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Abstract

The deformation approach of [1] for computing zeta functions of one-parameter Calabi–
Yau threefolds is generalised to cover also multiparameter manifolds. Consideration of
the multiparameter case requires the development of an improved formalism. This al-
lows us, among other things, to make progress on some issues left open in previous work,
such as the treatment of apparent and conifold singularities and changes of coordinates.
We also discuss the efficient numerical computation of the zeta functions. As examples,
we compute the zeta functions of the two-parameter mirror octic, a non-symmetric split
of the quintic threefold also with two parameters, and the S5 symmetric five-parameter
Hulek–Verrill manifolds. These examples allow us to exhibit the several new types of
geometries for which our methods make practical computations possible. They also act
as consistency checks, as our results reproduce and extend those of [2,3]. To make the
methods developed here more approachable, a Mathematica package CY3Zeta for com-
puting the zeta functions of Calabi–Yau threefolds, which is attached to this paper, is
presented.
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1 Introduction

The local zeta function ζp(X , T ) of an algebraic variety X can be thought of as a generating
function of the numbers of solutions over finite fields Fpn of the equations defining the mani-
fold X . Somewhat surprisingly, it turns out that these functions for Calabi–Yau threefolds have
a direct connection to physics of string theory compactifications on these manifolds, for ex-
ample encoding existence of supersymmetric flux vacua and rank-two attractor points [4–9].
In addition, the zeta functions are widely-studied in connection with number theory, making
them ideal and interesting objects to study in order to investigate connections between number
theory and physics. As the more intricate aspects of the theory of zeta functions, such as their
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connection to modular forms, is still not fully developed, investigating concrete examples for
a wide range of prime numbers p to high numerical accuracy is important to obtain examples
of interesting connections and to formulate and test conjectures concerning these.

While the zeta functions can be computed using techniques such as direct counting of so-
lutions to polynomial equations or evaluating Gauss sums, these techniques tend to be compu-
tationally complex, which greatly limits the range of primes p for which the zeta functions can
be evaluated with currently existing computational resources. This can, for instance, make it
difficult to identify modular forms conjecturally related to supersymmetric flua vacua [6]. For
one-parameter Calabi–Yau manifolds, the state-of-the-art was improved in [1]where Candelas,
de la Ossa, and van Straten presented a practical method for computing their zeta functions
using series expansions for their periods near the large complex structure point.

The aim of this paper is to generalise the methods of [1] to cover multiparameter manifolds.
The main result of this paper, which we present in §3, is an efficient numerical method for
computing the local zeta functions of multiparameter Calabi–Yau threefolds Xϕ . We do this,
analogously to [1], by finding a matrix Up(ϕ), which will determine the local zeta function
ζp(Xϕ , T ) via the relation

ζp(Xϕ , T ) =
Rp(Xϕ , T )

(1− T )(1− pT )h11(1− p2T )h11(1− p3T )
,

where
Rp(Xϕ , T ) = det

�

I− TUp(ϕ)
�

.

We are able to find a relatively simple expression for the matrix Up(ϕ), by developing further
the formalism of [7], where the periods of the Calabi–Yau manifold Xϕ are expressed in terms
of the generators of the homology algebra of its mirror manifold eX t with a Kähler parameter
t given by the mirror map. In particular, we are able to express the matrix Up(ϕ) in terms
of a representation of the homology algebra and the periods of Xϕ . Additionally, we discuss
several computational techniques which make evaluation of the matrices Up(ϕ) significantly
faster, and subtleties that are not apparent in the case of threefolds, but are important for
further generalisations [10].

The approach we take here is computationally less intensive compared to several existing
methods, such as evaluating Gauss sums, and thus allows us to compute the zeta functions to
considerably higher values of the prime p than has been previously possible. Additionally, the
approach based on the Picard–Fuchs equations we develop here requires only simple geometric
data: the number of complex structure parameters, triple intersection numbers, singular loci,
and periods, making the method amenable to computer implementation.

In §4, we present three examples of multiparameter manifolds whose zeta functions we
have computed using the methods presented in this paper: the two-parameter family of mirror
octic manifolds, a two-parameter split of the quintic threefold, and the five-parameter family
of mirror Hulek–Verrill manifolds. In addition to demonstrating the techniques developed in
this paper, we use each of these examples to discuss a particular subtlety or a generalisation of
these methods. The mirror octic example is used to discuss and demonstrate how the defor-
mation method can be used to compute the local zeta function even for varieties with conifold
singularities, and how the choice of coordinates on the complex structure moduli space af-
fects the computation. The split quintic computation demonstrates using different bases of
the middle cohomology to deal with the apparent singularities encountered in [1]. The case of
Hulek–Verrill manifolds would in principle require making computations with 12×12 matrices
whose components are five-parameter series. This is not computationally feasible on current
hardware. However, we are able to develop techniques that allow us to consider various lines
in the moduli space, and thus deal with series in one variable only.
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These examples also work as highly-nontrivial consistency checks on our methods. The
mirror octic has been studied previously in detail using different methods in [3], and the zeta
functions of the Hulek–Verrill manifolds the ‘symmetric’ line in the moduli space can be found
using the direct point-counting methods [2]. We find complete agreement with the results
of [3] and [2], as far as they overlap ours. The techniques developed in this paper allow
extending these results to higher primes p. After discussing the examples, we include a very
concise summary of the results and discuss the limitations of the presented methods as well
as directions for future research.

In appendix A, we give a telegraphic review of the basic properties of the p-adic numbers
that we utilise in the text. The appendix B presents a computation of the zeta functions of the
Legendre family of elliptic curves. This example helps to illustrate the deformation method
we use without involving the technical details that are necessary for the more involved case
of multiparameter Calabi–Yau threefolds. Some computational details are delegated to the
appendices C and D.

In the final appendix E, we include documentation for a Mathematica package, CY3Zeta,
that provides user-friendly implementation of the algorithms discussed in this paper, with the
aim of making the computation of local zeta functions more accessible. In particular, the pack-
age can be used to explicitly compute the polynomials Rp(Xϕ , T ) determining the local zeta
function, as well as the ancillary matrices, such as Up(ϕ) which are extensively used through-
out the paper. As input only basic geometric data, such as the triple intersection numbers and
the fundamental period, of the Calabi–Yau manifold is required.

Some of the material in this paper is adapted from one of the present authors’ doctoral
thesis [11], and a very brief overview of the methods developed here has appeared before in
a paper [7] by the present authors and J. McGovern.

1.1 Conventions and notation

Throughout the paper, we study families of Calabi–Yau threefolds Xϕ , with m complex struc-
ture parameters ϕ = (ϕ1, . . . ,ϕm). We are interested in cases Xϕ/Q when the manifolds are
defined over rational numbers. That is, we require that the polynomials defining the manifold
(at least locally) have coefficients in Q, or equivalently in Z with compatible transition func-
tions. Given the inclusions Fp ,→ Z, we can study the family of manifolds over these finite
fields, and by considering field extensions, this can be extended to include manifolds defined
over fields Fpn . To avoid any confusion, where needed, we will denote the variety Xϕ defined
over field K by Xϕ/K.

We denote m×m matrices by symbols in blackboard bold font, and m-component vectors
with symbols in bold font. We often also treat such vectors as multi-indices, and denote the
sum of their components by x1 + · · ·+ xm = |x |. Unless otherwise stated we employ Einstein
summation convention, with the indices a, b, c, . . . from the beginning of the Latin alphabet
taking values 0, . . . , m, and the indices i, j, k, . . . taking values 1, . . . , m.

Some symbols that appear in multiple sections are collected, with their definitions, in ta-
ble 1.

2 Review of mirror symmetry and zeta functions

We begin with a brief review of the salient aspects of the theory of local zeta functions and mir-
ror symmetry in order to keep the paper self-contained, and to simultaneously introduce the
notation. Most of the material appearing in this section is standard, although we have refor-
mulated some of it in a language that is useful for discussing zeta functions of multiparameter
threefolds.
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Table 1: Some quantities that are used throughout the paper with references to where
they are first introduced.

Symbol Definition/Description Ref.

ϕ The coordinates (ϕ1, . . . ,ϕm) on the complex structure moduli space
of a Calabi–Yau manifold Xϕ .

§1.1

θi The logarithmic derivative ϕi∂ϕi (no sum implied) with respect to
the complex structure modulus ϕi .

§3.1

ϑa,ϑa The linear combinations of 0 to 3 logarithmic derivatives defined by
(ϑ0,ϑi ,ϑ

i ,ϑ0) =
�

1,θi , bY
jkiθ jθk, 1

m
bY i jkθiθ jθk

�

.
(34)

va, va The basis vectors of the constant basis of H3(Xϕ ,C). (7)

ϑaΩ,ϑaΩ The basis vectors of the derivative basis of H3(Xϕ ,C) corresponding
to the logarithmic derivatives of the holomorphic (3,0)-form Ω.

(33)

ϖ The period vector of Xϕ in the Frobenius basis. (13)

Π The period vector of Xϕ expressed in the integral symplectic basis. (18)

E(ϕ) The change-of-basis matrix from the constant basis to the derivative
basis. Also known as the period matrix.

(35)

eE(ϕ) The logarithm-free period matrix defined by setting logϕi = 0 in
E(ϕ).

(48)

Fpn The finite field with pn elements. §2.1

ζp(Xϕ , T ) The local zeta function of a Calabi–Yau manifold Xϕ . (3)

Rp(Xϕ , T ) The numerator of the zeta function ζp(Xϕ , T ). (3)

Up(ϕ) The matrix representing the action of the inverse Frobenius map Fr−1
p

on the middle cohomology.
(5)

αi ,βi ,γ The prime-dependent coefficients appearing in the matrix Up(0). (42)

Sn(ϕ) The denominator of the rational matrix Up(ϕ) mod pn. (47)

Ya The m × m matrix whose components are given by the topological
quantities Yai j , [Ya]i j = Yai j

(15)

εi ,µi ,η Matrices giving a representation of the (co-)homology algebra of the
mirror manifold of Xϕ .

(15)

bY i jk The ‘inverse triple intersection numbers’ that satisfy Yi jk bY
i js = δs

k. (14)

I The m×m unit matrix. §1.1

0 The m×m zero matrix. §1.1

1 The m-component vector with all entries 1. §1.1

0 The m-component zero vector. §1.1

δi The m-component vector with components [δi] j = δi j . (15)
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For more comprehensive introduction to the properties of zeta functions of Calabi–Yau
threefolds, we refer the reader to [1, 12] for an exposition aimed at physicists, or [13] for
a physicist-friendly mathematical treatment. The literature on mirror symmetry is extensive,
but the aspects of mirror symmetry discussed here are presented in more detail for example
in [14–17] and references therein.

2.1 The local zeta function and Weil conjectures

Let Xϕ be a manifold that is defined as a zero locus of polynomials Pi in some ambient space
Pn, with the coefficients of Pi rational. Such a manifold is said to be defined over Q, which is
denoted by Xϕ/Q. It is then possible to consider solutions Pi(x) = 0 with x ∈ Qn ⊂ Cn. The
set of solutions is then denoted Xϕ(Q).

Given such a manifold, one can further clear the denominators of the polynomials Pi to
get polynomials with coefficients in Z. Using the natural projection Z→ Z/pZ, we can then
consider the manifold to be defined over the finite field Fp ≃ Z/pZ. In practice, this amounts
to studying the defining polynomials Pi modulo p. As above, we say that the manifold is
defined over Fp, denoting it Xϕ/Fp, and denote the finite set of solutions Pi(x)≡ 0 mod p by
Xϕ(Fp). One can similarly consider Xϕ/Fpn and the finite set Xϕ(Fpn) for any finite field with
pn elements.

A significant amount of interesting geometric information is in fact encoded in the sets
Xϕ(Fpn). We denote the number of Fpn points on a manifold Xϕ/Fpn by Npn(Xϕ), that is,
Npn(Xϕ) =N (Xϕ(Fpn)), where N (A) denotes the number of elements of the set A. It turns out
to be useful to define a generating function for these quantities. The local zeta function or the
Hasse-Weil zeta function of the manifold Xϕ at the prime p is defined as

ζp(Xϕ , T ) = exp

�∞
∑

n=1

Npn(Xϕ)T n

n

�

. (1)

The Weil conjectures, originally due to Weil [18], and later proved by Dwork [19],
Grothendieck [20], and Deligne [21,22], can be stated as:

1. Rationality: ζp(Xϕ , T ) is a rational function of T of the form

ζp(Xϕ , T ) =
R(1)p (Xϕ , T )R(3)p (Xϕ , T ) · · ·R(2d−1)

p (Xϕ , T )

R(0)p (Xϕ , T )R(2)p (Xϕ , T ) · · ·R(2d)
p (Xϕ , T )

,

where R(i)p (Xϕ , T ) is a polynomial in T with integer coefficients. The degree of R(i)p (Xϕ , T )
is given by the Betti number bi(Xϕ) of the manifold Xϕ .

2. Functional equation: ζp(Xϕ , T ) satisfies the functional equation

ζp

�

Xϕ , p−d T−1
�

= ±p
d
2χ(Xϕ)Tχζp(Xϕ , T ) , (2)

where χ(Xϕ) is the Euler characteristic of Xϕ .

3. Riemann hypothesis: The polynomials R(i)p (Xϕ , T ) factorise over C as

R(i)p (Xϕ , T ) =
bi
∏

j=1

�

1−λi j(Xϕ)T
�

,

where the λi j(Xϕ) are algebraic integers of complex modulus |λi j(Xϕ)|= pi/2.
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In this work, we concentrate on the case where Xϕ is a Calabi–Yau threefold. When the Picard
group of Xϕ is generated by divisors that are defined over Fp, the polynomials corresponding
to the cohomology groups H2(Xϕ ,C) and H4(Xϕ ,C) factorise into linear factors, thus being
given by

R(2)p (Xϕ , T ) = (1− pT )h
11

, R(4)p (Xϕ , T ) = (1− p2T )h
11

.

Therefore, in this case, the zeta function is completely determined by a single degree-(2m+2)

polynomial Rp(Xϕ , T )
def
= R(3)p (Xϕ , T ).

ζp(Xϕ , T ) =
Rp(Xϕ , T )

(1− T )(1− pT )h11(1− p2T )h11(1− p3T )
. (3)

This polynomial can be computed explicitly using the periods of the Calabi–Yau manifold.
Roughly speaking, the reason for the relation to the periods is due to the fact that the polyno-
mial Rp(T, Xϕ) can be related to the Frobenius map acting on the third cohomology.

Denote by Frobp the Frobenius map that acts on the coordinates x of the ambient space
Kk by

Kk→ Kk : x = (x1, . . . , xk) 7→ (x
p
1 , . . . , x p

k ) = x p .

Recall that Fermat’s little theorem shows that ap = a mod p for any a ∈ Fp, implying that the
Frobenius map fixes any element of Fp. In fact, since the polynomial x p− x has at most p roots
in any field extension, the elements fixed by the Frobenius map are exactly those in Fp.

If Xϕ is a variety defined over Fp and we study the solutions over the algebraic closure
Fp, Frobp defines a self-map Frobp : Xϕ → Xϕ . To see this, note that, if Xϕ is defined as the
vanishing locus of the polynomial P which has coefficients in Fp, it follows that

P
�

x p
�

= P(x)p = 0 mod p .

Therefore the fixed points of Frobp are exactly those counted in Np(Xϕ) appearing in the
definition of the zeta function.

It turns out that it is possible to define so-called p-adic cohomology theories Hk(Xϕ ,Qp),
such that one can pull back the Frobenius map to get an automorphism

Frp
def
= (Frobp)∗ : Hk(Xϕ ,Qp)→ Hk(Xϕ ,Qp) . (4)

The Hk(Xϕ ,Qp) are finite dimensional vector spaces over the field Qp of p-adic numbers (for
a brief introduction to p-adic numbers, see appendix A and references therein). The Lefschetz
fixed-point theorem can be applied for this cohomology theory, giving a simple relation be-
tween the point counts and the action of Frp:

Npn(ϕ) =
6
∑

m=0

(−1)m Tr
�

Frpn

�

�Hm(Xϕ ,Qp)
�

.

From this formula it can be seen that the characteristic polynomial of the inverse Frobenius
map acting on the middle cohomology H3(Xϕ ,Qp) is exactly the polynomial Rp(Xϕ , T ):

Rp(Xϕ , T ) = det
�

I− T Fr−1
p

�

�H3(Xϕ ,Qp)
�

= det
�

I− TUp(ϕ)
�

, (5)

where Up(ϕ) is a matrix representing the action of Fr−1
p on H3(Xϕ ,Qp).

It is important to note that the field of p-adic numbers has characteristic 0, in contrast to
Fp, which has characteristic p. This is necessary for the Lefschetz fixed-point formula to hold,
as otherwise one would only obtain the correct result mod p, which is not enough to compute
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the full zeta function. To construct p-adic cohomology theories, the variety defined over Fp
needs thus to be lifted to a variety over the p-adic integers Zp, which can be then studied over
Qp (see for instance [23,24]). A key step in constructing the lift is to consider the embedding
of the finite field Fp into Qp given by the Teichmüller lift Teich : Fp ,→ Zp ⊂ Qp (for definitions,
see appendix A). The full construction of a p-adic cohomology theory is an involved process.
However, many of the properties we need to find the action of the Frobenius map are luckily
essentially independent of the choice of the cohomology theory [4]. In practice, this means that
we can perform many of the computations, chiefly the power series expansions of the periods
and their derivatives in a more familiar cohomology, such as the de Rham cohomology, and in
the end interpret the result as power series whose coefficients are p-adic integers. All we have
to do to take lifting into account is that when computing quantities associated to the manifold
Xϕ with ϕ ∈ Fm

p , we must at the end substitute

ϕ 7→ Teich(ϕ) = (Teich(ϕ1), . . . , Teich(ϕm)) .

In [4] an effective practical method for computing the polynomials Rp(Xϕ , T ) for one-
parameter families of Calabi–Yau manifolds was developed. In this paper, we generalise this
method to multiparameter manifolds.

2.2 Mirror symmetry and Calabi–Yau periods

We are interested in families of manifolds parametrised by the complex structure parameters
ϕ, so we wish to find the action of the Frobenius map on families of cohomologies. To do
this efficiently, finding a convenient basis of the third cohomology H3(Xϕ) is a key.1 An ideal
tool for this purpose is Dwork’s deformation theory [25, 26], the idea being to first find the
action of the Frobenius map on a simple manifold, which we take here to be a manifold with
a large complex structure, and then study how the action changes as the complex structure of
the manifold is varied.

Deformations of the complex structure of Calabi–Yau manifolds lie also at the heart of mir-
ror symmetry, which is a conjectural relation that can be used to relate a Calabi–Yau threefold
Xϕ to another threefold eX t , the mirror of Xϕ .2 In particular, this mapping relates the middle
cohomology H3(Xϕ ,C) of Xϕ to the even cohomology H2∗(eX t ,C) of its mirror eX t . This re-
lation, and the universal structures that follow from mirror symmetry considerations, allow
us to find a convenient basis of the middle cohomology for any multiparameter Calabi–Yau
threefold Xϕ in terms of topological data of its mirror eX t . We give here a brief review of the
aspects of mirror symmetry essential for motivating and understanding the construction we
present in §3.

