means that in the context of indistinguishable particles of the same statistics, there is no
separation into long range and short range effects. Therefore, one should also include the ef-
fects from contact interactions, even at leading order. These effects come from a regime where
the comparison with the vorton theory breaks down and thus the positronium is not a good
realization of that theory. Notice however that if one considers distinguishable constituents or
constituents consisting of one pair of identical bosons and one pair of identical fermions, in
such a way that the bound states are fermions, the accidental cancellation disappears and a
non-local long range contribution survives. Needless to say, this surving contribution matches
perfectly the vorton result.43

Nevertheless, in all cases, the vorton theory and the positronium differ from each other
because the latter feature contact non derivative terms. We have already argued that these
control the channels with recombination, but we would like here show more directly that such
contact terms arise also when going beyond the Born approximation in the channel without
recombination. In this case, the elastic correction to the t-channel is given by

δMAB→C D =



ψPC
ψPD

�

�Vint
1

EPA
+ EPB

−H0
Vint

�

�ψPA
ψPB

�

. (210)

We can formally compute (210) by inserting a complete set of states in between the two in-
sertions of the interaction potential. This computation is represented pictorially in figure 1.
Proceeding in this way, we see that in the resolution of the identity we also receive contribu-
tions from states made of two positroniums with large relative momenta, and thus we cannot
resort to the expansion (205) to evaluate the corresponding matrix elements. The contribu-
tions to the scattering amplitude (210) from the exchange of these states is not suppressed by
the small momentum of the external positroniums, and is thus more important than the naive
leading order result (208). For instance, in the limit PA = PB = PC = PD = 0, we find that the
correction to the amplitude reads:

δM=

∫

d2P
(2π)2

1
2(ε0 − EP)

16e4

P4

�

�

�

�

∫

dx sin
�

P · x
2

�

ψ0(x)ψ
∗
P(x)

�

�

�

�

4

, (211)

where P is the relative momentum of the intermediate state. Here ψ0(x) =
1

a0
p

2π
f0(|x|/a0)

is the wavefunction for a dipole with no momenta (192) while ψP(x) is the wavefunction for
a dipole with momenta P. The correction to the amplitude was computed using the exact
interaction potential, as the integral is dominated by momenta of order 1

a0
such that the long

distance, small momenta approximation for the dipole wavefunctions and for the interaction
is not valid. Crucially, (211) is not vanishing, thus indicating a breakdown of the perturbative
expansion and the presence of a contact term in the amplitude.

43Note also that the scattering between vortons with different U(1) charges corresponds to the scattering of
distinguishable bosons, resulting in an amplitude that is genuinely nonlocal.
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Figure 1: Diagrammatic representation of the scattering amplitude of two positron-
ium in the t-channel up to second order in the Born approximation.

The estimate above shows explicitly, and somewhat expectedly, that the scattering ampli-
tude for positronia contains contact terms, whose precise computation sits outside perturbation
theory, and which start at zero powers of momentum. In an EFT description of positronium
these correspond to contact interactions like (Φ†)2Φ2, Φ†∇iΦ

†Φ∇iΦ etc., which are not present
in the vorton theory. We can summarize our findings with the following non-relativistic EFT
for positronium field Φp:

Lposi t ronium = iΦ†
pΦ̇p −

c
2m

�

�∇Φp

�

�

2 − e2ε̂0|Φp|2

−
λ

4
|Φp|4 +

1
4ρm

�

∇Φ†
p ∧∇Φp

� 1

−∇2

�

∇Φ†
p ∧∇Φp

�

+ . . . ,
(212)

where all interactions are taken to be normal ordered, and where the dots stand for local
terms involving derivatives. As anticipated, despite the similar dipolar structure of the last
interaction term, the theory of positronium does not possess the same symmetries as the vorton
EFT (107). In particular, it includes a contact interaction |Φp|4, which is forbidden by the MΦ

diffeomorphism symmetry in the vorton EFT.
Some comments are in order. As formerly noted, the dipole-dipole contribution to the

2-to-2 amplitude between identical scalar vortons is local, i.e. it contributes only to a finite
number of partial waves. One might wonder if it is possible to isolate a purely non-local
effect, that distinguishes the dipolar term from contact interactions, by looking at higher-
point amplitudes. However, we note that the quartic interaction λ

4 |Φp|4 in 2+1 dimensions is
marginally irrelevant, and therefore induces a logarithmic running of both the dipolar term and
λ itself. Such logarithmic terms are the dominant non-local contributions to all the scattering
amplitudes. Therefore, there is no amplitude or partial wave whose value is dominated by the
last term in (212) at low momentum.

