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Abstract

We investigate the one-dimensional Ising model with long-range interactions decaying as
1/r1+s . In the critical regime, for 1/2 ≤ s ≤ 1, this system realizes a family of nontrivial
one-dimensional conformal field theories (CFTs), whose data vary continuously with s .
For s > 1 the model has instead no phase transition at finite temperature, as in the
short-range case. In the standard field-theoretic description, involving a generalized
free field with quartic interactions, the critical model is weakly coupled near s = 1/2
but strongly coupled in the vicinity of the short-range crossover at s = 1. We introduce
a dual formulation that becomes weakly coupled as s → 1. Precisely at s = 1, the
dual description becomes an exactly solvable conformal boundary condition of the two-
dimensional free scalar. We present a detailed study of the dual model and demonstrate
its effectiveness by computing perturbatively the CFT data near s = 1, up to next-to-next-
to-leading order in 1− s , by two independent approaches: (i) standard renormalization
of our dual field-theoretic description and (ii) the analytic conformal bootstrap. The two
methods yield complete agreement.

Copyright D. Benedetti et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2025-09-25
2026-01-05
2026-02-03

Check for
updates

doi:10.21468/SciPostPhys.20.2.029

Contents

1 Introduction and motivation 3
1.1 Outline 5

2 Knowns and unknowns about the 1d long-range Ising model 6
2.1 The ϕ4-formulation of the long-range Ising model 6
2.2 The 1d long-range Ising CFT 7

2.2.1 Unitary 1d CFTs with parity symmetry: the bootstrap definition 7
2.2.2 The range 0< s ≤ 1/2 9
2.2.3 The range 1/2< s ≤ 1 9

2.3 Anderson-Yuval-Kosterlitz model 10
2.4 Insights from the 1d short-range Ising model 11

1

https://scipost.org
https://scipost.org/SciPostPhys.20.2.029
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.20.2.029&amp;domain=pdf&amp;date_stamp=2026-02-03
https://doi.org/10.21468/SciPostPhys.20.2.029


SciPost Phys. 20, 029 (2026)

3 The weakly coupled model near crossover 13
3.1 Compact generalized free fields with negative scaling dimension 14
3.2 Interacting model 16

3.2.1 Relation between h and b 18
3.2.2 Covariant derivative and Schwinger-Dyson equation 19
3.2.3 Symmetries 20

4 Renormalization group analysis 21
4.1 Beta functions and fixed point at s = 1 22
4.2 Spectrum at s = 1 25
4.3 Beta functions and fixed point at s < 1 26

4.3.1 Fixed points 28
4.4 Anomalous dimensions 29

4.4.1 Leading near-marginal operators at the fixed point 29
4.4.2 Anomalous dimensions of σ̂3 and χ 30

4.5 OPE coefficients 31
4.5.1 Tree level 32
4.5.2 Order

p
δ 32

4.5.3 Order δ 33

5 Analytic conformal bootstrap analysis 34
5.1 Setting up the problem 34
5.2 The crossing equations of light primaries up to O(

p
δ) 36

5.2.1 Other crossing equations 37
5.3 Higher-order analysis 38

5.3.1 Analytic functionals 38
5.3.2 Crossing of 〈σσσσ〉 at O(δ2) 40
5.3.3 Crossing of 〈σσχχ〉 at O(δ) 41
5.3.4 Crossing of 〈σχσχ〉 at O(δ) 43
5.3.5 Summary of results so far 44
5.3.6 Crossing of 〈σσσχ〉 at O(δ3/2) 44
5.3.7 Crossing of 〈σχχχ〉 at O(

p
δ) 45

5.3.8 Crossing of 〈σσO±O±〉 at O(δ) 45
5.3.9 Crossing of 〈σO±σO±〉 at O(δ) 47
5.3.10 Crossing of 〈σχO±O±〉 at O(

p
δ) 47

5.3.11 Crossing of 〈σO±χO±〉 at O(
p
δ) 48

5.4 Consistency checks 49
5.5 Solution for the CFT data 50
5.6 Checking the OPE relation 50
5.7 Four-point functions 51

6 Conclusions and future directions 52

A Generalized free field on the line 55
A.1 GFF with positive scaling dimension 57
A.2 GFF with negative scaling dimension 58

B From continuum 1d LRI to AYK model 60

C Alternative formulations and gauging 62
C.1 Coherent state representation 62

2

https://scipost.org
https://scipost.org/SciPostPhys.20.2.029


SciPost Phys. 20, 029 (2026)

C.2 Gauging 62
C.3 Nonlinear sigma model formulation 63

D Correlators of V± and χ in the GFF 64
D.1 Insertions at infinity 65

E Logarithmic corrections to scaling at the crossover 66

F One- and two-point functions to O(δ) 67
F.1 One-point functions 67
F.2 Two-point functions 68

F.2.1 For σ and χ 68
F.2.2 For Og , Oh and O± 69

G The defect description of LRI 70
G.1 The defect description from the ϕ4 formulation 71
G.2 The defect description from the crossover for p = 1 71
G.3 OPE relations 72

References 73

1 Introduction and motivation

An important source of insights and results in quantum field theory (QFT) is provided by IR
dualities, where two different UV models share the same IR behavior. If the latter is described
by a conformal field theory (CFT), the UV models provide alternative ways of constructing the
same CFT as an IR limit.

