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Abstract

The deformation approach of [1] for computing zeta functions of one-parameter Calabi-
Yau threefolds is generalised to cover also multiparameter manifolds. Consideration of
the multiparameter case requires the development of an improved formalism. This al-
lows us, among other things, to make progress on some issues left open in previous work,
such as the treatment of apparent and conifold singularities and changes of coordinates.
We also discuss the efficient numerical computation of the zeta functions. As examples,
we compute the zeta functions of the two-parameter mirror octic, a non-symmetric split
of the quintic threefold also with two parameters, and the S; symmetric five-parameter
Hulek—Verrill manifolds. These examples allow us to exhibit the several new types of
geometries for which our methods make practical computations possible. They also act
as consistency checks, as our results reproduce and extend those of [2,3]. To make the
methods developed here more approachable, a Mathematica package CY3Zeta for com-
puting the zeta functions of Calabi-Yau threefolds, which is attached to this paper, is
presented.
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1 Introduction

The local zeta function {,(X, T) of an algebraic variety X can be thought of as a generating
function of the numbers of solutions over finite fields F,. of the equations defining the mani-
fold X. Somewhat surprisingly, it turns out that these functions for Calabi-Yau threefolds have
a direct connection to physics of string theory compactifications on these manifolds, for ex-
ample encoding existence of supersymmetric flux vacua and rank-two attractor points [4-9].
In addition, the zeta functions are widely-studied in connection with number theory, making
them ideal and interesting objects to study in order to investigate connections between number
theory and physics. As the more intricate aspects of the theory of zeta functions, such as their
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connection to modular forms, is still not fully developed, investigating concrete examples for
a wide range of prime numbers p to high numerical accuracy is important to obtain examples
of interesting connections and to formulate and test conjectures concerning these.

While the zeta functions can be computed using techniques such as direct counting of so-
lutions to polynomial equations or evaluating Gauss sums, these techniques tend to be compu-
tationally complex, which greatly limits the range of primes p for which the zeta functions can
be evaluated with currently existing computational resources. This can, for instance, make it
difficult to identify modular forms conjecturally related to supersymmetric flua vacua [6]. For
one-parameter Calabi—Yau manifolds, the state-of-the-art was improved in [ 1] where Candelas,
de la Ossa, and van Straten presented a practical method for computing their zeta functions
using series expansions for their periods near the large complex structure point.

The aim of this paper is to generalise the methods of [ 1] to cover multiparameter manifolds.
The main result of this paper, which we present in §3, is an efficient numerical method for
computing the local zeta functions of multiparameter Calabi-Yau threefolds X,,. We do this,
analogously to [1], by finding a matrix U,(¢), which will determine the local zeta function
{p(Xy, T) via the relation

R,(X,,T)
(1-T)A-pT)" (A —p2TY"'(1—p3T)’

£p(X,, T) =

where
R,(X,,T) =det(I—TU,(y)).

We are able to find a relatively simple expression for the matrix U,(y), by developing further
the formalism of [7], where the periods of the Calabi-Yau manifold X, are expressed in terms
of the generators of the homology algebra of its mirror manifold X, with a Kihler parameter
t given by the mirror map. In particular, we are able to express the matrix U,(y) in terms
of a representation of the homology algebra and the periods of X,. Additionally, we discuss
several computational techniques which make evaluation of the matrices U,(y) significantly
faster, and subtleties that are not apparent in the case of threefolds, but are important for
further generalisations [10].

The approach we take here is computationally less intensive compared to several existing
methods, such as evaluating Gauss sums, and thus allows us to compute the zeta functions to
considerably higher values of the prime p than has been previously possible. Additionally, the
approach based on the Picard—Fuchs equations we develop here requires only simple geometric
data: the number of complex structure parameters, triple intersection numbers, singular loci,
and periods, making the method amenable to computer implementation.

In §4, we present three examples of multiparameter manifolds whose zeta functions we
have computed using the methods presented in this paper: the two-parameter family of mirror
octic manifolds, a two-parameter split of the quintic threefold, and the five-parameter family
of mirror Hulek—Verrill manifolds. In addition to demonstrating the techniques developed in
this paper, we use each of these examples to discuss a particular subtlety or a generalisation of
these methods. The mirror octic example is used to discuss and demonstrate how the defor-
mation method can be used to compute the local zeta function even for varieties with conifold
singularities, and how the choice of coordinates on the complex structure moduli space af-
fects the computation. The split quintic computation demonstrates using different bases of
the middle cohomology to deal with the apparent singularities encountered in [1]. The case of
Hulek-Verrill manifolds would in principle require making computations with 12 x 12 matrices
whose components are five-parameter series. This is not computationally feasible on current
hardware. However, we are able to develop techniques that allow us to consider various lines
in the moduli space, and thus deal with series in one variable only.
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These examples also work as highly-nontrivial consistency checks on our methods. The
mirror octic has been studied previously in detail using different methods in [3], and the zeta
functions of the Hulek—Verrill manifolds the ‘symmetric’ line in the moduli space can be found
using the direct point-counting methods [2]. We find complete agreement with the results
of [3] and [2], as far as they overlap ours. The techniques developed in this paper allow
extending these results to higher primes p. After discussing the examples, we include a very
concise summary of the results and discuss the limitations of the presented methods as well
as directions for future research.

In appendix A, we give a telegraphic review of the basic properties of the p-adic numbers
that we utilise in the text. The appendix B presents a computation of the zeta functions of the
Legendre family of elliptic curves. This example helps to illustrate the deformation method
we use without involving the technical details that are necessary for the more involved case
of multiparameter Calabi-Yau threefolds. Some computational details are delegated to the
appendices C and D.

In the final appendix E, we include documentation for a Mathematica package, CY3Zeta,
that provides user-friendly implementation of the algorithms discussed in this paper, with the
aim of making the computation of local zeta functions more accessible. In particular, the pack-
age can be used to explicitly compute the polynomials R, (X, T) determining the local zeta
function, as well as the ancillary matrices, such as U, () which are extensively used through-
out the paper. As input only basic geometric data, such as the triple intersection numbers and
the fundamental period, of the Calabi-Yau manifold is required.

Some of the material in this paper is adapted from one of the present authors’ doctoral
thesis [11], and a very brief overview of the methods developed here has appeared before in
a paper [7] by the present authors and J. McGovern.

1.1 Conventions and notation

Throughout the paper, we study families of Calabi-Yau threefolds X,, with m complex struc-
ture parameters ¢ = (¢1,...,py). We are interested in cases X,,/Q when the manifolds are
defined over rational numbers. That is, we require that the polynomials defining the manifold
(at least locally) have coefficients in Q, or equivalently in Z with compatible transition func-
tions. Given the inclusions F, < Z, we can study the family of manifolds over these finite
fields, and by considering field extensions, this can be extended to include manifolds defined
over fields F,.. To avoid any confusion, where needed, we will denote the variety X, defined
over field K by X, /K.

We denote m x m matrices by symbols in blackboard bold font, and m-component vectors
with symbols in bold font. We often also treat such vectors as multi-indices, and denote the
sum of their components by x; + -+ + x,,, = |x|. Unless otherwise stated we employ Einstein
summation convention, with the indices a, b,c,... from the beginning of the Latin alphabet
taking values O, ..., m, and the indices i, j, k, ... taking values 1,...,m.

Some symbols that appear in multiple sections are collected, with their definitions, in ta-
ble 1.

2 Review of mirror symmetry and zeta functions

We begin with a brief review of the salient aspects of the theory of local zeta functions and mir-
ror symmetry in order to keep the paper self-contained, and to simultaneously introduce the
notation. Most of the material appearing in this section is standard, although we have refor-
mulated some of it in a language that is useful for discussing zeta functions of multiparameter
threefolds.
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Table 1: Some quantities that are used throughout the paper with references to where
they are first introduced.

Symbol Definition/Description Ref.

@ The coordinates (!, ..., ™) on the complex structure moduli space | §1.1
of a Calabi-Yau manifold X, .

0, The logarithmic derivative (,oia(pi (no sum implied) with respect to | §3.1
the complex structure modulus (.

149,17, The linear combinations of 0 to 3 logarithmic derivatives defined by | (34)
(00, 9;, 0, 9°) = (1,6, Y% 0,0, -71%0,0,6,).

Vg, VO The basis vectors of the constant basis of H(X,,, C). @)

9,0,9°Q | The basis vectors of the derivative basis of H3(X o> C) corresponding | (33)
to the logarithmic derivatives of the holomorphic (3, 0)-form Q.

w The period vector of X e in the Frobenius basis. (13)

I The period vector of X, expressed in the integral symplectic basis. | (18)

E(y) The change-of-basis matrix from the constant basis to the derivative | (35)
basis. Also known as the period matrix.

E(¢) The logarithm-free period matrix defined by setting log ' = 0 in | (48)
E(y).

Fon The finite field with p" elements. §2.1

Cp(Xy,T) | The local zeta function of a Calabi-Yau manifold X ,. 3)

R,(Xy,T) | The numerator of the zeta function ¢, (X, T). 3

U,(¢) The matrix representing the action of the inverse Frobenius map Fr;1 5)
on the middle cohomology.

al, B,y The prime-dependent coefficients appearing in the matrix U,(0). (42)

S,(p) The denominator of the rational matrix U,(¢) mod p". 47

Y, The m x m matrix whose components are given by the topological | (15)
quantities Yy;j, [Yql;; = Yai

€ishisN Matrices giving a representation of the (co-)homology algebra of the | (15)
mirror manifold of X,.

yiik The ‘inverse triple intersection numbers’ that satisfy ¥;;, Y = &5. | (14)

| The mxm unit matrix. 81.1

0 The mxm zero matrix. 8§1.1

1 The m-component vector with all entries 1. 81.1

0 The m-component zero vector. 81.1

0; The m-component vector with components [6;]; = 6. (15)
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For more comprehensive introduction to the properties of zeta functions of Calabi-Yau
threefolds, we refer the reader to [1, 12] for an exposition aimed at physicists, or [13] for
a physicist-friendly mathematical treatment. The literature on mirror symmetry is extensive,
but the aspects of mirror symmetry discussed here are presented in more detail for example
in [14-17] and references therein.

2.1 The local zeta function and Weil conjectures

Let X, be a manifold that is defined as a zero locus of polynomials P; in some ambient space
P", with the coefficients of P; rational. Such a manifold is said to be defined over Q, which is
denoted by X,,/Q. It is then possible to consider solutions P;(x) = 0 with x € Q" ¢ C". The
set of solutions is then denoted X, (Q).

Given such a manifold, one can further clear the denominators of the polynomials P; to
get polynomials with coefficients in Z. Using the natural projection Z — Z/pZ, we can then
consider the manifold to be defined over the finite field F, ~ Z/pZ. In practice, this amounts
to studying the defining polynomials P; modulo p. As above, we say that the manifold is
defined over F,, denoting it X, /F,, and denote the finite set of solutions P;(x) =0 mod p by
X, (Fp). One can similarly consider X, /F,» and the finite set X,(F,») for any finite field with
p" elements.

A significant amount of interesting geometric information is in fact encoded in the sets
Xy (Fyn). We denote the number of F,. points on a manifold X, /F,» by Np(X,,), that is,
Nyn(Xy) = NX o (Fpn)), where N (A) denotes the number of elements of the set A. It turns out
to be useful to define a generating function for these quantities. The local zeta function or the
Hasse-Weil zeta function of the manifold X, at the prime p is defined as

X N, (X,)T"
{p(Xp, T) = exp (ZA) &)

n=1 n

The Weil conjectures, originally due to Weil [18], and later proved by Dwork [19],
Grothendieck [20], and Deligne [21,22], can be stated as:

1. Rationality: {,(X,, T) is a rational function of T of the form

@ 3) ... p2d-1)
RO, TIRD(X,, T)---RZ(X,, T)

ROX,, RP (X, T)- RV (X,, T)

where RS)(X > T')is a polynomial in T with integer coefficients. The degree of RS)(X 0> T)
is given by the Betti number b;(X,,) of the manifold X,.

2. Functional equation: {,(X,, T) satisfies the functional equation

£y (X, pdT7Y) = £p 20D T2 (X, T), @
where y(X,,) is the Euler characteristic of X,.
3. Riemann hypothesis: The polynomials Rg)(X > T') factorise over C as
bi
RO, T) =] [(1—2;0x,)T),

j=1

where the 2;;(X,,) are algebraic integers of complex modulus |4;;(X,)| = pi/2.

6
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In this work, we concentrate on the case where X pisa Calabi-Yau threefold. When the Picard
group of X, is generated by divisors that are defined over F,, the polynomials corresponding
to the cohomology groups H?(X ¢»C) and H X o> C) factorise into linear factors, thus being
given by

11 11
RAX,, T)=01-pr)", RPX,,T)=0-p°T)" .
Therefore, in this case, the zeta function is completely determined by a single degree-(2m+2)

: def (5
polynomial R, (X, T) = RE) )(Xq,, ).

R,(X,,T)
(1-T)1—pT)"(1—p2T)"(1—p3T)

(X, T) = 3)
This polynomial can be computed explicitly using the periods of the Calabi-Yau manifold.
Roughly speaking, the reason for the relation to the periods is due to the fact that the polyno-
mial R, (T, X,,) can be related to the Frobenius map acting on the third cohomology.
Denote by Frob,, the Frobenius map that acts on the coordinates x of the ambient space
KK by
KE s KE s x=(xg,...,x) = (xf,...,xp)zxp.

Recall that Fermat’s little theorem shows that a? = a mod p for any a € F,, implying that the
Frobenius map fixes any element of F,,. In fact, since the polynomial x? —x has at most p roots
in any field extension, the elements fixed by the Frobenius map are exactly those in F,.

If X, is a variety defined over F, and we study the solutions over the algebraic closure
F_p, Frob, defines a self-map Frob, : X, — X,,. To see this, note that, if X, is defined as the
vanishing locus of the polynomial P which has coefficients in F,, it follows that

P(xp) =P(x)) =0 modp.

Therefore the fixed points of Frob, are exactly those counted in N,(X,) appearing in the
definition of the zeta function.

It turns out that it is possible to define so-called p-adic cohomology theories H*(X 0> Qp)s
such that one can pull back the Frobenius map to get an automorphism

Fr, def (Froby), : Hk(X‘,,,Qp) - Hk(Xgo:Qp)' )

The H*(X > Qp) are finite dimensional vector spaces over the field Q, of p-adic numbers (for
a brief introduction to p-adic numbers, see appendix A and references therein). The Lefschetz
fixed-point theorem can be applied for this cohomology theory, giving a simple relation be-
tween the point counts and the action of Fr,:

6
Nyu(p) = > (—1)" Tr(Fr

m=0

H™(X,,Qp)).

From this formula it can be seen that the characteristic polynomial of the inverse Frobenius
map acting on the middle cohomology H3(X > Qp) is exactly the polynomial R,,(X,, T):

R,(X,, T) = det (1— T Fr, [H3(X,,Q,)) = det (I- TU,(p)) , (5)

where U, (¢) is a matrix representing the action of Fr;1 on H3(X 0> Qp)-

It is important to note that the field of p-adic numbers has characteristic 0, in contrast to
F_p, which has characteristic p. This is necessary for the Lefschetz fixed-point formula to hold,
as otherwise one would only obtain the correct result mod p, which is not enough to compute
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the full zeta function. To construct p-adic cohomology theories, the variety defined over F,
needs thus to be lifted to a variety over the p-adic integers Z,, which can be then studied over
Q, (see for instance [23,24]). A key step in constructing the lift is to consider the embedding
of the finite field F, into Q, given by the Teichmiiller lift Teich : F, — Z, c Q,, (for definitions,
see appendix A). The full construction of a p-adic cohomology theory is an involved process.
However, many of the properties we need to find the action of the Frobenius map are luckily
essentially independent of the choice of the cohomology theory [4]. In practice, this means that
we can perform many of the computations, chiefly the power series expansions of the periods
and their derivatives in a more familiar cohomology, such as the de Rham cohomology, and in
the end interpret the result as power series whose coefficients are p-adic integers. All we have
to do to take lifting into account is that when computing quantities associated to the manifold
X, with p € FI’)", we must at the end substitute

¢ — Teich(¢) = (Teich(pq), ..., Teich(y,,)).

In [4] an effective practical method for computing the polynomials R,(X,, T) for one-
parameter families of Calabi-Yau manifolds was developed. In this paper, we generalise this
method to multiparameter manifolds.

2.2 Mirror symmetry and Calabi-Yau periods

We are interested in families of manifolds parametrised by the complex structure parameters
¢, so we wish to find the action of the Frobenius map on families of cohomologies. To do
this efficiently, finding a convenient basis of the third cohomology H3(X p)isa key.! An ideal
tool for this purpose is Dwork’s deformation theory [25, 26], the idea being to first find the
action of the Frobenius map on a simple manifold, which we take here to be a manifold with
a large complex structure, and then study how the action changes as the complex structure of
the manifold is varied.