Griffiths transversiality (see for example [16]) implies that differentiating the holomorphic
three-form with respect to the complex structure moduli gives three-forms that are no longer
holomorphic. Rather, by taking enough derivatives, the whole of H3(Xϕ ,C) can be spanned
by the following forms

Ω ∈ H(3,0)(Xϕ ,C) ,

∂ϕiΩ ∈ H(3,0)(Xϕ ,C)⊕H(2,1)(Xϕ ,C) ,

∂ϕi∂ϕ jΩ ∈ H(3,0)(Xϕ ,C)⊕H(2,1)(Xϕ ,C)⊕H(1,2)(Xϕ ,C) ,

∂ϕi∂ϕ j∂ϕkΩ ∈ H(3,0)(Xϕ ,C)⊕H(2,1)(Xϕ ,C)⊕H(1,2)(Xϕ ,C)⊕H(0,3)(Xϕ ,C) .

(6)

1As explained above, the computations we do are essentially valid for both p-adic and Dolbeault cohomology,
and we are free to switch between the two cohomology theories by essentially just taking the field we are working
over to be either that of p-adic or complex numbers. For this reason, when a statement is essentially valid for both
cohomologies or when we are treating the both theories simultaneously, we do not distinguish between the two,
and talk simply about the cohomology H3(Xϕ), leaving the choice unspecified.

2The subscript t here denotes the complexfied Kähler class of eX , which is related to ϕ by the mirror map (11).
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We can therefore always choose a basis for the 2m+ 2-dimensional space H3(Xϕ ,C) among
these derivatives. Any additional derivatives can then be expressed in terms of the basis,
leading to a system of differential equations that Ω satisfies, called the Picard–Fuchs equations.
These can be solved to find Ω in practice.

Picking a basis of 2m+2 functions among the space of solutions to the Picard–Fuchs equa-
tions is equivalent to choosing a particular (constant) basis {va, va} of H3(Xϕ ,C). The holo-
morphic three-form can be expanded as

Ω=
m
∑

a=0

(ϖava −ϖava) . (7)

Equivalently, the three-form Ω can be expressed in terms of a vector of periods ϖa, ϖb:

ϖ=







ϖ0

ϖi

ϖ j
ϖ0






. (8)

We will shortly fix the basis of solutions by imposing boundary conditions on ϖa and ϖb.

2.3 Indicial algebra and the Frobenius basis

The indicial algebra of the Picard–Fuchs equation satisfied by the periods [14,27] is defined by
the relations satisfied by the (co-)homology ring elements εi ,µ

i , and η, viewed as elements of
H2(eX t ,Z), H4(eX t ,Z), and H6(eX t ,Z), respectively, or their homology duals

εiε j = ε jεi , εiε j = Yi jk µ
k , εiε jεk = Yi jk η , εiµ

j = δ j
iη , εiη= 0 , (9)

where Yi jk are the classical triple intersection numbers of eX t , expressed in terms of the gener-
ators ei of the second cohomology H2(eX t ,Z) as

Yi jk =

∫

eX t

ei ∧ e j ∧ ek , ei , e j , ek ∈ H2(eX t ,Z) .

Near a large complex structure point, or equivalently a point of maximal unipotent mon-
odromy, the periods can be extracted as coefficients in the expansion of

ϖ(ϕ,ε) = ϕε f (ϕ,ε)
def
= ϖ0 +ϖiεi +ϖiµ

i +ϖ0η

= f + (ℓi f + f i)εi +
1
2!

�

ℓiℓ j f + 2ℓi f j + f i j
�

Yi jkµ
k

+
1
3!

�

ℓiℓ jℓk f + 3ℓiℓ j f k + 3ℓi f jk + f i jk
�

Yi jkη ,

(10)

where ϕ = (ϕ1, . . . ,ϕm) is a vector of complex structure parameters, and we have used the
shorthand ℓi = logϕi . We have also denoted ∂εi

f = f i , ∂εi
∂ε j

f = f i j , and ∂εi
∂ε j
∂εk

f = f i jk.
The coordinates are chosen so that the large complex structure point is at ϕ = 0 and

f (ϕ,ε) =
∑

k∈Zm
≥0

Ak(ε)ϕ
k ,

is a power series in ϕ and ε with rational coefficients. We also require that the mirror map is
given by the standard expression

t i =
1

2πi
ϖi

ϖ0
. (11)
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In particular, this choice fixes the freedom to rescale the coordinates by rational coefficients,
and it is the choice we will be using throughout the paper. Scaling ϕ by a rational constant
amounts to a non-rational change of basis of H3(Xϕ ,C), which would be reflected in the p-adic
cohomology (see for example the discussion in §4.1). There is a residual freedom correspond-
ing to the choice of the integral basis of H2∗(eX t ,Z). This latter freedom will not affect our
discussion in this paper. In all examples known to us, this choice of scaling makes the coef-
ficients of the series expansion of the fundamental period p-adic integers for all but finitely
many p. However, we are not aware of a theorem guaranteeing this in general.

We also remark that for computational purposes, instead of using f i , f i j , and f i jk, it is
often useful to define the combinations

efi =
1
2!

Yi jk f jk , and ef =
1
3!

Yi jk f i jk , (12)

which naturally enter the logarithm-free quantities we define in (48).
The expansion (10) implicitly fixes the boundary conditions of the Picard–Fuchs equations,

giving us the period vector ϖ in the (arithmetic) Frobenius basis.

ϖ=











f

f i + f ℓi

1
2! Yi jk

�

f jk + 2 f jℓk + f ℓ jℓk
�

1
3! Yi jk

�

f i jk + 3 f i jℓk + 3 f iℓ jℓk + f ℓiℓ jℓk
�











. (13)

We introduce the ‘inverse triple intersection numbers’ bY i jk as a set of constants that satisfy
the relation

Yi jk bY
i js = δs

k . (14)

This does not define the quantities bY i js uniquely. Rather, one can shift bY i js by any Ai js which
is ‘orthogonal’ to the triple intersection numbers, that is

Yi jkAi js = 0 .

When we use the quantities bY i js to form a basis of H3(Xϕ), different choices of the constants
Ai js amount simply to choosing a different basis, which explains the apparent ambiguity. The
freedom to choose these constants can always be used to make bY i js symmetric in the first
two indices, which fixes the antisymmetric part A[i j]s. Otherwise we leave Ai js unspecified
in general, and choose these conveniently on a case-by-case basis. Any ambiguities resulting
from this will not affect the following discussion, and we will always specify the choice we
have made in particular examples.

With the help of bY i jk, the elements µk can be expressed as

µk = bY i jkεiε j .

Arguing as in [7] that the indicial algebra elements can be related to the monodromy matrices
around the loci ϕi = 0, we can find an explicit representation where the indicial algebra
elements are given by

εi =











0 0T 0T 0

δi 0 0 0

0 Yi 0 0

0 0T δT
i 0











, µi =











0 0T 0T 0

0 0 0 0

δi 0 0 0

0 δT
i 0T 0











, η=











0 0T 0T 0

0 0 0 0

0 0 0 0

1 0T 0T 0











. (15)

Here Yi denotes the symmetric m×m matrix whose components are given by the triple inter-
section numbers Yi jk, 1⩽ j, k ⩽ m, 0 is the constant zero matrix, 0 is the constant zero vector
and δi is an m-component vector whose components are given by δi j , 1⩽ j ⩽ m.
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2.4 The integral basis

Choosing a symplectic integral basis αi ,β
i of H3(X ,Z), we can expand the holomorphic three-

form as

Ω= zaαa −Fb(z)β
b , Fb

def
=
∂F(z)
∂ zb

,

where F is the prepotential [16]. We denote by Π the corresponding vector

Π=











Π0

Πi

Π0

Πi











=











∂
∂ z0F
∂
∂ z i F
z0

z i











. (16)

Near a point of maximal unipotent monodromy, we can find a change-of-basis matrix ρ from
the Frobenius basis to the integral symplectic basis by comparing the asymptotics and mon-
odromies of the vectors Π and ϖ. This matrix is given by

ρ =











−1
3 Y000 −

1
2 Y T

00 0T 1

−1
2 Y00 −Y0 −I 0

1 0T 0T 0

0 I 0 0











.

The components of this matrix are as follows: Y0 is an m×m matrix whose components are
(Y0)i j = Y0i j . Requiring that Y0i j ∈ {0, 1/2}, the matrix ρ is uniquely fixed. These con-
stants can be found by requiring that Π has integral monodromy around the point of maximal
unipotent monodromy [14].3 The symbol Y00 denotes the m-component vector whose i’th
component is given by Yi00, 1⩽ i ⩽ m. The constants Yi00 and Y000 are given by

Yi00 = −
1

12

∫

eX t

c2(eX t )∧ ei , Y000 = −3χ(eX t )
ζ(3)
(2πi)3

= +3χ(Xϕ)
ζ(3)
(2πi)3

,

where ei are the generators of H2(eX t ,Z), c2(eX t ) denotes the second Chern class of eX t , and
χ(Xϕ) and χ(eX t ) the Euler characteristics of Xϕ and eX t , respectively.

In writing this, we have separated the diagonal matrix ν, which affects the normalisation
of the periods, giving the transformation between the period vectors ϖ and Òϖ in what were
termed in [1] the arithmetic Frobenius basis and the complex Frobenius basis.

Òϖ= ν−1ϖ . (17)

The relation between the vectors in the Frobenius and integral bases is given by

Π= ρν−1ϖ , with ν= diag
�

1,2πi1, (2πi)2 1, (2πi)3
�

. (18)

2.5 Relation between the rational and Frobenius bases

Let us return to the first of eqns. (10) and rewrite this in the form

ϖ(ϕ,ε) =ϖ0(I− γη) +ϖiεi +ϖiµ
i + (ϖ0 + γϖ

0)η ,

= (I− γη)
�

ϖ0 +ϖiεi +ϖiµ
i + eϖ0η
�

,
(19)

3The constants Y0i j are conjecturally given by Y0i j = −
1
2 Yii j mod Z [28].
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where, in the last relation, we have written

eϖ0 =ϖ0 + γϖ
0 .

We can gather the periods, in this new basis, into a vector similar to that in (8):

eϖ=









ϖ0

ϖi

ϖ j

eϖ0









.

Abusing notation, we may write

(I+ γη)ϖ= eϖ , or equivalently ϖ= (I− γη) eϖ .

The abuse of notation is that, in this relation we may think of ϖ and eϖ as either vectors or
matrices. In either case, 1∓ γη is a matrix, with η as in (15).

In the above, the quantity γ has appeared as an arbitrary parameter. We now choose

γ= χ(eX t )ζ(3) . (20)

The virtue of this choice is that I + γη is now a matrix that converts the complex Frobenius
basis to a rational basis, as we see by the following relations

Π= ρ̃ ν−1
eϖ , where ρ = ρ̃

�

I+χ(eX t )
ζ(3)
(2πi)3

η

�

.

The matrix ρ̃ has the same form as the matrix ρ apart from the element −Y000/3, which is
replaced by zero:

ρ̃ =











0 −1
2 Y T

00 0T 1

−1
2 Y00 −Y0 −I 0

1 0T 0T 0

0 I 0 0











.

Thus ρ̃ is a matrix with rational entries and ν−1
eϖ is a rational basis of periods.

The matrix
�

I−χ(eX t )
ζ(3)
(2πi)3 η
�

has an interesting relation to the Todd and Γ -classes (see
[29–34]). To see this, we set

Td(z) =
z

1− e−z
,

and note the identity
Γ
�

1+ z
2πi

�

p

Td(z)
= eiΞ(z)−z/4 , (21)

with

Ξ(z) = γE
z

2π
+ i
∞
∑

k=1

ζ(2k+ 1)
2k+ 1

� z
2πi

�2k+1
,

and γE is Euler’s constant. We are interested in multiplicative characteristic classes based on
Td(z) and Γ
�

1+ z
2πi

�

. To proceed, we replace z, in the identity (21), by eΘ, the curvature matrix
of eX t . We denote the eigenvalues of eΘ by λk, k=1,2, 3 and the m’th symmetric polynomial in
the λk by σm. The curvature matrix is a matrix-valued two-form, so the λk are two forms and
σm is a 2m-form.
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We have

3
∏

k=1

eiΞ(λk)−
1
4λk = exp

¨

−σ1

�

γE

2πi
+

1
4

�

−
ζ(3)

3(2πi)3
∑

k

λ3
k

«

= I−χ(eX t )
ζ(3)
(2πi)3

η ,

where, in passing to the second expression we have used the fact that σ1 is the first Chern
class and so vanishes, together with the fact that

∑

k

λ3
k = σ

3
1 − 3σ1σ2 + 3σ3 = 3χ(eX t )η ,

when σ1=0.
Thus we have shown that

bΓ
eX t
Ç

cTd
eX t

= I−χ(eX t )
ζ(3)
(2πi)3

η , (22)

where bΓ
eX t

and cTd
eX t

denote the multiplicative characteristic classes.
We will later be interested in the p-adic Γ -class and in relation to this we make a comment

on the identity (21). This follows from a standard identity for the Γ -function, which we can
write in the form

Γ
�

1+
z

2πi

�

= exp

¨

−γE
z

2πi
+
∞
∑

n=2

(−1)n
ζ(n)

n

� z
2πi

�n
«

. (23)

Now, recalling the reflection formula for the Γ -function,we have

Td(z)e−
z
2 =

z/2
sinh(z/2)

= Γ
�

1+
z

2πi

�

Γ
�

1−
z

2πi

�

.

If we use the identity (23) to replace the product of Γ -functions, and observe that the ζ-
functions of odd argument cancel, and then take a square root, we see that

Æ

Td(z)e−z/4 = exp

¨∞
∑

n=1

ζ(2n)
2n

� z
2πi

�2n
«

. (24)

From (23) and (24) we have

Γ
�

1+ z
2πi

�

p

Td(z)e−
z
4
= exp

¨

−γE
z

2πi
−
∞
∑

k=1

ζ(2k+ 1)
2k+ 1

� z
2πi

�2k+1
«

, (25)

from which we recover (21). Now, in p-adic analysis it is possible to define p-adic analogues
of the Γ - and ζ-functions. It is interesting that these are related by a relation analogous to (23)

Γp(z) = exp

�

−Γ ′p (1) z −
∞
∑

k=1

ζp(2k+ 1)

2k+ 1
z2k+1

�

, (26)

in which Γ ′p (1) is the p-adic analogue of γE=Γ ′(1). The ζ function terms with even argument
are missing because, for the p-adic case, we have

ζp(2n) = 0 , for n= 1, 2,3 . . .
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The surprise is that the right hand side of (26) is equally analogous to the right hand side of
(25). While we do not have a complete understanding of this, it is easily checked that there is
no difference, in the complex context, between integrating

bΓ
eX t

, and
bΓ
eX t
Ç

cTd
eX t

, (27)

over a Calabi-Yau threefold. Therefore, for threefolds, the Frobenius and rational bases are
related by

eϖ= bΓ−1
eX t
ϖ . (28)

We note that we will see in §3.4 that an analogous relation is true also in the p-adic context.

3 The local zeta functions of generic threefolds

3.1 The Frobenius map

To compute the zeta function of a Calabi–Yau threefold Xϕ , we use the methods of [1], which
build on the work of Dwork and Lauder [19,35,36]. This approach is based on finding explicitly
the matrix Fp(ϕ) (or its inverse Up(ϕ)) representing the action of the Frobenius map defined
in (4) on the middle cohomology. This is done by first finding the matrix Up(ϕ0) for a manifold
Xϕ0

for a simple manifold where the expressions can be relatively easily computed. We are
hoping to find a universal expression for the initial value Up(ϕ0), depending at most on some
manifold-specific constants. From the theory of mirror symmetry, we know that such universal
expressions exist for the form of the periods near the large complex structure points, which
motivates taking the large complex structure point ϕ = 0 as the initial point. By studying how
the matrix Up(ϕ) changes as we move in the complex structure moduli space, we are able to
find an explicit expression for the matrices Up(ϕ) at other points in the moduli space. Then
the relation (5) between the Frobenius map and the zeta function numerator Rp(Xϕ , T ) can
be used to arrive at the final result.

Description of this method necessarily gets at times rather technical. For this reason, we
have included analogous derivation of the zeta function of a family of elliptic curves in ap-
pendix B that illustrates the techniques employed here in a simpler setting. We encourage the
reader to consult the appendix B alongside reading this section.

We can view the Frobenius map as acting on a vector bundle H, whose base is the com-
plex structure moduli space MCS of the family Xϕ of Calabi–Yau manifolds. The fibre over a
point ϕ ∈MCS is the middle cohomology group H3(Xϕ) of the manifold Xϕ whose complex
structure corresponds to the point ϕ in the moduli space.

The action of the Frobenius map on this bundle can be defined by
�

ϕ, H3(Xϕ)
�

7→
�

Frobpn(ϕ), Frpn H3(Xϕ)
�

=
�

ϕpn
, Frpn H3(Xϕ)
�

, (29)

where Frpn denotes the map H3(Xϕ)→ H3(Xϕpn ), induced by the action Frobpn : Xϕ → Xϕpn .

H3(Xϕ) H

MCS

π

Figure 1: The vector bundle H.
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There is also the canonical Gauss–Manin connection,

∇ : Γ (MCS , H3(Xϕ))→ Γ (MCS , H3(Xϕ)⊗ T ∗MCS) ,

on H. It will be enough to consider the covariant derivatives along the vector fields given
by the logarithmic derivatives θi = ϕi∂ϕi (no sum implied). We denote the corresponding
covariant derivatives by

∇i
def
= ∇θi

: Γ (MCS , H3(Xϕ))→ Γ (MCS , H3(Xϕ)) . (30)

The Frobenius map and these derivatives satisfy a compatibility relation, as well as Leibniz rule
and linearity relation. For any section v ∈ Γ (MCS , H3(Xϕ)) and any function f : MCS → C
on the moduli space, the following relations hold

p Frp(∇i v) = ∇i(Frp v) ,

∇i ( f (ϕ)v) = (θi f )(ϕ) v + f (ϕ)∇i v ,

Fr ( f (ϕ)v) = f (ϕp)Fr(v) .
(31)

In addition, there is also a useful consistency condition of the Frobenius map with the inter-
section product H3(Xϕ)× H3(Xϕ)→ H6(Xϕ), which can be identified with the one given by
the wedge product

∫

X
Frξ∧ Frη= p3 Fr

∫

X
ξ∧η . (32)

Following [1], we wish to formulate these conditions explicitly as matrix equations on the
matrices Fp(ϕ) and B(ϕ) corresponding to the Frobenius map and the Gauss–Manin connec-
tion, respectively. However, note that at a generic point in the moduli space, ϕpn

̸= ϕ. This
implies that the action (29) of the Frobenius map Frpn cannot be reduced, in a natural way,
to an action on the middle cohomology as the fibre is not kept fixed under ϕ 7→ ϕpn

. Instead,
the Frobenius map can be viewed as a map between distinct fibres Frpn : Hϕ →Hϕpn . Never-
theless, at fixed points of Frp, that is, at the Teichmüller representatives Teich(ϕ) of integral
vectors ϕ ∈ Fm

p , it is indeed possible to identify the action of Frpn on the middle cohomology

H3(XTeich(ϕ)). We denote the matrix describing this action, in the basis defined by (33) below,
by Fp(ϕ). The Teichmüller representatives Teich(ϕ) provide a natural embedding of Fm

p to
Qm

p . Hence we can identify XTeich(ϕ) with the manifold Xϕ/Fp defined over the finite field Fp.
In [1] it was noted that the solutions to the conditions laid out above turn out to be express-
ible in terms of solutions to Picard–Fuchs equations. In the remaining of this section, we will
generalise this observation to the multiparameter case.