While closely related to the concept of universality, the term “IR duality” is commonly
reserved for a more specific and surprising case of universality, where the two UV models are
defined in terms of completely different degrees of freedom.

In other words, IR dualities mimic exact dualities, such as the one between the compact
free boson and the free photon in 3d, or that between the sine-Gordon model and the massive
Thirring model in 2d [1]. However, in contrast to these examples, they are only true up to
IR-irrelevant operators [2]. Famous examples of IR dualities are the Seiberg duality [3], the
particle/vortex duality [4, 5], and the “web of dualities” for Chern-Simons-matter theories
[6–8].

One particularly useful feature of IR dualities is that they are often of the strong–weak
type: one side is weakly coupled when the other is strongly coupled, and vice versa. A notable
example, proposed in [9, 10], occurs in the context of the long-range Ising (LRI) model in
d ≥ 2 dimensions. On the Zd lattice, the LRI model with long-range parameter s is described
by the classical Hamiltonian:

βH
LRI
=

J
2

∑

i ̸= j

(σi −σ j)2

|i − j|d+s
, J > 0 , (1)

where σi = ±1 are the Ising variables at sites i ∈ Zd , and β = 1/T is the inverse temperature.
In the continuum limit, for 0 < s < 2, the LRI model is described by a generalized free

field (GFF) ϕ of scaling dimension ∆ϕ = (d − s)/2, perturbed by quartic and quadratic self-
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interactions [11,12]:

SLRI[ϕ] = SGFF(∆ϕ)[ϕ] +

∫

dd x
�

λ2

2
ϕ(x)2 +

λ4

4
ϕ(x)4
�

. (2)

This model is weakly coupled when s approaches d/2, below which the critical behavior is
governed by mean-field theory (MFT). For s > d/2, the critical behavior deviates from MFT,
and becomes more and more strongly coupled with growing s.

The dual description proposed in [9, 10], and valid for d ≥ 2, is in terms of the standard
local (short-range) Ising CFT, denoted SRI. It features the Ising field σ, of scaling dimension
∆σ, linearly coupled to a GFF χ of scaling dimension ∆χ = (d + s)/2:

eSLRI[σ,χ] = SSRI[σ] + SGFF(∆χ )[χ] + g

∫

dd x σ(x)χ(x) . (3)

This model is weakly coupled near s⋆ = d − 2∆σ, where (2) is strongly coupled. The value s⋆

had previously been conjectured [12,13] to correspond to a crossover point for the LRI model,
above which the LRI phase transition falls into the SRI universality class. One can use (3) to
systematically compute the CFT data of the LRI near the crossover, see e.g. [9,10,14].

In this article, we consider the d = 1 case of the LRI-SRI crossover, where (3) does not
apply because the local 1d Ising model does not give rise to a CFT. Let us summarize the
state of the art about this model prior to our work. For 0 < s ≤ 1, the model exhibits a
continuous phase transition at a finite value of J [15–17]. The critical exponents take mean-
field values for 0 < s ≤ 1/2 [18]. For s > 1, by contrast, no finite-J transition occurs [19]—
the model is disordered at all positive temperatures. The analogue of the crossover point is
thus located at s⋆ = 1, with divergent correlation length and discontinuous magnetization at
the transition [17,20].

For s = 1/2+ε/2, with ε≪ 1, the 1d version of (2) provides a weakly coupled description
of the near-critical lattice model (1). This description is strongly coupled near s = 1. At the
same time, the dual description (3) does not have an immediate 1d analogue. Indeed, the one-
dimensional SRI model exhibits a phase transition only at zero temperature, where it is not a
CFT but a topological theory, with constant correlation functions. This theory is equivalent to
that of a single qubit with two degenerate ground states |±〉. The spin field is a topological
operator acting as σ|±〉= ±|±〉.

While a simple-minded generalization of (3) – coupling the generalized free field χ (with
∆χ = (1+s)/2) to the topological operator σ (with∆σ = 0) via σχ – would correctly identify
the crossover location at s⋆ = 1, it would fail to provide a correct description of the critical
theory. Indeed, σ could be represented in the standard qubit basis as the third Pauli matrix σ̂3,
and it is easily checked that it would never become a genuine local field, it would not acquire
an anomalous dimension, and the relevant operator controlling the deviation from criticality
would also absent.1 A different perspective is therefore needed in order to capture the full
operator spectrum and scaling behavior near the crossover to short range in one dimension.