Deformations of the complex structure of Calabi-Yau manifolds lie also at the heart of mir-
ror symmetry, which is a conjectural relation that can be used to relate a Calabi-Yau threefold
X, to another threefold X,, the mirror of X (p.z In particular, this mapping relates the middle
cohomology H 3(X¢,C) of X, to the even cohomology H 24(X,,C) of its mirror X,. This re-
lation, and the universal structures that follow from mirror symmetry considerations, allow
us to find a convenient basis of the middle cohomology for any multiparameter Calabi-Yau
threefold X, in terms of topological data of its mirror X,. We give here a brief review of the
aspects of mirror symmetry essential for motivating and understanding the construction we
present in §3.

Griffiths transversiality (see for example [16]) implies that differentiating the holomorphic
three-form with respect to the complex structure moduli gives three-forms that are no longer
holomorphic. Rather, by taking enough derivatives, the whole of H3(X ¢»C) can be spanned
by the following forms

QeHBY(x,,0),
9,2 e H®O(x,,C)e H®V(x,,C),
0,8, € H®I(x,,C) e HAV(X,,C) ® HMP(X,,C),
0,18, 0,4 € H*O(X,,C)@ HZV(X,,,C)e HIP(X,,,C) @ H*¥ (X, C).

(6)

!As explained above, the computations we do are essentially valid for both p-adic and Dolbeault cohomology,
and we are free to switch between the two cohomology theories by essentially just taking the field we are working
over to be either that of p-adic or complex numbers. For this reason, when a statement is essentially valid for both
cohomologies or when we are treating the both theories simultaneously, we do not distinguish between the two,
and talk simply about the cohomology H*(X, ), leaving the choice unspecified.

2The subscript t here denotes the complexfied Kihler class of X, which is related to ¢ by the mirror map (11).

8
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We can therefore always choose a basis for the 2m + 2-dimensional space H3(X ¢»C) among
these derivatives. Any additional derivatives can then be expressed in terms of the basis,
leading to a system of differential equations that 2 satisfies, called the Picard—Fuchs equations.
These can be solved to find Q in practice.

Picking a basis of 2m+2 functions among the space of solutions to the Picard—Fuchs equa-
tions is equivalent to choosing a particular (constant) basis {v,,v®} of H 3(qu, C). The holo-
morphic three-form can be expanded as

m
Q:Z(w“va—wava). (7
a=0
Equivalently, the three-form Q can be expressed in terms of a vector of periods @, @:
o
w.l
@ = @ | (8)
@y

We will shortly fix the basis of solutions by imposing boundary conditions on @ and @ .

2.3 Indicial algebra and the Frobenius basis

The indicial algebra of the Picard-Fuchs equation satisfied by the periods [14,27] is defined by
the relations satisfied by the (co-)homology ring elements ¢;, u', and 1, viewed as elements of
H*(X,,Z2), H%(X,,Z), and H%(X,, Z), respectively, or their homology duals

_ _ k _ i _ < _
€i€; = €j€;, €€ =Y, €i€i€ =Yk M, €;u =0;m, en=0, (9

where Y} are the classical triple intersection numbers of X,, expressed in terms of the gener-
ators e; of the second cohomology H2(X,, Z) as

Yifk:JN e;AejAeg, €;,€j, € e H*(X,,2).
%,

Near a large complex structure point, or equivalently a point of maximal unipotent mon-
odromy, the periods can be extracted as coefficients in the expansion of

@(p,€)=pf(p.€) C @’ +ale; + ol +mon
=f+Wf+fe+ E(MJf + 200 + )y uk 10)
- % (€0€xF +30 07 f* + 30 F 7% + F %) Vyjm,

where ¢ = (¢*,...,¢™) is a vector of complex structure parameters, and we have used the
shorthand ¢' = log ¢'. We have also denoted J, f = f', aelﬁejf = f", and &, aej O f = fiik,
The coordinates are chosen so that the large complex structure point is at ¢ = 0 and

flo.©)= > Axle) vk,

keZZ,

is a power series in ¢ and € with rational coefficients. We also require that the mirror map is
given by the standard expression
; 1 o
t'=——. 11
2mi @0

9
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In particular, this choice fixes the freedom to rescale the coordinates by rational coefficients,
and it is the choice we will be using throughout the paper. Scaling ¢ by a rational constant
amounts to a non-rational change of basis of H3(X o> C), which would be reflected in the p-adic
cohomology (see for example the discussion in §4.1). There is a residual freedom correspond-
ing to the choice of the integral basis of H**(X,,Z). This latter freedom will not affect our
discussion in this paper. In all examples known to us, this choice of scaling makes the coef-
ficients of the series expansion of the fundamental period p-adic integers for all but finitely
many p. However, we are not aware of a theorem guaranteeing this in general.

We also remark that for computational purposes, instead of using f, f¥, and fU¥, it is
often useful to define the combinations

1

~ 1 ‘ ~
fiziyijkf]k> and  f=o

which naturally enter the logarithm-free quantities we define in (48).
The expansion (10) implicitly fixes the boundary conditions of the Picard—Fuchs equations,
giving us the period vector @ in the (arithmetic) Frobenius basis.

f
fl +f€l
5 Vi (FR+2£70% + fFeieF)
5 Vi (FUR+3fULk+3F100ek + Feigiek)

Yiiif UK, (12)

(13)

We introduce the ‘inverse triple intersection numbers’ Y'/¥ as a set of constants that satisfy
the relation
ijs _ <5
Vi Y' =6y (14)
ijs ijs

This does not define the quantities Y uniquely. Rather, one can shift Y% by any A”® which

is ‘orthogonal’ to the triple intersection numbers, that is
ijs _
Yk A% =0.

When we use the quantities YU to form a basis of H3(X o) different choices of the constants
AYS amount simply to choosing a different basis, which explains the apparent ambiguity. The
freedom to choose these constants can always be used to make Y symmetric in the first
two indices, which fixes the antisymmetric part Al¥. Otherwise we leave A unspecified
in general, and choose these conveniently on a case-by-case basis. Any ambiguities resulting
from this will not affect the following discussion, and we will always specify the choice we
have made in particular examples.
With the help of Y, the elements u* can be expressed as

k _ vijk
ut=Y"""€;e€;.

Arguing as in [ 7] that the indicial algebra elements can be related to the monodromy matrices
around the loci ¢' = 0, we can find an explicit representation where the indicial algebra
elements are given by

o of of o o of of o o of of o

6 0 0 o© l. 0 0 0 o0 0 0 0 o as)
€; = , = , = .
““lo v, 0 o =16, 0 0 o 1o o o0 o

o o' &7 o o &/ o' 0 1 o" o o

L

Here Y; denotes the symmetric m x m matrix whose components are given by the triple inter-
section numbers Yj;, 1 < j,k < m, O is the constant zero matrix, 0 is the constant zero vector
and 6; is an m-component vector whose components are given by 6;;, 1 < j <m.
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2.4 The integral basis

Choosing a symplectic integral basis a;, B¢ of H3(X, Z), we can expand the holomorphic three-

form as OF
0=s'a,~FEpY, F ELE
Ozb

where F is the prepotential [16]. We denote by II the corresponding vector

2
1_[O 920
II; ZF
_ N P
n=| o =17 | (16)
IT! ol

Near a point of maximal unipotent monodromy, we can find a change-of-basis matrix p from
the Frobenius basis to the integral symplectic basis by comparing the asymptotics and mon-
odromies of the vectors IT and @. This matrix is given by

—Yooo —3YL 0T 1
| 3Y%0 Yo -1 O
P= 1 of o’ 0
0 | 0 o

The components of this matrix are as follows: Y, is an mxm matrix whose components are
(Yo)ij = Yyij- Requiring that Yy;; € {0,1/2}, the matrix p is uniquely fixed. These con-
stants can be found by requiring that IT has integral monodromy around the point of maximal
unipotent monodromy [14].2> The symbol Y, denotes the m-component vector whose i’th
component is given by Y;qg, 1 < i < m. The constants Y,y and Yoo are given by

¢@3) ¢@3)
(2mi)? (2mi)®’

Ylooz——f (X ) Ae;, Yooo = —3x (X)) 72— =+37(X,)

where e; are the generators of H*(X,,Z), c,(X,) denotes the second Chern class of X,, and
x(X,) and y(X,) the Euler characteristics of X o and X,, respectively.

In writing this, we have separated the diagonal matrix v, which affects the normalisation
of the periods, giving the transformation between the period vectors @ and @ in what were
termed in [1] the arithmetic Frobenius basis and the complex Frobenius basis.

g=v'w. (17)
The relation between the vectors in the Frobenius and integral bases is given by
N=pv'w, with y= diag(l, 2mi1, (2mi)? 1, (2ni)3) . (18)
2.5 Relation between the rational and Frobenius bases
Let us return to the first of eqns. (10) and rewrite this in the form
o(p,e)=a’(I—yn)+a@'e; + o' +(@o+ya@’)n,

4 . (19)
=(I— yn)(wo +o'e; +out + 507)) ,

3The constants Yy, ; are conjecturally given by Yy;; = mod Z [28].

u]
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where, in the last relation, we have written

Go=wo+ym°.
We can gather the periods, in this new basis, into a vector similar to that in (8):

0

i

<N
[l

J
0

999

Abusing notation, we may write
I+ymo=a, or equivalently w@=(I—yn)@.

The abuse of notation is that, in this relation we may think of @ and & as either vectors or
matrices. In either case, 1 ¥ y ) is a matrix, with 7 as in (15).
In the above, the quantity y has appeared as an arbitrary parameter. We now choose

r=xX)L3). (20)

The virtue of this choice is that I + y7 is now a matrix that converts the complex Frobenius
basis to a rational basis, as we see by the following relations

—1

N=pv @, where p=ﬁ(1+x(§t) 40 )

(2mi)?

The matrix § has the same form as the matrix p apart from the element —Y;,/3, which is
replaced by zero:

0 —3vL ol 1
. | —3Y%0 Yo -1 0O
P=1 0’ o’ 0
0 | 0 0

Thus § is a matrix with rational entries and v~ '@ is a rational basis of periods.
The matrix (I — (X, )(ggg n) has an interesting relation to the Todd and T'-classes (see

[29-34]). To see this, we set
P4

1—e*

Td(z) =

3

and note the identity
r(1+5%)

2mi

v Td(z)

2k +1) 2k+1
-—'(Z)—YE Z 2%k +1 (277:1) ’

and 7y is Euler’s constant. We are interested in multiplicative characteristic classes based on

Td(Nz) andT (1 + %) To proceed, we Nreplace 2z, in the identity (21), by ©, the curvature matrix

of X;. We denote the eigenvalues of © by Ay, k=1,2,3 and the m’th symmetric polynomial in

the A, by 0,,. The curvature matrix is a matrix-valued two-form, so the A; are two forms and
m 1S a 2m-form.

— eiE(Z)—Z/4’ (21)

with

12


https://scipost.org
https://scipost.org/SciPostPhys.20.2.028

e SciPost Phys. 20, 028 (2026)

We have

3
212, _ re 1 2@3) (3 )
[ [ezti2 _exp{—ol(2—;+z) 3(27“)327@}_ 1 (X ,f)(2 R

k=1

where, in passing to the second expression we have used the fact that o is the first Chern
class and so vanishes, together with the fact that

Z/Iz = (7:13 —30,09+303= 3;((5@)7),
k

when o;=0.
Thus we have shown that

%, @
T %) G

t

(22)

where and Td % denote the multiplicative characteristic classes.

We W111 later be interested in the p-adic I'-class and in relation to this we make a comment
on the identity (21). This follows from a standard identity for the I'-function, which we can
write in the form

()=t S (L)) e

Now, recalling the reflection formula for the I'-function,we have

Td(z) e =mi(ﬁ=r(1+zim) r(1—2im).

If we use the identity (23) to replace the product of I'-functions, and observe that the -
functions of odd argument cancel, and then take a square root, we see that

VTd(z)e ™% = exp {Z c@n) (27'51) } . (24)

2n

From (23) and (24) we have

F(l + Zm) _ g(Zk + 1) 2kt
JTdR)e i { Z 2k +1 (27[1) ’ (25)

from which we recover (21). Now, in p-adic analysis it is possible to define p-adic analogues
of the T'- and {-functions. It is interesting that these are related by a relation analogous to (23)

o {p(2k+1)
L (z) =exp (—F’(l)z - — zzkﬂ) , (26)
P p z; 2k+1

in which I}‘)’(l) is the p-adic analogue of yy=I"(1). The ¢ function terms with even argument
are missing because, for the p-adic case, we have

{,(2n)=0, for n=1,2,3...

13
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The surprise is that the right hand side of (26) is equally analogous to the right hand side of
(25). While we do not have a complete understanding of this, it is easily checked that there is
no difference, in the complex context, between integrating

s
Ijzt ) and i )
‘/ ngt
over a Calabi-Yau threefold. Therefore, for threefolds, the Frobenius and rational bases are
related by

(27)

Gg=T'w. (28)

t

We note that we will see in §3.4 that an analogous relation is true also in the p-adic context.

3 The local zeta functions of generic threefolds

3.1 The Frobenius map

To compute the zeta function of a Calabi-Yau threefold X,, we use the methods of [1], which
build on the work of Dwork and Lauder [19,35,36]. This approach is based on finding explicitly
the matrix F,(¢) (or its inverse U,(¢)) representing the action of the Frobenius map defined
in (4) on the middle cohomology. This is done by first finding the matrix U,(¢,) for a manifold
X, for a simple manifold where the expressions can be relatively easily computed. We are
hoping to find a universal expression for the initial value U,(¢,), depending at most on some
manifold-specific constants. From the theory of mirror symmetry, we know that such universal
expressions exist for the form of the periods near the large complex structure points, which
motivates taking the large complex structure point ¢ = 0 as the initial point. By studying how
the matrix U, () changes as we move in the complex structure moduli space, we are able to
find an explicit expression for the matrices U,(y) at other points in the moduli space. Then
the relation (5) between the Frobenius map and the zeta function numerator R, (X, T) can
be used to arrive at the final result.

Description of this method necessarily gets at times rather technical. For this reason, we
have included analogous derivation of the zeta function of a family of elliptic curves in ap-
pendix B that illustrates the techniques employed here in a simpler setting. We encourage the
reader to consult the appendix B alongside reading this section.

We can view the Frobenius map as acting on a vector bundle H, whose base is the com-
plex structure moduli space Mg of the family X, of Calabi-Yau manifolds. The fibre over a
point ¢ € Mg is the middle cohomology group H3(X o) of the manifold X, whose complex
structure corresponds to the point ¢ in the moduli space.

The action of the Frobenius map on this bundle can be defined by

(¢, H3(X,)) = (Frob,u(¢), Fr,nH*(X,)) = (97", Fr,. H3(X,)) , (29)

where Fr,» denotes the map H 3(x o) H 3(X ), induced by the action Frob,. : X, = Xpn.

pr"
H3X,) —— H

ln

Mcs

Figure 1: The vector bundle H.
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There is also the canonical Gauss—Manin connection,

V: T(Mcs,H (X)) = T(Mcs, H3(X,) ® T* Mcs),

on H. It will be enough to consider the covariant derivatives along the vector fields given
by the logarithmic derivatives 6; = ¢'9,; (no sum implied). We denote the corresponding
covariant derivatives by

Vi &V 0 T(Mes, H (X)) = T(Mcs, H(X,)). (30)

The Frobenius map and these derivatives satisfy a compatibility relation, as well as Leibniz rule
and linearity relation. For any section v € I'(Mcg, H 3(X<p)) and any function f : Mcg — C
on the moduli space, the following relations hold

pFr,(Vv) = V,(Fr,v),
Vi(f () =(0:£)p)v+f(pIVv, (31)
Fr(f(e)v) = f(e?)Fr(v).

In addition, there is also a useful consistency condition of the Frobenius map with the inter-
section product H>(X o) X H 3(x o) 2 H 6(x o), which can be identified with the one given by
the wedge product

fFrE/\FrT):pBFrJ EAN. (32)
X X

Following [ 1], we wish to formulate these conditions explicitly as matrix equations on the
matrices F,(¢) and B(y) corresponding to the Frobenius map and the Gauss-Manin connec-
tion, respectively. However, note that at a generic point in the moduli space, P # ¢. This
implies that the action (29) of the Frobenius map Fr,. cannot be reduced, in a natural way,
to an action on the middle cohomology as the fibre is not kept fixed under ¢ — ¢?". Instead,
the Frobenius map can be viewed as a map between distinct fibres Fr,n : H, — Hpn. Never-
theless, at fixed points of Fr,, that is, at the Teichmiiller representatives Teich(y) of integral
vectors ¢ € F, it is indeed possible to identify the action of Fr,. on the middle cohomology

H3 (XTeich(y))- We denote the matrix describing this action, in the basis defined by (33) below,
by F,(¢). The Teichmiiller representatives Teich(y) provide a natural embedding of F" to
QZ‘. Hence we can identify Xrejcn(,) With the manifold X, /F, defined over the finite field F,.
In [1] it was noted that the solutions to the conditions laid out above turn out to be express-
ible in terms of solutions to Picard—Fuchs equations. In the remaining of this section, we will
generalise this observation to the multiparameter case.