As we alluded before, the situation is somewhat better for fermionic positronium states
(with no spin degrees of freedom). In that case, denoting with Ψp the fermionic field, the
leading contact interaction in the non-relativistic EFT involves two derivatives and is given
by (Ψ†

p∇Ψ
†
p) · (Ψp∇Ψp), due to the Grassmanian nature of the field. Therefore, for fermionic

positronium bound states there is no marginal coupling and the dipolar interaction contributes
to a non-local term in the 2-to-2 scattering amplitude. At low energies, the dipolar-interaction
yields the dominant contribution to partial waves with sufficiently large angular momentum
(l > 1), that are unaffected by the contact term.

We remark that the similarity between the fermionic vorton’s dispersion relation and scat-
tering amplitude and the corresponding quantities for positronium is accidental. In particular,
also in the fermionic positronium system there is no emergent symmetry that can be identified
with the vorton’s SDi f f (MΨ) or one of its subgroups.

Of course, both in the bosonic and fermionic theory, we could cancel the leading contact
interactions by including additional short-range potentials in the microscopic model (191),
such as a Yukawa potential, and tuning their coefficients so as to cancel the quartic and higher
couplings of the low-energy EFT. The vorton theory (117) amounts to an infinite number of
tunings from this perspective.
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9 Conclusion and outlook

The results presented in ref. [4] and in this work affirmatively answers the question: does the
universality class of the quantum mechanical perfect fluid exist? As discussed, at the theoret-
ical level such universality class is well-defined, at least in its lattice regularized incarnation.
Its lowest energy excitations are described by a novel quasi-particle, the vorton.

Two different field theoretic descriptions of the perfect fluid have been previously discussed
at the classical level in the literature, the comoving formalism (reviewed in section 3) and
the Clebsch formalism (sec. 4). Upon quantization, one observes in both descriptions the
vorton quasi-particles, although with subtle differences, in particular in the degeneracy of the
spectrum. Note that the Clebsch system appears to provide a more natural framework for
exploring potential realizations of the perfect quantum fluid. As discussed in sec. 8, vortons
have a natural physical interpretation within this picture. Furthermore, unlike in the comoving
system, the existence of low energy modes has a robust origin in the spontaneous breaking of
the internal symmetry, as in more standard examples such as superfluids and solids.

Despite these results, we found that, in both descriptions, the quantum theory of the perfect
fluid possesses a set of exotic properties that challenge the standard weakly coupled effective
theory dogma, as we summarize below.

First, the SDi f f (MΦ) symmetry of the vortons is spontaneously broken only by quantum
effects. This allows the generation of a healthy vorton kinetic term, which in the classical
action is naively forbidden by the symmetries. Note that this situation differs from the more
familiar case of an anomalous symmetry: here the volume-preserving diffeomorphisms remain
an exact symmetry of the quantum theory, while an anomalous symmetry is explicitly broken
by quantum effects. This can be seen explicitly in the discretized regularization where the
symmetry survives in a modified form. As a consequence of this breaking, the vortons acquire
a quadratic gapless dispersion relation parametrized by a prefactor that depends on all the
Wilson coefficients in the continuum Lagrangian description, and thus it receives large con-
tributions from the energy scale where the EFT is strongly coupled. In other words, while
ultimately the dispersion relation depends on a single parameter, this cannot be inferred just
from the low energy Lagrangian but requires additional information.

The quantum generated dispersion relation of the vortons shares some similarities with the
recently studied concept of symmetric mass generation (SMG) [71,72], where chiral fermions
can acquire a mass without breaking the chiral symmetry. In both phenomena, the key in-
gredient is the presence of strong quantum fluctuations that qualitatively modify the classical
theory.

The quantum mechanical spontaneous breaking of the SDi f f (MΦ) symmetry immedi-
ately implies a second exotic property. Indeed, as discussed in section 5, it leads to an infinite
degeneracy of the spectrum. This was explicitly corroborated in section 6 in the regulated
discretized version of the theory, where we observed that the spectrum’s degeneracy grows
linearly in N , where the number of sites is N2, see (165). Interestingly, similar extensive de-
generacies in the spectrum occur in some recently studied exotic condensed matter systems,
describing excitations commonly referred as fractons [6–9].

Similarly to fractonic systems, as we discussed in section 8, for the degeneracy to be robust
it is important that the symmetry be realized at the microscopic scale and not just emerge at
low energy. Indeed higher derivative operators that do not respect the symmetry lift some
states to the cutoff scale, thus badly breaking the degeneracy. As a consequence, this infinite
degeneracy requires the symmetry to be exact beyond the cutoff scale. Interpreting this theory
as an emergent effective field theory in the IR is therefore possible only by requiring an infinite
fine tuning, as the system discussed in sec. 8 makes explicit.
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In summary, these two unusual properties—the quantum generated dispersion relation and
the infinite degeneracy of the spectrum—indicate an unusual sensitivity of the long-distance
dynamics on the underlying microphysics, i.e. an incomplete decoupling of the UV sector from
the effective theory.