Such a perspective has been provided in our recent work [21], where we constructed a
candidate dual description, weakly coupled near s = 1. Our proposal was inspired by the old
works of Anderson and Yuval [22] and of Kosterlitz [23], which capture the physical essence
of the problem. These references identified the weakly coupled degrees of freedom at s ≈ 1
as the domain walls, namely the sites i where the spins σi flip from −1 to +1, or vice versa.
For the 1d LRI with s = 1, Anderson and Yuval observed that the domain walls are dilute at
low temperature and rewrote the model as a Coulomb gas of alternating kinks and antikinks,

1These remarks might become more transparent after reading section 3, and noticing that the naive model
discussed here would correspond to the g = 0 case of our complete model.
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noticing also a connection with the Kondo model. Using their Coulomb gas model, and a
primordial version of Wilsonian RG, they derived a system of beta functions and established
a phase diagram at s = 1, which resembles that of the Berezinskii-Kosterlitz-Thouless (BKT)
transition, except for a different physical dictionary. Later, Kosterlitz extended their analysis
to small positive values of 1− s, constructing a dilute-gas description – hereafter referred to
as the Anderson-Yuval-Kosterlitz (AYK) model – and identifying a weakly interacting fixed
point. In [21], we have presented a field theory, taking the form of an impurity model that
generalizes the bosonized Kondo model, whose perturbative expansion reproduces the AYK
model, and that allows to perform systematic perturbative computations of the CFT data in
the small parameter 1 − s. Moreover, using the CFT data from the fixed point at s = 1 as
a seed, we have developed a perturbative analytic conformal bootstrap that reproduces and
extends the renormalization group (RG) results, thus providing an independent check of the
field theoretic model and of the fact that the fixed-point theory is a CFT.

In this paper, we expand on the construction of [21], presenting more details and results
on the IR duality between the 1d LRI model and our generalized Kondo model. The main
results of our work can be summarized as follows:

• At s = 1, we refine the known duality between LRI and Kondo, originally established
by Anderson and Yuval. In particular, we show that the correct treatment requires re-
stricting the Kondo model to its U(1)-singlet sector, which allows us to identify the full
spectrum of the LRI CFT at s = 1.

• For all s ≤ 1, we propose a field theory that is weakly coupled near the crossover, exactly
solvable at s = 1, that reduces to the Kondo model at s = 1, and that upon perturbative
expansion reproduces the AYK model. At s > 1, it reproduces the 1d SRI physics, via a
trivial fixed point, reached only at zero temperature. We derive several predictions for
CFT data at next-to-leading or next-to-next-to-leading order in perturbation theory, thus
showing that such model provides not only a conceptual framework to recast the AYK
model as a field theory, but also a computational tool to treat the near-crossover regime
with systematic perturbative methods.

• We recover the same results – along with further predictions – through analytic con-
formal bootstrap. This approach uses only the CFT data from s = 1, together with the
existence of protected operators σ, χ for all s ≤ 1, and the assumption that the CFT data
admit an asymptotic expansion in nonnegative powers of

p
1− s. Therefore, the boot-

strap provides an independent validation of our proposed model at s < 1, and together
they represent strong evidence for the conformal invariance of the IR fixed point.

1.1 Outline

The paper is organized as follows.
In Section 2, we review what is known (and what is not known) about the 1d LRI model,

starting with the Ginzburg-Landau description. We further discuss its nonperturbative realiza-
tion as a unitary 1d CFT and conclude with a lightning review of the AYK model, as well as
the 1d SRI model.

In Section 3, we present our weakly coupled field theory for the 1d LRI-SRI crossover. We
discuss its symmetries and operator content.

Section 4 features perturbative RG analysis of the model introduced in Section 3. We
calculate the relevant beta functions, identify the weakly coupled fixed point, and compute
CFT data. In particular, we extend AYK results for the critical exponents to higher orders in
perturbation theory, and provide new predictions for OPE coefficients of light operators.
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The conformal data can also be computed using the conformal bootstrap, with very few
assumptions. In Section 5, we demonstrate how analytic bootstrap methods – particularly an-
alytic functional techniques for 1d CFTs – independently reproduce and extend the RG results
of Section 4 to higher orders.

We conclude in Section 6 with a summary of our results and a discussion of future direc-
tions. Supplementary material can be found in the appendices, including the definition of a
1d compact GFF, further details on the relation between the 1d LRI and the AYK model, the
formulation of 1d LRI as a defect CFT, alternative versions of the proposed model, technical
aspects of the perturbative computations, and logarithmic corrections to the scaling behavior
of 1d LRI at the crossover.

2 Knowns and unknowns about the 1d long-range Ising model

In this section, we review the main properties of the ϕ4 formulation of the 1d LRI model,
what it teaches us about the IR CFT, and what was previously known about the physics near
the crossover to the short-range universality class.

2.1 The ϕ4-formulation of the long-range Ising model

The ϕ4 formulation of the 1d LRI in the continuum is given in terms of a GFF ϕ of scaling
dimension

∆ϕ = (1− s)/2 , (4)

perturbed by quartic and quadratic self-interactions. The latter preserve the Z2 and parity
symmetries of the GFF.2 The action is [11]

S
LRI
[ϕ] =

cs

4

∫ +∞

−∞
dx1dx2

(ϕ(x1)−ϕ(x2))2

|x1 − x2|1+s
+

∫ +∞

−∞
dx
�

λ2

2
ϕ(x)2 +

λ4

4
ϕ(x)4
�

. (5)

We can think of the continuous fieldϕ as the order parameter (the spontaneous magnetization)
in a Ginzburg-Landau description of the LRI. As usual, the coupling λ2 is associated to the
deviation from the critical temperature of the statistical model.