The first step of this process is finding a convenient basis of sections of A in which the iden-
tities we use to constrain the form of U,(y) becomes tractable. Unlike in the one-parameter
case, there is no clear canonical basis, and our choice is simply guided by the observation that
our choice reduces to that used in [1] in the one-parameter case* and the fact that we find a
simple expression for the matrix U,(0) in terms of the matrices €;, u! and 7.

After the basis of sections is chosen, we can express the relations (31) and (32) as matrix
equations. These imply that the matrix U,(y) can be expressed in terms a constant initial
value matrix, which we take to be the matrix U,(0) giving the Frobenius action at the large
complex structure point, together with the change-of-basis matrix from the constant basis (v,)
to the basis given by the sections we chose.

Using these relations in the large complex structure limit allows us to fix the initial matrix

U,(0), and thus the matrix U,(¢) up to a set of (prime-dependent) constants all), e aﬁl’z,

“The normalisation of periods used in [1] differs slightly from ours by factors of Y;,; and factorials.
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.

e
Teich(n) = Teich(T )Y ™ veveuemmmoorseeanenes™™

o

Figure 2: A heuristic sketch of the complex structure moduli space Mg. Each point
¢ in the moduli space correspond to a Calabi-Yau manifold X,. The fibre above each
point is the middle cohomology group H 3(X(“,) of the corresponding manifold. The
dashed circle represents the p-adic unit disk ||x||, < 1, with 1 also being the radius
of convergence of the power series appearing in the expansions of the periods and
their derivatives (the logarithms appearing in the periods drop out of the expression
for the matrix U,(¢)). At a generic point ¢, the Frobenius map Fr, acts between
two distinct fibres H3(X p)and H 3(x o»), which in particular implies that the matrix
U,(¢) is not well-defined. At Teichmiiller representatives Teich(n) of integral points
n € Z™ the fibres coincide, and the matrix U,(¢) is well-defined. The Teichmiiller
representatives lie at the boundary of the p-adic unit disk, where the period series
do not converge, but the matrix U, () does.

and y,. These can be fixed by requiring that U,(¢) mod p" can be expressed as a matrix
of rational functions, as this turns out to single out unique values for the constants. We find
that in all of the cases we have studied, it is possible to express these in terms of the Iwasawa
logarithm and the p-adic zeta function (see appendix A for brief definitions).

In addition to these core ideas, we also briefly discuss certain properties of the matrices
and the local zeta functions can be used to speed up the practical evaluation of the matrix
U,(¢). This is especially important in the multiparameter case, as evaluating the matrix in-
volves computing products of matrices whose entries are multiparameter series, which is highly
demanding computationally.

3.2 A basis of sections and the Gauss-Manin connection

To study the Frobenius map using the deformation methods, it is important to understand
how it varies as we move in the complex structure moduli space M. To do this, we find a
convenient basis of sections of the vector bundle 7. A natural choice of sections is given by
the holomorphic 3-form Q together with a suitable set of its logarithmic derivatives. Since we
are computing the zeta functions by using the deformation method around the large complex
structure limit ¢ — 0, it is important that this choice is made so that the Frobenius map in the
given basis is regular in the large complex structure limit.

Even with this condition, the choice of the basis is not unique. We make a particular choice
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which leads to a simple expression for the matrix U,(0). However, other choices exist. These
simply amounts to a change of basis. Indeed, often there does not exist a single convenient
choice of basis of sections such that the corresponding set of vectors in H3(X ¢»C) would be
linearly independent for every value of ¢ € Mg corresponding to a non-singular manifold.
The points where the values of the chosen sections become linearly dependent are called, in
analogy with [1], apparent singularities. Studying the zeta functions at the apparent singular-
ities requires a choosing a different basis. These are discussed further in §3.5 and examples
given in 84.3.
We choose a set of sections given by

Q, 69, YVMeeq, YUe06,0.0. (33)
It is useful to gather the combinations of derivatives appearing here into a vector

. s yiik
(,ﬂO)ﬁiJ,ﬂIJ ﬁo) d:ef (13 Qiz ijlej 91(? YTQI 9] Gk) . (34)

Let us denote by E(y) the change-of-basis matrix from the constant basis {v,, v*} to this basis
{9,9,9Q}, which we call the derivative basis.> The components of this matrix are

P, b
(35)

a
ﬁawb 0 wy

E(p). = (

To see that the basis vectors {,Q,7°Q} are indeed linearly independent in the large complex
structure limit, it is enough to note that the asymptotic form of E(¢) in the large complex
structure limit, ¢ — 0, is not singular. In fact, it is given by

1 o’ o’
¢ | 0
5 TV L ey, |
&Ytk ey e ¢

E(p) = +0(plog® p) = 9+ O(plog’ ¢). (36)

— o O O

Since the basis corresponding to E(¢) spans the third cohomology at a generic point ¢, the
logarithmic derivatives of E(¢) can be written in terms of the connection matrices B;(¢) of
the Gauss—Manin connection

(6;E)(¢) =E(¢)B;(¢),

which is the first-order form of the Picard-Fuchs equations for the family. This relation could
also be used to explicitly identify the matrices B;, although these are not required for the
purposes of computing the zeta function. Instead, only the asymptotic form of the matrices
B;(¢) in the large complex structure limit is needed, and this can be found by studying the
asymptotic form of 6,E(¢p).

0 0 o
5; 0 o0
ey, Y, 0

1
tTYil YL 5

0,E(p) ~

o © © o
Il
)
o

L
Comparing this to the asymptotics of E(¢), we deduce that

Bl(O) =€;. (37)

SThis change of basis is required to have the Frobenius map take the simple form we use in this paper.
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3.3 The identities satisfied by the matrix U,(y)

The identities (31), using an argument completely analogous to the one-parameter case [1],
imply the following differential equation for the matrix of the Frobenius action®

0,(F,)(¢) = pE,(¢)Bi(¢?) —Bi(¢)E,(¢). (38)

The solution to these equations are given by

F,(¢) =E"'(¢)G,(0)E(p?),

where G,(0) is a fixed initial value. In terms of the inverse matrix U,(¢) this reads

U,(¢) =E " (¢P)V,(0)E(y), (39)

where V,,(0) is the matrix determining the inital value U,(0).

Note that E(0) # I. In fact, E(0) is not even defined owing to the presence of logarithms
in E(g). So it is not a priori clear that the matrix U,(0) exists or coincides with V,(0). We
will see presently that the logarithms in E(y) that are problematic cancel between E(¢) and
E(¢P)7!, at least in the case of threefolds, so V,(0) = U,(0). However, already in the case of
fourfolds there are numerous examples for which V,(0) # U,(0) (see for example [10]).

The symplectic product in (32) is given in the constant Frobenius basis (v,, v?) where the
period vector is given by @, by the matrix

0 of  of —1
0 0 I 0
—1 T —1
o= 2PV = —= S
p=p erielo -1 0 o
1 ol of

o of

|
—
o
vs]
©C O O =
o
h]

The compatibility condition (32) is then written in matrix form as
V,(0)oV,(0)" =p’o. (40)

We emphasise that this condition is indeed in principle imposed on V,(0) and not on U,(0), as
it is V,(0) that gives the action of the Frobenius map in the constant Frobenius basis, whereas
U,(0) gives the action in the derivative basis {#°Q, 3,0}. In practice, for threefolds this dif-
ference does not matter as the matrices U,(0) and V,(0) are equal.

3.4 The large complex structure limit of the Frobenius map

Taking the limit ¢ — 0 of (38), one obtains the following relations that constrain the form of
the matrix U,(0)
pe€iU,(0) =U,(0)€;, i=1,...,m. 4D

®Note that here B;(¢”) denotes the matrix Fr,(B;(¢)) = B;(¢)|,—r, i.e. the connection matrix at ¢, where we
have substituted ¢? for ¢. This matrix agrees with the connection matrix at ¢*, which is why we do not distinguish
between these two matrices.
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As shown in detail in appendix C, the most general solution to these conditions can be written
in a convenient form as

U,(0) =u,A, (I+ocliJ ei+/3i(p),ui+?p n) , 2

. ~ 1 P i
A, =diag(1,p1,p* L,p"), T, =1p+ 3 Yk 00y,
where a;, /Sl.(p ) and Y, are prime-dependent constants we will fix later. The reason for defining
the coefficients y, and 7, in this way is so that we are able to use y to obtain a simple form
(43) later, while ?p is often more convenient for numerical computations. The commutation
relation (41) also implies that V,,(0) = U,(0), as recalling (36), we can write

U,(0) = lim, ¢ P¥V,(0)¢° = V,(0),

where, in the last step, we have used the commutation relation (41).
The compatibility condition (40) is equivalent to the conditions

2 _ ®) _ 1 ik
u, =1, B = 2Yl~jkapap.
With this result, the matrix U,(0) can be written in even more compact form as

U, (0) = upA,e® (I +7,m). (43)

In the one-parameter case of [1] it was conjectured, supported with extensive numerical evi-
dence that the correct solution is obtained by imposing (in the basis we are using)

=1, a=0, 1,=xX)3). (44)

Strictly speaking, u, = 1 is a particular choice which we conjecture to correspond to a manifold
defined over Q that is isomorphic to X, over C. By choosing different, prime-dependent values
u, = +1, one can obtain zeta functions corresponding to varieties that are isomorphic over C
but not necessarily over Q. Such varieties are called twists of the original variety (see appendix
B.1 for an example).

We find that when using the basis of sections defined in (33) and the coordinates specified
in §2.3, this result also applies in every multiparameter case we have studied. However, in
different bases or using different coordinates, non-zero values of al can arise. We discuss this
in more detail in the context of a specific example in section 4.1. The appearance of the p-adic
zeta function values among these coefficients has also been proved in certain cases [37].

If we assume the above expression (44) for v, it is perhaps interesting that, as first noted
for one-parameter cases in [38], by using the I'-class computation from §2.5, the matrix I—y,7
can be expressed as

3
def =~
-y =[50 =T, (45)
k=1

where A, are defined as in §2.5. Notice that if we interpret the equations (22) and (19) in the
p-adic context, then the above relation (45) provides us with the p-adic analogue of (22), and
we also have the analogue of the relation (28). Note also that from (43) and (44), together
with the relation (45), it follows that we can write

U,(0) = upA,e T L. (46)
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3.5 Fixing the constants and the form of the matrix U,(y)

The matrix U,(¢) = E~1(pP )JU,(0)E(¢p) is naturally expressed as a matrix of p-adically con-
vergent series in variables ¢. However, the series converge only slowly, so it is useful to
note [35,36] that U,(y) can conjecturally be expressed in terms of rational functions. To be
specific, expanding the matrix U,(¢) as p-adic series, we can conjecturally write it as

U}SO)(¢)+M1§”(¢) +U152)(<p) n “
Sole?) | Si(en) P T sy (en) T

U,(p) =

where L{Pg”)(cp) are matrices the entries of which are polynomials in ¢ whose coefficients are
p-adic units. The S,,(¢), in this context, are polynomials in ¢.

This form also turns out to be the key to showing that the constants a; and y, indeed take
the form (44). This is due to the fact that, at least in every case we have studied, the matrix
U, (¢) takes the rational form above for only one set of values of al and Yp- We conjecture
that these values of the constant give the correct local zeta functions. This is corroborated
by the examples we have studied, and further by the fact that in the one-parameter case this
technique reproduces the conjectural values obtained in [1].

To show that the matrices U, () take this form, we first show that the logarithms appearing
in the periods and their derivatives appearing in the matrix E(¢) cancel. A straightforward
but lengthy computation shows that

E(p) = ¢“E(yp),

where the logarithm-free change-of-basis matrix E(¢) is defined as the matrix we obtain by
formally setting the logarithms to zero in the matrix E(y), after evaluating the derivatives
appearing in the definition of this matrix.

E(9) S E(9)] g0 - (48)

This is a matrix of power series in ¢, whose columns are given by the logarithm-free period
vectors

o def v def ~ g
G,o(p) = (ﬁaw)(‘P)lloggpi»—)O: Grw(p) = (0 w)(‘p)llog(piHO) (49)

where the derivatives are first evaluated before setting log (! > 0.
Recalling (39), the matrix U,(y) can be expressed as

Up(9) =E(eP) o P°U,(0)9“E(¢p). (50)

Using the commutation relation (41) it then immediately follows that ¢™7U,(0) = U,(0)¢ "¢,
which means that we can in fact express the matrix U,(y) manifestly as a matrix of power

series in ¢ by writing it in terms of E(¢) as

U,(¢) =E(¢?)"'U,(0)E(y). (51)

In all cases we have studied, the polynomial S,(¢) that gives the denominator of U,(y)
mod p", takes the form

Sn(p) = A(@) V(@) W), (52)

where A(p) gives the (hyper) conifold locus of the family of Calabi-Yau manifolds we are
studying and () the denominator of the matrix W~'(¢) which we will introduce in (53)).
This factor contains the apparent singularities. The factor )(¢) represents additional factors
in the discriminant that do not correspond to the (hyper) conifold locus nor to the divisors
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whose intersections give the large complex structure points. This factor contains, for instance,
the K-points. Note that, somewhat curiously, when n < 4, the conifold discriminant A(¢) does
not appear in the denominator, and U, (¢) is well-defined even when A(¢) = 0. This fact can
be exploited to find the zeta function numerator even at the conifold loci, at least for one- and
two-parameter manifolds. We will explore this in more detail in connection with the example
of the mirror octic manifold in §4.1.

Even though for a large number of cases the denominator is of the form (52), it is known
that there are cases of (one-parameter) differential operators of Calabi-Yau type (see [39]
for the definition of this notion and examples of such operators) for which the denominator
of the corresponding matrix U,(¢) takes on a slightly more general form. This can include,
for instance, square roots of polynomials. We expect such cases to rise in connection with
multiparameter Picard—Fuchs operators as well, although we are not aware precisely when
such cases should arise, or if there is a ‘niceness’ criterion that can be used to eliminate such
examples.

Note that the form (47) is not well-defined when S,(¢) = 0 mod p. In particular,
if one tries to compute the polynomial R,(X,,T) using the method described above, one
would find that the expression does not in general converge. At the points that satisfy
A(p)Y(p) =0 mod p this is due to the fact that at such points the manifold X, /F, is singular.
Therefore, our assumptions which require that the manifold is a smooth Calabi-Yau threefold
no longer hold. However, at the points where the discriminant does not vanish mod p, but
W(¢) =0 mod p, the manifold is smooth, and the zeta function can in principle be computed
using the methods outlined above. At these the non-convergence is due to the fact that the set
of sections (33) that we have chosen are not all linearly independent at such a point, and thus
do not form a basis. Thus the convergence can be restored at these points by simply choosing
a different set of sections. In the multiparameter case, this is often most conveniently done by
choosing a different set of the ‘inverse’ triple intersection numbers Y; jk> as we will illustrate in
84.3.

3.6 Evaluating the matrix U,(y)

As remarked earlier, the action of the Frobenius map Fr,. is properly defined on a p-adic
cohomology theory, the construction of which involves ‘lifting’ the variety X, /F, to a variety
defined over the p-adic integers. The matrix U,(y) should then be thought of as a matrix of
power series with coefficients p-adic numbers in Q,. To evaluate it for values ¢ € F;", we
need to use their Teichmiiller representatives Teich(y) € Zg‘, and evaluate the matrix U,(¢)
at these points.

This gives rise to an additional subtlety: for the Teichmdiller representatives ¢? = ¢, which
seems to imply that U,(¢) is a conjugate of a constant matrix. However, this would imply that
the characteristic polynomial R,(X,, T) does not vary when we move in the moduli space,
which we know to be incorrect. The problem with substituting the Teichmiiller representatives
directly in the matrix E(p?)™! lies in the fact that the matrix only converges inside the disk
ll¢ill, <1, but the Teichmiiller representatives (apart from 0) have ||¢;||, = 1.

The correct way to proceed is that we must evaluate the product of matrices as power
series in ¢ first, that is, for small ¢. This gives us a matrix U,(¢) that, owing to cancellations,
converges in a larger region containing all ¢ € QZI with [|p;][, < 1. In this way, we have
performed p-adic analytic continuation to a region containing the Teichmdiller representatives,
for which |[|¢;]|, = 1. While the resulting series converge, they do so only slowly. This slow
convergence is improved by noting that, as we have seen in (47), to a specific p-adic accuracy
the series in U,(¢) can be summed to obtain a rational matrix.
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3.7 Fast inversion of E(y)

To compute the matrix U, () to high accuracy in practice, we need an efficient way of invert-
ing the matrix E(¢). A practical method of doing this is given in [40].” Using the Griffiths
transversiality relations (6) and the Picard-Fuchs equations, it is straightforward to show that
the inner products

(ﬁaQ) ﬁbQ) = f

T QND,Q,  (9°9,9°Q) = J
X

P QAIPQ, and (ﬁaﬂ,ﬁbﬂ)zjﬁas}/\ﬁbﬂ,
X

X

satisfy a differential equations whose solutions are rational functions. These products are the
components of the matrix

W(p) € E(p) oE(p). (53)

Using this matrix, the inverse matrix E~*(¢) can be expressed as

E'(p) = (cE(@)W ()" .

This is convenient to compute in practice because, as a matrix of rational functions, W(¢) is
easy to invert.