The infinite degeneracy of the spectrum is challenging to reconcile with a consistent ther-
modynamic description: It implies an infinite heat capacity and would thus prevent to put
the system at finite temperature. This problem can be partially solved by also introducing a
finite chemical potential for vorton number (Q(1,1)), as degenerate states have different vorton
number.

Let us finally close this paragraph with a comment on the physical interpretation of the
infinite symmetry of the quantum perfect fluid in both formulations. As discussed in Part I,
the symmetry of the classical perfect fluid—at least in the comoving description—naturally
reflects the invariance of thermodynamic quantities under a reshuffling of fluid elements. At
the quantum level, however, this interpretation becomes problematic. The permutation sym-
metry between indistinguishable particles is indeed a gauge redundancy under whose action
the wave function must be invariant. It might therefore be tempting to gauge the SDi f f (Mϕ)
symmetry of the comoving perfect fluid, restricting attention to states that are neutral under
this group. Yet, as discussed in detail in [4] and in Sec. 7.3, the system resulting from this
projection is just a superfluid, which is phenomenologically much less rich. In particular, a
superfluid does not support complex configurations such as the “hurricane” solution described
in Sec. 4.5, which can be viewed as a coherent superposition of vortons. While gauging the
symmetry of the comoving description is a consistent option, we believe it is worthwhile to
explore the richer alternative developed in this work.

We also note that the consequences of gauging the SDi f f (MΦ) symmetry of the Clebsch
fluid are even more drastic, since in that case even the vacuum fails to remain invariant under
all charges, casting doubt on whether gauging is meaningful at all. In this paper we have
instead adopted a pragmatic viewpoint: starting from the classical theory, where the symme-
tries are physical and internal, we proceeded to quantize the system while remaining agnostic
about the precise quantum interpretation of these symmetries. We showed that it is possible
to consistently quantize the perfect fluid in both the comoving and the Clebsch formulations,
at the cost of introducing the exotic features summarized above.

9.1 Outlook

The unusual features of the vortons suggest that the quantum theory described here is un-
likely to be realized experimentally as is. Nonetheless, our analysis opens several intriguing
directions for future research, which we summarize below.

First, at a conceptual level, our findings bear similarities to recent studies on fractons and
exotic field theories [8,9,28], which also exhibit UV/IR mixing phenomena. A key distinction,
however, lies in the lattice formulation of the perfect quantum fluid, that we discuss in Sec. 6,
which is inherently non-local on the lattice scale. More precisely, in this formulation vorticity
involves all the variables within a fixed physical distance and hence, as the continuum limit
is taken, on infinitely many lattice sites. In the same section, we also present an alternative
model with a local (i.e. essentially nearest neighbour) lattice construction, characterized by
an SL(2, R) symmetry group. This model shares some features of the vorton theory, including
the presence of a bound state formed by two quasi-particles with completely overlapping wave
functions. Its simpler lattice formulation may facilitate an experimental realization, warrant-
ing further detailed investigations.

Second, this work primarily focused on fluctuations around a static flow. Another interest-
ing avenue is the study of small fluctuations around highly vortical flows. As explained in the
main text (see secs. 4.5 and 7.3), this is a conceptually and technically more straightforward
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setup than the one analyzed here, since there are no pathological modes with trivial disper-
sion. Quantum corrections therefore provide small modifications to Euler equations. Some of
these correction were analyzed in [53], where it was also suggested that it might be possible
to observe such quantum effects in metastable states consisting of a large number of particles
confined on a plane and in the presence of a uniform magnetic field—a setup similar to that
of the quantum Hall effect. It should be simple to apply some of our techniques, in particular
those of sec. 5, to highly vortical flows, and thus complement and extend the analysis of [53].

Finally and most importantly, experimentally observed fluids occur at finite temperature
and are dissipative; in that setup, typical observables of interest are correlation functions of
the energy-momentum tensor and conserved currents, rather than energy levels. The EFT for
the dissipative fluid is formulated on the Schwinger-Keldysh contour [19,20], and includes ad-
ditional couplings that make the vorticity mode diffusive; these lift the pathological dispersion
relation and, as well known, lead to the diffusion pole ω(k)≃ −iDk2 in correlation functions,
where D is the diffusion constant. It is natural to ask how our work connects with that setup.
It is in particular interesting that the EFT of dissipative fluids reduces, in the dissipationless
limit, to the comoving description discussed in section 3. On the other hand, we have shown
in the present work that the Clebsch description is better suited for quantization. It would thus
be interesting to investigate whether finite temperature dissipative hydrodynamic can also be
reformulated in a Clebsch-like description. Possibly that could be the case for highly vortical
flows where the comoving and Clebsch description appear equivalent in the limit where dis-
sipation is negligible. Could some of the ideas developed here prove relevant to the study of
dissipative fluids, particularly in cases with small or vanishing diffusion constants D?