The canonical dimension of the field is not renormalized by the presence of local interac-
tions [11,24], hence it sticks to its GFF value of eq. (4). For 0< s ≤ 1/2, the quartic interaction
is irrelevant and the IR theory is GFF, which explains why the critical exponents of 1d LRI are
controlled by MFT in this region [18]. For s = (1+ε)/2 with 0< ε≪ 1, the quartic interaction
is weakly relevant. Setting λ2 = 0 and using analytic ε-regularization for the UV divergences,
the one-loop beta function for the renormalized coupling is found to be [11] (see [25,26] for
the three-loop result)

βλ4
= −ελ4 +

3
2π
λ4

2 +O(λ4
3) . (6)

The critical IR theory at λ4 = 2πε/3 + O(ε2) is weakly coupled for ε ≪ 1. In the opposite
regime, when ε∼ O(1), perturbation theory is unreliable.3 What can we say about the critical
IR theory near the crossover transition to short-range, which in 1d happens at s = ε= 1?

The expected scenario, dating back to Sak’s work [12] (see also [9, 10, 28]), is that the
short-range kinetic operatorϕ∂ 2ϕ, becomes a dangerously irrelevant operator at the crossover,
i.e. it is irrelevant in the UV theory, but becomes relevant in the IR, thus destabilizing the IR

2The reader can consult appendix A regarding the definition of GFF on the line.
3See refs. [14,25–27], for various resummation-based estimates of critical exponents when ε∼ O(1).
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fixed point.4 The scenario by Sak leaves open a number of puzzles, that have been resolved
in higher dimensions by the crossover picture proposed in [9,10], and briefly sketched in the
introduction. In particular, in Sak’s scenario there is a problem of missing operators after
crossover to the short-range universality (e.g. the ϕ3 operator, discussed below), and this has
been solved in [9, 10] with the realization that beyond the crossover the theory is equivalent
to SRI plus a decoupled GFF. Before presenting our proposal for a weakly coupled description
of the crossover in 1d, we will review a few additional pieces of background material.

2.2 The 1d long-range Ising CFT

The critical 1d long-range Ising model is expected to develop symmetry under Möbius trans-
formations of the line, and is thus described by a 1d CFT [33]. Informally, a 1d CFT is a theory
living on a line, whose correlators transform covariantly under the group PSL2(R) of real frac-
tional linear transformations x 7→ ax+b

cx+d with ad − bc = 1. 1d CFTs are inherently non-local.
Indeed, a local 1d theory with PSL2(R) symmetry and invariant vacuum would necessarily be
topological as the stress tensor vanishes. Examples of 1d CFTs include conformal boundary
conditions of 2d CFTs, conformal line defects in general-d CFTs, as well as the boundary duals
of QFT in AdS2, and fixed points of 1d long-range models. We refer the reader to [34–37] for
some previous literature on general aspects of 1d CFTs.

Besides the PSL2(R) and global Z2 symmetry, the 1d LRI also features parity symmetry,
acting on the line as x 7→ −x , which combines with PSL2(R) to form PGL2(R). Note that
in the context of line defects, parity is usually called S-parity [38, 39]. Furthermore, 1d LRI
is a reflection-positive theory, and therefore its analytic continuation to Lorentzian signature
is unitary. We will now describe the bootstrap definition of a unitary 1d CFT with parity
symmetry, and then discuss several nonperturbative features of the 1d LRI CFT, namely its
protected operators and OPE ratios.

2.2.1 Unitary 1d CFTs with parity symmetry: the bootstrap definition

In a unitary (=reflection-positive) CFT, the space of local operators carries a positive norm,
which makes it into a Hilbert space V .5 Due to Möbius symmetry, V is a unitary representation
of the groupfSL2(R)⋊Z2, where the second factor represents parity. This group is the universal
cover of SL2(R)⋊Z2, itself arising as the real section of the complexification of PGL2(R) which
preserves the inner product of radial quantization. V decomposes as a discrete direct sum of
unitary irreducible lowest-weight representations offSL2(R)⋊Z2

V =
∞
⊕

i=0

D∆i ,Ji
. (7)

The lowest-weight state in D∆i ,Ji
corresponds to a local primary operator φi at x = 0. ∆i is the

scaling dimension of φi , and Ji ∈ {0,1} its parity, so that x 7→ −x acts as φi(0) 7→ (−1)Jiφi(0).
The sequence of ordered pairs ((∆i , Ji))∞i=0 is called the spectrum of the theory. Reflection
positivity implies ∆i ≥ 0. We have ∆0 = 0, J0 = 0, corresponding to the vacuum (in other
words, φ0 is identity operator 1). Correlation functions of φi are invariant under PGL2(R),

4We note that in such a scenario, when following the IR theory from s = 1/2 to s = 1, we should observe level
crossing of the scaling dimensions of ϕ4 and ϕ∂ 2ϕ. Indeed they start as marginal and irrelevant, respectively,
at s = 1/2, and should end up as irrelevant and marginal at s = 1. Such level crossing is observed in higher
dimensions by means of perturbative series resummations [27], but it is expected that the true behavior of the
operators would result in a level repulsion due to nontrivial mixing near the would-be level-crossing point, see
e.g. [29–32] for recent investigations on this phenomenon.