The first step of this process is finding a convenient basis of sections of H in which the iden-
tities we use to constrain the form of Up(ϕ) becomes tractable. Unlike in the one-parameter
case, there is no clear canonical basis, and our choice is simply guided by the observation that
our choice reduces to that used in [1] in the one-parameter case4 and the fact that we find a
simple expression for the matrix Up(0) in terms of the matrices εi ,µ

i and η.
After the basis of sections is chosen, we can express the relations (31) and (32) as matrix

equations. These imply that the matrix Up(ϕ) can be expressed in terms a constant initial
value matrix, which we take to be the matrix Up(0) giving the Frobenius action at the large
complex structure point, together with the change-of-basis matrix from the constant basis 〈va〉
to the basis given by the sections we chose.

Using these relations in the large complex structure limit allows us to fix the initial matrix
Up(0), and thus the matrix Up(ϕ) up to a set of (prime-dependent) constants α1

p, . . . ,αh1,2

p ,

4The normalisation of periods used in [1] differs slightly from ours by factors of Y111 and factorials.
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ϕ

ϕp

Teich(n) = Teich(n)p

H3(XTeich(n))

Frp

Frp
H3(Xϕ)

H3(Xϕp)

Figure 2: A heuristic sketch of the complex structure moduli space MCS . Each point
ϕ in the moduli space correspond to a Calabi–Yau manifold Xϕ . The fibre above each
point is the middle cohomology group H3(Xϕ) of the corresponding manifold. The
dashed circle represents the p-adic unit disk ||x ||p < 1, with 1 also being the radius
of convergence of the power series appearing in the expansions of the periods and
their derivatives (the logarithms appearing in the periods drop out of the expression
for the matrix Up(ϕ)). At a generic point ϕ, the Frobenius map Frp acts between
two distinct fibres H3(Xϕ) and H3(Xϕp), which in particular implies that the matrix
Up(ϕ) is not well-defined. At Teichmüller representatives Teich(n) of integral points
n ∈ Zm the fibres coincide, and the matrix Up(ϕ) is well-defined. The Teichmüller
representatives lie at the boundary of the p-adic unit disk, where the period series
do not converge, but the matrix Up(ϕ) does.

and γp. These can be fixed by requiring that Up(ϕ) mod pn can be expressed as a matrix
of rational functions, as this turns out to single out unique values for the constants. We find
that in all of the cases we have studied, it is possible to express these in terms of the Iwasawa
logarithm and the p-adic zeta function (see appendix A for brief definitions).

In addition to these core ideas, we also briefly discuss certain properties of the matrices
and the local zeta functions can be used to speed up the practical evaluation of the matrix
Up(ϕ). This is especially important in the multiparameter case, as evaluating the matrix in-
volves computing products of matrices whose entries are multiparameter series, which is highly
demanding computationally.

3.2 A basis of sections and the Gauss–Manin connection

To study the Frobenius map using the deformation methods, it is important to understand
how it varies as we move in the complex structure moduli space MCS . To do this, we find a
convenient basis of sections of the vector bundle H. A natural choice of sections is given by
the holomorphic 3-form Ω together with a suitable set of its logarithmic derivatives. Since we
are computing the zeta functions by using the deformation method around the large complex
structure limit ϕ→ 0, it is important that this choice is made so that the Frobenius map in the
given basis is regular in the large complex structure limit.

Even with this condition, the choice of the basis is not unique. We make a particular choice
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which leads to a simple expression for the matrix Up(0). However, other choices exist. These
simply amounts to a change of basis. Indeed, often there does not exist a single convenient
choice of basis of sections such that the corresponding set of vectors in H3(Xϕ,C) would be
linearly independent for every value of ϕ ∈MCS corresponding to a non-singular manifold.
The points where the values of the chosen sections become linearly dependent are called, in
analogy with [1], apparent singularities. Studying the zeta functions at the apparent singular-
ities requires a choosing a different basis. These are discussed further in §3.5 and examples
given in §4.3.

We choose a set of sections given by

Ω , θiΩ , bY jkiθ jθkΩ , bY i jkθiθ jθkΩ . (33)

It is useful to gather the combinations of derivatives appearing here into a vector

(ϑ0,ϑi ,ϑ
i ,ϑ0)

def
=

�

1,θi , bY
jkiθ jθk,
bY i jk

m
θiθ jθk

�

. (34)

Let us denote by E(ϕ) the change-of-basis matrix from the constant basis {va, va} to this basis
{ϑaΩ,ϑaΩ}, which we call the derivative basis.5 The components of this matrix are

E(ϕ) b
a =

�

ϑaϖ
b ϑaϖb

ϑaϖb ϑaϖb

�

. (35)

To see that the basis vectors {ϑaΩ,ϑaΩ} are indeed linearly independent in the large complex
structure limit, it is enough to note that the asymptotic form of E(ϕ) in the large complex
structure limit, ϕ→ 0, is not singular. In fact, it is given by

E(ϕ) =











1 0T 0T 0

ℓ I 0 0
1
2! ℓ

T Yiℓ ℓiYi I 0
1
6! Yi jkℓ

iℓ jℓk 1
2! ℓ

T Yiℓ ℓ 1











+O(ϕ log3ϕ) = ϕε +O(ϕ log3ϕ) . (36)

Since the basis corresponding to E(ϕ) spans the third cohomology at a generic point ϕ, the
logarithmic derivatives of E(ϕ) can be written in terms of the connection matrices Bi(ϕ) of
the Gauss–Manin connection

(θiE)(ϕ) = E(ϕ)Bi(ϕ) ,

which is the first-order form of the Picard–Fuchs equations for the family. This relation could
also be used to explicitly identify the matrices Bi , although these are not required for the
purposes of computing the zeta function. Instead, only the asymptotic form of the matrices
Bi(ϕ) in the large complex structure limit is needed, and this can be found by studying the
asymptotic form of θi E(ϕ).

θiE(ϕ) ∼











0 0 0 0

δi 0 0 0

ℓT Yi j Yi 0 0
1
2!ℓ

T Yiℓ Y T
i j ℓ δi 0











= ϕεεi .

Comparing this to the asymptotics of E(ϕ), we deduce that

Bi(0) = εi . (37)
5This change of basis is required to have the Frobenius map take the simple form we use in this paper.
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3.3 The identities satisfied by the matrix Up(ϕ)

The identities (31), using an argument completely analogous to the one-parameter case [1],
imply the following differential equation for the matrix of the Frobenius action6

θi(Fp)(ϕ) = p Fp(ϕ)Bi(ϕ
p)− Bi(ϕ)Fp(ϕ) . (38)

The solution to these equations are given by

Fp(ϕ) = E−1(ϕ)Gp(0)E(ϕ
p) ,

where Gp(0) is a fixed initial value. In terms of the inverse matrix Up(ϕ) this reads

Up(ϕ) = E−1(ϕp)Vp(0)E(ϕ) , (39)

where Vp(0) is the matrix determining the inital value Up(0).
Note that E(0) ̸= I. In fact, E(0) is not even defined owing to the presence of logarithms

in E(ϕ). So it is not a priori clear that the matrix Up(0) exists or coincides with Vp(0). We
will see presently that the logarithms in E(ϕ) that are problematic cancel between E(ϕ) and
E(ϕp)−1, at least in the case of threefolds, so Vp(0) = Up(0). However, already in the case of
fourfolds there are numerous examples for which Vp(0) ̸= Up(0) (see for example [10]).

The symplectic product in (32) is given in the constant Frobenius basis 〈va, va〉 where the
period vector is given by ϖ, by the matrix

σ = ν−1ρTΣρν−1 =
1

(2πi)3











0 0T 0T −1

0 0 I 0

0 − I 0 0

1 0T 0T 0











,

where Σ denotes the matrix giving the symplectic product in the symplectic integral basis

Σ=











0 0T 1 0T

0 0 0 I

−1 0T 0 0T

0 −I 0 0











.

The compatibility condition (32) is then written in matrix form as

Vp(0)σVp(0)
T = p3σ . (40)

We emphasise that this condition is indeed in principle imposed on Vp(0) and not on Up(0), as
it is Vp(0) that gives the action of the Frobenius map in the constant Frobenius basis, whereas
Up(0) gives the action in the derivative basis {ϑaΩ,ϑaΩ}. In practice, for threefolds this dif-
ference does not matter as the matrices Up(0) and Vp(0) are equal.

3.4 The large complex structure limit of the Frobenius map

Taking the limit ϕ→ 0 of (38), one obtains the following relations that constrain the form of
the matrix Up(0)

p εiUp(0) = Up(0)εi , i = 1, . . . , m . (41)

6Note that here Bi(ϕp) denotes the matrix Frp(Bi(ϕ)) = Bi(ϕ)|ϕ→ϕp , i.e. the connection matrix at ϕ, where we
have substitutedϕp forϕ. This matrix agrees with the connection matrix atϕp, which is why we do not distinguish
between these two matrices.
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As shown in detail in appendix C, the most general solution to these conditions can be written
in a convenient form as

Up(0) = upΛp

�

I+αi
p εi + β

(p)
i µi + bγp η
�

,

Λp = diag(1, p 1, p2 1, p3) , bγp = γp +
1
3!

Yi jkα
i
pα

j
pα

k
p ,

(42)

where αi
p,β (p)i and γp are prime-dependent constants we will fix later. The reason for defining

the coefficients γp and bγp in this way is so that we are able to use γ to obtain a simple form
(43) later, while bγp is often more convenient for numerical computations. The commutation
relation (41) also implies that Vp(0) = Up(0), as recalling (36), we can write

Up(0) = lim
ϕ→0

ϕ−pεVp(0)ϕ
ε = Vp(0) ,

where, in the last step, we have used the commutation relation (41).
The compatibility condition (40) is equivalent to the conditions

u2
p = 1 , β

(p)
i =

1
2

Yi jkα
j
pα

k
p .

With this result, the matrix Up(0) can be written in even more compact form as

Up(0) = upΛpeα
i
pεi (I+ γpη) . (43)

In the one-parameter case of [1] it was conjectured, supported with extensive numerical evi-
dence that the correct solution is obtained by imposing (in the basis we are using)

up = 1 , αi
p = 0 , γp = χ(eX t )ζp(3) . (44)

Strictly speaking, up = 1 is a particular choice which we conjecture to correspond to a manifold
defined over Q that is isomorphic to Xϕ over C. By choosing different, prime-dependent values
up = ±1, one can obtain zeta functions corresponding to varieties that are isomorphic over C
but not necessarily over Q. Such varieties are called twists of the original variety (see appendix
B.1 for an example).

We find that when using the basis of sections defined in (33) and the coordinates specified
in §2.3, this result also applies in every multiparameter case we have studied. However, in
different bases or using different coordinates, non-zero values of αi

p can arise. We discuss this
in more detail in the context of a specific example in section 4.1. The appearance of the p-adic
zeta function values among these coefficients has also been proved in certain cases [37].

If we assume the above expression (44) for γp, it is perhaps interesting that, as first noted
for one-parameter cases in [38], by using the Γ -class computation from §2.5, the matrix I−γpη

can be expressed as

I− γpη=
3
∏

k=1

Γp (λk)
def
= bΓp , (45)

where λk are defined as in §2.5. Notice that if we interpret the equations (22) and (19) in the
p-adic context, then the above relation (45) provides us with the p-adic analogue of (22), and
we also have the analogue of the relation (28). Note also that from (43) and (44), together
with the relation (45), it follows that we can write

Up(0) = upΛpeα
i
pεi
bΓ−1

p . (46)

19

https://scipost.org
https://scipost.org/SciPostPhys.20.2.028


SciPost Phys. 20, 028 (2026)

3.5 Fixing the constants and the form of the matrix Up(ϕ)

The matrix Up(ϕ) = E−1(ϕp)Up(0)E(ϕ) is naturally expressed as a matrix of p-adically con-
vergent series in variables ϕ. However, the series converge only slowly, so it is useful to
note [35, 36] that Up(ϕ) can conjecturally be expressed in terms of rational functions. To be
specific, expanding the matrix Up(ϕ) as p-adic series, we can conjecturally write it as

Up(ϕ) =
U (0)p (ϕ)

S0(ϕp)
+
U (1)p (ϕ)

S1(ϕp)
p+

U (2)p (ϕ)

S2(ϕp)
p2 + . . . , (47)

where U (n)p (ϕ) are matrices the entries of which are polynomials in ϕ whose coefficients are
p-adic units. The Sn(ϕ), in this context, are polynomials in ϕ.

This form also turns out to be the key to showing that the constants αi
p and γp indeed take

the form (44). This is due to the fact that, at least in every case we have studied, the matrix
Up(ϕ) takes the rational form above for only one set of values of αi

p and γp. We conjecture
that these values of the constant give the correct local zeta functions. This is corroborated
by the examples we have studied, and further by the fact that in the one-parameter case this
technique reproduces the conjectural values obtained in [1].

To show that the matrices Up(ϕ) take this form, we first show that the logarithms appearing
in the periods and their derivatives appearing in the matrix E(ϕ) cancel. A straightforward
but lengthy computation shows that

E(ϕ) = ϕεeE(ϕ) ,

where the logarithm-free change-of-basis matrix eE(ϕ) is defined as the matrix we obtain by
formally setting the logarithms to zero in the matrix E(ϕ), after evaluating the derivatives
appearing in the definition of this matrix.

eE(ϕ)
def
= E(ϕ)
�

�

log(ϕi)7→0 . (48)

This is a matrix of power series in ϕ, whose columns are given by the logarithm-free period
vectors
ßϑaϖ(ϕ)

def
= (ϑaϖ)(ϕ)|logϕi 7→0 , ßϑaϖ(ϕ)

def
= (ϑaϖ)(ϕ)|logϕi 7→0 , (49)

where the derivatives are first evaluated before setting logϕi 7→ 0.
Recalling (39), the matrix Up(ϕ) can be expressed as

Up(ϕ) = eE(ϕ
p)−1ϕ−pεUp(0)ϕ

ε
eE(ϕ) . (50)

Using the commutation relation (41) it then immediately follows that ϕ−pεUp(0) = Up(0)ϕ−ε,
which means that we can in fact express the matrix Up(ϕ) manifestly as a matrix of power
series in ϕ by writing it in terms of eE(ϕ) as

Up(ϕ) = eE(ϕ
p)−1Up(0)eE(ϕ) . (51)

In all cases we have studied, the polynomial Sn(ϕ) that gives the denominator of Up(ϕ)
mod pn, takes the form

Sn(ϕ) =∆(ϕ)
n−4Y(ϕ)n−2W(ϕ) , (52)

where ∆(ϕ) gives the (hyper) conifold locus of the family of Calabi–Yau manifolds we are
studying and W(ϕ) the denominator of the matrix W−1(ϕ) which we will introduce in (53)).
This factor contains the apparent singularities. The factor Y(ϕ) represents additional factors
in the discriminant that do not correspond to the (hyper) conifold locus nor to the divisors
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whose intersections give the large complex structure points. This factor contains, for instance,
the K-points. Note that, somewhat curiously, when n≤ 4, the conifold discriminant∆(ϕ) does
not appear in the denominator, and Up(ϕ) is well-defined even when ∆(ϕ) = 0. This fact can
be exploited to find the zeta function numerator even at the conifold loci, at least for one- and
two-parameter manifolds. We will explore this in more detail in connection with the example
of the mirror octic manifold in §4.1.

Even though for a large number of cases the denominator is of the form (52), it is known
that there are cases of (one-parameter) differential operators of Calabi–Yau type (see [39]
for the definition of this notion and examples of such operators) for which the denominator
of the corresponding matrix Up(ϕ) takes on a slightly more general form. This can include,
for instance, square roots of polynomials. We expect such cases to rise in connection with
multiparameter Picard–Fuchs operators as well, although we are not aware precisely when
such cases should arise, or if there is a ‘niceness’ criterion that can be used to eliminate such
examples.

Note that the form (47) is not well-defined when Sn(ϕ) = 0 mod p. In particular,
if one tries to compute the polynomial Rp(Xϕ , T ) using the method described above, one
would find that the expression does not in general converge. At the points that satisfy
∆(ϕ)Y(ϕ) = 0 mod p this is due to the fact that at such points the manifold Xϕ/Fp is singular.
Therefore, our assumptions which require that the manifold is a smooth Calabi–Yau threefold
no longer hold. However, at the points where the discriminant does not vanish mod p, but
W(ϕ) = 0 mod p, the manifold is smooth, and the zeta function can in principle be computed
using the methods outlined above. At these the non-convergence is due to the fact that the set
of sections (33) that we have chosen are not all linearly independent at such a point, and thus
do not form a basis. Thus the convergence can be restored at these points by simply choosing
a different set of sections. In the multiparameter case, this is often most conveniently done by
choosing a different set of the ‘inverse’ triple intersection numbers bYi jk, as we will illustrate in
§4.3.

3.6 Evaluating the matrix Up(ϕ)

As remarked earlier, the action of the Frobenius map Frpn is properly defined on a p-adic
cohomology theory, the construction of which involves ‘lifting’ the variety Xϕ/Fp to a variety
defined over the p-adic integers. The matrix Up(ϕ) should then be thought of as a matrix of
power series with coefficients p-adic numbers in Qp. To evaluate it for values ϕ ∈ Fm

p , we
need to use their Teichmüller representatives Teich(ϕ) ∈ Zm

p , and evaluate the matrix Up(ϕ)
at these points.

This gives rise to an additional subtlety: for the Teichmüller representativesϕp = ϕ, which
seems to imply that Up(ϕ) is a conjugate of a constant matrix. However, this would imply that
the characteristic polynomial Rp(Xϕ , T ) does not vary when we move in the moduli space,
which we know to be incorrect. The problem with substituting the Teichmüller representatives
directly in the matrix E(ϕp)−1 lies in the fact that the matrix only converges inside the disk
||ϕi||p < 1, but the Teichmüller representatives (apart from 0) have ||ϕi||p = 1.