Acknowledgments

We thank N. Arkani-Hamed, A. Cappelli, L. Delacrétaz, S. Dubovsky, V. Gorbenko, M. Mirba-
bayi, A. Nicolis, R. Penco, J. Penedones, S. Sibiryakov, D.T. Son and A. Zhabin for useful dis-
cussions.

Funding information During this work GC was supported by the Simons Foundation grant
994296 (Simons Collaboration on Confinement and QCD Strings) and by the BSF grant
2018068. The work of BH was performed in part at the Kavli Institute for Theoretical Physics
under Grant No. NSF PHY-1748958. EF and RR are partially supported by the Swiss National
Science Foundation under contract 200020-213104 and through the National Center of Com-
petence in Research SwissMAP. RR acknowledges hospitality and support from the Perimeter
Institute for Theoretical Physics and from the Theory Division of CERN, hospitality from the
Center for Cosmology and Particle Physics at NYU and support from the Simons Collaboration
on Confinement and QCD Strings.

A Inequivalent rigid bodies

The perfect fluid’s equations of motion are usually referred to as Euler’s equations. Amusingly,
these share many common features with another set of equations named after Euler: those
describing the motion of a rigid body at fixed center of mass position. In particular, for both
of these problems it is possible to write different, inequivalent, actions that produce the same
equations of motions for the velocity fields. This is a well known fact to fluid dynamicists, but
it is nonetheless a somewhat unfamiliar feature for high energy theorists. In this appendix we
review this fact for Euler’s equations describing a rigid body.
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Let us first review the most basic facts about the rigid body. A sufficiently generic rigid body
breaks spontaneously the rotational group completely. The angles that parametrize its motion
can be thought as the Goldstone bosons {πa} for the spontaneous breaking of the SO(3) group.
Therefore, to write an action, we introduce an arbitrary parametrization of the coset SO(3)/1:

U = eiπa Ta , (A.1)

where Ta=1,2,3 are the generators of SO(3). The standard Euler angles correspond to a different
choice of the parametrization U .

As well know, we can write SU(2) invariant Lagrangians in terms of the components of the
angular velocity Ω= (Ω1,Ω2,Ω3), obtained from the matrix U as:

Ωa = −iTr
�

U−1TaU̇
�

. (A.2)

In particular, the most general SU(2) invariant action for theπa ’s to second order in derivatives
and invariant under time reversal is

L =
1
2
Ω · I ·Ω , (A.3)

where I = diag (I11, I22, I33) is the inertia tensor. From the variation of the action (A.3) we
derive Euler’s equations of motion (EOMs):

I · Ω̇+Ω∧ (I ·Ω) = 0 . (A.4)

The components of the angular momentum are constant in time and read

Ja = U−1
ab IbcΩc . (A.5)

It is also simple to derive the Hamiltonian, see e.g. [4]:

H =
1
2

R · I−1 ·R , where R= I ·Ω . (A.6)

We will refer to the R as right momenta; note that they are distinguished from the angular
momentum, Ja = U−1

ab Rb. The Poisson brackets of both the Ra and the Ja admit a SU(2)-group
structure

{Ra, Rb}= ϵabcRc , {Ja, Jb}= ϵabcJc , (A.7)

from which the EOMs (A.4) follow using Ṙ= {H,R}. Note that the conservation of the angular
momentum Casimir J2 = R · R = const. follows immediately from the SU(2) group structure
of (A.7). The conservation of the angular momentum instead follows from the Poisson brack-
ets:

{Ra, Jb}= 0 =⇒ {H, Ja}= 0 , (A.8)

so that the Ja ’a generate the SU(2) internal symmetry.
The feature of the rigid body we are interested in is that its EOMs (A.4), as well as the

Hamiltonian (A.6), are written purely in terms of the angular velocity without any reference
to the internal angles of the solid. In other words, we may disregard the matrix U in (A.1) and
simply solve for the motion of the velocities Ω, regarded now as fundamental variables, rather
than defined by (A.2). However, note that if we disregard the angles, we cannot construct
the components of the angular momentum (A.5), but only the Casimir J2. In other words, we
may consider a system characterized just by the angular velocities, but in which there is no
analogue of the angles πa. Nevertheless, such a system is governed by the equations of motion
for a rigid body, as follows from the Poisson brackets (A.7) acting on the Hamiltonian (A.6).
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We now ask then: can we write an action for such a system? In other words, can we
write a self-consistent Lagrangian for the velocities Ω whose extremization results in (A.4),
without any reference to the angles (A.1) or any other additional variables?44 Interestingly,
the answer is no. This is because the EOMs are first-order in derivatives and therefore re-
quire the Ωa to form conjugate pairs, but this is impossible for three variables. Equivalently,
the Poisson brackets in (A.7) cannot be inverted due to the existence of a conserved Casimir
J2 = R ·R= const.—see the discussion at the end of this section for further details on the role
of Casimirs.