5The reflection operation is defined as the composition of parity with complex conjugation.
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which maps point x to ax+b
cx+d and the field φ to φ′, given by6

φ′(x) = sign(ad − bc)Ji | − cx + a|−2∆iφi

� d x−b
−cx+a

�

. (8)

Local operators satisfy the operator product expansion (OPE). The PGL2(R) symmetry con-
strains it to take the form

φi(x1)φ j(x2) =
∞
∑

k=0

ci jk(−1)Jk |x12|−∆i−∆ j+∆k

∞
∑

n=0

(∆k +∆i −∆ j)n
n!(2∆k)n

xn
12∂

n
2 φk(x2) , (9)

where here and in the following we assume x i j ≡ x i−x j > 0. ci jk are the OPE coefficients, also
known as structure constants. Reflection positivity implies that we can take ci jk ∈ R, which
we will assume from now on. The spectrum and the structure constants are together referred
to as the CFT data.

The CFT data contains all the information needed for calculating any correlation functions
of local operators. In particular, up to n = 4, the n-point functions of primary operators take
the form

〈φi(x1)〉= δi0 ,

〈φi(x1)φ j(x2)〉=
(−1)Jiδi j

(x12)2∆i
,

〈φi(x1)φ j(x2)φk(x3)〉=
ci jk

(x12)
∆i jk(x13)

∆ik j (x23)
∆ jki

,

〈φi(x1)φ j(x2)φk(x3)φl(x4)〉=
�

x14

x24

�∆ ji � x14

x13

�∆kl Gi jkl(z)

(x12)
∆i+∆ j (x34)∆k+∆l

,

(10)

where ∆i j ≡∆i −∆ j , ∆i jk ≡∆i +∆ j −∆k, and

z ≡
x12 x34

x13 x24
, (11)

is the cross-ratio, satisfying z ∈ (0,1) for x1 > x2 > x3 > x4. Since the three-point functions
are proportional to the structure constants, the latter satisfy (anti)-symmetry under permuta-
tions of labels

ci jk = c jki = cki j = (−1)Ji+J j+Jk c jik = (−1)Ji+J j+Jk cik j = (−1)Ji+J j+Jk ck ji , c0i j = δi j . (12)

The CFT data must be compatible with associativity of the OPE, most tangibly expressed as
crossing symmetry of all four-point functions. In practice, we use either the φiφ j , or φ jφk
OPE, in the form (9), inside the four-point function 〈φiφ jφkφℓ〉. This leads to the crossing
equations

Gi jkℓ(z) =
∞
∑

m=0

ci jmckℓm(−1)Jm G
∆i ,∆ j ,∆k ,∆ℓ
∆m

(z) =
∞
∑

m=0

c jkmcℓim(−1)Jm G
∆i ,∆ℓ,∆k ,∆ j

∆m
(1− z) , (13)

holding for all i, j, k,ℓ ∈ Z>0 and all 0 < z < 1. Here G
∆i ,∆ j ,∆k ,∆ℓ
∆m

(z) are the 1d conformal
blocks, computed in [40–42], taking the form

G
∆i ,∆ j ,∆k ,∆ℓ
∆m

(z) = z∆m−∆k−∆ℓ
2F1(∆m −∆i +∆ j ,∆m +∆k −∆ℓ; 2∆m; z) . (14)

In summary, a unitary 1d CFT with parity symmetry can be defined as the collection of data
((∆i , Ji))∞i=0, ci jk, with ∆i ≥ 0, ci jk ∈ R and subject to (12) and (13).

6Note that d x−b
−cx+a is the inverse of ax+b

cx+d . Indeed, when a symmetry g acts on a space by x 7→ g x , the induced
action on functions sends f to f ′(x) = f (g−1 x). | − cx + a| is defined using a representative g ∈ GL2(R) of
[g] ∈ PGL2(R) with |det(g)|= 1.
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2.2.2 The range 0 < s ≤ 1/2

In this region, the IR fixed point of (5) is at λ2 = λ4 = 0. The critical behavior is described by
GFF of dimension∆ϕ = (1−s)/2, which is a simple example of a 1d CFT, as defined above. The
GFF is indeed invariant under the Möbius group including parity, as well Z2 global symmetry.
ϕ is even under parity and odd under the global Z2.

A basis of local operators of the GFF is obtained by forming normal-ordered words using
letters ∂ nϕ with n ∈ Z≥0. The normal order eliminates any Wick contractions of ϕ fields at
the same point, hence the conformal covariance of the correlators of such operators is a trivial
consequence of the conformal transformations of the covariance C(x).

The spatial derivative ∂ is even under the global Z2 and odd under parity. Therefore, the
states are counted by the generating function

ZGFF(x , y, q) = trV

�

xα y JqD
�

=
1

∞
∏

n=0
(1− x ynqn+∆ϕ)

. (15)

Here D is the dilatation operator, (−1)α is the generator of the global Z2, while (−1)J is the
generator of parity. Note that we should impose x2 = y2 = 1 on the RHS. The partition
function counting primaries only is

Z∗GFF(x , y, q) = 1+ (1− yq)[ZGFF(x , y, q)− 1] . (16)

Note that the lightest Z2-even and parity-odd primary, schematically ϕ3∂ 3ϕ, has dimension
3+ 4∆ϕ.