The correct way to proceed is that we must evaluate the product of matrices as power
series in ϕ first, that is, for small ϕ. This gives us a matrix Up(ϕ) that, owing to cancellations,
converges in a larger region containing all ϕ ∈ Qm

p with ||ϕi||p ≤ 1. In this way, we have
performed p-adic analytic continuation to a region containing the Teichmüller representatives,
for which ||ϕi||p = 1. While the resulting series converge, they do so only slowly. This slow
convergence is improved by noting that, as we have seen in (47), to a specific p-adic accuracy
the series in Up(ϕ) can be summed to obtain a rational matrix.
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3.7 Fast inversion of E(ϕ)

To compute the matrix Up(ϕ) to high accuracy in practice, we need an efficient way of invert-
ing the matrix E(ϕ). A practical method of doing this is given in [40].7 Using the Griffiths
transversiality relations (6) and the Picard–Fuchs equations, it is straightforward to show that
the inner products

(ϑaΩ,ϑbΩ) =

∫

X
ϑaΩ∧ ϑbΩ , (ϑaΩ,ϑbΩ) =

∫

X
ϑaΩ∧ ϑbΩ , and (ϑaΩ,ϑbΩ) =

∫

X
ϑaΩ∧ ϑbΩ ,

satisfy a differential equations whose solutions are rational functions. These products are the
components of the matrix

W(ϕ)
def
= E(ϕ)TσE(ϕ) . (53)

Using this matrix, the inverse matrix E−1(ϕ) can be expressed as

E−1(ϕ) =
�

σE(ϕ)W−1(ϕ)
�T

.

This is convenient to compute in practice because, as a matrix of rational functions, W(ϕ) is
easy to invert.

3.8 Constraints from the Weyl conjectures

The functional equation (2) satisfied by the zeta function of a Calabi–Yau threefold implies
that its numerator Rp(Xϕ , T ) satisfies the following functional equation:

Rp(Xϕ , T ) = p3(h12+1) T2(h12+1)Rp

�

Xϕ , p−3T−1
�

.

Writing the polynomial Rp(Xϕ , T ) as

Rp(Xϕ , T ) = 1+
b3
∑

i=1

ai T
i ,

this relation halves the number of independent parameters ai , imposing the following relations
among the coefficients

a2(h12+1)−i = p3(h12+1−i)ai , a2(h12+1) = p3(h12+1) . (54)

Our aim is to fix the remaining independent coefficients by using the relation (5) between
the zeta function and the inverse Frobenius map acting on the third cohomology, which fully
determines the zeta function of a Calabi–Yau threefold. The relation (5) could in principle
be used directly to compute the zeta function numerator. However, in practice, finding the
determinant of a matrix whose entries are multivariate series is computationally very taxing.
In addition, these results would necessarily only give the coefficients ai up to certain p-adic
accuracy. To resolve the first issue, it is more convenient to be able to express the indepen-
dent coefficients ai as traces of powers of Up(ϕ). To address the second, using the Riemann
hypothesis, we can derive bounds for the norms of ai . This allows us to fix a p-adic accuracy
to which the series need to be computed in order to obtain exact results for the ai . This is
also a crucial piece of information needed to accelerate convergence of the series in Up(ϕ), as
only when working with a fixed p-adic accuracy and ignoring any coefficients of higher p-adic
order, will we find that the a priori infinite series appearing as elements of Up(ϕ) are actually

7The basic idea of this method originates in unpublished work of Duco van Straten, and the details and the
practical procedure were worked out in Thorne’s thesis [40].
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rational functions with Up(ϕ) taking the form (47), which allows computing its values exactly
to a given p-adic accuracy.

It is possible to find the coefficients of the characteristic polynomial by considering the
following standard identities

det
�

I− TUp(ϕ)
�

= exp
�

Tr log
�

I− TUp(ϕ)
�

�

= exp

�

−
∞
∑

n=1

T n

n
Tr
�

Up(ϕ)
n
�

�

.

Expanding this in powers of T gives each coefficient ai as a function of traces of powers of
Up(ϕ). The entries of Up(ϕ) are series in ϕ, and ϕ should be evaluated at the Teichmüller
lifts Teich(ϕ) = (Teich(ϕ1), . . . , Teich(ϕm)).

It is implicit in the Weil conjectures that the p-adic integers ai are also rational integers.
This being so we can bound them in the following way: By the Riemann hypothesis, if we
diagonalise the matrix Up(ϕ), the eigenvalues will be algebraic integers λ j of absolute value
|λ j| = p3/2. The coefficients of the characteristic polynomial Rp(Xϕ , T ) can be expressed as
symmetric polynomials of these eigenvalues.

ai = (−1)i σi(λ1, . . . ,λ2m+2) ,

where σi is the i’th elementary symmetric polynomial, and no sum over i is implied. From
the Riemann hypothesis it immediately follows that every monomial in σi has an absolute
value of p3i/2, whereas the number of monomials is

�2m+2
i

�

. This gives a simple bound on the
magnitude of the constant ai

|ai|<
�

2m+ 2
i

�

p3i/2 . (55)

Thus, if we are interested in computing ai , we only need to compute it modulo pn, where n is
an integer such that

�2m+2
i

�

p3i/2 ≤ pn. This gives the p-adic accuracy n mentioned in §3.5 to
which we need to know Up(ϕ).

4 Examples

To illustrate the methods developed here in concrete cases, we study three different fami-
lies of multiparameter Calabi–Yau manifolds: the two-parameter mirror manifold of the octic
hypersurface in the weighted projective space P(1,1,2,2,2), the S5 symmetric members of the
five-parameter family of mirror Hulek–Verrill manifolds, and the non-symmetric split of the
quintic threefold corresponding to the configuration matrix

P1

P4

�

1 1
4 1

�

.

The first two examples act as checks of the methods presented here, as the zeta functions of
these geometries have been studied using entirely different methods in [2,3].

In [3], Gauss sums were used to compute the zeta functions of the mirror octic manifold.
Compared to the method presented in this paper, this technique benefits from more unified and
simple treatment of singularities. However, as a drawback, it is computationally heavy, which
is why we are able to easily extend the results of [3] to greater primes. For the five-parameter
family of Hulek–Verrill manifolds, the number of points on the manifolds over the finite fields
Fp was computed explicitly in [2]. This gives a simple closed-form formula, which can be used
to compute the zeta function numerator, at least assuming the factorisation (66). However,
this method relies on detailed knowledge of the toric geometry of the manifold, whereas the
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knowledge of the periods and the discriminant is enough for our method. In addition, it is not
completely straightforward to generalise the direct counting technique for manifolds outside
of the S5 symmetric manifolds, where the factorisation (66) no longer holds, and thus point
counting over finite fields Fpn for n> 1 is needed.

Treating these three examples also requires use of different strategies due to the compu-
tational complexity of various matrices involved, and the p-adic accuracy required to obtain
exact results numerically. It is possible to study the two-parameter examples by expanding the
periods as series in two parameters, which makes it easy to obtain results for any values of
the parameters. However, for a larger number of parameters this becomes quickly computa-
tionally too cumbersome to be practical. These cases can be treated by studying lines inside
of the multiparameter moduli space. This allows expressing the periods and their derivatives
as series in one parameter, greatly reducing the computational complexity of the problem. By
considering a suitable line, it is in principle possible to obtain the zeta function at any point in
this way.

4.1 A two-parameter example: The mirror octic

We begin with a study of the mirror octic. Mirror symmetry for this manifold has been studied
in detail in [41], and the zeta function has been computed in some cases in [3]. This allows
us to make highly non-trivial checks of the method presented above by comparing the results
to those obtained in [3].

The family of octic Calabi–Yau manifolds is given by resolving the singularities of varieties
defined as degree-8 hypersurfaces in the weighted projective space P(1,1,2,2,2).

The Hodge diamond of the family of octics is given by

hp,q =

1
0 0

0 2 0
1 86 86 1

0 2 0
0 0

1

.

Thus the mirror of this family gives a two-parameter model. These manifolds have been explic-
itly constructed in [41], where they were identified with the manifolds given by {P = 0}/Z3

4
with

P = x8
1 + x8

2 + x4
3 + x4

4 + x4
5 − 2φx4

1 x4
2 − 8ψx1 x2 x3 x4 x5 = 0 ,

and with the group Z3
4 is realised as the group with generators

(s1, s2, s3, s4, s5) = (0,3, 1,0, 0), (0, 3,0, 1,0), (0,3, 0,0, 1) ,

which act on the coordinates as

(x1, x2, x3, x4, x5) 7→ (αs1 x1,αs2 x2,αs3 x3,αs4 x4,αs5 x5) ,

with α a non-trivial eight root of unity.
The complex structure moduli space MCS of mirror octics can be identified as

MCS = Spec
�

C[bx , by ,bz]
〈bxbz − by2〉

�

,

where the coordinates bx , by , and bz can be related to ψ and φ by

bx =ψ8 , by =ψ4φ , bz = φ2 .
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The natural coordinates to use near the large complex structure point are

ϕ1
def
=

1
22φ2

, ϕ2
def
= −

φ

211ψ4
, (56)

in terms of which the large complex structure point is located as ϕ1 = ϕ2 = 0.
The independent triple intersection numbers Yi jk are given by

Y111 = 0 , Y112 = 0 , Y122 = 4 , Y222 = 8 ,

where the index 1 refers to the linear system of divisors inherited from the vanishing loci of
degree-1 polynomials generated by the x1 and x2 in the ambient space, whereas the index 2
refers to the linear system generated by the degree-2 polynomials.

We take the quantities bY i jk to be symmetric in the first two indices, with the independent
values given by

bY 121 = −
1
4

, bY 221 =
1
4

, bY 122 =
1
8

, bY 111 = 0 , bY 112 = 0 , bY 222 = 0 .

The conifold locus ∆ and the additional factor Y of the discriminant are given by

∆= 1− 29ϕ2 + 216(1− 22ϕ1)ϕ
2
2 , Y = 22ϕ1 − 1 .

The Picard–Fuchs system

In the coordinates adapted to the large complex structure point, the fundamental period is

ϖ0(ϕ1,ϕ2) =
∞
∑

r,s=0

(8r + 4s)!

((2r + s)!)3 (r!)2s!
ϕr

1ϕ
2r+s
2 .

In these coordinates, two of the differential operators giving the Picard–Fuchs system found
in [41] can be written as

L1 = (1− 28ϕ2)θ
3
2 − 2θ1θ

2
2 − 3 · 27ϕ2θ

2
2 − 11 · 24ϕ2θ2 − 3 · 23ϕ2 ,

L2 = (1− 22ϕ1)θ
2
1 + 22ϕ1θ1θ2 −ϕ1θ

2
2 − 2ϕ1θ1 +ϕ1θ2 .

Alternatively, a straightforward computation gives the Picard–Fuchs equations formulated as
linear relations between the sections ϑaΩ,ϑaΩ of the form

θ1ϑ
0Ω=

1
∆YW

2
∑

a=0

�

Pa(ϕ1,ϕ2)ϑaΩ+ Pa(ϕ1,ϕ2)ϑ
aΩ
�

,

θ2ϑ
0Ω=

1
∆YW

2
∑

a=0

�

Qa(ϕ1,ϕ2)ϑaΩ+Qa(ϕ1,ϕ2)ϑ
aΩ
�

,

where Pa, Pa, Qa, and Qa are polynomials of multi-degree (degϕ1
, degϕ2

) ≤ (3,3), which we
will not display explicitly. We just note that all of these vanish at ϕ1 = ϕ2 = 0, satisfying the
asymptotic form (37) of the connection matrix B(ϕ1,ϕ2). The factor W = 2ϕ1 + 28ϕ2 − 1
appearing in the denominator is the locus of apparent singularities for this choice of sections.
We will see below that this is indeed the denominator of the matrix W−1.

To obtain series expressions for the periods around the large complex structure point, we
use series ansätze for the functions f I appearing in the expression (13) for the period vector:

f I =
∞
∑

µ,ν=0

c I
µνϕ

µ
1ϕ

ν
2 .
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Here I can be a one-, two, or three-component index. Substituting the Frobenius basis periods
ϖa,ϖa expressed in terms of these series into the first two differential equations, we obtain
recurrence relations for the coefficients c I

µν, which can be used to quickly compute the series f I

to high order. To get a better idea of how this works in practice, let us consider the fundamental
period. The recurrence relations can in this case be expressed as

c0
µν =

(2µ− ν− 2)(2µ− ν− 1)
µ2

c0
µ−1,ν , c0

0ν =
8(2ν− 1)(4ν− 3)(4ν− 1)

ν3
c0
0,ν−1 . (57)

Together with the boundary conditions

c0
00 = 1 , c0

µν = 0 if µ < 0 or ν < 0 ,

these suffice to solve for all coefficients c0
µν. The coefficients appearing in the other periods

satisfy similar, albeit more lengthy, recurrence relations, which we refrain from displaying
here.

Tme matrix Up(ϕ1,ϕ2) and the zeta function

Having obtained the periods via recurrence relations, we only need to find the matrix
W−1(ϕ1,ϕ2) defined in (53) to be able to compute the matrix Up(ϕ1,ϕ2). In the present
case, it is not difficult to compute the required inner products of derivatives of periods to show
that

W−1 =
(2πi)3

2048





















0 ϕ2E
Aϕ1ϕ2

3W − ϕ1B
12W

32Cϕ2
3W − DE

12W

−ϕ2E 0 − 8ϕ2E
3

1
12 (1−256ϕ2)E − 128ϕ2E

3 0

−Aϕ1ϕ2
3W

8ϕ2E
3 0 1

6ϕ1 (1−512ϕ2)
1

12−
64
3 (4ϕ1+1)ϕ2 0

ϕ1B
12W

1
12 (1−256ϕ2)E 1

6ϕ1 (1−512ϕ2) 0 0 0

− 32Cϕ2
3W

128ϕ2E
3

64
3 (4ϕ1+1)ϕ2−

1
12 0 0 0

DE
12W 0 0 0 0 0





















,

where we have denoted

A def
= 12ϕ1 − 256 (27− 44ϕ1)ϕ2 + 5 , B def

= 1− 128ϕ2 (4ϕ1 − 256 (9− 20ϕ1)ϕ2 + 5) ,

C def
= 8ϕ1 + 256 (6ϕ1 (4ϕ1 − 3) + 1)ϕ2 − 1 , D def

= 512ϕ2 (128 (4ϕ1 − 1)ϕ2 + 1)− 1 ,

E def
= 1− 4ϕ1 , W = 2ϕ1 + 28ϕ2 − 1 .

With this expression, computing the inverse matrix E−1(ϕp
1 ,ϕp

2) is simple. Setting the coeffi-
cients

αi
p = 0 , γp = χ(eX t )ζp(3) = −168ζp(3) ,

it is also easy to compute the matrix Up(ϕ1,ϕ2) for the first few primes p. As expected, we can
check that the series appearing in this matrix indeed seem to converge to a rational function
with the denominator (47). This is in practice seen as the coefficients of Up(ϕ1,ϕ2)multiplied
by (52) becoming finite polynomials.

The choice of coordinates

In many cases, it actually turns out that the numerical computations become slightly simpler
when different coordinates are used — which can result in significant reduction in computa-
tion times. We use the example of the mirror octic to address briefly the question of coordinate
transformations. For simplicity, we restrict to a rescaling of coordinates, although analogous

26

https://scipost.org
https://scipost.org/SciPostPhys.20.2.028


SciPost Phys. 20, 028 (2026)

argument apply to other similar changes of coordinates as well. Let us therefore use the coor-
dinates bϕi given by

ri bϕi = ϕi , ri ∈ Q

Under this transformation, the matrix E(ϕ) can be written in terms of the new coordinates bϕi
as

E(ϕ) = bϕεr ε eE( bϕ) ,

where eE( bϕ) is the logarithm-free matrix introduced in (48), where we have substituted in
ϕ 7→ bϕ. The expression r ε refers to the product rε1

1 · · · r
εm
m . With this, the expression (50) for

the matrix Up(ϕ) gives

Up(ϕ) = eE( bϕ
p)−1r−ε bϕ−pεUp(0) bϕ

εr ε eE( bϕ) = eE( bϕp)−1
cUp(0)eE( bϕ) .

To obtain the second equality, we have used the commutation property (41) of the matrices
Up(0) and εi . Note that here the coefficients ri giving the scaling are not raised to the p’th
power as the Frobenius map does not act on constants. This is essentially the reason we obtain
a different matrix bUp(0)when using the rescaled coordinates. From this expression we identify
the matrix bUp(0) associated to the coordinates bϕi as

bUp(0) = r−εUp(0)r
ε = Λpr

p−1
p ε(I− γpη) = Λp exp

�

p− 1
p

log riεi

�

(I− γpη) .

Comparing this to (43), identifies the coefficients αi in this case as

αi
p =

p− 1
p

logp r i ,

where we can use the p-adic Iwasawa logarithm (see appendix A) as this logarithm is based
on the same series as the ordinary complex logarithm.8 To make this discussion concrete, let
us take, instead of the coordinates in (56), the following rescaled coordinates:

bϕ1
def
=

1
φ2
= 22ϕ1 , bϕ2

def
=
φ

ψ4
= −211ϕ2 . (58)

Then the coefficients αi
p should be, according to our previous discussion, given by

α1
p = −2

p− 1
p

logp(2) , α2
p = −11

p− 1
p

logp(2) . (59)

It is easy to check that with these coefficients, the resulting matrix Up( eϕ) takes indeed the
required rational form. A numerical computation also reveals that the choice of these coeffi-
cients is the only one that results in such a rational matrix: Imposing the requirement that the
entries of Up(ϕ1,ϕ2) be rational functions with p-adic integers as coefficients of polynomials
in the numerator and denominator, gives an overconstrained system, which can be used to
solve the prime-dependent constants α1

p and α2
p to appropriate p-adic accuracies. From (55),

it follows that we need to compute Up(ϕ1,ϕ2) to p-adic accuracy p6, which in turn implies,
that αi

p need to be computed up to order p5 or higher, although it is easily possible to compute
these to higher accuracies as well. We gather the values computed in this way in table 2. It is

8An astute reader might be puzzled by an issue of convergence: we wish to ultimately evaluate the logarithm
at p-adic integers whose p-adic norm is outside of the region of convergence of the series corresponding to the
Iwasawa logarithm. However, before lifting the series to Qp, one can use the identities satisfied by the ordinary
logarithm to write logϕ = log(ϕp−1)/(p − 1). This will converge for p-adic integers, and coincides with the
definition of the Iwasawa logarithm.
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Table 2: The values of the prime-dependent constants α1
p and α2

p appearing in the
matrix Up(0, 0) when using coordinates (58) for the cases p = 7,11, 13,17. These
values agree with the values (59) in terms of Iwasawa logarithms.

p α1
p α2

p

7 161955+O(77) 478981+O(77)

11 18516114+O(117) 4402772+O(117)

13 24288843+O(137) 39465861+O(137)

17 201574686+O(177) 287983427+O(177)

then an easy exercise to verify that these values agree with those in (59), up to the specified
p-adic accuracy.

Using these values to compute the matrices Up(ϕ1,ϕ2), one finds that these take exactly
the form (47), which allows computing the independent coefficients a1, a2, and a3 appearing
in the zeta function numerators Rp(X(ϕ1,ϕ2), T ).

We have shown, in this example, that a non-zero α can be absorbed by a rescaling of the
coordinates. Note however that this scale of the coordinates is fixed implicitly by the mirror
map procedure, as in (11). A change in the scale of the parameters ϕi corresponds to a shift
in t i:

ϕi → λϕi , corresponds to t i 7→ t i +
logλ
2πi

, and so qi
def
= exp(2πit i) 7→ λqi ,

and this would affect the calculation of instanton numbers that are independently known. In
this example, we deliberately chose ‘incorrect’ parameters and the non-zero value for αi

p has

corrected for this choice. We conjecture that with the correct choice of parameters, αi
p are

always zero, but we do not know this to be the case.