The need of introducing coordinates also has a physical interpretation. Indeed, as we saw
above, the R-charges commute with the Casimir J2 = R · R. This means that, if we work
purely in terms of Ra ’s, we cannot couple the system to external agents that change J2. In
other words, we need some sort of internal coordinates to inject angular momentum into the
system.

The absence of any reference to the angles in the EOMs and the Hamiltonian however
makes it possible to write other actions, in terms of different fundamental fields, that lead to the
same EOMs (A.4) for the angular velocity. To see this, let us introduce complex fields {φA,φ†

A}
in an arbitrary representation r of the SU(2) group. Then we can consider the Lagrangian:

L = iφ†
Aφ̇A−

1
2

�

φ†Taφ
�

I−1
ab

�

φ†Tbφ
�

, (A.9)

where Ta=1,2,3 = {(Ta)AB, A, B = 1, . . . , 2r+1} form a representation of the SU(2) group in the
r-representation. From this action we immediately derive the Poisson brackets {φA,φ†

B}= δAB
and the Hamiltonian (A.6) with the identification

Ra = φ
†Taφ . (A.10)

The SU(2) structure of the Poisson brackets (A.7) and the EOMs (A.4) then follow.
To illustrate in detail the differences with the Euler’s angles, consider the symmetry of the

system (A.9) for fields in the adjoint representation. This is equivalent to taking φ = φaTa to
be a traceless complex hermitian 3× 3 matrix. In this case the right momenta read

Ra = Tr
�

φ† [Ta,φ]
�

= Tr
�

Ta

�

φ,φ†
��

. (A.11)

It is then easy to see that the action (A.9) is invariant under SL(2, R) transformations acting
on the fields as

�

Reφ
Imφ

�

→
�

a b
c d

��

Reφ
Imφ

�

, with ad − bc = 1 . (A.12)

In fact, (A.9) is the most general Lagrangian to quartic order in the fields which is compatible
with the internal SL(2, R) symmetry, as well as time reversal, which acts asφ↔ φ† to preserve
the kinetic term. This forbids terms linear in the Ra ’s. More generally, the symmetry (A.12)
is compatible with any action written in terms of the Ra ’s plus the kinetic term. Therefore
the SL(2, R) symmetry (A.12) is as constraining as the SU(2) symmetry of the standard rigid
body. Note also that the SL(2, R) Casimir coincides with the SU(2) one in the Euler’s angle
description R ·R.45

44Here we refer to standard unconstrained extremization. It is possible to consider modified principles that do
not require introducing additional fields [50,51]. We will not discuss these here, since their significance once we
consider a quantum theory is unclear to us.

45This is generically true for any real SU(2) representation, i.e. r integer: there is an
SL(2,R) × O(2r + 1) ⊂ Sp(4r + 2,R) dual pair structure, where the representations of SL(2,R) appearing
in the Hilbert space are determined by those of O(2r + 1), and vice-versa. As a consequence, the Casimirs can be
written in terms of one another.
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We also remark that in the system (A.9) all the configurations such that [φ,φ†] = 0 are
degenerate and have zero energy. Unlike the standard rigid body, for which all configurations
at rest are related by rotational symmetry, the classical vacua of the system (A.9) are not all
obtained from the same state via the action of the SL(2, R) symmetry group, which acts linearly
on the fields. Instead, this degeneracy is a dynamical consequence of the structure of the action
(which is indirectly a consequence of the symmetry).

We finally reiterate that none of the two Lagrangian descriptions that we introduced is
equivalent to the set of EOMs (A.4). Indeed, the eqs (A.4) require only three initial conditions
to be solved, while the system (A.3) admits three canonical pairs, and (A.9) has 2r+1 canonical
pairs, where r is the spin of the representation of the internal variables. The statement is simply
that the dynamics of the angular velocities, which is a subset of the full dynamics in both cases,
is specified by the EOMs (A.4).

In summary, even if the EOMs (A.4) are written just in terms of the angular velocities,
there is no way to associate them with an action purely written in terms of the Ωa ’s. Rather,
if we insist on having a Lagrangian description, we obtain inequivalent systems characterized
by different internal variables, that are needed to reproduce the symplectic structure (A.7). In
the standard rigid body formulation (A.3), the variables are just the angles and are needed to
realize nonlinearly the SU(2) symmetry. In the alternative formulation (A.7), the symmetry
group is non-compact and linearly realized. In both cases, the symmetry group does not act
on the velocities, but ensures the conservation of the Casimir R ·R.