2.2.3 The range 1/2 < s ≤ 1

In this region, the fixed point of (6) defines a one-parameter family of 1d CFTs that reduce to
the GFF at ε = 0.7 At ε > 0, the perturbative fixed point will in general give reliable results
only at ε ≪ 1. Nevertheless, there are some facts about this family of 1d CFTs that remain
valid also nonperturbatively at finite ε.

Firstly, the interacting fixed point still possesses a Z2 global and parity symmetry. Secondly,
the long-range nature of the fixed point implies that certain scaling dimensions are protected.
Only the Gaussian part of the model is long-range, while the ϕ4 interaction is fully local. It
follows that (4) is valid also in the IR for all 0< s ≤ 1.

Furthermore, as a consequence of the Schwinger-Dyson equations, we have the following
identification (up to contact terms):

〈
∫

dy C−1(x − y)ϕ(y) . . . 〉= 〈λ4ϕ(x)
3 . . . 〉 . (17)

Since the inverse covariance is not a differential operator for s < 2, and its action coincides with
a shadow transform [43], ϕ and ϕ3 are two distinct primaries that form a shadow pair [33].
It follows that the dimension of ϕ3 is also protected

∆ϕ3 = 1−∆ϕ = (1+ s)/2 .

We will refer to these protected operators more abstractly as σ and χ, with the understanding
that in the ϕ4 description we have the identifications σ ∼ ϕ and χ ∼ ϕ3. In particular, we
have ∆σ = (1− s)/2 and ∆χ = (1+ s)/2 for all s ∈ [1/2, 1].

7For the LRI model in general dimension d, in [33] it has been proved to all orders of the ε expansion that the
scale invariance of the fixed-point theory is enhanced to full conformal invariance.
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Finally, since the Schwinger-Dyson equation effectively allows us to build χ as the shadow
transform of σ, it implies nonperturbative relations between various OPE coefficients [14,33,
44]. Specifically, for any four primaries φi , φ j , φk, φℓ, we have

cσi jcχkℓ

cχ i jcσkℓ
=
Γ
�

∆σ+∆i−∆ j+ai j
2

�

Γ
�

∆σ−∆i+∆ j+ai j
2

�

Γ
�

1−∆σ+∆k−∆ℓ+akℓ
2

�

Γ
�

1−∆σ−∆k+∆ℓ+akℓ
2

�

Γ
�1−∆σ+∆i−∆ j+ai j

2

�

Γ
�1−∆σ−∆i+∆ j+ai j

2

�

Γ
�

∆σ+∆k−∆ℓ+akℓ
2

�

Γ
�

∆σ−∆k+∆ℓ+akℓ
2

� , (18)

where ai j = [1 − (−1)Ji+J j ]/2 = Ji + J j mod 2. A derivation appears in [44] and in our
Appendix G.

In the particular case φi = χ, φk = σ, φ j = φℓ =O, for a general primary O, this relation
becomes

(cσχO)
2 =
Γ
�

1+JO−∆O
2

�2
Γ
�

1+∆O+JO−2∆σ
2

�

Γ
�

2∆σ+∆O+JO−1
2

�

Γ
�

∆O+JO
2

�2
Γ
�

2∆σ−∆O+JO
2

�

Γ
�

2−2∆σ−∆O+JO
2

�

cσσOcχχO . (19)

When O is odd under parity, Bose symmetry (12) implies cσσO = cχχO = 0. Equation (19)
then implies that either cσχO = 0 or ∆O is a positive even integer, so that a pole of the first
gamma function in the numerator has a chance to cancel the vanishing factor cσσOcχχO. These
protected operators can be thought of as double traces built out of σ and χ, together with an
odd number of derivatives. As the mean field description near s = 1/2 shows, the case with one
derivative is a descendant of ϕ4, and the protected operators thus have dimensions 4,6, 8, . . ..
See also [45] for a recent discussion of these operators from a different point of view.

Since there are no local conserved currents in the long-range model, we expect all other
operators to get nontrivial anomalous dimensions, and thus lift any degeneracies present in
the GFF. We refer the reader to [14, 25–27, 44], for detailed perturbative results in the ϕ4

formulation and up to three loops in ε-expansion.

2.3 Anderson-Yuval-Kosterlitz model

In this section, we review the relation between the partition function of the 1d LRI model for
s ≲ 1,

ZLRI =
∑

{σi}

e−βHLRI , (20)

and a Coulomb gas of kinks with alternating charges. The main idea, which goes back to the
work of Anderson and Yuval in [22], is to view the locations of the domain walls, i.e. the sites
i where the spins σi flip sign (see fig. 2) as the weakly coupled degrees of freedom for 1d LRI.
We will refer to a domain wall configuration from 1 to −1 (−1 to 1) as a kink (anti-kink). For
s ≲ 1, such domain walls are indeed diluted at low temperature, where the model is in the
ordered phase.