3.8 Constraints from the Weyl conjectures

The functional equation (2) satisfied by the zeta function of a Calabi-Yau threefold implies
that its numerator R,,(X,, T) satisfies the following functional equation:

— 3(h'2+1) p2(h12+1 —37—1
R,(X,, T)=p*" +D T20"+0R (X p=3T71) .
Writing the polynomial R, (X, T) as

b3

R,(Xy, T)=1+ > a;T",
i=1

this relation halves the number of independent parameters a;, imposing the following relations
among the coefficients
3(h12+1—i

(R =+ l)ai ,

12
A(h124+1)—i = P aypizery = p>* Y. (54)

Our aim is to fix the remaining independent coefficients by using the relation (5) between
the zeta function and the inverse Frobenius map acting on the third cohomology, which fully
determines the zeta function of a Calabi-Yau threefold. The relation (5) could in principle
be used directly to compute the zeta function numerator. However, in practice, finding the
determinant of a matrix whose entries are multivariate series is computationally very taxing.
In addition, these results would necessarily only give the coefficients a; up to certain p-adic
accuracy. To resolve the first issue, it is more convenient to be able to express the indepen-
dent coefficients a; as traces of powers of U,(y). To address the second, using the Riemann
hypothesis, we can derive bounds for the norms of a;. This allows us to fix a p-adic accuracy
to which the series need to be computed in order to obtain exact results for the a;. This is
also a crucial piece of information needed to accelerate convergence of the series in U,(y), as
only when working with a fixed p-adic accuracy and ignoring any coefficients of higher p-adic
order, will we find that the a priori infinite series appearing as elements of U,(y) are actually

"The basic idea of this method originates in unpublished work of Duco van Straten, and the details and the
practical procedure were worked out in Thorne’s thesis [40].
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rational functions with U, (¢) taking the form (47), which allows computing its values exactly
to a given p-adic accuracy.

It is possible to find the coefficients of the characteristic polynomial by considering the
following standard identities

o0

det (I — TUp(cp)) = exp (Trlog (I— TUp(cp))) = exp (—Z %nTr (Up(gp)n)) .

n=1

Expanding this in powers of T gives each coefficient a; as a function of traces of powers of
U,(¢). The entries of U,(¢p) are series in ¢, and ¢ should be evaluated at the Teichmiiller
lifts Teich(¢) = (Teich(¢;), ..., Teich(p,,)).

It is implicit in the Weil conjectures that the p-adic integers a; are also rational integers.
This being so we can bound them in the following way: By the Riemann hypothesis, if we
diagonalise the matrix U,(¢), the eigenvalues will be algebraic integers A; of absolute value
|A;] = p3/2. The coefficients of the characteristic polynomial R,(X,,T) can be expressed as
symmetric polynomials of these eigenvalues.

a; = (—1)i oi(A1, .5 Aomea)s

where o; is the i’th elementary symmetric polynomial, and no sum over i is implied. From
the Riemann hypothesis it immediately follows that every monomial in o; has an absolute
value of p3/2, whereas the number of monomials is (Zmi+2). This gives a simple bound on the

magnitude of the constant a;
2m+2 ;
il < ( l. )pB’/Z. (55)

Thus, if we are interested in computing a;, we only need to compute it modulo p", where n is
an integer such that (mez) p3!/2 < p". This gives the p-adic accuracy n mentioned in §3.5 to
which we need to know U, (¢).

4 Examples

To illustrate the methods developed here in concrete cases, we study three different fami-
lies of multiparameter Calabi—Yau manifolds: the two-parameter mirror manifold of the octic
hypersurface in the weighted projective space P(1b1:222) the Sg symmetric members of the
five-parameter family of mirror Hulek-Verrill manifolds, and the non-symmetric split of the
quintic threefold corresponding to the configuration matrix

PI[1 1

P4[4 1] '
The first two examples act as checks of the methods presented here, as the zeta functions of
these geometries have been studied using entirely different methods in [2,3].

In [3], Gauss sums were used to compute the zeta functions of the mirror octic manifold.
Compared to the method presented in this paper, this technique benefits from more unified and
simple treatment of singularities. However, as a drawback, it is computationally heavy, which
is why we are able to easily extend the results of [3] to greater primes. For the five-parameter
family of Hulek-Verrill manifolds, the number of points on the manifolds over the finite fields
F, was computed explicitly in [2]. This gives a simple closed-form formula, which can be used

to compute the zeta function numerator, at least assuming the factorisation (66). However,
this method relies on detailed knowledge of the toric geometry of the manifold, whereas the

23


https://scipost.org
https://scipost.org/SciPostPhys.20.2.028

e SciPost Phys. 20, 028 (2026)

knowledge of the periods and the discriminant is enough for our method. In addition, it is not
completely straightforward to generalise the direct counting technique for manifolds outside
of the S5 symmetric manifolds, where the factorisation (66) no longer holds, and thus point
counting over finite fields F,. for n > 1 is needed.

Treating these three examples also requires use of different strategies due to the compu-
tational complexity of various matrices involved, and the p-adic accuracy required to obtain
exact results numerically. It is possible to study the two-parameter examples by expanding the
periods as series in two parameters, which makes it easy to obtain results for any values of
the parameters. However, for a larger number of parameters this becomes quickly computa-
tionally too cumbersome to be practical. These cases can be treated by studying lines inside
of the multiparameter moduli space. This allows expressing the periods and their derivatives
as series in one parameter, greatly reducing the computational complexity of the problem. By
considering a suitable line, it is in principle possible to obtain the zeta function at any point in
this way.

4.1 A two-parameter example: The mirror octic

We begin with a study of the mirror octic. Mirror symmetry for this manifold has been studied
in detail in [41], and the zeta function has been computed in some cases in [3]. This allows
us to make highly non-trivial checks of the method presented above by comparing the results
to those obtained in [3].

The family of octic Calabi—Yau manifolds is given by resolving the singularities of varieties
defined as degree-8 hypersurfaces in the weighted projective space P(1:1:%22),

The Hodge diamond of the family of octics is given by

1
0 0
0 2 0
hP4 =1 86 86 1
0 2 0
0 0
1

Thus the mirror of this family gives a two-parameter model. These manifolds have been explic-
itly constructed in [41], where they were identified with the manifolds given by {P = 0}/ Zi
with

P= xf + xg + xg' + xjr + xg — quxf'xg' —8Yx1X9X3X4X5 =0,

and with the group Zi is realised as the group with generators
(51>52)53)54755) = (05 3) 1: O) 0)7 (05 3) 0: ]-) 0): (0’ 3; 07 0; 1) >
which act on the coordinates as
(x1, X9, X3, X4, X5) — (@°1x, A2 x5, A°3 X3, A% Xy, A Xs5),

with a a non-trivial eight root of unity.
The complex structure moduli space Mg of mirror octics can be identified as

Mcs = Spec[—ck,yiz]] s
(Xz—y2)

where the coordinates X, ¥, and Z can be related to 1 and ¢ by
x=v%  y=4*¢, zT=9¢%
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The natural coordinates to use near the large complex structure point are

def 1 def ¢
p1 = 22—¢2: Py = _ZTI,L"" (56)

in terms of which the large complex structure point is located as ¢ = 5 = 0.
The independent triple intersection numbers Y are given by

Y111 =0, Y112=0, Yin=4, Yy5,=8,

where the index 1 refers to the linear system of divisors inherited from the vanishing loci of
degree-1 polynomials generated by the x; and x, in the ambient space, whereas the index 2
refers to the linear system generated by the degree-2 polynomials.

We take the quantities Y* to be symmetric in the first two indices, with the independent
values given by

y121 1 y221 _ 1 7122 _ 1 Flll_g, $112_9, 722_9,

4 B Z 2 8 3
The conifold locus A and the additional factor ) of the discriminant are given by

A=1-200,+2'9(1-220))p2, V=22, —1.

The Picard-Fuchs system

In the coordinates adapted to the large complex structure point, the fundamental period is

o0
8r + 4s)!
’(D'O( , ): ( r, 2r+s
e rz,s:o (@r+s)? (st 172

In these coordinates, two of the differential operators giving the Picard—Fuchs system found
in [41] can be written as

L£1=(1-2%0,)03—26,07 —3-27¢,02 —11-2%p,0, —3-23p,,
Lo=(1—2%91)07 +2%016,0, — 9102 — 2010, + 16,

Alternatively, a straightforward computation gives the Picard—Fuchs equations formulated as
linear relations between the sections ¥,Q, 9“2 of the form

2

1
0 —
00°0= 13 2 (Pon, e2) 0+ Palipr, 02) 0°0),
0,0°0 = —— 2 (@01, 92)8a2+ Q1. 92) 9°02)
2 AyWazo 1,¥2)%Ya a\l¥1>¥2 >

where P¢, P,, Q%, and Q, are polynomials of multi-degree (deg%, deg%) < (3,3), which we
will not display explicitly. We just note that all of these vanish at ¢; = 5 = 0, satisfying the
asymptotic form (37) of the connection matrix B(¢1, ¢,). The factor W = 2¢; +28p, —1
appearing in the denominator is the locus of apparent singularities for this choice of sections.
We will see below that this is indeed the denominator of the matrix W1,

To obtain series expressions for the periods around the large complex structure point, we
use series ansitze for the functions f! appearing in the expression (13) for the period vector:

(o]

=0 oter.

w,v=0
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Here I can be a one-, two, or three-component index. Substituting the Frobenius basis periods
w,, @ expressed in terms of these series into the first two differential equations, we obtain
recurrence relations for the coefficients CZW, which can be used to quickly compute the series f!
to high order. To get a better idea of how this works in practice, let us consider the fundamental
period. The recurrence relations can in this case be expressed as

o _Qu—v=2)2u—v-1) , o _82v—1)(4r—3)4r—1) ,

uv Mz u—1,v> (01% 3 0,v—1" (57)

Together with the boundary conditions
08021, c2v=0 ifu<Oorv<O,

these suffice to solve for all coefficients cg ,- The coefficients appearing in the other periods
satisfy similar, albeit more lengthy, recurrence relations, which we refrain from displaying
here.

Tme matrix U, (¢1, 2) and the zeta function

Having obtained the periods via recurrence relations, we only need to find the matrix
W1(¢1, ¢,) defined in (53) to be able to compute the matrix U,(¢1,¥2). In the present
case, it is not difficult to compute the required inner products of derivatives of periods to show
that

Ap19 1B 32Cp, DE
0 2 3W

12w 3W 2W

ot 0 —5g8 L-sep)e  -1gE 0

o e 0 il A-Saiy o
2048 leva 5 (1-2569,)E L (1-512p5) 0 0 0 ’

—?’\%’CTW % 63—4(4901"'1)902_ﬁ 0 0 0

2z 0 0 0 0 0 j

where we have denoted

A 120, —256(27—44p,) @y + 5, B 11280, (49, —256(9—20¢,) vy +5),
C ¥ 85, +256(6¢, (40 —3)+1)py—1, D 5120, (12840, —1)py+1)—1,
e ¥ 4, W =20, +28¢0,—1.

With this expression, computing the inverse matrix E_l(cpll) , gog ) is simple. Setting the coeffi-
cients

a,=0,  y,=xX),(3)=-168(,(3),

it is also easy to compute the matrix U, (1, ) for the first few primes p. As expected, we can
check that the series appearing in this matrix indeed seem to converge to a rational function
with the denominator (47). This is in practice seen as the coefficients of U, (¢4, ) multiplied
by (52) becoming finite polynomials.

The choice of coordinates

In many cases, it actually turns out that the numerical computations become slightly simpler
when different coordinates are used — which can result in significant reduction in computa-
tion times. We use the example of the mirror octic to address briefly the question of coordinate
transformations. For simplicity, we restrict to a rescaling of coordinates, although analogous
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argument apply to other similar changes of coordinates as well. Let us therefore use the coor-
dinates @; given by

ri¢i =i, 1;€Q
Under this transformation, the matrix E(¢) can be written in terms of the new coordinates @;
as

E(¢) = ¢r°E(p),
where E(cﬁ ) is the logarithm-free matrix introduced in (48), where we have substituted in

¢ — @. The expression r€ refers to the product rlE L...r;m. With this, the expression (50) for
the matrix U,(y) gives

Up(9) = E(@P) 'r @ P U,(0)¢°r E(§) = B($") ' U,(0)E(p).

To obtain the second equality, we have used the commutation property (41) of the matrices
U,(0) and €;. Note that here the coefficients r; giving the scaling are not raised to the p’th
power as the Frobenius map does not act on constants. This is essentially the reason we obtain
a different matrix GP(O) when using the rescaled coordinates. From this expression we identify

the matrix GP(O) associated to the coordinates §; as

-1

~ p—tL
U,(0)=r"U,(0)r¢=A,r 7 “(I—y,m) = A, exp(p log rl-ei) (I—y,m).

Comparing this to (43), identifies the coefficients a' in this case as

: -1 .
a;):p log, ',

where we can use the p-adic Iwasawa logarithm (see appendix A) as this logarithm is based
on the same series as the ordinary complex logarithm.® To make this discussion concrete, let
us take, instead of the coordinates in (56), the following rescaled coordinates:

1 . def ¢
o =220, @y = " =—2Mp,. (58)

Then the coefficients a; should be, according to our previous discussion, given by

o

~ def
$1 =

1_ _o,p—1 p—1
o, = 2

log,(2),  a7=-11 log,(2). (59)
It is easy to check that with these coefficients, the resulting matrix U,(¢) takes indeed the
required rational form. A numerical computation also reveals that the choice of these coeffi-
cients is the only one that results in such a rational matrix: Imposing the requirement that the
entries of Uy (4, ,) be rational functions with p-adic integers as coefficients of polynomials
in the numerator and denominator, gives an overconstrained system, which can be used to
solve the prime-dependent constants a; and ag to appropriate p-adic accuracies. From (55),

it follows that we need to compute U, (1, ¢,) to p-adic accuracy p®, which in turn implies,

that a; need to be computed up to order p° or higher, although it is easily possible to compute
these to higher accuracies as well. We gather the values computed in this way in table 2. It is

8An astute reader might be puzzled by an issue of convergence: we wish to ultimately evaluate the logarithm
at p-adic integers whose p-adic norm is outside of the region of convergence of the series corresponding to the
Iwasawa logarithm. However, before lifting the series to Q,, one can use the identities satisfied by the ordinary
logarithm to write log p = log(¢?™')/(p —1). This will converge for p-adic integers, and coincides with the
definition of the Iwasawa logarithm.
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Table 2: The values of the prime-dependent constants allj and alzj appearing in the
matrix U,(0,0) when using coordinates (58) for the cases p = 7,11,13,17. These
values agree with the values (59) in terms of Iwasawa logarithms.

P % %
161955+ O(77) 478981 + O(77)

11 | 18516114+ O(117) | 4402772+ O(117)

13 | 24288843 + O(137) | 39465861 + O(137)

17 | 201574686 + O(177) | 287983427 + O(177)

then an easy exercise to verify that these values agree with those in (59), up to the specified
p-adic accuracy.

Using these values to compute the matrices U,(1, 2), one finds that these take exactly
the form (47), which allows computing the independent coefficients a,, a,, and a3 appearing
in the zeta function numerators R, (X(,, ¢,) T)-

We have shown, in this example, that a non-zero a can be absorbed by a rescaling of the
coordinates. Note however that this scale of the coordinates is fixed implicitly by the mirror
map procedure, as in (11). A change in the scale of the parameters ¢; corresponds to a shift
in t;:

‘ . ‘ . logA def L
p'— Ap', correspondsto t'— t'+ Zi , andso gq; = exp(2mit!)— Ag;,
i
and this would affect the calculation of instanton numbers that are independently known. In
this example, we deliberately chose ‘incorrect’ parameters and the non-zero value for a; has

corrected for this choice. We conjecture that with the correct choice of parameters, a; are
always zero, but we do not know this to be the case.

Conifold singularities

At conifold points, we expect, analogously to the observations made in [1], that one of the
roots of R, (X, T) vanishes, resulting in a degree five polynomial, which we expect further to
contain a linear factor so that it takes the form

Ry(X,T)=(1—yppT)A =ty T +uspT* —uyp°T% +p°TH), (60)
where y, is a character taking values y, = +1. Assuming that the polynomial takes this form,
we can completely determine it by computing the coefficients u; and u,, and the value of the
character y,,. The roots of the quartic factor of the polynomial R,,(X, T) are expected to have
the norm p3/ 2 (see for instance [3,42]). Therefore, like in §3.8, we have the following bounds
for u; and u,:

3/2

lu | <4p®?,  |uyp| < 6p°.