Let us close this section by giving some more technical details. In doing so, we hope to
expose some of the fundamental group structure underlying the rigid body and incompressible
fluid. As detailed above, the rigid body dynamics are entirely captured by the dynamics of
the charges R. These parameterize the phase space, isomorphic to R3. The dynamics follow
upon (1) picking Poisson brackets and (2) choosing a Hamiltonian. The fundamental Poisson
brackets are taken to be governed by the SU(2) algebra, {Ra, Rb} = fab

cRc = εabcRc . For
general functions A= A(R) and B = B(R) on phase space, the brackets take the form

�

A(R), B(R)
	

= Rc fab
c ∂ A
∂ Ra

∂ B
∂ Rb
≡
­

R,
�

∂ A
∂ R

,
∂ B
∂ R

�·

, (A.13)

where [ , ] is the commutator on g = su(2). Brackets like this, determined by the structure
constants of an underlying Lie algebra g, are known as Lie-Poisson brackets, e.g. [73,74]. The
incompressible fluid flow is another Lie-Poisson system, goverened by the group of volume
preserving diffeomorphisms G = SDi f f (M) [73,75].

For a Lie-Poisson system there is generally an obstruction to inverting the Poisson brackets
to obtain the symplectic form. This is due to Casimirs Ck: these (Poisson) commute with the
phase space coordinates, {Ck,R} = 0, and therefore with any function on phase space. As
such, they give a zero mode and render the brackets { , } degenerate. This means that dy-
namics, independent of the Hamiltonian, will be constrained to surfaces of constant Casimir
values. For the rigid body, we have the SU(2) Casimir J2 = R2, which foliates the phase space
R3 into spheres upon which dynamics takes place. Note that the sphere is two-, namely even-,
dimensional: on these surfaces the brackets are non-degenerate, giving a well-defined sym-
plectic form. For example, in standard spherical coordinates, we can take {J cosθ ,φ} = 1.46

As long as we only interested in the dynamics at a fixed value of R2 =const., we may indeed
write an action in terms of θ and φ only—this is the well known SU(2)/U(1) coadjoint or-
bit, describing the spin of non-relativistic particles and two-dimensional charged particles in a
uniform magnetic field in the lowest Landau level, see e.g. [76–78] for details.

46This description is valid away from the poles; for those, we need other coordinate patches.
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By viewing the Ra as composite objects, we can construct theories with an enlarged phase
space that give rise to an effective description of the Ra alone. The process of going from a “mi-
croscopic” description to an effective description, involving the R alone, is called a phase space
reduction. For example, the Euler angle description of the rigid body, with its six-dimensional
phase space T ∗SU(2),47 gets reduced to the effective phase space R3 parameterized by the
Ra.48 The opposite procedure, of constructing an enlarged phase space which contains the
effective space of interest, is sometimes called “inflating” the phase space [74], in contrast to
the process of reduction.

B Microscopic derivations of fluid Lagrangians

B.1 Derivation of the comoving action from point-like particles

In this section we review the derivation of [26] of the comoving coordinates’ action for fluids
in the non-relativistic limit. We consider N ≫ 1 Galilean particles, whose action reads

S =

∫

d t

� N
∑

k=1

m
2

Ẋ2
k − V ({Xk})

�

. (B.1)

Here k = 1, 2, . . . , N is the particles’ label and V = V ({X⃗k}) is the potential. We assume
that all the particles interact with each other in the same way, and thus V is invariant under
reshuffling of the indices k = 1, . . . , N . The hydrodynamic limit corresponds to N →∞ limit,
so that the particles form a space-filling continuum. We may therefore promote the index k
to a d continuous variables ϕ⃗: X = X(t, ϕ⃗). Importantly, we assume that the map X↔ ϕ⃗ is
invertible. This means there exists a function χ⃗(t, r⃗) such that

X(t, χ⃗(t, r)) = r , χ⃗(t,X(t, ϕ⃗)) = ϕ⃗ . (B.2)

In the continuum limit, invariance under reshuffling of the particles is equivalent to require-
ment that the potential V remains unchanged under the action of volume preserving diffeo-
morphisms

φ⃗→ f⃗ (φ⃗) s.t. det

�

∂ f⃗

∂ φ⃗

�

= 1 . (B.3)

Assuming locality, this implies that to leading order in derivatives we must have

V = V (det W ) , W I
j =

∂ ϕ I

∂ X j

�

�

�

�

ϕ⃗=χ⃗(t,X⃗ )
. (B.4)