For s = 1, upon rewriting LRI in terms of kinks and anti-kinks, ZLRI is seen to be equivalent
to the following Coulomb gas partition function [22] (see also the related previous work [46–
48] and the review in [49]):8

ZCoulomb =
+∞
∑

n=0

g2n

∫

I2n(a)

�

2n
∏

i=1

dx i

a

�

e2J
∑

i< j(−1)i− j log(|x i−x j |/a) , (21)

8In appendix B, we provide a simplified derivation of the this model from the ϕ4 formulation of LRI.
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where positive and negative charges are associated to kinks and anti-kinks, respectively, and
in accordance with the domain wall interpretation they need to alternate along the line. The
domain of integration is:

Im(a) = {L/2≥ x1 ≥ x2 ≥ . . .≥ xm ≥ −L/2 | x i − x i+1 ≥ a} . (22)

The fugacity of the gas of kinks is g = exp(−K− cJ ), for some constant c and with K being
the short-range coupling that is added to the LRI in order to have two independently-tunable
couplings. The expansion in powers of the fugacity should be valid at low temperatures (i.e.
large J and K, or small g), where domains are large and the domain walls are thus very
diluted.

In writing (21), a continuum limit has been implemented, while keeping a UV cutoff a
(inherited from the lattice cutoff) in the form of a hard core repulsion.9 The IR regularization
instead has been implemented by choosing a finite L. Physically, this can be seen as defining
the LRI model on the infinite line, but with a strong magnetic field in R\[−L/2, L/2], forcing
all the spins to point in the same direction in the complement of the interval [−L/2, L/2], and
thus excluding kinks in that region.10

For s ≲ 1, as found by Kosterlitz in [23], rewriting LRI in terms of kinks and anti-kinks
leads to a modification of the Coulomb gas, where the logarithms of ZCoulomb are replaced by
a power-law potential:

ZAYK =
+∞
∑

n=0

g2n

∫

I2n(a)

�

2n
∏

i=1

dx i

a

�

e2J
∑

i< j(−1)i− j(1−s)−1((|x i−x j |/a)1−s−1) . (23)

This modified Coulomb gas model, which reduces ZCoulomb for s→ 1−, is what we call the AYK
model.

From the AYK model, by means of a primordial version of the Wilsonian RG, AYK obtained
the RG flow equations for the renormalized parameters J (a), g(a) with respect to the cutoff
length a:

d g
d log(a−1)

= (J − 1)g +O(g3) ,

dJ
d log(a−1)

= J (4g2 + s− 1) +O(g4) .
(24)

The flow diagram associated to such beta functions is displayed in fig. 1. At s = 1,the asso-
ciated flow has a similar structure to the BKT transition [49]: a line of fixed points at g = 0,
parametrized by J , which are attractive or repulsive in the IR, depending on the sign of J −1;
the line ending at g = 0 and J = 1 in the IR corresponds to the phase transition between order
(g = 0, i.e. no kinks, in the IR) and disorder (g ∼ O(1), i.e. proliferation of kinks, in the IR).
At s < 1, the line of fixed points disappears, leaving only an isolated fixed point, which is the
continuation of the g = 0 and J = 1 fixed point of s = 1. One of our purposes will be to
reproduce these RG equations from a modern perspective, in the language of CFT, and at the
same time provide a framework allowing to systematically improve them and produce other
results.

2.4 Insights from the 1d short-range Ising model

Another important insight for developing a theory of the LRI model near s = 1 comes from
scrutinizing the possible physical content of the theory at s > 1. As reviewed above, for d ≥ 2

9The UV cutoff can actually be removed for J < 1/2, as the singularity at coinciding points is then integrable.
10Alternatively, one can define the model with periodic boundary conditions; however, one should keep in mind

that in this case we should also change the argument of the logarithm as in log(
sin(π|ri−r j |/L)

πa/L ).
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(a) s = 1.
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(b) s = 0.9.

Figure 1: The RG flow for the beta functions in (24), at s = 1 and s = 0.9. Arrows
point towards the IR. At s = 1, the g = 0 axis is a line of fixes points, but we have
emphasized in blue and red the special points J = 0 and J = 1, respectively. The red
lines separate the diagram into three or four regions: region I is the low-temperature
broken phase (g = 0 in the IR); region I I is the high-temperature symmetric phase
(g ∼ O(1) in the IR); regions I I I and IV are inaccessible to the LRI. The latter indeed
corresponds to a one-dimensional subspace such as the dashed blue line (see (B.6)).
The intersection of such line with the red line defines the critical coupling Jc (i.e.
critical temperature at fixed bond strength J , if J = J/T).

and s ≥ s∗, the LRI crosses to the SRI universality plus a decoupled GFF sector [9, 10]. What
changes when d = 1? As we argue below, the physics is bound to be not so different from that
of the classical 1d SRI model, indeed:

1. For 1d LRI, there is no phase transition at finite temperature for s > 1, just as for the 1d
SRI. This was established rigorously in [19].

2. At s = 1, from eq. (4), the LRI field has a vanishing scaling dimension, thus matching
that of the 1d SRI at zero temperature, e.g. [50]. We return to this point below.