This means that for primes p > 7, it is enough to compute these values modulo p*. Recalling
the form (52) of the denominator of the matrix U, (1, ), we see that working modulo 4,
the factor A(pq, ¢,) corresponding to the conifold locus does not appear in the denominator.
Therefore the matrix U,(y1, p;) mod p* is well-defined even at the conifold locus, and we
can use it to (conjecturally) evaluate the coefficients u; and u, appearing in the polynomial
R,(X,T). To fix the remaining unknown, the value of the character y,, we can compute the
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Table 3: Some denominators of the zeta function {;; of the mirror octic manifold
with p = 11 for various values of the coordinates ¢; and ¢,. We have displayed both
smooth and conifolds points.

p=11
(%1, P5) smooth/sing. R,(T)

(3,2) conifold —(pT —1)(p°T*—40p*T® + 9pT? — 40T +1)
(3,3) smooth p°T® +6p°T> +83p*T*+68p?T3 +83pT2 +6T +1
(3,6) conifold (pT +1)(p®T* +32p°T® —80pT? + 32T + 1)
(4,5) smooth p°T®+10pST> +9p°T*+20p3T3 + 9p2T? + 10T +1
(4,6) smooth 9T® —2pOT> 4 235p*T* —452p2T3 +235pT2 —2pT + 1

p P p p p p
(5,5) conifold —(pT —1)(p°T* +2p*T° +41pT> + 2pT + 1)
(5,8) smooth p°T®—38pST> +19p*T* +124p>T® + 19pT2 —38T + 1

coefficient of T2 in R,(X,T). Evaluating modulo p* is not enough to compute this, without
using the form (60), but using this form we know that this coefficient should be given by

—puy +pPusy, .

The requirement that this agrees with the coefficient computed from the matrix U,(¢1, ¢2)
modulo p* can be usually used to fix the value of Xp»> with the only possible exceptions being
the cases where p? | u,. We display some numerators R,(X,T) for p = 11, for both conifolds
and smooth manifolds in table 3. These values agree with those computed in [3] using Gauss
sums.

Note that the presence of singularities that are not of conifold type is reflected in the factor
V() in the conjectural expression (52) for the denominator S,(¢) having non-trivial zeros.
Since this factor appears with power n — 2, it necessarily appears in the denominator S, (¢)
for the p-adic accuracies needed to compute the polynomials R,(X, T). Therefore the above
technique cannot be used to evaluate the zeta function at these singularities.

4.2 A five-parameter example: The Hulek-Verrill manifold

As an example of a case where it is beneficial to study zeta functions on complex lines in
the moduli space, consider the five-parameter Hulek—Verrill manifolds, focusing on the Ss-
symmetric complex lines on the patch p° =1 with ¢ = (¢, ¢, ¢, @, ), ¢ € C. This example
has been studied in the context of supersymmetric flux vacua by the present authors in [7].

The five-parameter Hulek—Verrill manifolds [2] are mirrors to the complete intersection
Calabi-Yau described by the CICY matrix

o)

o
[ g G g
g T G T

x =80

These manifolds HV,, can be realised as the toric compactification of the hypersurface in
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T5=P%\ {]_[ZZOX ., = 0} given by the vanishing of the two polynomials

5 5 uw
PIX)=D X,  PAXg)=D, . 61)
u=0 u=0""H

The six p" furnish projective coordinates for the complex structure moduli space Mg of this
manifold. From the defining equations (61), it is clear that interchanging the complex struc-
ture parameters p" gives a biholomorphic manifold. Due to the symmetry, we can, without
loss of generality, work exclusively in the patch ¢° = 1 in which the five remaining (' are the
affine coordinates of Mg.

The manifolds obtained in this way are smooth outside the conifold locus A = 0 with

A= l_[ (W+nlﬁ+nzﬁ+ngﬁ+n4ﬁ+nsﬁ), (62)
n;€{£1}

which implies that
y=1.

The triple intersection numbers Y;j; and the other topological quantities Y. of the mirror
Hulek-Verrill manifolds can be computed from their description as complete intersection va-
rieties, and are given by

Y = {2 D)k distinet Yio=0, Yio=-2, Yoo =240-0  (63)
k710 otherwise, vo 0o = 000 ™= (2mi)3
The fundamental period is given by
o 2
0 (P1+"'+P5)!) P ps
@¥= ) (2 ) ol gl (64)
Z ( pi!---ps! 1 S

pi=0

The other periods are derivable from this by usual methods. In principle, the derivatives of
the periods can then be computed as series in the five parameters ¢!, after which specialising
to the symmetric case ¢' = ¢ would give the expressions for periods and their derivatives
the following computations require. However, this would mean working to high order with
five-parameter series, which is computationally very expensive. Luckily, there is an alternative
method which utilises recurrence relations to directly find univariate series expressions for the
derivatives of the periods. We explain this in detail in appendix D.

Recalling the values (63) that the triple intersection numbers Y;;; take, we can choose the

quantities Y/¥ so that the derivative basis has the natural S5 symmetry:

1

pik— L
24

’Y\iii — ’Y‘iji — ’Y\jii — 1

24’ (65)

On this line the discriminant (62) becomes
As=(1-9)"(1-9¢)°(1—25¢).

However, for the purposes of computing the zeta function on the line, we do not need to
account for the multiplicities, so we can here take the discriminant to be

A=(1-p)(1-9¢)(1—25¢p).
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Inversion of E(yp)

To compute the inverse matrix E"'(¢p), we need the inner products (9,0, ¢,Q), (¢,9,9°%),
and (999, 9°Q). Due to the symmetries, there are only five independent such inner products
that do not vanish:

1 5(18¢p—1 . 1 18p—1
(9,0, 8°0) = —— 282 =1 5 0 igy— L 1801
(2mi)® 12A (2mi)®  2A
. 1 . 1 1215¢p*—415¢° + 16¢?
@0, 900) = ———L2, (i, 900) = L 1215¢" — 41597+ 1697
(2mi)3 2A (2mi)3 72A2
(0.0, 8°0) = 1 1800¢* +1915¢3 —462¢2 + 11¢
[ - .

- (2mi)3 12A2

With these, it is easy to compute the matrix W—(¢), which we refrain from giving here due
to its size. However, by computing the matrix, its denominator can be identified as

W =(10¢ +1)(18p —1).

The matrix U, (¢) and the zeta function

With the information above, it is straightforward to construct the matrices E() and E(p)™!.
The S5 symmetry of the manifolds we are studying corresponds to permutations of the coor-
dinates ¢! — <0, ¢ € S, and acts on the periods as

@y @y, @ Ty ol @ @’ - w0,
but keeps the period vector invariant, implying that there are only four independent periods.
The choice (65) of the quantities Y/* guarantees a similar symmetry property for the derivative
vector ¥ under the action of the permutations ¢:

BTy, Vo, 0@, 9090,

As a consequence, the matrices E(¢) and E"!(¢) have a corresponding symmetry property:
applying simultaneously the same permutation ¢ € S; to the columns and rows 2,...,6 and
7,...,11 keeps the matrices invariant. Due to these symmetries, U,(0) has the form

U,(0) =uyA, (I +a,e + 12a§ ul + x()?t)gp(S)n) ,

which can be verified, at least to the p-adic accuracy we are working to, by starting with the
most general form (42) of U,(0), and imposing the requirement that the coefficients in the
series appearing in U, () are p-adic integers. Further, we can verify that a, = 0, to the given
accuracy.

With this form of U,(0), the matrix U, () has also the same S5 symmetry as the matrices
E(p) and E7!(¢). This symmetry implies that its characteristic polynomials factorises over
integers as

det(I—U,()T) =Ry(T)'Ry(T), (66)

where R,(T) is a quadratic and R4(T) a quartic polynomial. Moreover, from the Weil conjec-
tures it follows that these polynomials take the form

Ry(T)=1+a;pT +p3T?, Ry(T)=1+b T +bypT?+b,p3T3 +p°T*,

leaving just three undertermined coefficients. It turns out that in all cases we have studied
the polynomial R4(T) is exactly the numerator of the zeta function of the Z5 quotient of the
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Table 5: Some denominators of the zeta function of the mirror Hulek-Verrill mani-
folds with various values of p and ¢. More complete data for the smooth manifolds
can be found in the appendices of [7].

pley R,(HV(y, o)

7 | 3| (p°T2—2pT +1)* (poT* +2p°T3 —54pT%+ 2T +1)

7 | 5 | (0312 +4pT +1)" (p3T2—34T + 1) (p*T2 + 4pT + 1)

11|10 | (pPT2+1) (poT*—22p3T3 +2pT2 — 22T +1)

13 | 4 | (pPT2—2pT +1)" (p3T2+42T +1) (p*T2—2pT +1)

13 | 11 | (pPT2+4pT +1)" (p3T2—18T +1) (p*T2 +4pT +1)

17 | 14 (P12 +1)* (p3T2 +1) (p3T2 — 134T +1)

manifolds on the completely symmetric line. This was studied in [4], for example. The poly-
nomials R4(T) can be found in the tables of [1]. Thus leaves us with one parameter, a;, to fix.
Apart from using the matrix U,(¢), this coefficient can be found by using the relation of the
coefficients of the zeta function numerator to the number of points on the manifold defined
over finite fields. The number of points on Hulek-Verrill manifolds over the field F, was com-
puted already by Hulek and Verrill [2]. On the non-singular manifolds this number is given
by

p—1
T
N, (HV(¢1,¢2,¢3,¢4,¢5)) =48p% +46p + 14 + Z (;) +p(pN,(E),
X,y,2=1

where

0> @3 ot

2
T=[(1+x+y+z)(—+—+—+<p5)—<p1—1] — 40!,
X y z

and here (%) denotes the Kronecker symbol. In this context

(o)) = p ifgl=1modp,
PR )= 0 otherwise,

and N, (€) denotes the number of points over F, of the elliptic curve

2 3 4
(x+y+z)(g0—+£+£)ztp5.
X y z

Using the relation between the series expansion of the zeta function and the number of points
on the manifold, we find that the coefficients a; are given by

1 2 3
a; = Z(bl +1+45p+45p% + p* — N, (HV(y0.0.0.0)) ) )

Thus the zeta function for the Sg-symmetric family of Hulek—Verrill manifolds can be computed
in two ways: using the point-counting formula together with the tables in [1], and alternatively
by computing the traces of powers of U,(¢). Comparing the results gives yet another set of
intricate consistency checks, and we indeed find a perfect agreement. We give some examples
of the zeta function numerators in table 5.
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4.3 A last example: The mirror of a non-symmetric split of the quintic

Our last example is the mirror of the “non-symmetric” split quintic given by the configuration

matrix
P1[1 1]
4 .
P*4 1 =168

From this complete intersection description, it is easy to work out the triple intersection num-
bers, which are given by

Y111 =0, Y112=0, Y100 =4, Y500 =5,

as well as the fundamental period, which can be expressed as

oo
0f .\ _ (my +my)!(my +4my)! o m;
o= 2 Ty 9 ©7
The other periods can be worked out from this one either by deriving the Picard—Fuchs system,
or alternatively by the familiar recipe of replacing the factorials by I'-functions, deforming by
m; — m; + €;, and expanding in the nilpotent matrices €;. The periods can then be identified
by comparing to the expansion (10).
The conifold locus can be identified as

A=(1—¢1)— ¢y (512+ 28169, — 3209 + 144¢> —27¢%) + 6553642,
and )(p), which is defined in (52), is in this case a constant

V(p)=1.

Apparent singularities — Choosing the Yiik

We work with two different choices of the coefficients Y* to illustrate how these different
choices affect the computation of the zeta function. In particular, for the two choices we make,
the apparent singularities will be different. This is just a reflection of the fact that different
bases of sections of the vector bundle # corresponding to different choices of the constants
YUk will become degenerate at different points in the moduli space. The value of the zeta
function does not depend on the choice of the basis of H3(X), so both choices can be used to
compute the polynomials R, (X, T).
For both bases we take

pl21 _ 5 pl22 _ 1 7221 _ 1

gl — 9222 _ o ) )
32 8

but we take the last independent coefficient to be

g2 _ {0 in case 1,
= 5 ]
—35 in case 2.

The first choice turns out to be the simpler of the two.
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Table 6: Some numerators of the zeta function {;(X,, ,,, T) of the non-symmetric
split of the quintic studied in this section. Note that we are able to compute the values
of the numerators at the apparent singularities where the apparent singularity only
appears for one of the two choices of Yk,

p=7

(p1,p2) smooth/sing. R,(T)
(1,2) smooth p°T® +5p°T> —66p2T3+5T +1
(1,4) apparent (case 1) p’T® +12p°T° —11p*T* —200p2T> —11pT? + 12T + 1
(1,6) apparent (case 2) p°T®—25p5T> +29p*T* + 50p2T> + 29pT? — 25T + 1
(2,2) smooth p°T®—10p°T> + 25p*T* 4+ 36p2 T3 +25pT2 — 10T + 1
(4,5) smooth p°T®—8pST> +57p*T* —64p*T> +57pT*—8T + 1
(4,6) apparent (case 2) p°T®+36p°T>+113p*T* +328p2T> +113pT2 +36T + 1
(5,5) smooth p?T® +20p°T° + 73p*T* + 152p2 T3 + 73pT2 + 20T + 1
(6,3) smooth (p°T2+1)(p°T* +19p*T® —p>T% + 67pT> + 19T + 1)

The matrix U, (¢4, ¢2) and the zeta function

In both cases considered above, the inversion of the matrix E proceeds in complete analogy
to the two previous cases. The only significant difference between the two cases is that the
denominator of W™! takes a slightly different form in each:

—529¢2—16128¢2,+593¢?) in case 1,

16 (4—29¢,) (64—392p;—16384p,+51200¢; ¢,
—1283¢2—437760%p,+1611¢3)  in case 2.

Therefore, for instance, the point (¢4, ¢5)=(6, 1) has an apparent singularity for X /F, in the
first case, but not in the second. By contrast, the point (4,1) does not have an apparent
singularity in the first case, even though it does in the second case. We can use this observation
to compute the zeta function at the apparent singularities.

In both cases, the coefficients a; and y, are given by

up=1, @, =0, 7, =72X){,3) =-168,(3). (68)

These, together with the matrix E(yq, ¢5) and the denominator (52) with A, ), and W as
above permits the computation of the zeta function. As required, the results do not depend
on the choice of the coefficients Y/¥ except at the apparent singularities, where the rational
matrix U, (¢, ) is computable only in one of the cases. We display some representative
results for p = 7 in table 6.

5 Summary and outlook

In this paper, we have generalised the deformation methods of [1] to encompass multiparame-
ter Calabi-Yau manifolds. We can express the polynomial Rgs)(X o> T ) (see (3)) that determines
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the zeta function of a Calabi-Yau threefold as

RS)(XW T) =det(I—TU,(p)) .

Our main result is an explicit expression for the matrix U,(y) in terms of the periods and a
constant matrix U(0). To be specific,

U,(¢) =E(p?)'U,(0)E(y),

where E(¢) is the logarithm-free period matrix in the Frobenius basis, defined in (35), and
the matrix U,(0) is given by

U,(0) = diag(1,p 1,p*1,p%) %1+ 7).
Here the matrices €; and 7 satisfy the (co-)homology algebra of the mirror X ¢

€i€j = €j€;, €i€j€ =Yk M, en =20,
with the explicit expression for these matrices in our chosen basis given in (15). In all of the
cases we have studied, the coordinates ¢ of the complex structure moduli space of X, can be

chosen so that
a=0, 7,=1&)0).
To speed up the convergence of the series appearing as the elements of U,(¢), we note that,
at least in all of the multiparameter cases we have studied, the matrix U,(¢) mod p" takes
on the rational form
Up(¢p)

(
U()= S22 mod p",

with
Sa(9) = A(e)"* V()" 2 W(p).

In this expression, A(y) gives the (hyper) conifold locus of the family of Calabi-Yau mani-
folds we are studying, WW(¢) corresponds to the apparent singularities, and the factor V(¢)
represents additional singularities that are neither of the (hyper) conifold nor large complex
structure type. We wish to emphasise, however, that there are known one-parameter cases
where the above form of S,,(¢) needs to be slightly generalised, and we expect this to be true
of some multiparameter cases as well.

Even though we are able to study the arithmetic properties of many Calabi-Yau threefolds
with the techniques presented here, there still remain some open questions and limitations to
these methods. Perhaps the most significant shortcoming of the deformation method, based on
the series expansions for the periods, is that series expansions in multiple parameters become
quickly cumbersome as the number of parameters increases. Although we have managed to
study a particular example with five parameters by specialising to lines in the moduli space,
it is not clear how to derive efficiently the required univariate series for the periods and their
derivatives in general. In addition, even if one can treat any line in moduli space, using such
lines to compute the zeta functions for all possible values of moduli in F;’;, in this way, quickly
becomes very time-consuming at higher p. Another area where further developments could
prove useful is the treatment of singularities. We are still unable to compute the matrix U,(¢)
for Calabi-Yau threefolds with conifold singularities if the manifold has more than two param-
eters. In addition to this, we do not know yet how to treat other types of singularities, such as
K-points.

It would also be interesting to study the further generalisation of the techniques presented
here to cover higher-dimensional Calabi~Yau manifolds (the horizontal part of the middle
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cohomology of one-parameter Calabi—Yau fourfolds has been studied in [10]). This might shed
more light on the relation of the matrix U,(0) to the (co-)homology algebra and the T'-class of
the mirror. We can also ask whether the deformation theory can be developed around other
regular singularities, apart from the large complex structure points, in a natural way. While
this is certainly possible in special cases, with deformations around the Fermat quintic going
back to the work of Dwork, the difficulty in developing such a method for general Calabi-Yau
threefolds may be in finding a sufficiently universal expression for U,(0) analogous to (42).