Conifold singularities

At conifold points, we expect, analogously to the observations made in [1], that one of the
roots of Rp(X , T ) vanishes, resulting in a degree five polynomial, which we expect further to
contain a linear factor so that it takes the form

Rp(X , T ) = (1−χppT )(1− u1T + u2pT2 − u1p3T3 + p6T4) , (60)

where χp is a character taking values χp = ±1. Assuming that the polynomial takes this form,
we can completely determine it by computing the coefficients u1 and u2, and the value of the
character χp. The roots of the quartic factor of the polynomial Rp(X , T ) are expected to have
the norm p3/2 (see for instance [3,42]). Therefore, like in §3.8, we have the following bounds
for u1 and u2:

|u1|< 4p3/2 , |u2p|< 6p3 .

This means that for primes p ≥ 7, it is enough to compute these values modulo p4. Recalling
the form (52) of the denominator of the matrix Up(ϕ1,ϕ2), we see that working modulo p4,
the factor ∆(ϕ1,ϕ2) corresponding to the conifold locus does not appear in the denominator.
Therefore the matrix Up(ϕ1,ϕ2) mod p4 is well-defined even at the conifold locus, and we
can use it to (conjecturally) evaluate the coefficients u1 and u2 appearing in the polynomial
Rp(X , T ). To fix the remaining unknown, the value of the character χp, we can compute the
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Table 3: Some denominators of the zeta function ζ11 of the mirror octic manifold
with p = 11 for various values of the coordinates ϕ1 and ϕ2. We have displayed both
smooth and conifolds points.

p = 11

( bϕ1, bϕ2) smooth/sing. Rp(T )

(3,2) conifold −(pT − 1)
�

p6T 4 − 40p3T 3 + 9pT 2 − 40T + 1
�

(3,3) smooth p9T 6 + 6p6T 5 + 83p4T 4 + 68p2T 3 + 83pT 2 + 6T + 1

(3,6) conifold (pT + 1)
�

p6T 4 + 32p3T 3 − 80pT 2 + 32T + 1
�

(4,5) smooth p9T 6 + 10p6T 5 + 9p5T 4 + 20p3T 3 + 9p2T 2 + 10T + 1

(4,6) smooth p9T 6 − 2p6T 5 + 235p4T 4 − 452p2T 3 + 235pT 2 − 2pT + 1

(5,5) conifold −(pT − 1)
�

p6T 4 + 2p4T 3 + 41pT 2 + 2pT + 1
�

(5,8) smooth p9T 6 − 38p6T 5 + 19p4T 4 + 124p2T 3 + 19pT 2 − 38T + 1

coefficient of T3 in Rp(X , T ). Evaluating modulo p4 is not enough to compute this, without
using the form (60), but using this form we know that this coefficient should be given by

−p3u1 + p2u2χp .

The requirement that this agrees with the coefficient computed from the matrix Up(ϕ1,ϕ2)
modulo p4 can be usually used to fix the value of χp, with the only possible exceptions being
the cases where p2 | u2. We display some numerators Rp(X , T ) for p = 11, for both conifolds
and smooth manifolds in table 3. These values agree with those computed in [3] using Gauss
sums.

Note that the presence of singularities that are not of conifold type is reflected in the factor
Y(ϕ) in the conjectural expression (52) for the denominator Sn(ϕ) having non-trivial zeros.
Since this factor appears with power n − 2, it necessarily appears in the denominator Sn(ϕ)
for the p-adic accuracies needed to compute the polynomials Rp(X , T ). Therefore the above
technique cannot be used to evaluate the zeta function at these singularities.

4.2 A five-parameter example: The Hulek–Verrill manifold

As an example of a case where it is beneficial to study zeta functions on complex lines in
the moduli space, consider the five-parameter Hulek–Verrill manifolds, focusing on the S5-
symmetric complex lines on the patch ϕ0 = 1 with ϕ = (ϕ,ϕ,ϕ,ϕ,ϕ), ϕ ∈ C. This example
has been studied in the context of supersymmetric flux vacua by the present authors in [7].

The five-parameter Hulek–Verrill manifolds [2] are mirrors to the complete intersection
Calabi–Yau described by the CICY matrix

P1

P1

P1

P1

P1











1 1
1 1
1 1
1 1
1 1











χ=−80

.

These manifolds HVϕ can be realised as the toric compactification of the hypersurface in
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T5 = P5 \ {
∏5
µ=0 Xµ = 0} given by the vanishing of the two polynomials

P1(X) =
5
∑

µ=0

Xµ , P2(X;ϕ) =
5
∑

µ=0

ϕµ

Xµ
. (61)

The six ϕµ furnish projective coordinates for the complex structure moduli space MCS of this
manifold. From the defining equations (61), it is clear that interchanging the complex struc-
ture parameters ϕµ gives a biholomorphic manifold. Due to the symmetry, we can, without
loss of generality, work exclusively in the patch ϕ0 = 1 in which the five remaining ϕi are the
affine coordinates of MCS .

The manifolds obtained in this way are smooth outside the conifold locus ∆= 0 with

∆=
∏

ηi∈{±1}

�
Æ

ϕ0 +η1

Æ

ϕ1 +η2

Æ

ϕ2 +η3

Æ

ϕ3 +η4

Æ

ϕ4 +η5

Æ

ϕ5
�

, (62)

which implies that
Y = 1 .

The triple intersection numbers Yi jk and the other topological quantities Yabc of the mirror
Hulek–Verrill manifolds can be computed from their description as complete intersection va-
rieties, and are given by

Yi jk =

¨

2 i, j, k distinct.

0 otherwise,
Yi j0 = 0 , Yi00 = −2 , Y000 = 240

ζ(3)
(2πi)3

. (63)

The fundamental period is given by

ϖ0 =
∞
∑

pi=0

�

(p1 + · · ·+ p5)!
p1! · · · p5!

�2

ϕ
p1
1 · · ·ϕ

p5
5 . (64)

The other periods are derivable from this by usual methods. In principle, the derivatives of
the periods can then be computed as series in the five parameters ϕi , after which specialising
to the symmetric case ϕi = ϕ would give the expressions for periods and their derivatives
the following computations require. However, this would mean working to high order with
five-parameter series, which is computationally very expensive. Luckily, there is an alternative
method which utilises recurrence relations to directly find univariate series expressions for the
derivatives of the periods. We explain this in detail in appendix D.

Recalling the values (63) that the triple intersection numbers Yi jk take, we can choose the
quantities bY i jk so that the derivative basis has the natural S5 symmetry:

bY iii = bY i ji = bY jii = −
1
24

, bY i jk =
1

24
. (65)

On this line the discriminant (62) becomes

∆5 = (1−ϕ)10(1− 9ϕ)5(1− 25ϕ) .

However, for the purposes of computing the zeta function on the line, we do not need to
account for the multiplicities, so we can here take the discriminant to be

∆= (1−ϕ)(1− 9ϕ)(1− 25ϕ) .
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Inversion of E(ϕ)

To compute the inverse matrix E−1(ϕ), we need the inner products (ϑaΩ,ϑbΩ), (ϑaΩ,ϑbΩ),
and (ϑaΩ,ϑbΩ). Due to the symmetries, there are only five independent such inner products
that do not vanish:

(ϑ0Ω,ϑ0Ω) = −
1

(2πi)3
5(18ϕ − 1)

12∆
, (ϑiΩ,ϑiΩ) =

1
(2πi)3

18ϕ − 1
2∆

,

(ϑiΩ,ϑ jΩ) = −
1

(2πi)3
7ϕ
2∆

, (ϑiΩ,ϑ0Ω) =
1

(2πi)3
1215ϕ4 − 415ϕ3 + 16ϕ2

72∆2
,

(ϑiΩ,ϑ0Ω) = −
1

(2πi)3
1800ϕ4 + 1915ϕ3 − 462ϕ2 + 11ϕ

12∆2
.

With these, it is easy to compute the matrix W−1(ϕ), which we refrain from giving here due
to its size. However, by computing the matrix, its denominator can be identified as

W = (10ϕ + 1)(18ϕ − 1) .

The matrix Up(ϕ) and the zeta function

With the information above, it is straightforward to construct the matrices E(ϕ) and E(ϕ)−1.
The S5 symmetry of the manifolds we are studying corresponds to permutations of the coor-
dinates ϕi → ϕς(i), ς ∈ S5, and acts on the periods as

ϖ0 7→ϖ0 , ϖi 7→ϖς(i) , ϖi 7→ϖς(i) , ϖ0 7→ϖ0 ,

but keeps the period vector invariant, implying that there are only four independent periods.
The choice (65) of the quantities bY i jk guarantees a similar symmetry property for the derivative
vector ϑ under the action of the permutations ς:

ϑ0 7→ ϑ0 , ϑi 7→ ϑς(i) , ϑi 7→ ϑς(i) , ϑ0 7→ ϑ0 .

As a consequence, the matrices E(ϕ) and E−1(ϕ) have a corresponding symmetry property:
applying simultaneously the same permutation ς ∈ S5 to the columns and rows 2, . . . , 6 and
7, . . . , 11 keeps the matrices invariant. Due to these symmetries, Up(0) has the form

Up(0) = upΛp

�

I+αp εi + 12α2
p µ

i +χ(eX t )ζp(3)η
�

,

which can be verified, at least to the p-adic accuracy we are working to, by starting with the
most general form (42) of Up(0), and imposing the requirement that the coefficients in the
series appearing in Up(ϕ) are p-adic integers. Further, we can verify that αp = 0, to the given
accuracy.

With this form of Up(0), the matrix Up(ϕ) has also the same S5 symmetry as the matrices
E(ϕ) and E−1(ϕ). This symmetry implies that its characteristic polynomials factorises over
integers as

det(I−Up(ϕ)T ) = R2(T )
4R4(T ) , (66)

where R2(T ) is a quadratic and R4(T ) a quartic polynomial. Moreover, from the Weil conjec-
tures it follows that these polynomials take the form

R2(T ) = 1+ a1pT + p3T2 , R4(T ) = 1+ b1T + b2pT2 + b1p3T3 + p6T4 ,

leaving just three undertermined coefficients. It turns out that in all cases we have studied
the polynomial R4(T ) is exactly the numerator of the zeta function of the Z5 quotient of the
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Table 5: Some denominators of the zeta function of the mirror Hulek–Verrill mani-
folds with various values of p and ϕ. More complete data for the smooth manifolds
can be found in the appendices of [7].

p ϕ Rp(HV(ϕ,...,ϕ), T )

7 3
�

p3T2 − 2pT + 1
�4 �

p6T4 + 2p3T3 − 54pT2 + 2T + 1
�

7 5
�

p3T2 + 4pT + 1
�4 �

p3T2 − 34T + 1
� �

p3T2 + 4pT + 1
�

11 10
�

p3T2 + 1
�4 �

p6T4 − 22p3T3 + 2pT2 − 22T + 1
�

13 4
�

p3T2 − 2pT + 1
�4 �

p3T2 + 42T + 1
� �

p3T2 − 2pT + 1
�

13 11
�

p3T2 + 4pT + 1
�4 �

p3T2 − 18T + 1
� �

p3T2 + 4pT + 1
�

17 14
�

p3T2 + 1
�4 �

p3T2 + 1
� �

p3T2 − 134T + 1
�

manifolds on the completely symmetric line. This was studied in [4], for example. The poly-
nomials R4(T ) can be found in the tables of [1]. Thus leaves us with one parameter, a1, to fix.
Apart from using the matrix Up(ϕ), this coefficient can be found by using the relation of the
coefficients of the zeta function numerator to the number of points on the manifold defined
over finite fields. The number of points on Hulek–Verrill manifolds over the field Fp was com-
puted already by Hulek and Verrill [2]. On the non-singular manifolds this number is given
by

Np

�

HV(ϕ1,ϕ2,ϕ3,ϕ4,ϕ5)
�

= 48p2 + 46p+ 14+
p−1
∑

x ,y,z=1

�

Υ

p

�

+ρ(ϕ1)Np(E) ,

where

Υ =

�

(1+ x + y + z)

�

ϕ2

x
+
ϕ3

y
+
ϕ4

z
+ϕ5

�

−ϕ1 − 1

�2

− 4ϕ1 ,

and here
�

Υ
p

�

denotes the Kronecker symbol. In this context

ρ(ϕ1) =

¨

p if ϕ1 ≡ 1 mod p ,

0 otherwise,

and Np(E) denotes the number of points over Fp of the elliptic curve

(x + y + z)

�

ϕ2

x
+
ϕ3

y
+
ϕ4

z

�

= ϕ5 .

Using the relation between the series expansion of the zeta function and the number of points
on the manifold, we find that the coefficients a1 are given by

a1 =
1
4

�

b1 + 1+ 45p+ 45p2 + p3 − Np

�

HV(ϕ,ϕ,ϕ,ϕ,ϕ)
�

�

.

Thus the zeta function for the S5-symmetric family of Hulek–Verrill manifolds can be computed
in two ways: using the point-counting formula together with the tables in [1], and alternatively
by computing the traces of powers of Up(ϕ). Comparing the results gives yet another set of
intricate consistency checks, and we indeed find a perfect agreement. We give some examples
of the zeta function numerators in table 5.
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4.3 A last example: The mirror of a non-symmetric split of the quintic

Our last example is the mirror of the “non-symmetric” split quintic given by the configuration
matrix

P1

P4

�

1 1
4 1

�

χ=−168

.

From this complete intersection description, it is easy to work out the triple intersection num-
bers, which are given by

Y111 = 0 , Y112 = 0 , Y122 = 4 , Y222 = 5 ,

as well as the fundamental period, which can be expressed as

ϖ0(ϕ) =
∞
∑

m1,m2=0

(m1 +m2)! (m1 + 4m2)!
(m1!)2(m2!)5

ϕ
m1
1 ϕ

m j

2 . (67)

The other periods can be worked out from this one either by deriving the Picard–Fuchs system,
or alternatively by the familiar recipe of replacing the factorials by Γ -functions, deforming by
mi → mi + εi , and expanding in the nilpotent matrices εi . The periods can then be identified
by comparing to the expansion (10).

The conifold locus can be identified as

∆= (1−ϕ1)
5 −ϕ2

�

512+ 2816ϕ1 − 320ϕ2
1 + 144ϕ3

1 − 27ϕ4
1

�

+ 65536ϕ2
2 ,

and Y(ϕ), which is defined in (52), is in this case a constant

Y(ϕ) = 1 .

Apparent singularities — Choosing the bY i jk

We work with two different choices of the coefficients bY i jk to illustrate how these different
choices affect the computation of the zeta function. In particular, for the two choices we make,
the apparent singularities will be different. This is just a reflection of the fact that different
bases of sections of the vector bundle H corresponding to different choices of the constants
bY i jk will become degenerate at different points in the moduli space. The value of the zeta
function does not depend on the choice of the basis of H3(X ), so both choices can be used to
compute the polynomials Rp(X , T ).

For both bases we take

bY 111 = bY 222 = 0 , bY 121 = −
5
32

, bY 122 =
1
8

, bY 221 =
1
4

,

but we take the last independent coefficient to be

bY 112 =

¨

0 in case 1,

− 5
32 in case 2.

The first choice turns out to be the simpler of the two.
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Table 6: Some numerators of the zeta function ζ7(Xϕ1,ϕ2
, T ) of the non-symmetric

split of the quintic studied in this section. Note that we are able to compute the values
of the numerators at the apparent singularities where the apparent singularity only
appears for one of the two choices of bY i jk.

p = 7

(ϕ1,ϕ2) smooth/sing. Rp(T )

(1,2) smooth p9T 6 + 5p6T 5 − 66p2T 3 + 5T + 1

(1,4) apparent (case 1) p9T 6 + 12p6T 5 − 11p4T 4 − 200p2T 3 − 11pT 2 + 12T + 1

(1,6) apparent (case 2) p9T 6 − 25p6T 5 + 29p4T 4 + 50p2T 3 + 29pT 2 − 25T + 1

(2,2) smooth p9T 6 − 10p6T 5 + 25p4T 4 + 36p2T 3 + 25pT 2 − 10T + 1

(4,5) smooth p9T 6 − 8p6T 5 + 57p4T 4 − 64p2T 3 + 57pT 2 − 8T + 1

(4,6) apparent (case 2) p9T 6 + 36p6T 5 + 113p4T 4 + 328p2T 3 + 113pT 2 + 36T + 1

(5,5) smooth p9T 6 + 20p6T 5 + 73p4T 4 + 152p2T 3 + 73pT 2 + 20T + 1

(6,3) smooth
�

p3T 2 + 1
� �

p6T 4 + 19p3T 3 − p3T 2 + 67pT 2 + 19T + 1
�

The matrix Up(ϕ1,ϕ2) and the zeta function

In both cases considered above, the inversion of the matrix E proceeds in complete analogy
to the two previous cases. The only significant difference between the two cases is that the
denominator of W−1 takes a slightly different form in each:

W =























2 (1−ϕ1) (32−96ϕ1−8192ϕ2+20480ϕ1ϕ2

−529ϕ2
1−16128ϕ2

1ϕ2+593ϕ3
1

�

in case 1,

16 (4−29ϕ1) (64−392ϕ1−16384ϕ2+51200ϕ1ϕ2

−1283ϕ2
1−43776ϕ2

1ϕ2+1611ϕ3
1

�

in case 2.

Therefore, for instance, the point (ϕ1,ϕ2)=(6,1) has an apparent singularity for X/F7 in the
first case, but not in the second. By contrast, the point (4,1) does not have an apparent
singularity in the first case, even though it does in the second case. We can use this observation
to compute the zeta function at the apparent singularities.

In both cases, the coefficients αi
p and γp are given by

up = 1 , αi
p = 0 , γp = χ(eX t )ζp(3) = −168ζp(3) . (68)

These, together with the matrix E(ϕ1,ϕ2) and the denominator (52) with ∆, Y , and W as
above permits the computation of the zeta function. As required, the results do not depend
on the choice of the coefficients bY i jk, except at the apparent singularities, where the rational
matrix Up(ϕ1,ϕ2) is computable only in one of the cases. We display some representative
results for p = 7 in table 6.

5 Summary and outlook

In this paper, we have generalised the deformation methods of [1] to encompass multiparame-
ter Calabi–Yau manifolds. We can express the polynomial R(3)p (Xϕ , T ) (see (3)) that determines
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the zeta function of a Calabi–Yau threefold as

R(3)p (Xϕ , T ) = det
�

I− TUp(ϕ)
�

.

Our main result is an explicit expression for the matrix Up(ϕ) in terms of the periods and a
constant matrix U(0). To be specific,

Up(ϕ) = eE(ϕ
p)−1Up(0)eE(ϕ) ,

where eE(ϕ) is the logarithm-free period matrix in the Frobenius basis, defined in (35), and
the matrix Up(0) is given by

Up(0) = diag(1, p 1, p2 1, p3)eα
i
pεi (I+ γη) .

Here the matrices εi and η satisfy the (co-)homology algebra of the mirror eX t

εiε j = ε jεi , εiε jεk = Yi jk η , εiη= 0 ,

with the explicit expression for these matrices in our chosen basis given in (15). In all of the
cases we have studied, the coordinates ϕ of the complex structure moduli space of Xϕ can be
chosen so that

αi
p = 0 , γp = χ(eX t )ζp(3) .