Therefore, in the hydrodynamic limit the action (B.1) obviously is

S =

∫

d tddϕ
hm

2
Ẋ2 − V (det W )
i

. (B.5)

Switching to the Lagrangian formulation, (B.5) becomes

S =

∫

d td2 x

�

m
2

v i v i

v0
− v0V (v0)

�

. (B.6)

47This is the usual cotangent bundle formulation T ∗C, making use of canonical q’s and p’s, where the configu-
ration space is identified with the rotation group, C = G = SU(2). Another realization, as explained above, is to
construct Clebsch-like variables for the Ra, which essentially corresponds to choosing the spin-1, adjoint represen-
tation for Ra = φ†Taφ. For general group G we could take Ra = fab

c pc qb = pc(T adj
a )

c
b qb (or use (φ,φ†) in place

of (q, p)).
48The effective phase space is the dual of the Lie algebra, g∗ = so∗(3) ≃ R3. The spheres of constant Casimir

discussed above are the coadjoint orbits under the G-action on g∗.
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The equivalence between (B.5) and (B.6) can be seen inverting the map between φ⃗ and X⃗
using

ϕ I(t,X(t, ϕ⃗)) = const. =⇒ ϕ̇ I = −∂iϕ
I Ẋ i = −W I

i Ẋ i . (B.7)

It is then simple to check that (B.6) corresponds to the non-relativistic limit of (37) using
F = −ε and recalling (21) (discarding a total derivative).

B.2 Derivation of the Clebsch action from point-like vortices

A derivation similar to the one in the previous section can be used to derive the Clebsch ac-
tion (74) from the classical dynamics of a superfluid in the presence of a large number of point
particle vortices in two dimensions. This derivation is inspired by [37,53].

As well known, the dynamics of vortices in a superfluid is equivalent to that of charge 1
particles in the Lowest Landau Level, interacting with an electromagnetic field [79, 80]. To
lowest order in derivatives, the action therefore reads

S = −
∫

d3 x G(Fµν)−
∑

p

∫

d t
�

Ai Ẋ
i
p + A0(Xp)
�

, (B.8)

where G is an arbitrary function (constrained by the spacetime symmetry) and the superfluid
density is equivalent to a large background magnetic field

〈Ai〉= −ϵi j x
jB/2 =⇒ 〈Fi j〉= ϵi jB , (B.9)

where we work in Landau gauge.
Similarly to the previous section, we suppose that the vortices form a space-filling contin-

uum and promote the label index to a continuum variable: p→ φ⃗. We thus obtain

S = −
∫

d3 x G(Fµν)−
∫

d td2φ
�

Ai(t,X)Ẋ
i + A0(t,X)
�

, (B.10)

where X = X(t, φ⃗). The key assumption is that the map X(t, φ⃗) can be inverted. This means
that the vorticity vector ωµ is nowhere singular. Under this assumption, we have

d2φ = d2 x

�

�

�

�

∂ φ

∂ X

�

�

�

�

= d2 x ϵ0i j∂iφ
A∂ jφ

BϵAB/2 , Ẋ i = −
∂ X i

∂ φK
φ̇K . (B.11)

Using these, after some algebra we arrive at

S = −
∫

d3 x
�

G(Fµν) + Aµϵ
µνρ∂νφ

A∂ρφ
BϵAB/2
�

, (B.12)

which is just the action (88) with the identification G = −F , φ1 =
p

2ReΦ and φ2 =
p

2ImΦ.
This shows that the Clebsch formulation of the perfect fluid emerges in the description of
configurations with macroscopic vorticity, such that the vorticity volume form ω= idΦ∧ dΦ†

is nowhere singular and thus the map between spatial coordinates and vortex labels φA is
invertible.

Let us finally comment that it is straightforward to extend this derivation to account for
higher derivative corrections to the microscopic vortex action (B.8). A particularly relevant
case concerns with the contribution of the vortex fugacities, the zero-point energy of the vor-
tices, which diverges logarithmically with the vortex size a as ∼

∑

p B log a−1, and results in a

contribution∝ω log
�

ωa2
�

in the fluid action (B.12) - see [37] for a detailed discussion.
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C More on the Clebsch formulation of the perfect fluid

C.1 A Dual Kelvin Theorem?

As we have seen in sec. 3.2, the conservation of the Noether currents (45) of the comoving
Lagrangian is associated with Kelvin’s theorem. On the other hand, in the Clebsch formulation,
this role is taken care of by the topological currents (86) of the Clebsch description, provided
we work in a background such that ωµ is nowhere vanishing. This is not surprising as in
this regime the emergence of a duality between the two descriptions implies that the Noether
current in the comoving description are mapped to the topological ones in the Clebsch (and
vice versa), as discussed in section 4.3.