Having an effective numerical procedure for computing local zeta functions of Calabi-Yau
threefolds opens up many exciting possibilities for further study. The techniques presented in
this paper have already been used by the present authors together with J. McGovern in [7] to
study supersymmetric flux vacua in IIB compactifications on Calabi-Yau threefolds, and to ver-
ify, refine and extend the flux modularity conjectures set out in [5,6]. The solutions presented
in [7] were obtained using the symmetry properties of the compactification manifolds. With
the effective method for computing zeta functions of a wide variety of Calabi-Yau threefolds,
it should be possible to find much larger families of threefolds whose Hodge structure splits
analogously to that for the supersymmetric flux vacua studied in [5-7], or rank-two attractor
points studied for example in [4,38]. The structure of the zeta function has also a connec-
tion to other properties of the Calabi-Yau manifold. For some manifolds, for example, the
zeta function is related to the existence of complex multiplication, which is itself conjecturally
related to the existence of rational conformal field theories [43-45].

In section 2.5, we discussed briefly the relation of the T'-class to both the rational basis
of H B(XW C) and an analogous construction the matrix U,(0) representing the action of the
inverse Frobenius map on H3(X ¢>Qp)- We find it intriguing that in these relations both the
complex gamma function I'(z) and the p-adic gamma functions T,(z) appear in such an anal-
ogous fashion, albeit in slightly different contexts. This raises the question of whether it is
possible to define a p-adic I'-class that would explain the appearance of y(X,)¢ »(3) in both
the change-of-basis matrix p (with p = c0) and U,(0), and put the complex and p-adic com-
putations on a similar footing. Ultimately, one would like to find an adelic formulation of this
process.

The fact that the matrix Up(O) has a natural expression in terms of the (co-)homology
algebra of the mirror manifold and is connected to a p-adic analogue of the I'-class may give
some hints of possible relevance of mirror symmetry to the zeta function. In light of this,
we would also like to briefly revisit the speculation originally made in [46] regarding the
possible role of mirror symmetry in relation to the local zeta functions. In this reference, it
was speculated that it may be useful to defined a ‘quantum’ zeta function ¢ g (X, T) that would
satisfy a natural mirror symmetry property

1

Q = -
o) (2% T)

where )?w denotes the mirror manifold of X, with complex structure parameter 1. It was
noted that such a function could be obtained, for instance, by defining

numerator ¢,(X,,, T) B R,(X,,T) B det (I— TUp(cp)))
numerator Zp()?w, T) B Rp(fw, T) a det(I— Tﬁp(’t/))) .

Cg(ch)jZ'(pa T) =

It is perhaps interesting to note that, in the cases where the Picard group of X, is generated by
divisors’ defined over F,, by formally taking the large complex structure limit and setting the

°Recall, however, that the denominator of the local zeta function ¢ »(X,, T) can take on a slightly more compli-
cated form in case the Picard group of X, is not generated by divisors defined over F,.
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complex structure parameter 1 corresponding to the mirror manifold to zero, and computing
the characteristic polynomial of U,(0), one recovers the usual zeta function (3):

R,(X,,T)
(1-T)A—pT)"(1—p2T)""(1—p3T)

gS(X<p’XvO’ T): = Cp(X<p:T)-

In this way, it may be tempting to view the polynomial Rp()?w, T) as a ‘quantum-corrected’
version of the denominator of {,(X,,, T). However, it seems that there is no natural way of
taking the large complex structure limit ¢p — 0 p-adically, as every other point ¢ we study
has [|Teich(4p)||, = 1. In addition to which it seems that, when the Picard group of X, is
not generated by divisors defined over F,, the definition of CI?(X W)%, T) would have to be
further refined. Most importantly, we still lack a compelling enumerative interpretation for
the coefficients of CS(X W)%, T). Nevertheless, it would be interesting to study whether these
connections and analogues with mirror symmetry could be further developed.
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A A lightning introduction to p-adic numbers

Here we briefly review some aspects of p-adic numbers that are necessary to understand the
present article. For a careful discussion, we refer the interested reader to [13], and for a
shorter treatment in the style of this appendix, see [47].

The construction of the field of p-adic numbers is analogous to the way in which the field R
of real numbers is constructed from the field of rational numbers Q. Recall that R is essentially
the topological completion of Q, i.e. to obtain R, we add to Q all limits of Cauchy sequences
in Q. In this construction, we have implicitly made a choice to use the (Archimedian) norm
| + | given by the absolute value. However, there are other inequivalent norms || x ||, that are
defined as follows: given any r € Q and a prime p, we can write r uniquely as

m

_ i
r__pz
n

where m,n,p € Z and m, n, p are mutually prime. The p-adic norm ||r||, is then given by

Irll, =p~",  with[|0]|, =0.
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If p is a prime, this satisfies the properties of a norm, that is

lIrll, =0, with equality if and only if r =0,

rsllp = lrllpllsllp

7 +sllp < 71, +Isll, -

In fact, the p-adic norm ||r + ||, satisfies a stronger bound than that provided by the triangle
inequality
lIr +sll, < max (|7l [ls]],) - (A.D)

Thus the norm is non-Archimedian. This fact has important consequences for the main text. In
the usual Archimedian case, if we are given numbers x and y # 0 with |x| > |y|, then there is
an integer N such that

INy[> [x].

However, for p-adic numbers X and Y # 0 with [|X|[, > ||Y][,, we have |[NY]|, < [[X|], for all
N € Z. In a similar way, we also have

IX +NY]l|, = |Ix|l,, forallNeZ.

Ostrowski’s theorem (see [13] for details) states that any non-trivial norm is equivalent to
either | x| or || x ||, for some prime p, and that these are inequivalent with each other. Thus,
if we complete Q with respect to || x ||, we obtain the field Q, of p-adic numbers, which is
different from R.

Analogously to the decimal expansion in R, in Q, every p-adic number 7 can be represented
by infinite series of the form

o0
n=Zanp”, wherenpeZ, and0<a,<p—1. (A.2)

n=nyp

Note that ||a,p"||, = p™" so the terms in the series are increasingly small in the p-adic norm.
Numbers 7 such that ny > 0, i.e. ||n[|, <1 are called p-adic integers. The ring of p-adic
integers is denoted'® by Z,. A number 7 such that both ) and 1/n are p-adic integers is a
p-adic unit. If n is a unit, then necessarily ||n||, = 1, that is, n has ng = 0, ay # 0. The set of
p-adic integers,
Z,={xeQ, | llxll, <1},

plays a role analogous to the unit disk. We have sometimes referred to this disk as D in the
main text.
If x € F,, then we have the relation

xP—x=0, (A.3)
which is satisfied exactly. However, if x € Z,, then
xP—x =px;, for some x; € Z,,.
However, if we can choose the Teichmiiller representative of x,

. def .. n
Teich(x) = lim x? ,
n—,o00

10This should not be confused with the field Z/pZ of integers modulo p.
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it can be shown that the limit above exist in Q,. This satisfies the equation

Teich(x)P — Teich(x) =0

exactly. In fact, the Teichmiiller representative defines a multiplicative character
Teich : F; — Q,, which embeds F as a multiplicative group of (p —1)’th roots of unity. !

Since Q, is complete and has a norm, we have available all the processes of analysis. We
can discuss limits and continuity in a manner analogous to analysis over R. We can also develop
the theory of special functions. However, due to the non-Archimedian property of the p-adic
norm, many of these concepts are somewhat different in the p-adic case. Of particular interest
is the convergence of series. Consider the partial sums

n o0
Sn=Zai, a; €Q, of the series S:Zai.

i=0 i=0

The sequence {S,} .2 is Cauchy if and only if ||a;||, — 0 as i — co. The property (A.1) guar-
antees that such a sequence converges in the p-adic norm. In particular, there is no possibility
of many small terms adding up to give a large contribution to the sum. This property is used
extensively in the main text to evaluate p-adic sums exactly to certain accuracy: if we are in-
terested in the value of the limit S to accuracy p™, that is, we wish to compute S, mod p™*?,
we can ignore any terms with ||a,|[, < p™™, that is any a, such that a, =0 mod p™tl. If the
sum is convergent, this implies that we can evaluate S mod p™*! as a finite sum.
This also has an interesting implication for convergence of power series. Let

Fm=>"am".
n=0

The function f (&) is well-defined for values £ € Q, such that [|a,&"
can define the radius of convergence r by

[, » 0asn— oo. One

1
- :limsupllanH;/",
r

where limsup | |an||11)/ " denotes the least real number x such that for any X > x there are only

finitely many «a,, such that ||an||}1)/ "> X. One can show that the above series is convergent if
and only if |[x||, < r [13]. In particular, there is no notion of conditional convergence, as this
condition only depends on the norm of x.

An important example of a function defined by power series is the p-adic logarithm that is
defined, in analogy to the usual case, via

oo

n
1 + 1) =S (=)
og,(x +1)= Y (-1~

n=1

which converges for ||x||, < 1. This satisfies the usual property log,(xy) = log,(x) +1og,(y),
since this follows directly from the series expansion when this converges. Requiring that this
property holds for all x,y € Q;, one can define a logarithm that is defined on the whole of
Q:; (or even the algebraically closed field C;‘; containing Q;‘;). To fully fix this function, one
needs to fix the value of log,(p). The Iwasawa logarithm is obtained by choosing log,(p) = 0.
To evaluate this explicitly for p-adic integers, one can use the following observation (see for
example [48]): For any integer a € Z,,, we have a?~! = 1+ O(p), so defining y = a?~' —1,

"Note that, for instance, Teich(p) = 0, and Teich(x + p) = Teich(x), so the Teichmiiller representative does not
define a bijective correspondence Q, — Q,.
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we have [|y|[, < 1. Thus we can compute logp(ap_l) =log,(1+ y) using the power series. By
the usual multiplication identity, we then have (p — 1)10gp(a) = logp(l + y). Therefore, the
Iwasawa logarithm can be computed as

log, (")

log,(a) = —

Continuity considerations allow one to define also other interesting special functions, such as
the p-adic I'- and {-functions, which appear in the expression for the matrix U,(0), discussed
in §3.4. Here we just present their definitions, referring the reader to [1,47] for details. The
p-adic T'-function is obtained by p-adic extrapolation (which can be thought of as a p-adic
analogue to analytic continuation) from the expression of I},(n) for non-negative integers n:

n—1
Lm=0"] [k, neZy,.

k=1

ptk
The p-adic zeta function can be likewise defined by extrapolation. There is a slight subtlety
associated with the fact that the values of the zeta function {(s) for integers s > 0 are believed
to be transcendental, and thus they cannot be interpreted as p-adic numbers. However, for
negative odd integers s, the values of {(s) are rational and can thus be interpolated. We define

bs—l
§)=——,
pl) = 2=
where b, are prime-dependent constants related to the Bernoulli numbers B,, via
1 b
——(1—p%1Hp,, =———2k
2 k( P~ )Byx 2k

for integers k. In particular, the zeta function value {,,(3) that we encounter in the main text
is given by

b
,3)= 2 === (/- 107),

where the latter expression has been explicitly derived, for example, in [1].

B A warm-up example: The Legendre family of elliptic curves

To get a feel for the kind of calculation we need to perform to find the zeta functions of
multiparameter manifolds, we present here briefly the simplest example - that of an elliptic
curve. To be specific, let us consider the Legendre family of elliptic curves E, given, on an
affine patch, by the equation

y2=x(x—1)(x—2A).

The canonical differential of this curve, corresponding to the (up to scaling) unique holomor-
phic (1, 0)-form is given by
dx dx

y Vxx—Dx—1)

Differentiating with respect to A, we first get a form Q' € HVO(E,,C) @ HOV(E,,C) that
together with Q forms a basis for H!(E,,C), at least for almost every value of A. Then it
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follows that the second derivative " can be expressed in terms of Q and Q’, at least up to an
exact form. In fact a simple calculation reveals that

oL ar@-nlarlos
da2 x4

_1d(\/x(x—1)(x—k))
2 (x—A)2 '

Integrating over the two cycles in H,(E,,C), we find that the periods @, satisfy the Picard-
Fuchs equation, which can be written in terms of the logarithmic derivatives 6 = A% as

(1—1)92014-7&9@'1-%%@'1 =0.

This is equivalent to the hypergeometric differential equation, and has as its solutions the
elliptic integrals of the first kind K(A) and K(1 — A). We wish to express the periods in the
Frobenius basis, which is defined by requiring the asymptotics

@A) =14+0(), and @y(A)=log(M)@®+O().

With these conventions, the period vector corresponding to the holomorphic (1,0)-form can
be expressed, in the Frobenius basis, as

o & (wo) _ 2K(2)
\@o) 2k -1+ EB2k(n) )

Let us denote by {v,, v°} the basis of H!(E,, C) in which Q is given by
Q=%+ @°.

In addition to this basis, we can take as the basis of the middle cohomology H'(E;, C) the span
of Q and Q. The change-of-basis matrix E(A) from the constant basis {v,, v*} of H(E,,C) to
the derivative basis {Q2, 0Q} then takes the form

@’ 0w°
() 9@'0 ’

E(A) = (

The Picard-Fuchs equation can be written in the first-order form using this matrix as

A
OE(A) =E(L)B(A),  where B(/I)z((l) _4@;”).
a1

To find the characteristic polynomial R(E,, T) defined in (5), we need to find a matrix
representing the action of the inverse Frobenius map Fr;1 (4) induced from the action
Frob, : x — x* on the middle cohomology.

By considering the compatibility conditions (31), it can be shown, completely analogously
to [1] that the matrix U,(A) representing the action of Fr;1 in the derivative basis satisfies the
following differential equation:

6U,(A) = pB(AP)"'U, (1) —U,(A)B(A). (B.1)

Let V,(0) denote the matrix corresponding to this action in the large complex structure limit,
in the constant basis. Then, it is easy to show that the matirx U(A) is given by

U,(A) = E(AP)"'V,(0)E(Q), (B.2)
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which is just the matrix V,(0) expressed in the derivative basis in addition to which we have
taken into account the fact that the Frobenius map acts on the scalar A as A — AP,

The differential equation (B.1) can be used to constrain the form of the matrix Vp(O).
Taking the limit A — 0, we get the relation

pB(0)'U,(0)—U,(0)B(0) =0,  with B(O)=((1) 8)

This forces the matrix U,(0) to take the lower-diagonal form

U,(0) =1, (al g) .
P

Plugging this form back to the equation (B.2), one can show that in this case
V,(0) =U,(0).

More conditions can be obtained from the fact [ 1] that the Frobenius map should be compatible
with the symplectic product

def

(a;ﬂ)zf a/\ﬁ) a)ﬁeHl(El:C):
Ej

in the sense that
(Frpa,Fr,f) =p(a,B). (B.3)

In the constant basis the matrix representing this product takes, up to an irrelevant overall
constant of normalisation, the form
01
o= .
-1 0

Written as a matrix equation, the condition (B.3) becomes
V(0)oV(0)" =po,

which fixes u, = £1.

This leaves the parameter a, still free. We can fix this by appealing to the expectation
(see for example [35,36]) that when the coefficients of the power series in the matrix U,(1)
are considered modulo p", the resulting matrix should be a matrix of rational functions. In
practice, these rational functions have relatively low degrees, so we can test this expectation
by computing the series in U,(A) to a high degree and seeing if we can find a polynomial S,,(1)
such that multiplying U,(4) by a matrix that has the property that there exists an integer K
such that the coefficients of A for k > K vanish mod p".

For generic values of a,, it turns out that such a polynomial (of at least reasonably low
degree) does not exists. However, we find that there is a unique value of a, such that a
polynomial S,(A) can be found. In fact, we find that this polynomial is given by

S,(AP) = (AP —1)"2, (B.4)

This vanishes exactly on the singular locus A = 1 of the Legendre family, which agrees with
the expectation that the method described above works without modifications only for smooth
elliptic curves.
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Let us consider, for instance the case p =7 and n = 7. We find that the matrix U, (1), with
coefficients of the series in A taken mod 77, becomes a rational matrix with the denominator
(B.4) with numerators being degree 31 polynomials in A if we choose

a; = 620284+ 0(77) =1{0,6,2,2,6,1,5,...},

where O(77) signifies that in this way we have found the value of a, only modulo 77. The
second equality gives the p-adic digits of a,. Taking a higher p-adic accuracy, say n = 10,
would allow us to find a more p-adically accurate expression

a; = 163681798 + 0 (7'°) ={0,6,2,2,6,1,5,2,0,4,...}.

For other values of a, that is, for values that are not congruent to 620284 modulo 77,
the numerator would have a degree at least 800, which would strongly indicate that U,(4) is
not a rational matrix. Conversely, existence of a solution for the value of a- is remarkable, as
there are a priori hundreds of conditions that must be satisfied. Specialising to a case where
A = x € F,, one might be tempted to think that to find the numerator of the zeta function
{(E,, T), it would be enough to evaluate the matrix U,(1) at x. However, we must take into
account that in computing U,(4) and even defining the action of the inverse Frobenius map
on the p-adic cohomology, we have treated U,(A) as a matrix with coefficients in the field of
the p-adic numbers Q,. Therefore, as discussed in §2.1 we must use an embedding of F, into
Q, given by the Teichmiiller representatives Teich(4) (see appendix A).