To speed up the convergence of the series appearing as the elements of Up(ϕ), we note that,
at least in all of the multiparameter cases we have studied, the matrix Up(ϕ) mod pn takes
on the rational form

Up(ϕ) =
Up(ϕ)

Sn(ϕp)
mod pn ,

with
Sn(ϕ) =∆(ϕ)

n−4 Y(ϕ)n−2 W(ϕ) .

In this expression, ∆(ϕ) gives the (hyper) conifold locus of the family of Calabi–Yau mani-
folds we are studying, W(ϕ) corresponds to the apparent singularities, and the factor Y(ϕ)
represents additional singularities that are neither of the (hyper) conifold nor large complex
structure type. We wish to emphasise, however, that there are known one-parameter cases
where the above form of Sn(ϕ) needs to be slightly generalised, and we expect this to be true
of some multiparameter cases as well.

Even though we are able to study the arithmetic properties of many Calabi–Yau threefolds
with the techniques presented here, there still remain some open questions and limitations to
these methods. Perhaps the most significant shortcoming of the deformation method, based on
the series expansions for the periods, is that series expansions in multiple parameters become
quickly cumbersome as the number of parameters increases. Although we have managed to
study a particular example with five parameters by specialising to lines in the moduli space,
it is not clear how to derive efficiently the required univariate series for the periods and their
derivatives in general. In addition, even if one can treat any line in moduli space, using such
lines to compute the zeta functions for all possible values of moduli in Fm

p , in this way, quickly
becomes very time-consuming at higher p. Another area where further developments could
prove useful is the treatment of singularities. We are still unable to compute the matrix Up(ϕ)
for Calabi–Yau threefolds with conifold singularities if the manifold has more than two param-
eters. In addition to this, we do not know yet how to treat other types of singularities, such as
K-points.

It would also be interesting to study the further generalisation of the techniques presented
here to cover higher-dimensional Calabi–Yau manifolds (the horizontal part of the middle
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cohomology of one-parameter Calabi–Yau fourfolds has been studied in [10]). This might shed
more light on the relation of the matrix Up(0) to the (co-)homology algebra and the Γ -class of
the mirror. We can also ask whether the deformation theory can be developed around other
regular singularities, apart from the large complex structure points, in a natural way. While
this is certainly possible in special cases, with deformations around the Fermat quintic going
back to the work of Dwork, the difficulty in developing such a method for general Calabi–Yau
threefolds may be in finding a sufficiently universal expression for Up(0) analogous to (42).

Having an effective numerical procedure for computing local zeta functions of Calabi–Yau
threefolds opens up many exciting possibilities for further study. The techniques presented in
this paper have already been used by the present authors together with J. McGovern in [7] to
study supersymmetric flux vacua in IIB compactifications on Calabi–Yau threefolds, and to ver-
ify, refine and extend the flux modularity conjectures set out in [5,6]. The solutions presented
in [7] were obtained using the symmetry properties of the compactification manifolds. With
the effective method for computing zeta functions of a wide variety of Calabi–Yau threefolds,
it should be possible to find much larger families of threefolds whose Hodge structure splits
analogously to that for the supersymmetric flux vacua studied in [5–7], or rank-two attractor
points studied for example in [4, 38]. The structure of the zeta function has also a connec-
tion to other properties of the Calabi–Yau manifold. For some manifolds, for example, the
zeta function is related to the existence of complex multiplication, which is itself conjecturally
related to the existence of rational conformal field theories [43–45].

In section 2.5, we discussed briefly the relation of the Γ -class to both the rational basis
of H3(Xϕ ,C) and an analogous construction the matrix Up(0) representing the action of the
inverse Frobenius map on H3(Xϕ ,Qp). We find it intriguing that in these relations both the
complex gamma function Γ (z) and the p-adic gamma functions Γp(z) appear in such an anal-
ogous fashion, albeit in slightly different contexts. This raises the question of whether it is
possible to define a p-adic Γ -class that would explain the appearance of χ(eX t )ζp(3) in both
the change-of-basis matrix ρ (with p =∞) and Up(0), and put the complex and p-adic com-
putations on a similar footing. Ultimately, one would like to find an adelic formulation of this
process.

The fact that the matrix Up(0) has a natural expression in terms of the (co-)homology
algebra of the mirror manifold and is connected to a p-adic analogue of the Γ -class may give
some hints of possible relevance of mirror symmetry to the zeta function. In light of this,
we would also like to briefly revisit the speculation originally made in [46] regarding the
possible role of mirror symmetry in relation to the local zeta functions. In this reference, it
was speculated that it may be useful to defined a ‘quantum’ zeta function ζQ

p (Xϕ , T ) that would
satisfy a natural mirror symmetry property

ζQ
p (Xϕ , T ) =

1

ζQ
p (eXψ, T )

,

where eXψ denotes the mirror manifold of Xϕ with complex structure parameter ψ. It was
noted that such a function could be obtained, for instance, by defining

ζQ
p (Xϕ , eXψ, T ) =

numerator ζp(Xϕ , T )

numerator ζp(eXψ, T )
=

Rp(Xϕ , T )

Rp(eXψ, T )
=

det
�

I− TUp(ϕ)
�

)

det
�

I− T eUp(ψ)
� .

It is perhaps interesting to note that, in the cases where the Picard group of Xϕ is generated by
divisors9 defined over Fp, by formally taking the large complex structure limit and setting the

9Recall, however, that the denominator of the local zeta function ζp(Xϕ , T ) can take on a slightly more compli-
cated form in case the Picard group of Xϕ is not generated by divisors defined over Fp.
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complex structure parameterψ corresponding to the mirror manifold to zero, and computing
the characteristic polynomial of eUp(0), one recovers the usual zeta function (3):

ζQ
p (Xϕ , eX0, T ) =

Rp(Xϕ , T )

(1− T )(1− pT )h11(1− p2T )h11(1− p3T )
= ζp(Xϕ , T ) .

In this way, it may be tempting to view the polynomial Rp(eXψ, T ) as a ‘quantum-corrected’
version of the denominator of ζp(Xϕ , T ). However, it seems that there is no natural way of
taking the large complex structure limit ψ → 0 p-adically, as every other point ψ we study
has ||Teich(ψ)||p = 1. In addition to which it seems that, when the Picard group of Xϕ is
not generated by divisors defined over Fp, the definition of ζQ

p (Xϕ , eX0, T ) would have to be
further refined. Most importantly, we still lack a compelling enumerative interpretation for
the coefficients of ζQ

p (Xϕ , eX0, T ). Nevertheless, it would be interesting to study whether these
connections and analogues with mirror symmetry could be further developed.
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A A lightning introduction to p-adic numbers

Here we briefly review some aspects of p-adic numbers that are necessary to understand the
present article. For a careful discussion, we refer the interested reader to [13], and for a
shorter treatment in the style of this appendix, see [47].

The construction of the field of p-adic numbers is analogous to the way in which the field R
of real numbers is constructed from the field of rational numbers Q. Recall that R is essentially
the topological completion of Q, i.e. to obtain R, we add to Q all limits of Cauchy sequences
in Q. In this construction, we have implicitly made a choice to use the (Archimedian) norm
| ∗ | given by the absolute value. However, there are other inequivalent norms || ∗ ||p that are
defined as follows: given any r ∈ Q and a prime p, we can write r uniquely as

r =
m
n

pi ,

where m, n, p ∈ Z and m, n, p are mutually prime. The p-adic norm ||r||p is then given by

||r||p = p−i , with ||0||p = 0 .
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If p is a prime, this satisfies the properties of a norm, that is

||r||p ≥ 0 , with equality if and only if r = 0 ,

||rs||p = ||r||p||s||p ,

||r + s||p ≤ ||r||p + ||s||p .

In fact, the p-adic norm ||r + s||p satisfies a stronger bound than that provided by the triangle
inequality

||r + s||p ≤max
�

||r||p, ||s||p
�

. (A.1)

Thus the norm is non-Archimedian. This fact has important consequences for the main text. In
the usual Archimedian case, if we are given numbers x and y ̸= 0 with |x |> |y|, then there is
an integer N such that

|N y|> |x | .

However, for p-adic numbers X and Y ̸= 0 with ||X ||p > ||Y ||p, we have ||NY ||p < ||X ||p for all
N ∈ Z. In a similar way, we also have

||X + NY ||p = ||X ||p , for all N ∈ Z .

Ostrowski’s theorem (see [13] for details) states that any non-trivial norm is equivalent to
either | ∗ | or || ∗ ||p for some prime p, and that these are inequivalent with each other. Thus,
if we complete Q with respect to || ∗ ||p, we obtain the field Qp of p-adic numbers, which is
different from R.

Analogously to the decimal expansion in R, in Qp every p-adic numberη can be represented
by infinite series of the form

η=
∞
∑

n=n0

anpn , where n0 ∈ Z , and 0≤ an ≤ p− 1 . (A.2)

Note that ||anpn||p = p−n so the terms in the series are increasingly small in the p-adic norm.
Numbers η such that n0 ≥ 0, i.e. ||η||p ≤ 1 are called p-adic integers. The ring of p-adic

integers is denoted10 by Zp. A number η such that both η and 1/η are p-adic integers is a
p-adic unit. If η is a unit, then necessarily ||η||p = 1, that is, η has n0 = 0, a0 ̸= 0. The set of
p-adic integers,

Zp = {x ∈ Qp | ||x ||p ≤ 1} ,

plays a role analogous to the unit disk. We have sometimes referred to this disk as D in the
main text.

If x ∈ Fp, then we have the relation

x p − x = 0 , (A.3)

which is satisfied exactly. However, if x ∈ Zp, then

x p − x = px1 , for some x1 ∈ Zp .

However, if we can choose the Teichmüller representative of x ,

Teich(x)
def
= lim

n→∞
x pn

,

10This should not be confused with the field Z/pZ of integers modulo p.
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it can be shown that the limit above exist in Qp. This satisfies the equation

Teich(x)p − Teich(x) = 0

exactly. In fact, the Teichmüller representative defines a multiplicative character
Teich : F∗p → Qp, which embeds F∗p as a multiplicative group of (p− 1)’th roots of unity.11

Since Qp is complete and has a norm, we have available all the processes of analysis. We
can discuss limits and continuity in a manner analogous to analysis over R. We can also develop
the theory of special functions. However, due to the non-Archimedian property of the p-adic
norm, many of these concepts are somewhat different in the p-adic case. Of particular interest
is the convergence of series. Consider the partial sums

Sn =
n
∑

i=0

αi , αi ∈ Qp of the series S =
∞
∑

i=0

αi .

The sequence {Sn}∞n=0 is Cauchy if and only if ||αi||p→ 0 as i→∞. The property (A.1) guar-
antees that such a sequence converges in the p-adic norm. In particular, there is no possibility
of many small terms adding up to give a large contribution to the sum. This property is used
extensively in the main text to evaluate p-adic sums exactly to certain accuracy: if we are in-
terested in the value of the limit S to accuracy pm, that is, we wish to compute S∞ mod pm+1,
we can ignore any terms with ||αn||p < p−m, that is any αn such that αn ≡ 0 mod pm+1. If the
sum is convergent, this implies that we can evaluate S mod pm+1 as a finite sum.

This also has an interesting implication for convergence of power series. Let

f (η) =
∞
∑

n=0

αnη
n .

The function f (ξ) is well-defined for values ξ ∈ Qp such that ||αnξ
n||p → 0 as n→∞. One

can define the radius of convergence r by

1
r
= lim sup ||αn||1/np ,

where lim sup ||αn||1/np denotes the least real number x such that for any X > x there are only

finitely many αn such that ||αn||1/np > X . One can show that the above series is convergent if
and only if ||x ||p < r [13]. In particular, there is no notion of conditional convergence, as this
condition only depends on the norm of x .

An important example of a function defined by power series is the p-adic logarithm that is
defined, in analogy to the usual case, via

logp(x + 1) =
∞
∑

n=1

(−1)n+1 xn

n
,

which converges for ||x ||p < 1. This satisfies the usual property logp(x y) = logp(x)+ logp(y),
since this follows directly from the series expansion when this converges. Requiring that this
property holds for all x , y ∈ Q∗p, one can define a logarithm that is defined on the whole of
Q∗p (or even the algebraically closed field C∗p containing Q∗p). To fully fix this function, one
needs to fix the value of logp(p). The Iwasawa logarithm is obtained by choosing logp(p) = 0.
To evaluate this explicitly for p-adic integers, one can use the following observation (see for
example [48]): For any integer a ∈ Zp, we have ap−1 = 1+O(p), so defining y = ap−1 − 1,

11Note that, for instance, Teich(p) = 0, and Teich(x + p) = Teich(x), so the Teichmüller representative does not
define a bijective correspondence Qp → Qp.
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we have ||y||p < 1. Thus we can compute logp(a
p−1) = logp(1+ y) using the power series. By

the usual multiplication identity, we then have (p − 1) logp(a) = logp(1+ y). Therefore, the
Iwasawa logarithm can be computed as

logp(a) =
logp(a

p−1)

p− 1
.

Continuity considerations allow one to define also other interesting special functions, such as
the p-adic Γ - and ζ-functions, which appear in the expression for the matrix Up(0), discussed
in §3.4. Here we just present their definitions, referring the reader to [1, 47] for details. The
p-adic Γ -function is obtained by p-adic extrapolation (which can be thought of as a p-adic
analogue to analytic continuation) from the expression of Γp(n) for non-negative integers n:

Γp(n) = (−1)n
n−1
∏

k=1
p∤k

k , n ∈ Zn≥0 .

The p-adic zeta function can be likewise defined by extrapolation. There is a slight subtlety
associated with the fact that the values of the zeta function ζ(s) for integers s > 0 are believed
to be transcendental, and thus they cannot be interpreted as p-adic numbers. However, for
negative odd integers s, the values of ζ(s) are rational and can thus be interpolated. We define

ζp(s) =
bs−1

s− 1
,

where bs are prime-dependent constants related to the Bernoulli numbers Bn via

−
1

2k
(1− p2k−1)B2k = −

b−2k

2k
,

for integers k. In particular, the zeta function value ζp(3) that we encounter in the main text
is given by

ζp(3) =
b2

2
= −

1
2

�

Γ ′′′p (0)− Γ
′
p(0)

3
�

,

where the latter expression has been explicitly derived, for example, in [1].

B A warm-up example: The Legendre family of elliptic curves

To get a feel for the kind of calculation we need to perform to find the zeta functions of
multiparameter manifolds, we present here briefly the simplest example - that of an elliptic
curve. To be specific, let us consider the Legendre family of elliptic curves Eλ given, on an
affine patch, by the equation

y2 = x(x − 1)(x −λ) .

The canonical differential of this curve, corresponding to the (up to scaling) unique holomor-
phic (1, 0)-form is given by

Ω=
dx
y
=

dx
p

x(x − 1)(x −λ)
.

Differentiating with respect to λ, we first get a form Ω′ ∈ H(1,0)(Eλ,C) ⊕ H(0,1)(Eλ,C) that
together with Ω forms a basis for H1(Eλ,C), at least for almost every value of λ. Then it
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follows that the second derivative Ω′′ can be expressed in terms of Ω and Ω′, at least up to an
exact form. In fact a simple calculation reveals that

λ(λ− 1)
d2

dλ2
Ω+ (2λ− 1)

d
dλ
Ω+

1
4
Ω= −

1
2

d

�p

x(x − 1)(x −λ)
(x −λ)2

�

.

Integrating over the two cycles in H1(Eλ,C), we find that the periods ϖi satisfy the Picard–
Fuchs equation, which can be written in terms of the logarithmic derivatives θ = λ d

dλ as

(λ− 1)θ2ϖi +λθϖi +
λ

4
ϖi = 0 .

This is equivalent to the hypergeometric differential equation, and has as its solutions the
elliptic integrals of the first kind K(λ) and K(1 − λ). We wish to express the periods in the
Frobenius basis, which is defined by requiring the asymptotics

ϖ0(λ) = 1+O(λ) , and ϖ0(λ) = log(λ)ϖ0 +O(λ) .

With these conventions, the period vector corresponding to the holomorphic (1, 0)-form can
be expressed, in the Frobenius basis, as

ϖ
def
=

�

ϖ0

ϖ0

�

=

� 2
πK(λ)

−2K(λ− 1) + 8 log 2
π K(λ)

�

.

Let us denote by {v0, v0} the basis of H1(Eλ,C) in which Ω is given by

Ω=ϖ0v0 +ϖ0v0 .

In addition to this basis, we can take as the basis of the middle cohomology H1(Eλ,C) the span
of Ω and θΩ. The change-of-basis matrix E(λ) from the constant basis {va, va} of H1(Eλ,C) to
the derivative basis {Ω,θΩ} then takes the form

E(λ) =

�

ϖ0 θϖ0

ϖ0 θϖ0

�

.

The Picard–Fuchs equation can be written in the first-order form using this matrix as

θE(λ) = E(λ)B(λ) , where B(λ) =

�

0 − λ
4(λ−1)

1 − λ
λ−1

�

.

To find the characteristic polynomial R(Eλ, T ) defined in (5), we need to find a matrix
representing the action of the inverse Frobenius map Fr−1

p (4) induced from the action
Frobp : x 7→ x p on the middle cohomology.

By considering the compatibility conditions (31), it can be shown, completely analogously
to [1] that the matrix Up(λ) representing the action of Fr−1

p in the derivative basis satisfies the
following differential equation:

θUp(λ) = p B(λp)−1Up(λ)−Up(λ)B(λ) . (B.1)

Let Vp(0) denote the matrix corresponding to this action in the large complex structure limit,
in the constant basis. Then, it is easy to show that the matirx U(λ) is given by

Up(λ) = E(λp)−1Vp(0)E(λ) , (B.2)
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which is just the matrix Vp(0) expressed in the derivative basis in addition to which we have
taken into account the fact that the Frobenius map acts on the scalar λ as λ 7→ λp.

The differential equation (B.1) can be used to constrain the form of the matrix Vp(0).
Taking the limit λ→ 0, we get the relation

p B(0)−1Up(0)−Up(0)B(0) = 0 , with B(0) =

�

0 0
1 0

�

.

This forces the matrix Up(0) to take the lower-diagonal form

Up(0) = up

�

1 0
αp p

�

.

Plugging this form back to the equation (B.2), one can show that in this case

Vp(0) = Up(0) .

More conditions can be obtained from the fact [1] that the Frobenius map should be compatible
with the symplectic product

(α,β)
def
=

∫

Eλ

α∧ β , α,β ∈ H1(Eλ,C) ,

in the sense that
(Frpα, Frpβ) = p (α,β) . (B.3)

In the constant basis the matrix representing this product takes, up to an irrelevant overall
constant of normalisation, the form

σ =

�

0 1
−1 0

�

.

Written as a matrix equation, the condition (B.3) becomes

V (0)σV (0)T = pσ ,

which fixes up = ±1.
This leaves the parameter αp still free. We can fix this by appealing to the expectation

(see for example [35, 36]) that when the coefficients of the power series in the matrix Up(λ)
are considered modulo pn, the resulting matrix should be a matrix of rational functions. In
practice, these rational functions have relatively low degrees, so we can test this expectation
by computing the series in Up(λ) to a high degree and seeing if we can find a polynomial Sn(λ)
such that multiplying Up(λ) by a matrix that has the property that there exists an integer K
such that the coefficients of λk for k > K vanish mod pn.