This interchange of currents between the two dual descriptions suggest that a similar dual
interpretation exists for the Noether currents (85) in the Clebsch description (equivalently
the topological currents (46) in the comoving one). We instead find that the conservation
of the currents (46) and (85) does not lead to novel interesting conservation laws for the
hydrodynamic variables. More precisely, when the map Φ(x) is invertible, one can show that
the equation (85) implies the conservation of entropy along the flow: the entropy contained
in any patch of fluid is conserved under the evolution of the patch along the flow. However,
this is not a new conservation law, as we argue below.

To observe that the charges associated to the SDi f f (MΦ) symmetry of the Clebsch fields
imply this rather trivial fact, it is convenient to work in the gauge description introduced in
section 4.4. The charges read

Q f =

∫

d2 x v0 f (Φ,Φ†) , (C.1)

for an arbitrary function f of the vorton fields, where the entropy current is vµ = 1
2πϵ

µνρ∂νAρ.
Choosing a basis f (Φ,Φ†) = δ(Φ(x)−Φ0), the charges become

Q0
Φ =

∫

d2 x v0δ(Φ(x)−Φ0) = v0

�

�

�

�

∂Φ

∂ x

�

�

�

�

−1

Φ=Φ0

, (C.2)

where here we have importantly assumed that the map x→ {Φ†(x),Φ(x)} is invertible. Inte-
grating (C.2) over an arbitrary surface S in Φ space, we find the conservations of the following
quantities:

d
d t

∫

S
d2Φ0v0

�

�

�

�

∂Φ

∂ x

�

�

�

�

−1

=

∫

S(t)
d2 x v0 = 0 , (C.3)

where in physical space the surface S(t) is obtained evolving an arbitrary surface at t = 0 with
the vorticity vector ωµ/

p
−ω2. Since the equations of motion (80) imply ωµ ∝ Sµ, (C.3)

states that the particle number is conserved on surfaces that move parallel to the particle flow
Sµ. This statement is true for any conserved current; it follows from the fact that Lv(⋆S) = 0
for any v∝ S, which is a consequence of the trivial identity S∧S = 0 and current conservation
d ⋆ S = 0.

C.2 The incompressible limit in three spatial dimensions

In this section we derive the incompressible limit of the three dimensional fluid. To this aim,
we proceed similarly to the two-dimensional case analyzed in sec. 4.4 and dualize the scalar
χ first in terms of a 2-form gauge field Aµν. This is done considering a Lagrange multiplier in
the form

L̃ξ = P(ξµξµ)−
1

4π

�

ξµ −
i
2
(Φ†∂µΦ−Φ∂µΦ†)

�

ϵµνρσ∂νAρσ . (C.4)
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Integrating out Aµν sets ξµ− i
2(Φ

†∂µΦ−Φ∂µΦ†) = ∂µχ as before. We instead integrate out ξµ

and, discarding a total derivative, we obtain

LA = F
�

vµvµ
�

+
i

4π
Aµνϵ

µνρσ∂ρΦ
†∂σΦ , vµ =

1
12π

ϵµνρσHνρσ , (C.5)

where we introduced the gauge-field strength

Hνρσ = ∂νAρσ + ∂ρAσν + ∂σAνρ , (C.6)

and F = −ε is simply the Legendre transform of P. As in two dimensions, the entropy current
vµ in the dual formulation is a topological current. The static background vµ∝ δ

µ
0 therefore

corresponds to a constant expectation value for the magnetic field 〈Hi jk〉 ∝ ϵi jk.
We now take the non-relativistic limit as in (91). Discarding a total derivative, we find

LA = FNR (B) +
mf 2

i j

8πB
+

i
4π

Aµνϵ
µνρσ∂ρΦ

†∂σΦ , (C.7)

where FNR(B) is minus the non-relativistic energy density, and B is the magnetic field
Hi jk = ϵi jkB, such that the mass density is

ρm = m
B

2π
, (C.8)

and we defined the magnetostatic field as

fi j = Hi0 j = ∂iA0 j − ∂ jA0i − Ȧi j . (C.9)

The incompressible limit is obtained setting ρm = const.. This is equivalent to neglecting
the fluctuations of the purely spatial components of the gauge field Ai j as in two dimensions.
We rename for simplicity

ai ≡ A0i . (C.10)

The field ai was dubbed hydrophoton in [38]. Then we obtain

L3 =
m2

16π2ρm

�

∂ia j − ∂ jai

�2
+

i
2π

aiϵ
i jk∂ jΦ

†∂kΦ+ i
ρm

m
Φ†Φ̇ . (C.11)

Integrating out the magnetostatic field ai , one finally obtains the non-local Lagrangian (97) in
the main text.
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