To compute the numerator R, (E,, T), we therefore substitute for A the p-adic expansion of
Teich(x) mod p", and evaluate the matrix U,(Teich(x)) mod p". The characteristic polyno-
mial of this matrix is the numerator R,,(E,, T) modulo p". It follows from the Weil conjectures
that this polynomial is of the form

R,(E,,T)=1—a,T+pT>.

The only non-trivial coefficient a can be expressed as a sum of the roots a = A; + A,. Using
the Riemann hypothesis, |a| < 2p'/2, so we know that the value of @ mod p? gives the exact
value of a. It is therefore enough to work modulo p?.

B.1 The choice of the signs u, and twists

For instance, if we take A =5 and u, = 1 for all p, we can find the values of a, for, say, the
first 100 primes. The modularity theorem for elliptic curves defined over Q implies that these
coefficients appear as Fourier coefficients of an ordinary modular form [49, 50]. In this case
we find that the corresponding modular form is the one with the LMFDB [51] label 80.2.a.a
with its g-expansion is given by

o0
foozaa= 2 .cad" =q+q° +4q" —3¢° —4q" — 29" + 2¢'7 — 49" — 4% + ¢* + O(¢®).
n=0

However, using the definition (1) of the zeta function in terms of point counts, and counting
points modulo p on the Legendre curve with A =5 gives a zeta function corresponding to the
modular form 40.2.a.a whose g-expansion differs from that of 80.2.a.a by a term-dependent
sign:

o0
faozaa= 2 .6a" =q+q° —4q" —3¢° +4q" — 29" + 2¢7 + 49" + 4% + ¢* + O(¢®).
n=0
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To be specific, the difference between the coefficients of the modular forms is given by the
Dirichlet character, which can be written in terms of the Kronecker symbol:

-1
¢, = x_1(n)c,, with y—1(n) = (7) . (B.5)

In other words, we would obtain the correct zeta function by choosing the signs u,, as

5)

u,=|—1.

Po\p

To understand why this is necessary, we note that the modular form 80.2.a.a which we find
from the deformation method computation is related to the elliptic curve &5 given by

Y2=X3*-7X +6, (B.6)
whereas the Legendre family curve E5 can be written as
yi=x>-7x—6.

These two curves are isomorphic over C, as can be easily verified by computing their j-
invariants or by explicitly finding the isomorphism

Y=iy, X=-—x. (B.7)

From this we also see that the isomorphism is defined over Q(i) and not over Q. Such a pair
of curves are called twists of each other.

To see why the modular forms associated to the two elliptic curves are related by (B.7),
consider fixing x € F,. Then there exist exactly 2 points (x,y) € Ff) on Es if x> —7x —6 is
a non-zero quadratic residue mod p so that its square roots exist in F,. Corresponding to x
such that x® —7x —6 = 0, there is exactly 1 point (x,0) on Es. Finally, if x> —7x — 6 is not
a quadratic residue mod p, there are no points of the form (x, y) on Es. This means that the
number of points N,(Es) can be expressed in terms of the Legendre symbol as

3_ -6 3 _ -6
xeF, p x€F, P

where the first term accounts for the point (x : ¥ : z) = (0 : 1 : 0) ‘at infinity’ of the projectivised
curve Es. The modular form coefficients c, are related to the point counts N,(Es) by

¢p(Es) =p+1—N,y(Es),
so in terms of the modular form coefficients c,, we have that
3
x> —=7x—6
. c==0)
xEFP p

Consider then the quadratic twist & (see eq. (B.6)) of Es, so that the curves are related by the
transformation (B.7). The points on & can be counted in a similar fashion to above, except
that we must study whether

X*—7X +6=—((-X)*—7(—X) —6) = —(x> — 7x — 6)
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Table 8: The parameter A together with the LMFDB label of the modular form f
found by using the coefficients a, obtained by computing the zeta function using
the method outlined in this appendix and the modular form f obtained by counting
points on the corresponding Legendre family curve. These two modular forms are
related by a twist by the Dirichlet character given in the last column.

f f Xd

32.2.a.a 32.2.a.a X1
96.2.a.b 96.2.a.a | ¥y,
24.2.a.a 48.2.a.a | y,
5 80.2.a.a 40.2.a.a X1
5/2 | 960.2.a.f | 960.2.a.0 | y_;
8/5 | 600.2.a.a | 1200.2.a.r | y_;

Nw ] >

is a quadratic residue mod p or not. This the origin of the relation between the a,(Es) and
a,(&s). Using the fact that the Legendre symbol is multiplicative in the top argument, we have

that
(X3—7X+6) B (—_1)(x3—7x—6)
p p p ’

so the above relation between which implies the relation (B.5) between the modular form

coefficients ¢, and E’p:

-1\ ~
Cp = (?) Cp = X—l(P)Cp .
Since we started with the periods of a family of elliptic curves defined over C, it stands to
reason that with the choice u, =1 for all p, we do not find the point counts of the particular

rational elliptic curve, but rather find the point counts of a curve that is isomorphic over C.
Some more examples are included in table (8).

C Form of U,(0) from commutation relations

To see explicitly that we can write the matrix U,(0) as

_Y'Uka;ai)ai) ”)’))’ Ap =dlag(1,P 1,P2 1:p3)>

U,(0) =up,A, (I—I— a; €; +ﬁl.(p) ut + (yp + 3

we denote the components of U,(0) by

0 1,i 2,1 3

Ug Uy Uy U

0 1,j 2,j 3

U, (0= "1t Up; Uy
p u° 1,j u2,j u3
2 Up; Ug; Uy,

0 1,j 2,j 3

Uz Uz” U™ Uz

From (41) it is possible to obtain commutation relations of U,(0) with matrices n and u's

p’nU,(0)=1U,(0)n,  p°u'U,(0)=U,(0)u'. (AD)
The first of which is equivalent to requiring
u(l)’i = ug’i = ug =0, ug = uii = ug’i =0, pgug = ug .
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Substituting these conditions into the second equation in (C.1), and contracting with ?ijk
where needed, the following conditions are found:

9

2,j_ .3 _ J o 2.0c] _ 21 _q. 2.0
ut=us. =0, uy; =p uy 63, u,.=0, Uy =3p-uy ;.

1,j 0cJ
51‘ > 1,i

U, =Pl
Finally, with these conditions, the original commutation relations (41) are equivalent to

1,j 1,i

j_ 0 _ 0
Uy = puy i Yijk s Uy =ply;-

Denoting the independent constants appearing here as

0 _ 0 _ i 0 _ 2 0 _ 3=
Uy =1u, Ui,1—uPa s uz,i_up ﬂi, Uz =up-y,

we obtain the claimed result.

D Univariate Hulek-Verrill periods and their derivatives from re-
currences

To compute the zeta functions of the five-parameter family of Hulek—Verrill manifolds, we
could in principle use the five-parameter series expressions to compute the matrix E(¢ ). How-
ever, these series are rather cumbersome which makes this method impractical for computing
the series to a high order.

As we are interested in series expressions on one-parameter lines in the moduli space, in
particular on the symmetric lines ¢! = ¢, we only need the periods and their logarithmic
derivatives as series in one variable. However, having to first compute a five-variable series
and then specialise to this line is a computationally a very expensive process, rendering again
the computations practically impossible. Instead of having to do this, it is possible to derive
recurrences for the periods and their derivatives directly as univariate series.'?

Let t multiset of elements of {1,2,3,4,5} (allowing duplicates) of cardinality < 3, and

denote
o.=[ |o:
i€t
a _ fa ) —
9{@' |<pi—><p,log<p—>0 - ft ) Gtwa|¢l—>cp,log¢—>0 - ft,a .

We seek an efficient way to compute a large number of terms in the power series f* and f, ,.
With these, we are able to compute the periods and their derivatives because the power series
that multiply the logarithms in each are formed from known combinations of the above series.
This problem can be broken up to computing the series expansions of the following sets:

A= {fi0, ftol t contains no repeated elements},

B ={f; ftil t contains no repeated elements and i > 0},

C = {fiq, f" | t contains repeated elements and a > 0}.

In [52], Verrill gave a recursive method for computing the coefficients

2
n!
€ — S U E—— X D.1
“n lldzzzn(kllkzlk3!k4!k5!) ’ (0.1

12We thank Joseph McGovern for introducing this method to us and providing a Mathematica implementation.
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where k = (kq,...,ks) is a five-component multi-index, and 6 is a five-component multi-index
with §; € {0,1}. These appear as coefficients of the fundamental period @ and its non-
repeated logarithmic derivatives, which is the set A. The method in [52] thus can be used to
efficiently compute the functions in A.

Recurrences for the coefficients of the series in B can be derived by considering the ordinary
differential equations

LY (F)=0, (D.2)

satisfied by the functions ftO = 6, on the Ss-symmetric line. These equations are obtained
in the standard way from the recurrences for the functions in A that can be computed by
Verrill’s method.

About ¢ = 0, there is a Frobenius basis of solutions to each of the equations (D.2) consist-
ing of a single holomorphic solution, fto, in addition to which there are solutions containing
logarithms of ¢. Let us denote the holomorphic part of each of these solutions by g ;, bearing
in mind that the range of k varies with t. The coefficients of these functions satisfy almost
the same recurrence relations as the corresponding functions in A, but with an inhomogeneity
that can be computed in terms of functions g;;, with [ < k. It can be shown that f and f; ,
are sums of functions g, f 4, and f, where v & t. As an example of this principle, consider
the function f{ll}, which has a series expansion

2
o= ZnZOII; (kl'kz'ks'k4'k5 ) ko (Ho = Hy, )"
The function f{%} has an expansion
2
f{1} HZ(;”; (kl'kz'k3'k4lk5 ) kio™, (D.3)
and by applying the Frobenius method to this function, we can obtain a logarithmic solution

to (D.2) with t = {1}, which has a holomorphic part

0 _rl 0
{131 = a51 (f{1}|ki—>ki+5i, n—>n+z5i) _f{l} +f{0} :

6;—0,log—0

We see that it is possible compute f{ll} in terms of two functions that we already defined re-

cursively: g(q; 1, which satisfies the inhomogenous recurrence relation just derived, and f{%}
which is a member of A.

Recursion in t allows for the functions in B to be expressed in terms of solutions to a
recurrence relation and functions in A, which we can already compute.

To better illustrate the recurrences for the functions g, consider @' = fw0 log ¢ + fgl. By
substituting this into the differential equation (D.2) with t = §}, we obtain an inhomogeneous
differential equation for the functions f01:

L) =—L"og v £}).

From this equation, we can read off an inhomogeneous recurrence relation satisfied by the
coefficients d,, appearing in the expansion

=D dup".
n=1
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The inhomogeneity involves the coefficients of fﬂo, which is a member of A and can be computed
quickly. This solves the problem for the functions in B.

Finally, we turn to the functions in C. Luckily, there are identities that give these functions
in terms of functions belonging to A or B. For example, consider the derivatives 912 0,°. From
the series expansion (64), it follows that

S n! 2
91292@0 = (—) k%kz ¢"
§)|klz=n kll"'ks!
S Y =
= n2 ( (Tl ) k2 (Pn — nzc,(—lz_)l(non, (D4)
n=0 |];::n (ky — 1D)tky! -« - ks! HZ:(:)

where the coefficients cr(lrz‘_)1 are those appearing in the series expansion of 8,@?. It is possible to

find an exhaustive list of such identities, one for each function in C, thus finishing the problem
of finding a fast method of computing the periods and their derivatives on a line in the moduli
space.

This problem is made simpler by working on the line with the full S5 symmetry, where not
all of the functions f and f,, are independent. For instance f{ol,z,s} = f{%’ 45) ON this line.
However, the method described above can be used to work on any line ¢' = s'y, where s
are constants. The main difference is that there are in full generality ten periods @' and @,
and so 12 functions and their numerous derivatives to consider. The series expansions of all of
these can be computed with the above method, but the recurrence relations and intermediate
differential equations (D.2) become more complicated the less symmetry one has.

E CY3Zeta, a Mathematica package for computing zeta functions
of Calabi-Yau threefolds

To make the computations using the methods developed in this paper more accessible to a
wider audience, we present a Mathematica package CY3Zeta which contains implementa-
tions of many algorithms described in the paper. The aim of the package is to make these as
user-friendly as possible, and work for any Calabi—Yau threefold with sufficiently few complex
structure parameters to make the computations feasible. As a result, the implementation pro-
vided in the package could often be slightly improved on case-by-case basis, for instance by
taking into account symmetries of the manifolds in question.

E.1 Downloading and installing

The package can be downloaded from https://github.com/PyryKuusela/CY3Zeta. It
comes with two files.  The file CY3Zeta.wl contains the package itself and file
CY3Zeta_Examples.nb contains instructions and examples.

To install the package, in Mathematica front end, go to menu File—Install.... Then
in the resulting dialog choose Package as Type of Item to Install, and as Source,
choose From File. .., navigate to the directory containing CY3Zeta.wl, and open it. After
this, choose either to install the package for current user or all users.

Alternatively the file CY3Zeta.wl can be manually placed to the directory
$UserBaseDirectory.
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E.2 Setup and options

The package can be loaded by using

In[1]:= <<CY3Zeta.wl

After this, one needs to specify some data related to the Calabi-Yau manifold X, whose zeta
function is to be computed: the number of complex structure parameters of X, the order to
which the Taylor series expansions should be computed, the values of the coefficients Y;j; and

~

Yk, as well as the equations specifying the singular loci. These parameters are specified by
using the following functions

Option E.1: zSetNParams

zSetNParams [NParams]

Sets the number of complex structure parameters for which the following computations
are to be performed.

Arguments

NParams is the number of complex structure parameters (= h'2) of the manifold X -

| r
\.

Option E.2: zSetNMax

zSetNMax [NMax]

Sets the maximal order to which the power series are evaluated during the following
computations.

Arguments

NMax is the maximal order to which the power series are to be evaluated.

Option E.3: zSetY

zSetY[YRules]

Sets values of the triple intersection numbers Y;j;. of the mirror manifold of X,. The
Y;ji are assumed to be symmetric.

Arguments

YRules is a list of rules (in the form Y[i, j,k]->yval) giving the values of the inde-
pendent triple intersection numbers Y; .

Option E.4: zSetYhat

| '

zSetYhat [YhatRules]

Sets values of the ‘inverse’ triple intersection numbers ﬁjk (see (14)) of the mirror
manifold of X,. The ?ijk are assumed to be symmetric in the first two indices. To
modify this behaviour, set $zYhatSymmetryRules={}.

Arguments

YhatRules is a list of rules (in the form Yhat[i, j,k]->yval) giving the values of

the independent YU,
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Option E.5: zSetConifoldLocus

zSetConifoldLocus [D]

Specifies the polynomial A (see §3.5) defining the conifold locus of the manifold X, .
The complex structure moduli space coordinates are ¢ [1], ..., ¢ [NParams].
Arguments

D is a polynomial whose vanishing locus is the conifold locus of X, .

Option E.6: zSetOtherSingularLocus

zSetOtherSingularLocus[Y]

Specifies the polynomial ) (see §3.5) defining moduli space locus of the manifold X,
where X, is has a singularity not of conifold or large complex structure type.
Arguments

Y is a polynomial whose vanishing locus is the singular locus of X ,, without the conifold
and large complex structure singularities.

For example, to study the example presented in §4.3, we can first specify that we are
studying a two-parameter model, and that we wish to perform the computations to 200 terms
in the series:

In[2]:= zSetNParameters[2]
zSetNMax[200]
After this, we input the independent triple intersection numbers Y;;; and their inverses Yk,

In3):= zSetY[{Y[1,1,1]->0,Y[1,1,2]->0,Y[2,1,2]->4,Y[2,2,2]->5}]
zSetYhat[ {Yhat[1,2,1]->-5/32,Yhat[1,2,2]->1/8,Yhat[2,2,1]->1/4,
Yhat[2,2,2]->0,Yhat[1,1,1]->0,Yhat[1,1,2]->0}]

out3l= {Y[1,1,1]->0,Y[1,1,2]->0,Y[2,2,1]->4,Y[2,2,2]->5}

5

Out[4]= {Yhat[1,2,1]->-§,Yhat[1,2,2]->1/8,Yhat[2,2,1]->1/4,

Yhat[2,2,2]->0,Yhat{1,1,1]->0,Yhat[1,1,2]>0}

Finally, the conifold locus and the rest of the singular locus of X, disregarding
the large complex structure singularities, are specified using zSetConifoldLocus and
zSetOtherSingularlocus.

infs]:= zSetConifoldLocus| 65536¢[2]? - (¢[1]-1)° -

$[2]1(512+2816¢[1]-3209[1]>+144¢[113-27¢[1]H ]
zSetOtherSingularLocus[1]

outs]= 65536¢[2]% - (¢[1]-1)° - ¢p[2](512+2816¢[1]-320¢[112+144¢[113-27¢[11H

Out[6]= 1
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E.3 Period coefficients

After specifying the data related to the Calabi-Yau manifold, one needs to input the coefficients
Cay,...a,, that specify the functions f, ', f; and f (defined in (13) and (12)) via

o0 oo

— 2 ax a i_ i a a
f= CaypsanP1 -+ P > fi= : :Cal ..... amtpl P

,,,,,

zc[0,{},{al,...,am}], theNcoefﬁciellts of f! are denoted by zc[1,{i},{al,...,am}],
whereas the coefficients of f! and f are denoted by zc[2,{i},{al,...,am}] and
zc[3,{},{al,...,am}], respectively.