For generic values of αp it turns out that such a polynomial (of at least reasonably low
degree) does not exists. However, we find that there is a unique value of αp such that a
polynomial Sn(λ) can be found. In fact, we find that this polynomial is given by

Sn(λ
p) = (λp − 1)n−2 . (B.4)

This vanishes exactly on the singular locus λ = 1 of the Legendre family, which agrees with
the expectation that the method described above works without modifications only for smooth
elliptic curves.
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Let us consider, for instance the case p = 7 and n= 7. We find that the matrix Up(λ), with
coefficients of the series in λ taken mod 77, becomes a rational matrix with the denominator
(B.4) with numerators being degree 31 polynomials in λ if we choose

α7 = 620284+O
�

77
�

= {0, 6,2, 2,6, 1,5, . . .} ,

where O(77) signifies that in this way we have found the value of α7 only modulo 77. The
second equality gives the p-adic digits of α7. Taking a higher p-adic accuracy, say n = 10,
would allow us to find a more p-adically accurate expression

α7 = 163681798+O
�

710
�

= {0,6, 2,2, 6,1, 5,2, 0,4, . . .} .

For other values of α7, that is, for values that are not congruent to 620284 modulo 77,
the numerator would have a degree at least 800, which would strongly indicate that Up(λ) is
not a rational matrix. Conversely, existence of a solution for the value of α7 is remarkable, as
there are a priori hundreds of conditions that must be satisfied. Specialising to a case where
λ = x ∈ Fp, one might be tempted to think that to find the numerator of the zeta function
ζ(Ex , T ), it would be enough to evaluate the matrix Up(λ) at x . However, we must take into
account that in computing Up(λ) and even defining the action of the inverse Frobenius map
on the p-adic cohomology, we have treated Up(λ) as a matrix with coefficients in the field of
the p-adic numbers Qp. Therefore, as discussed in §2.1 we must use an embedding of Fp into
Qp given by the Teichmüller representatives Teich(λ) (see appendix A).

To compute the numerator Rp(Ex , T ), we therefore substitute for λ the p-adic expansion of
Teich(x) mod pn, and evaluate the matrix Up(Teich(x)) mod pn. The characteristic polyno-
mial of this matrix is the numerator Rp(Ex , T )modulo pn. It follows from the Weil conjectures
that this polynomial is of the form

Rp(Ex , T ) = 1− apT + pT2 .

The only non-trivial coefficient a can be expressed as a sum of the roots a = λ1 + λ2. Using
the Riemann hypothesis, |a| < 2p1/2, so we know that the value of a mod p2 gives the exact
value of a. It is therefore enough to work modulo p2.

B.1 The choice of the signs up and twists

For instance, if we take λ = 5 and up = 1 for all p, we can find the values of ap for, say, the
first 100 primes. The modularity theorem for elliptic curves defined over Q implies that these
coefficients appear as Fourier coefficients of an ordinary modular form [49, 50]. In this case
we find that the corresponding modular form is the one with the LMFDB [51] label 80.2.a.a
with its q-expansion is given by

f80.2.a.a =
∞
∑

n=0

cnqn = q+ q5 + 4q7 − 3q9 − 4q11 − 2q13 + 2q17 − 4q19 − 4q23 + q25 +O(q29) .

However, using the definition (1) of the zeta function in terms of point counts, and counting
points modulo p on the Legendre curve with λ= 5 gives a zeta function corresponding to the
modular form 40.2.a.a whose q-expansion differs from that of 80.2.a.a by a term-dependent
sign:

ef40.2.a.a =
∞
∑

n=0

ecnqn = q+ q5 − 4q7 − 3q9 + 4q11 − 2q13 + 2q17 + 4q19 + 4q23 + q25 +O(q29) .
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To be specific, the difference between the coefficients of the modular forms is given by the
Dirichlet character, which can be written in terms of the Kronecker symbol:

cn = χ−1(n)ecn , with χ−1(n) =
�

−1
n

�

. (B.5)

In other words, we would obtain the correct zeta function by choosing the signs up as

up =
�

−1
p

�

.

To understand why this is necessary, we note that the modular form 80.2.a.a which we find
from the deformation method computation is related to the elliptic curve E5 given by

Y 2 = X 3 − 7X + 6 , (B.6)

whereas the Legendre family curve E5 can be written as

y2 = x3 − 7x − 6 .

These two curves are isomorphic over C, as can be easily verified by computing their j-
invariants or by explicitly finding the isomorphism

Y = iy , X = −x . (B.7)

From this we also see that the isomorphism is defined over Q(i) and not over Q. Such a pair
of curves are called twists of each other.

To see why the modular forms associated to the two elliptic curves are related by (B.7),
consider fixing x ∈ Fp. Then there exist exactly 2 points (x , y) ∈ F2

p on E5 if x3 − 7x − 6 is
a non-zero quadratic residue mod p so that its square roots exist in Fp. Corresponding to x
such that x3 − 7x − 6 = 0, there is exactly 1 point (x , 0) on E5. Finally, if x3 − 7x − 6 is not
a quadratic residue mod p, there are no points of the form (x , y) on E5. This means that the
number of points Np(E5) can be expressed in terms of the Legendre symbol as

Np(E5) = 1+
∑

x∈Fp

�

1+

�

x3 − 7x − 6
p

��

= 1+ p+
∑

x∈Fp

�

x3 − 7x − 6
p

�

,

where the first term accounts for the point (x : y : z) = (0 : 1 : 0) ‘at infinity’ of the projectivised
curve E5. The modular form coefficients cp are related to the point counts Np(E5) by

cp(E5) = p+ 1− Np(E5) ,

so in terms of the modular form coefficients cp, we have that

cp =
∑

x∈Fp

�

x3 − 7x − 6
p

�

.

Consider then the quadratic twist E5 (see eq. (B.6)) of E5, so that the curves are related by the
transformation (B.7). The points on E5 can be counted in a similar fashion to above, except
that we must study whether

X 3 − 7X + 6= −((−X )3 − 7(−X )− 6) = −(x3 − 7x − 6)
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Table 8: The parameter λ together with the LMFDB label of the modular form f
found by using the coefficients ap obtained by computing the zeta function using
the method outlined in this appendix and the modular form ef obtained by counting
points on the corresponding Legendre family curve. These two modular forms are
related by a twist by the Dirichlet character given in the last column.

λ f ef χd

2 32.2.a.a 32.2.a.a χ1

3 96.2.a.b 96.2.a.a χ−1

4 24.2.a.a 48.2.a.a χ−1

5 80.2.a.a 40.2.a.a χ−1

5/2 960.2.a.f 960.2.a.o χ−1

8/5 600.2.a.a 1200.2.a.r χ−1

is a quadratic residue mod p or not. This the origin of the relation between the ap(E5) and
ap(E5). Using the fact that the Legendre symbol is multiplicative in the top argument, we have
that

�

X 3 − 7X + 6
p

�

=
�

−1
p

�

�

x3 − 7x − 6
p

�

,

so the above relation between which implies the relation (B.5) between the modular form
coefficients cp and ecp:

cp =
�

−1
p

�

ecp = χ−1(p)ecp .

Since we started with the periods of a family of elliptic curves defined over C, it stands to
reason that with the choice up = 1 for all p, we do not find the point counts of the particular
rational elliptic curve, but rather find the point counts of a curve that is isomorphic over C.
Some more examples are included in table (8).

C Form of Up(0) from commutation relations

To see explicitly that we can write the matrix Up(0) as

Up(0) = upΛp

�

I+αi
p εi + β

(p)
i µi +
�

γp +
1
3!

Yi jkα
i
pα

j
pα

k
p

�

η

�

, Λp = diag(1, p 1, p2 1, p3) ,

we denote the components of Up(0) by

Up(0) =













u0
0 u1,i

0 u2,i
0 u3

0

u0
1,i u1, j

1,i u2, j
1,i u3

1,i

u0
2,i u1, j

2,i u2, j
2,i u3

2,i

u0
3 u1, j

3 u2, j
3 u3

3













.

From (41) it is possible to obtain commutation relations of Up(0) with matrices η and µi:

p3ηUp(0) = Up(0)η , p2µiUp(0) = Up(0)µ
i . (C.1)

The first of which is equivalent to requiring

u1,i
0 = u2,i

0 = u3
0 = 0 , u3

0 = u3
1,i = u3

2,i = 0 , p3u0
0 = u3

3 .
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Substituting these conditions into the second equation in (C.1), and contracting with bYi jk
where needed, the following conditions are found:

u1, j
1,i = p u0

0δ
j
i , u2, j

1,i = u3
1,i = 0 , u2, j

2,i = p2 u0
0δ

j
i , u3

2,i = 0 , u2,i
3 = 3p2u0

1,i .

Finally, with these conditions, the original commutation relations (41) are equivalent to

u1, j
2,i = pu0

1,kYi jk , u1,i
3 = pu0

2,i .

Denoting the independent constants appearing here as

u0
0 = u , u0

i,1 = upαi , u0
2,i = up2βi , u0

3 = up3
bγ ,

we obtain the claimed result.

D Univariate Hulek–Verrill periods and their derivatives from re-
currences

To compute the zeta functions of the five-parameter family of Hulek–Verrill manifolds, we
could in principle use the five-parameter series expressions to compute the matrix E(ϕ). How-
ever, these series are rather cumbersome which makes this method impractical for computing
the series to a high order.

As we are interested in series expressions on one-parameter lines in the moduli space, in
particular on the symmetric lines ϕi = ϕ, we only need the periods and their logarithmic
derivatives as series in one variable. However, having to first compute a five-variable series
and then specialise to this line is a computationally a very expensive process, rendering again
the computations practically impossible. Instead of having to do this, it is possible to derive
recurrences for the periods and their derivatives directly as univariate series.12

Let t multiset of elements of {1,2, 3,4, 5} (allowing duplicates) of cardinality ≤ 3, and
denote

θt =
∏

i∈t
θi ,

θtϖ
a|ϕi→ϕ, logϕ→0 = f a

t , θtϖa|ϕi→ϕ, logϕ→0 = ft,a .

We seek an efficient way to compute a large number of terms in the power series f a
t and ft,a.

With these, we are able to compute the periods and their derivatives because the power series
that multiply the logarithms in each are formed from known combinations of the above series.
This problem can be broken up to computing the series expansions of the following sets:

A= { ft,0, f 0
t | t contains no repeated elements} ,

B = { ft,i , f i
t | t contains no repeated elements and i > 0} ,

C = { ft,a, f a
t | t contains repeated elements and a ≥ 0} .

In [52], Verrill gave a recursive method for computing the coefficients

cεn =
∑

|k|=n

�

n!
k1!k2!k3!k4!k5!

�2

kδ , (D.1)

12We thank Joseph McGovern for introducing this method to us and providing a Mathematica implementation.
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where k = (k1, . . . , k5) is a five-component multi-index, and δ is a five-component multi-index
with δi ∈ {0, 1}. These appear as coefficients of the fundamental period ϖ0 and its non-
repeated logarithmic derivatives, which is the set A. The method in [52] thus can be used to
efficiently compute the functions in A.

Recurrences for the coefficients of the series in B can be derived by considering the ordinary
differential equations

Lt(F) = 0 , (D.2)

satisfied by the functions f 0
t = θtϖ

0 on the S5-symmetric line. These equations are obtained
in the standard way from the recurrences for the functions in A that can be computed by
Verrill’s method.

About ϕ = 0, there is a Frobenius basis of solutions to each of the equations (D.2) consist-
ing of a single holomorphic solution, f 0

t , in addition to which there are solutions containing
logarithms of ϕ. Let us denote the holomorphic part of each of these solutions by gt,k, bearing
in mind that the range of k varies with t . The coefficients of these functions satisfy almost
the same recurrence relations as the corresponding functions in A, but with an inhomogeneity
that can be computed in terms of functions gt,l , with l < k. It can be shown that f a

t and ft,a
are sums of functions gt,k, fr,a, and f a

r , where r ⊊ t. As an example of this principle, consider
the function f 1

{1}, which has a series expansion

f 1
{1} = 2

∞
∑

n=0

∑

|k|=n

�

n!
k1!k2!k3!k4!k5!

�2

k1

�

Hn −Hp1

�

ϕn .

The function f 0
{1} has an expansion

f 0
{1} =

∞
∑

n=0

∑

|k|=n

�

n!
k1!k2!k3!k4!k5!

�2

k1ϕ
n , (D.3)

and by applying the Frobenius method to this function, we can obtain a logarithmic solution
to (D.2) with t = {1}, which has a holomorphic part

g{1},1 = ∂δ1

�

f 0
{1}

�

�

ki→ki+δi , n→n+
∑

δi

�

�

�

�

�

δi→0, log→0
= f 1
{1} + f 0

{0} .

We see that it is possible compute f 1
{1} in terms of two functions that we already defined re-

cursively: g{1},1, which satisfies the inhomogenous recurrence relation just derived, and f 0
{0}

which is a member of A.
Recursion in t allows for the functions in B to be expressed in terms of solutions to a

recurrence relation and functions in A, which we can already compute.
To better illustrate the recurrences for the functions g, consider ϖ1 = f 0

; logϕ + f 1
; . By

substituting this into the differential equation (D.2) with t = ;, we obtain an inhomogeneous
differential equation for the functions f 1

; :

L;( f 1
; ) = −L

;(logϕ f 0
; ) .

From this equation, we can read off an inhomogeneous recurrence relation satisfied by the
coefficients dn appearing in the expansion

f 1
; =

∞
∑

n=1

dnϕ
n .
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The inhomogeneity involves the coefficients of f 0
; , which is a member of Aand can be computed

quickly. This solves the problem for the functions in B.
Finally, we turn to the functions in C . Luckily, there are identities that give these functions

in terms of functions belonging to A or B. For example, consider the derivatives θ2
1θ2ϖ

0. From
the series expansion (64), it follows that

θ2
1θ2ϖ

0 =
∞
∑

n=0

∑

|k|=n

�

n!
k1! · · · k5!

�2

k2
1k2ϕ

n

=
∞
∑

n=0

n2
∑

|k|=n

�

(n− 1)!
(k1 − 1)!k2! · · · k5!

�2

k2ϕ
n =

∞
∑

n=0

n2c(2)n−1ϕ
n , (D.4)

where the coefficients c(2)n−1 are those appearing in the series expansion of θ2ϖ
0. It is possible to

find an exhaustive list of such identities, one for each function in C , thus finishing the problem
of finding a fast method of computing the periods and their derivatives on a line in the moduli
space.

This problem is made simpler by working on the line with the full S5 symmetry, where not
all of the functions f a

t and ft,a are independent. For instance f 0
{1,2,3} = f 0

{3,4,5} on this line.

However, the method described above can be used to work on any line ϕi = siϕ, where si

are constants. The main difference is that there are in full generality ten periods ϖi and ϖi ,
and so 12 functions and their numerous derivatives to consider. The series expansions of all of
these can be computed with the above method, but the recurrence relations and intermediate
differential equations (D.2) become more complicated the less symmetry one has.

E CY3Zeta, a Mathematica package for computing zeta functions
of Calabi–Yau threefolds

To make the computations using the methods developed in this paper more accessible to a
wider audience, we present a Mathematica package CY3Zeta which contains implementa-
tions of many algorithms described in the paper. The aim of the package is to make these as
user-friendly as possible, and work for any Calabi–Yau threefold with sufficiently few complex
structure parameters to make the computations feasible. As a result, the implementation pro-
vided in the package could often be slightly improved on case-by-case basis, for instance by
taking into account symmetries of the manifolds in question.

E.1 Downloading and installing

The package can be downloaded from https://github.com/PyryKuusela/CY3Zeta. It
comes with two files. The file CY3Zeta.wl contains the package itself and file
CY3Zeta_Examples.nb contains instructions and examples.

To install the package, in Mathematica front end, go to menu File→Install.... Then
in the resulting dialog choose Package as Type of Item to Install, and as Source,
choose From File..., navigate to the directory containing CY3Zeta.wl, and open it. After
this, choose either to install the package for current user or all users.

Alternatively the file CY3Zeta.wl can be manually placed to the directory
$UserBaseDirectory.
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E.2 Setup and options

The package can be loaded by using

In[1]:= <<CY3Zeta.wl‘

After this, one needs to specify some data related to the Calabi–Yau manifold Xϕ whose zeta
function is to be computed: the number of complex structure parameters of Xϕ , the order to
which the Taylor series expansions should be computed, the values of the coefficients Yi jk and
bYi jk, as well as the equations specifying the singular loci. These parameters are specified by
using the following functions

Option E.1: zSetNParams

zSetNParams[NParams]
Sets the number of complex structure parameters for which the following computations
are to be performed.
Arguments
NParams is the number of complex structure parameters (= h1,2) of the manifold Xϕ .

Option E.2: zSetNMax

zSetNMax[NMax]
Sets the maximal order to which the power series are evaluated during the following
computations.
Arguments
NMax is the maximal order to which the power series are to be evaluated.

Option E.3: zSetY

zSetY[YRules]
Sets values of the triple intersection numbers Yi jk of the mirror manifold of Xϕ . The
Yi jk are assumed to be symmetric.
Arguments
YRules is a list of rules (in the form Y[i,j,k]->yval) giving the values of the inde-
pendent triple intersection numbers Yi jk.

Option E.4: zSetYhat

zSetYhat[YhatRules]
Sets values of the ‘inverse’ triple intersection numbers bYi jk (see (14)) of the mirror
manifold of Xϕ . The bYi jk are assumed to be symmetric in the first two indices. To
modify this behaviour, set $zYhatSymmetryRules={}.
Arguments
YhatRules is a list of rules (in the form Yhat[i,j,k]->yval) giving the values of
the independent bY i jk.
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Option E.5: zSetConifoldLocus

zSetConifoldLocus[D]
Specifies the polynomial ∆ (see §3.5) defining the conifold locus of the manifold Xϕ .
The complex structure moduli space coordinates are φ[1],...,φ[NParams].
Arguments
D is a polynomial whose vanishing locus is the conifold locus of Xϕ .

Option E.6: zSetOtherSingularLocus

zSetOtherSingularLocus[Y]
Specifies the polynomial Y (see §3.5) defining moduli space locus of the manifold Xϕ ,
where Xϕ is has a singularity not of conifold or large complex structure type.
Arguments
Y is a polynomial whose vanishing locus is the singular locus of Xϕ , without the conifold
and large complex structure singularities.

For example, to study the example presented in §4.3, we can first specify that we are
studying a two-parameter model, and that we wish to perform the computations to 200 terms
in the series:

In[2]:= zSetNParameters[2]
zSetNMax[200]

After this, we input the independent triple intersection numbers Yi jk and their inverses bY i jk.

In[3]:= zSetY[{Y[1,1,1]->0,Y[1,1,2]->0,Y[2,1,2]->4,Y[2,2,2]->5}]
zSetYhat[{Yhat[1,2,1]->-5/32,Yhat[1,2,2]->1/8,Yhat[2,2,1]->1/4,
Yhat[2,2,2]->0,Yhat[1,1,1]->0,Yhat[1,1,2]->0}]

Out[3]= {Y[1,1,1]->0,Y[1,1,2]->0,Y[2,2,1]->4,Y[2,2,2]->5}

Out[4]=
¦

Yhat[1,2,1]->-
5

32
,Yhat[1,2,2]->1/8,Yhat[2,2,1]->1/4,

Yhat[2,2,2]->0,Yhat[1,1,1]->0,Yhat[1,1,2]->0
©

Finally, the conifold locus and the rest of the singular locus of Xϕ , disregarding
the large complex structure singularities, are specified using zSetConifoldLocus and
zSetOtherSingularLocus.

In[5]:= zSetConifoldLocus
�

65536φ[2]2 - (φ[1]-1)5 -

φ[2](512+2816φ[1]-320φ[1]2+144φ[1]3-27φ[1]4)
�

zSetOtherSingularLocus[1]

Out[5]= 65536φ[2]2 - (φ[1]-1)5 - φ[2](512+2816φ[1]-320φ[1]2+144φ[1]3-27φ[1]4)

Out[6]= 1
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E.3 Period coefficients

After specifying the data related to the Calabi–Yau manifold, one needs to input the coefficients
ca1,...,am

that specify the functions f , f i , efi and ef (defined in (13) and (12)) via

f =
∞
∑

ai=0

ca1,...,am
ϕ

a1
1 . . .ϕam

m , f i =
∞
∑

ai=0

c i
a1,...,am

ϕ
a1
1 . . .ϕam

m ,

and similar relations for ef i and ef . The coefficients ca1,...,am
corresponding to f are denoted by

zc[0,{},{a1,...,am}], the coefficients of f i are denoted by zc[1,{i},{a1,...,am}],
whereas the coefficients of ef i and ef are denoted by zc[2,{i},{a1,...,am}] and
zc[3,{},{a1,...,am}], respectively.

Object E.1: zc

zc[s,{},{a1,...,am}]
Gives the coefficient of ϕa1

1 . . .ϕam
m in f or ef , depending on whether s equals 0 or 3.

zc[s,{i},{a1,...,am}]
Gives the coefficient of ϕa1

1 . . .ϕam
m in f i or ef i , depending on whether s equals 1 or 2.

The periods can be derived from the fundamental period using the expansion (10). This
can be done automatically by using the function zPeriodsFromFundamental.

Function E.1: zPeriodsFromFundamental

zPeriodsFromFundamental[fundPeriodCoeff,{k1,...,km}]
Computes the periods ϖi ,ϖi and ϖ0 from the fundamental period coefficients using
the expansion (10).
Arguments
fundPeriodCoeff is the coefficient of ϕk1

1 . . .ϕkm
m of the fundamental period ϖ0.

k1, ..., km are the variables k1, . . . , km that give the powers of ϕi corresponding to
the coefficient fundPeriodCoeff.

For instance, recalling that the periods of the split quintic studied in section 4.3 are given
by (67), the periods can be specified using this function by calling

In[7]:= zPeriodsFromFundamental

�

(m+n)! (m+4n)!

(m)!2 (n)!5
,{m,n}

�

However, this uses the in-built Mathematica functions to simplify the derived expressions for
the coefficients, and as such can be very slow. In practice, it is often more advisable to sim-
plify the expressions by hand, and use these for faster evaluation times, although usually the
recurrence relations analogous to (57) are the fastest way of obtaining the coefficients. For in-
stance, to define the coefficients zc[0,m,n] giving the coefficient ofϕm

1 ϕ
n
2 in the fundamental

period, we can define

In[8]:= zc[0,{},{m_,n_}] := zc[0,{},{m,n}] =
(m+n)! (m+4n)!

(m)!2 (n)!5

The period ϖ1 can similarly be specified as

In[9]:= zc[1,{1},{m_,n_}] := zc[1,{1},{m,n}] =
(m+n)! (m+4n)!

(m)!2 (n)!5

(HarmonicNumber[m+n]+HarmonicNumber[m+4n]-2HarmonicNumber[m])
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After specifying the coefficients zc, the logarithm-free period vectorsßϑaϖ, andßϑaϖ defined
in (49) can be accessed from the variables ωt[], θωt[i], θ2ωt[i], and θ3ωt[], where
i ranges from 1 to NParams.

Object E.2: ωt, θωt, θ2ωt, θ3ωt

ωt[]
Gives the logarithm-free period vectorßϑ0ϖ(ϕ).
θωt[i]
Gives the logarithm-free period vectorÞϑiϖ(ϕ) involving the first derivatives.
θ2ωt[i]
Gives the logarithm-free period vectorßϑiϖ(ϕ) involving the second derivatives.
θ3ωt[]
Gives the logarithm-free period vectorßϑ0ϖ(ϕ) involving the third derivatives..

The periods are given as series in φ[i] and λ, where λ keeps track of the overall degree.
For example, the fundamental period is given, to the second order, by

In[10]:= ωt[][[1]]+O[λ]3

Out[10]= 1+(φ[1]+24φ[2])λ +
�

φ[1]2+240φ[1]φ[2]+2520φ[2]2
�

λ2 + O[λ]3

E.4 Reading/writing to/from a file

As the evaluation of periods as series in multiple variables tends to cause a significant bottle-
neck in the method presented in this paper, CY3Zeta includes simple functionality for saving
the period expansions as plain text files and reading the expressions from the files. First a di-
rectory for saving the text files must be created. After that, to tell CY3Zeta to use that folder
for saving/loading, one can use zSetDirectory.

Option E.7: zSetDirectory

zSetDirectory[path]
Specifies the directory where the text files containing the period coefficients are stored.
Arguments
path is a string containing the path of the directory relative to the Directory[].

Then the logarithm-free period vectors ωt[], θωt[i], θ2ωt[i], and θ3ωt[] can be
saved into their corresponding .txt files using the following function.

Function E.2: zPeriodsToFile

zPeriodsToFile[]
Saves the logarithm-free period vectors stored into the variables ωt[], θωt[i],
θ2ωt[i], and θ3ωt[] to .txt files named wtilde_Coeffs, thwtilde_Coeffs_i,
th2wtilde_Coeffs_i, and th3wtilde_Coeffs, where i ranges from 1 to NParams.
The files are located in the directory specified by zSetDirectory.
Arguments
None.

The saved expressions can be read from the files and stored into the logarithm-free period
vectorsωt[], θωt[i], θ2ωt[i], and θ3ωt[] by using the function zPeriodsFromFile.
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Function E.3: zPeriodsFromFile

zPeriodsFromFile[]
Reads the series expressions for the logarithm-free periods from .txt files to which
they have been saved and stores the expressions to the variables ωt[], . . . ,θ3ωt[]
representing these vectors.
Arguments
None.

We can save the period computed above (and the other periods) to their corresponding
files by first specifying a directory. In this case we use Directory[]/Split_Quintic.

In[11]:= zSetDirectory["Split_Quintic"]
zPeriodsToFile[]

After this, we can clear the definitions of the period vectors, and check that reading them from
the files13 gives the same result as the expression given above.

In[12]:= Clear[ωt,θωt,θ2ωt,θ3ωt]
zPeriodsFromFile[]
ωt[]+0[λ]3

Out[12]= 1+(φ[1]+24φ[2])λ +
�

φ[1]2+240φ[1]φ[2]+2520φ[2]2
�

λ2 + O[λ]3

E.5 The matrix E and its inverse

After the coefficients zc determining the periods have been specified or the period vectors eϖ
have been read from a file, one can compute the matrices eE(ϕ) and eE

−1
(ϕ). As discussed

in §3.7, to compute eE
−1

, the matrix W (see (53)) must first be found. An often convenient
method for finding this is to compute the inner products (ϑΩ,ϑΩ) as series to high enough
accuracy. One can then take a generic ansatz for the denominator of the rational matrix W .
If the periods have been computed to high enough accuracy, one should be able to solve for
the denominator by requiring that the matrix W be rational. This procedure is implemented
as the function zFindW.

Function E.4: zFindW

zFindW[{deg1,...,degm},NMax,NumDeg]
Looks for the rational matrix W by evaluating it as a series and solving for the denom-
inator using a generic ansatz.
Arguments
deg1,...,degm is a list giving the degree of the ansatz for the denominator of W in
the coordinates φ[1],...,φ[NParams].
NMax is number of terms to which the series used for finding the denominator should
be computed.
NumDeg is number of terms to which the series used for finding the numerator should
be computed.

For example, to compute the matrix W of the mirror of the non-symmetric split of the
quintic of 4.3, we first can try to use a linear ansatz for the denominator. We expect the

13The text files containing the periods to 200 terms can also be found at https://github.com/PyryKuusela/
CY3Zeta/releases.
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denominator and the numerator to be relatively simple, so we compute the series used to find
the denominator to degree 50. We also expect that the numerator is of degree less than 20:

In[13]:= zFindW[{1,1},50,20]

However, it turns out that the degree of the ansatz (or the degree to which the series are
evaluated) is too low, and we get a warning, and the output is an empty list indicating that no
solution was found:

Out[13]= No solution to the given accuracy
{}

Increasing the degrees of the ansatz to deg(ϕ1,ϕ2) = (3, 5) gives a solution. However, in this
case the solution for the denominator is not unique, so we get a warning:

In[14]:= zFindW[{5,3},50,20]

Out[14]= There are free variables - a denominator of lower degree may exist.

Although the solution found by zFindW might not be of the simplest form, it is a valid solution
and the matrix W is stored in the variable zW.

Object E.3: zW

zW
Gives the matrix W defined in (53).

In this case, it turns out that the simplest denominator is of degree deg(ϕ1,ϕ2) = (2,5),
and indeed, running

In[15]:= zFindW[{5,2},50,20]

Out[15]=

does not result in any warnings, indicating that the solution has been found successfully.
If the matrix W is known in advance or is not found by using the function zFindW, one

can set it manually by using the function zSetW.

Function E.5: zSetW

zSetW[WMat]
Specifies the the matrix W .
Arguments
WMat is the matrix W .

After the matrix W has been found, one can compute the matrices eE(ϕ) and eE
−1
(ϕ). This

is done by running the function zComputeEMatrices.

Function E.6: zComputeEMatrices

zComputeEMatrices[]
Computes the matrices eE(ϕ) and eE

−1
(ϕ) and stores them in internal variables.

Arguments
None.
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E.6 Finding the coefficients αi and γ̂

If the coefficients αi and bγ, defining the matrix Up(0) are not known, they can be solved for
numerically, order by order in p, by requiring that the series in the matrix Sn(ϕp)Up(ϕ) termi-
nate to the specified order in ϕ. In all of the examples we have studied, it is actually enough
to check this for Sn(ϕp, . . . ,ϕp)Tr

�

Up(ϕ, . . . ,ϕ)
�

. This numerical method is implemented by
zFindU0Constants.

Function E.7: zFindU0Constants

zFindU0Constants[p,acc,maxdeg]
Computes coefficients αi and bγ which appear in the expression (42) for Up(0).
Arguments
p is the prime p for which the matrix Up(0) is computed.
acc is the p-adic target accuracy to which the function aims to compute the constants.
However, a lower accuracy solution may be returned, if higher-accuracy solution is not
found. maxdeg is the maximum degree of the series Sn(ϕp)Up(ϕ) for the series to
be considered terminating. If the degree of Sn(ϕp)Up(ϕ) is higher than maxdeg for a
particular set of constants αi and bγ, then the series is considered non-terminating and
the values of αi and bγ are considered not to give a solution.

The output of the function is a pair {{α1->val1,...,αNParams->valNparams,
γhat->val0},acc}, where the first entry is a list of rules that give the values of αi and bγ, and
the second entry is the accuracy to which they have been found. Note that this accuracy can be
lower than that specified as an input, if no higher accuracy solution is found, for example due to
the order to which the periods have been computed. The value of maxdeg is to be chosen such
that vanishing of the terms in the series expansion of Sn(ϕp, . . . ,ϕp)Tr

�

Up(ϕ, . . . ,ϕ)
�

which
are of order higher than maxdeg should provide enough independent equations to uniquely
fix the coefficients that appear in the p-adic expansions of αi and bγ modulo pacc.

By using this function, we can, for instance, easily verify that the coefficients are indeed in
this case given by (68). For primes p = 7, 11, running the function gives

In[16]:= zComputeEMatrices[]
zFindU0Constants[7,6,170]
zFindU0Constants[11,6,170]

Out[16]= {α1->0,α2->0,γhat->77}

Out[17]= {α1->0,α2->0,γhat->722}

One can verify that the values of bγ given by zFindU0Constants are indeed equal to
−168ζp(3) to the accuracy p3 so that the quantity p3

bγ appearing in Up(0) agrees to the accu-
racy p6 as expected. The p-adic zeta function is given numerically by the function pzeta3.

Function E.8: pzeta3

pzeta3[p,acc]
Gives the p-adic zeta function ζp(3) to the p-adic accuracy pacc.
Arguments
p is the prime p for which the zeta function is computed.
acc is the p-adic accuracy to which the zeta function is computed.
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In[18]:= Mod[-168 pzeta3[7,3],73]
Mod[-168 pzeta3[11,3],113]

Out[18]= 77
722

To use these constants in later computations, they must be saved in the variables αi and γhat.

Object E.4: αi,γhat

αi[p]
Stores the coefficients αi appearing in the matrix Up(ϕ).
γhat[p]
Stores the coefficient bγ appearing in the matrix Up(ϕ).

In[19]:= α1[7]=α2[7]=0;
γhat[7]=77;
α1[11]=α2[11]=0;
γhat[11]=722;

E.7 The matrix Up(ϕ) and the polynomials Rp(Xϕ, T)

Once the matrices E(ϕ) and E−1(ϕ) have been computed and the coefficients αi and γ found,
one can study the matrix Up(ϕ) and the polynomials Rp(Xϕ , T ). The matrix Up(ϕ) can be ob-
tained in three forms: as a matrix of series, as a matrix of rational functions, and as a numerical
matrix, where the rational functions have been evaluated at a Teichmüller representative of a
point (ϕ1, . . . ,ϕm) ∈ Zm in the moduli space, evaluated to a specified p-adic accuracy.

Function E.9: zUSeries

zUSeries[p]
Gives the matrix Up(ϕ) as a matrix of Taylor series.
Arguments
p is the prime p for which the matrix is computed.

Function E.10: zURational

zURational[p,padicacc]
Gives the matrix Up(ϕ) as a matrix of rational functions in the coordinates φ[i].
Arguments
p is the prime p for which the matrix is computed.
padicacc is the p-adic accuracy to which the matrix is computed, i.e. the coefficients
in the series appearing in the matrix Up(ϕ) are treated mod ppadicacc when computing
the rational functions.
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Function E.11: zUNumeric

zUNumeric[{φ[1],...,φ[NParams]},p,padicacc]
Gives the matrix Up(ϕ) as a matrix of integers, given to the specified p-adic accuracy.
Arguments
φ[1],...,φ[NParams] is a list of integers at whose Teichmüller representatives the
matrix Up(ϕ) is evaluated.
p is the prime p for which the matrix is computed.
padicacc is the p-adic accuracy to which the matrix is computed, i.e. the entries of
the matrix Up(ϕ) are treated mod ppadicacc.

One can compute the rational matrix U7(ϕ1,ϕ2) to accuracy O(76). We check that the
series in the numerator of the matrix terminate, and indeed, the highest-order term is of order
104, well under 200. Note that we have above set the values for αi and γ, which are needed
to complete these computations.

In[20]:= Max[Exponent[Numerator[zURational[7,6]]/.φ[i_]:>λ,λ]]

Out[20]= 104

Consider then the point (ϕ1,ϕ2) = (2, 1), which corresponds to a smooth manifold Xϕ/F7.
We can compute the corresponding matrix Up(2, 1) to accuracy p5.

In[21]:= zUNumeric[{2,1},7,5]

Out[21]= {{8507, 10224, 22, 13637, 8741, 7632}, {10206, 7693, 12208, 9275,
1673, 168}, {8302, 1799, 16527, 9415, 2289, 14539}, {10731, 12544,
7987, 14994, 15925, 6713}, {12201, 3234, 3822, 4949, 15043, 3283},
{2744, 7546, 4459, 4116, 11319, 4459}}

The data contained in these matrices can be used to compute the polynomials Rp(Xϕ , T ), which
can be most conveniently done with the function zR.

Function E.12: zR

zR[{φ[1],...,φ[NParams]},p,padicacc]
Gives the characteristic polynomial Rp(Xϕ , T ) of the matrix Up(ϕ).
Arguments
φ[1],...,φ[NParams] is a list of integers at whose Teichmüller representatives the
matrix Up(ϕ) is evaluated.
p is the prime p for which the matrix is computed.
padiacc is the p-adic accuracy to which the matrix is computed, i.e. the entries of the
matrix Up(ϕ) are treated mod ppadicacc.

The characteristic polynomial Rp(Xϕ , T ) of U7(2,1) is given by

In[22]:= zR[{2,1},7,5]

Out[22]= 1 + 5T - 3234T3 + 588245T5 + 40353607T6

The individual coefficients of T i in Rp(Xϕ , T ) can be accessed with the command
zRCoefficient.
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Function E.13: zRCoefficient

zR[i,{φ[1],...,φ[NParams]},p,padicacc]
Gives the coefficient of T i in the characteristic polynomial Rp(Xϕ , T ) of the matrix
Up(ϕ).
Arguments
i is a power of T whose coefficient in the polynomial Rp(Xϕ , T ) is to be computed.
φ[1],...,φ[NParams] is a list of integers at whose Teichmüller representatives the
matrix Up(ϕ) is evaluated.
p prime p for which the matrix is computed.
padiacc is the p-adic accuracy to which the matrix is computed, i.e. the entries of the
matrix Up(ϕ) are treated mod ppadicacc.

For instance, the coefficient of T3 in the characteristic polynomial of U7(2,1) can be com-
puted as

In[23]:= zRCoefficient[3,{2,1},7,5]

Out[23]= -3234

Note that the above functions may not give correct results when the point ϕ corresponds to a
manifold Xϕ/Fp with a(n apparent) singularity. Existence and the type of the singularity can
be checked with the function zSingularityType.

Function E.14: zSingularityType

zSingularityType[{φ[1],...,φ[NParams]},p]
Gives the list of singularity types of the manifold Xϕ/Fp corresponding to the point
(Teich(ϕ1), . . . , Teich(ϕm)) in the complex structure moduli space.
Arguments
φ[1],...,φ[NParams] is a list of integer coordinates in the moduli space, specifying
the manifold Xϕ .
p is the prime p giving the number of elements in the finite field Fp over which Xϕ in
considered to be defined.

In the example we have been using thus far, the point (1, 1) as an apparent singularity,
(1, 2) is smooth, (2, 5) is a conifold, and (5,1) is both an apparent and a conifold singularity.

In[24]:= zSingularityType[{1,1},7]
zSingularityType[{2,1},7]
zSingularityType[{5,2},7]
zSingularityType[{1,5},7]

Out[24]= {apparent}

Out[25]= {}

Out[26]= {conifold}

Out[27]= {apparent,conifold}
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