Object E.1: zc

zc[s,{},{al,...,am}]

Gives the coefficient of cp‘lll ...p"in f or f, depending on whether s equals 0 or 3.
zcls,{i},{al,...,am}] o
Gives the coefficient of goill ...p™in for f', depending on whether s equals 1 or 2.

The periods can be derived from the fundamental period using the expansion (10). This
can be done automatically by using the function zPeriodsFromFundamental.

Function E.1: zPeriodsFromFundamental

zPeriodsFromFundamental [fundPeriodCoeff,{kl,...,km}]
Computes the periods @', @; and @, from the fundamental period coefficients using
the expansion (10).

Arguments
fundPeriodCoeff is the coefficient of go’fl ... ap,l;’“ of the fundamental period @®.
k1, ..., kmare the variables k,..., k,, that give the powers of ¢; corresponding to

the coefficient fundPeriodCoeff.

For instance, recalling that the periods of the split quintic studied in section 4.3 are given
by (67), the periods can be specified using this function by calling

(m+n)! (m+4n)! { }]

In[7]:= zPeriodsFromFundamental[
(m)!? (n)!°

However, this uses the in-built Mathematica functions to simplify the derived expressions for
the coefficients, and as such can be very slow. In practice, it is often more advisable to sim-
plify the expressions by hand, and use these for faster evaluation times, although usually the
recurrence relations analogous to (57) are the fastest way of obtaining the coefficients. For in-
stance, to define the coefficients zc [0,m,n] giving the coefficient of ¢ "¢ in the fundamental
period, we can define

(m+n)! (m+4n)!

(m)!? (m)!°

In[g]:= zc[0,{},{m ,n }] :=zc[0,{},{m,n}] =

The period @ can similarly be specified as
(m+n)! (m+4n)!
(m)"* ()1

(HarmonicNumber[ m+n]+HarmonicNumber[ m+4n]-2HarmonicNumber[ m])

In[9]:= zc[1,{1},{m ,n }] := zc[1,{1},{m,n}] =
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After specifying the coefficients zc, the logarithm-free period vectors ¥, , and V%@ defined
in (49) can be accessed from the variables wt[], Owt[i], 82wt [i], and 63wt [], where
i ranges from 1 to NParams.

Object E.2: wt, Owt, 02wt, 03wt

wt[]
Gives the logarithm-free period vector ¥y@ ().
Owt[i]

Gives the logarithm-free period vector 1%((,0) involving the first derivatives.
02wt [i]

Gives the logarithm-free period vector #ic () involving the second derivatives.
03wt []

Gives the logarithm-free period vector #9w(¢) involving the third derivatives..

The periods are given as series in ¢ [1] and A, where A keeps track of the overall degree.
For example, the fundamental period is given, to the second order, by

In[10]:= wt[][[1]]+O[A]3

out[10= 1+(p[1]+24p[2DA + (p[117+240¢[1]1p[2]+25204[2]*)A% + O[A]?

E.4 Reading/writing to/from a file

As the evaluation of periods as series in multiple variables tends to cause a significant bottle-
neck in the method presented in this paper, CY3Zeta includes simple functionality for saving
the period expansions as plain text files and reading the expressions from the files. First a di-
rectory for saving the text files must be created. After that, to tell CY3Zeta to use that folder
for saving/loading, one can use zSetDirectory.

Option E.7: zSetDirectory

zSetDirectory[pathl]

Specifies the directory where the text files containing the period coefficients are stored.
Arguments

path is a string containing the path of the directory relative to the Directory[].

Then the logarithm-free period vectors wt[], Owt[i], 62wt [i], and 63wt [] can be
saved into their corresponding . txt files using the following function.

Function E.2: zPeriodsToFile

zPeriodsToFile[]

Saves the logarithm-free period vectors stored into the variables wt[], Owt[i],
02wt [i], and 03wt [] to . txt filesnamed wtilde_Coeffs, thwtilde_Coeffs_i,
th2wtilde_Coeffs_i, and th3wtilde_Coeffs, where i ranges from 1 to NParams.
The files are located in the directory specified by zSetDirectory.

Arguments

None.

The saved expressions can be read from the files and stored into the logarithm-free period
vectors wt [], 0wt [1], 02wt [i], and 63wt [] by using the function zPeriodsFromFile.
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Function E.3: zPeriodsFromFile

zPeriodsFromFile[]

Reads the series expressions for the logarithm-free periods from .txt files to which
they have been saved and stores the expressions to the variables wt[],...,03wt[]
representing these vectors.

Arguments

None.

We can save the period computed above (and the other periods) to their corresponding
files by first specifying a directory. In this case we use Directory[]/Split_Quintic.

In[11]:= zSetDirectory["Split_Quintic"]
zPeriodsToFile[ ]

After this, we can clear the definitions of the period vectors, and check that reading them from
the files'® gives the same result as the expression given above.

In[12]:= Clear[wt,0 wt,02wt,03wt]
zPeriodsFromFile[ ]
wt[]4+0[A]3

out[12]= 1+(p[1]+24p[2DA + (p[11°+240¢[1]1p[2]+25204[2]*)A% + O[A]*

E.5 The matrix E and its inverse

After the coefficients zc determining the periods have been specified or the period vectors @
' .~ ~—1 .
have been read from a file, one can compute the matrices E(¢) and E "(¢). As discussed

in 83.7, to compute E_l, the matrix W (see (53)) must first be found. An often convenient
method for finding this is to compute the inner products (¥, 32) as series to high enough
accuracy. One can then take a generic ansatz for the denominator of the rational matrix W.
If the periods have been computed to high enough accuracy, one should be able to solve for
the denominator by requiring that the matrix W be rational. This procedure is implemented
as the function zFindWw.

Function E.4: zFindW

zFindW([{degl, ...,degm},NMax, NumDeg]

Looks for the rational matrix W by evaluating it as a series and solving for the denom-
inator using a generic ansatz.

Arguments

degl,...,degmis a list giving the degree of the ansatz for the denominator of W in
the coordinates ¢ [1], ..., ¢ [NParams].

NMax is number of terms to which the series used for finding the denominator should
be computed.

NumDeg is number of terms to which the series used for finding the numerator should
be computed.

For example, to compute the matrix W of the mirror of the non-symmetric split of the
quintic of 4.3, we first can try to use a linear ansatz for the denominator. We expect the

13The text files containing the periods to 200 terms can also be found at https://github.com/PyryKuusela/
CY3Zeta/releases.

53


https://scipost.org
https://scipost.org/SciPostPhys.20.2.028
https://github.com/PyryKuusela/CY3Zeta/releases
https://github.com/PyryKuusela/CY3Zeta/releases

e SciPost Phys. 20, 028 (2026)

denominator and the numerator to be relatively simple, so we compute the series used to find
the denominator to degree 50. We also expect that the numerator is of degree less than 20:

In[13]:= zFindW[{1,1},50,20]

However, it turns out that the degree of the ansatz (or the degree to which the series are
evaluated) is too low, and we get a warning, and the output is an empty list indicating that no
solution was found:

out[13]= No solution to the given accuracy

{}

Increasing the degrees of the ansatz to deg(¢;, ¢5) = (3, 5) gives a solution. However, in this
case the solution for the denominator is not unique, so we get a warning:

In[14]:= zFindW[{5,3},50,20]
Out[14]= There are free variables - a denominator of lower degree may exist.

Although the solution found by zFindW might not be of the simplest form, it is a valid solution
and the matrix W is stored in the variable zW.

Object E.3: zW

zW
Gives the matrix W defined in (53).

In this case, it turns out that the simplest denominator is of degree deg(y1, ps) = (2,5),
and indeed, running

In[15]:= zFindW[{5,2},50,20]
Out[15]=

does not result in any warnings, indicating that the solution has been found successfully.
If the matrix W is known in advance or is not found by using the function zFindW, one
can set it manually by using the function zSetW.

zSetW [WMat]

Specifies the the matrix W'.
Arguments

WMat is the matrix W.

. L= =1 )
After the matrix W has been found, one can compute the matrices E(¢) and E (¢). This
is done by running the function zComputeEMatrices.

Function E.6: zComputeEMatrices

zComputeEMatrices[]

Computes the matrices E(p) and E_l(cp) and stores them in internal variables.
Arguments

None.
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E.6 Finding the coefficients a' and 7

If the coefficients a' and 7, defining the matrix U, (0) are not known, they can be solved for
numerically, order by order in p, by requiring that the series in the matrix S,,(¢?)U,(y) termi-
nate to the specified order in ¢. In all of the examples we have studied, it is actually enough
to check this for S, (¢?,...,oP)Tr [Up(ap, ey cp)]. This numerical method is implemented by
zFindUOConstants.

Function E.7: zFindUOConstants

zFindUOConstants [p,acc,maxdeg]

Computes coefficients a' and ¥ which appear in the expression (42) for U,(0).
Arguments

p is the prime p for which the matrix U,(0) is computed.

acc is the p-adic target accuracy to which the function aims to compute the constants.
However, a lower accuracy solution may be returned, if higher-accuracy solution is not
found. maxdeg is the maximum degree of the series S,(¢”)U,(y) for the series to
be considered terminating. If the degree of S,(¢”)U,(¢) is higher than maxdeg for a
particular set of constants a' and 7, then the series is considered non-terminating and
the values of a! and 7 are considered not to give a solution.

The output of the function is a pair {{a;->vall,...,dyparams->valNparams,
yhat->valO},acc}, where the first entry is a list of rules that give the values of a' and 7, and
the second entry is the accuracy to which they have been found. Note that this accuracy can be
lower than that specified as an input, if no higher accuracy solution is found, for example due to
the order to which the periods have been computed. The value of maxdeg is to be chosen such
that vanishing of the terms in the series expansion of S,,(¢?,..., p?)Tr [Up(ap, ey (p)] which
are of order higher than maxdeg should provide enough independent equations to uniquely
fix the coefficients that appear in the p-adic expansions of a' and ¥ modulo p2°¢.

By using this function, we can, for instance, easily verify that the coefficients are indeed in
this case given by (68). For primes p = 7,11, running the function gives

In[16]:= zComputeEMatrices| ]
zFindUOConstants[7,6,170]
zFindUOConstants[11,6,170]

out[16]= {a;->0,a,->0,yhat->77}
out[17]=  {a;->0,a,->0,yhat->722}

One can verify that the values of ¥ given by zFindUOConstants are indeed equal to
—168¢,(3) to the accuracy p> so that the quantity p®y appearing in U, (0) agrees to the accu-
racy p® as expected. The p-adic zeta function is given numerically by the function pzeta3.

Function E.8: pzeta3

pzeta3[p,acc]

Gives the p-adic zeta function {,,(3) to the p-adic accuracy p®°c.
Arguments

p is the prime p for which the zeta function is computed.

acc is the p-adic accuracy to which the zeta function is computed.
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In[18]:= Mod[-168 pzeta3[7,3],7°]
Mod[-168 pzeta3[11,3],11%]

Out[18]= 77
722

To use these constants in later computations, they must be saved in the variables a; and yhat.

Object E.4: a;,rhat

a; [p]

Stores the coefficients a; appearing in the matrix U,(¢).
vhat [p]

Stores the coefficient ¥ appearing in the matrix U,(¢).

In[19]:= a1[7]=a,[7]=0;
rhat[7]=77;
a,1[11]=a5[11]=0;
rhat[11]=722;

E.7 The matrix U,(¢) and the polynomials R,(X,,, T)

Once the matrices E(¢) and E~1(¢) have been computed and the coefficients a; and y found,
one can study the matrix U,(y) and the polynomials R, (X,,, T). The matrix U,(¢) can be ob-
tained in three forms: as a matrix of series, as a matrix of rational functions, and as a numerical
matrix, where the rational functions have been evaluated at a Teichmiiller representative of a
point (¢q,..., ;) € Z™ in the moduli space, evaluated to a specified p-adic accuracy.

Function E.9: zUSeries

zUSeries [p]

Gives the matrix U, () as a matrix of Taylor series.
Arguments

p is the prime p for which the matrix is computed.

Function E.10: zURational

| V

zURational [p,padicacc]

Gives the matrix U, () as a matrix of rational functions in the coordinates ¢ [i].
Arguments

p is the prime p for which the matrix is computed.

padicacc is the p-adic accuracy to which the matrix is computed, i.e. the coefficients
in the series appearing in the matrix U,(¢) are treated mod pPadicace when computing
the rational functions.
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Function E.11: zUNumeric

zUNumeric[{¢ [1],...,¢ [NParams]},p,padicacc]

Gives the matrix U,(¢) as a matrix of integers, given to the specified p-adic accuracy.
Arguments

¢ [1],...,¢ [NParams] is a list of integers at whose Teichmiiller representatives the
matrix U,(¢y) is evaluated.

p is the prime p for which the matrix is computed.

padicacc is the p-adic accuracy to which the matrix is computed, i.e. the entries of
the matrix U, (i) are treated mod pP2d*¢a°c,

One can compute the rational matrix U,(ip1, ) to accuracy O(7%). We check that the
series in the numerator of the matrix terminate, and indeed, the highest-order term is of order
104, well under 200. Note that we have above set the values for @; and y, which are needed
to complete these computations.

In[20:= Max[Exponent[Numerator[zURational[7,6]]/.¢[i ]:>A,A]]
Out[20]= 104

Consider then the point (5, ¢;) = (2, 1), which corresponds to a smooth manifold X, /F;.
We can compute the corresponding matrix Up(2, 1) to accuracy p°.

In[21]:= zUNumeric[{2,1},7,5]

out21]= {{8507, 10224, 22, 13637, 8741, 7632}, {10206, 7693, 12208, 9275,
1673, 168}, {8302, 1799, 16527, 9415, 2289, 14539}, {10731, 12544,
7987, 14994, 15925, 6713}, {12201, 3234, 3822, 4949, 15043, 3283},
(2744, 7546, 4459, 4116, 11319, 4459} }

The data contained in these matrices can be used to compute the polynomials R,(X,, T), which
can be most conveniently done with the function zR.

Function E.12: zR

zR[{¢p[1],...,¢ [NParams]},p,padicacc]

Gives the characteristic polynomial R,(X,, T) of the matrix U,(¢).

Arguments

¢ [11,...,¢ [NParams] is a list of integers at whose Teichmiiller representatives the
matrix U,(¢) is evaluated.

p is the prime p for which the matrix is computed.

padiacc is the p-adic accuracy to which the matrix is computed, i.e. the entries of the
matrix U, (y) are treated mod ppadicace,

The characteristic polynomial R,,(X,,, T) of U;(2, 1) is given by
In[22]:= zR[{2,1},7,5]
out22]= 1+ 5T - 3234T3 + 588245T° + 40353607T°

The individual coefficients of T'! in R,(X,,T) can be accessed with the command
zRCoefficient.
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Function E.13: zRCoefficient

zR[i,{¢[1],...,¢ [NParams]},p,padicacc]

Gives the coefficient of T' in the characteristic polynomial R,(X,,T) of the matrix
U, ().

Arguments

i is a power of T whose coefficient in the polynomial R, (X, T) is to be computed.

¢ [1],...,¢ [NParams] is a list of integers at whose Teichmiiller representatives the
matrix U,(¢) is evaluated.

p prime p for which the matrix is computed.

padiacc is the p-adic accuracy to which the matrix is computed, i.e. the entries of the
matrix U, (y) are treated mod ppadicace,

For instance, the coefficient of T2 in the characteristic polynomial of U,(2,1) can be com-
puted as

In[23]:= zRCoefficient[3,{2,1},7,5]
Out[23]= -3234

Note that the above functions may not give correct results when the point ¢ corresponds to a
manifold X, /F, with a(n apparent) singularity. Existence and the type of the singularity can
be checked with the function zSingularityType.

Function E.14: zSingularityType

zSingularityType[{¢ [1],...,¢ [NParams]},p]

Gives the list of singularity types of the manifold X, /F, corresponding to the point
(Teich(¢), ..., Teich(y,,)) in the complex structure moduli space.

Arguments

¢ [1],...,¢ [NParams] is a list of integer coordinates in the moduli space, specifying
the manifold X,.

p is the prime p giving the number of elements in the finite field F, over which X, in
considered to be defined.

In the example we have been using thus far, the point (1,1) as an apparent singularity,
(1,2) is smooth, (2,5) is a conifold, and (5, 1) is both an apparent and a conifold singularity.

In[24]:= zSingularityType[{1,1},7]
zSingularityType[{2,1},7]
zSingularityType[{5,2},7]
zSingularityType[{1,5},7]

Out[24]= {apparent}

out[25]= {}

out[26]= {conifold}

out[27]= {apparent,conifold}
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