At the same time, the physics cannot be exactly that of the classical 1d SRI model. The classical
1d SRI model in a magnetic field h is given by the Hamiltonian

βH
SRI
=

K
2

∑

i

(σi+1 −σi)
2 − h
∑

i

σi , K > 0 , (25)

and it is easily solved, in particular by transfer matrix method. The latter underlines the
standard classical-to-quantum mapping [51–53], and in the continuum limit we can think of
the classical 1d SRI model as a quantum SRI in transverse field in zero dimensions, i.e. the
quantum mechanics of a single Ising spin, with Hamiltonian

ĤQ = −γσ̂1 − h σ̂3 , (26)

where σ̂a are the standard Pauli matrices and

2γ= log coth(K) = ξ−1 , (27)
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with ξ the correlation length of the classical Ising chain at h = 0. We see that the correlation
length diverges only for γ→ 0, i.e. K→ +∞, corresponding to the zero temperature limit of
the classical model. The critical SRI model is thus located at γ = h = 0, that is, it is described
by a trivial quantum Hamiltonian.

Correlation functions of the classical Ising chain with periodic boundary conditions are
mapped to thermal expectation values of time-ordered operators in the quantum theory, where
time-dependent operators are defined by the imaginary-time evolution under ĤQ. The imagi-
nary time and the inverse temperature of the quantum model are identified with the position
x and the extension L of the classical model, respectively. At the critical point, the two-point
function of the classical Ising field then simply becomes

〈σ(x)σ(0)〉=
1
ZQ

tr
�

e−LĤQσ̂3(x)σ̂3(0)
� γ,h→0
−−−→

1
2

tr
�

σ̂2
3

�

= 1 . (28)

Therefore, the Ising field becomes a field with vanishing scaling dimension, and operator rep-
resentation given by the Pauli matrix σ̂3. Notice that when approaching the critical theory
along the h-axis at γ= 0, we select (for L→∞) as ground state of ĤQ the eigenvector of σ̂3
with eigenvalue ±1, depending on the sign of h, hence the spontaneous magnetization 〈σ〉 is
discontinuous at zero temperature.

Given the facts we just recalled about the SRI, we would expect that at s ≥ 1 the criti-
cal LRI, with classical Hamiltonian (1), would be described by the degrees of freedom of a
C2 Hilbert space, with trivial correlators. However, as in d > 1, this cannot be the end of
the story, because it would imply that at the crossover some operators would disappear from
the spectrum. For example, by continuity of spectrum, at s = 1 we should find two Z2-odd
operators with opposite parity and of dimension exactly equal to one, corresponding to ϕ3

and ∂ ϕ in the ϕ4 description (see Section 2.2), but clearly the SRI alone cannot provide such
operators.11

The solution, to be presented in the following section, will come from matching the theory
at s = 1 to the AYK model.

3 The weakly coupled model near crossover

As reviewed above, the dynamics of 1d LRI model at s ≲ 1 is described by a gas of kinks-
antikinks with alternating charges. For s = 1, the same Coulomb gas can also be obtained as
a perturbative expansion of the Kondo model [22]. In its bosonized version, the latter is very
similar to the boundary sine-Gordon model, except for the presence of Pauli matrices in its
action, enforcing the alternating order of positive and negative charges in (22).12

In this section, we introduce a model that, generalizing the bosonized Kondo model, pro-
vides a field theory whose perturbative expansion reproduces the AYK model also at s < 1,
and that has the correct operator content to match the ϕ4 description. We elucidate various
aspects of such model, arguing that even at s = 1 the observation by Anderson and Yuval needs
a refinement, as the Kondo model leads to a larger spectrum than the LRI.

11Following [9,10], we could try to account for the missing operators by adding to the 1d SRI a GFF χ of scaling
dimension ∆χ = (1+ s)/2, that could be identified with ϕ3, and that should be decoupled from the spin degree
of freedom at s ≥ 1. However, we would still be missing the parity-odd operator corresponding to ∂ ϕ, as it would
be unclear how to introduce derivatives of σ̂3. Moreover, it would be unclear how to couple the two sectors at
s < 1 in order to flow to the LRI CFT: if for example, combining insights from the above reminder of 1d SRI and
from [9,10], we introduce the defect operator tr[exp(h

∫

dx σ̂3 χ(x))] in correlators over the C2+GFF theory, we
obtain a trivial result, as the trace vanishes.

12The relation between Kondo and boundary sine-Gordon models has been elucidated in [54]. We refer also
to [55–57] for reviews of the CFT approach to Kondo and boundary sine-Gordon models.
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3.1 Compact generalized free fields with negative scaling dimension

As a preliminary step towards introducing the full dual model for 1d LRI near s = 1, we first
introduce a dual GFF, that will provide a basis around which to construct the perturbative
treatment. From here on we set s = 1−δ, with 0≤ δ≪ 1.

Consider the 1d GFF φ of negative dimension ∆φ = −δ/2, whose target space is a circle
of circumference 2π/b0:

φ ∼ φ + 2πn/b0 , n ∈ Z . (29)

Note that the inverse radius has mass dimension [b0] = δ/2, and we thus write b0 = κδ/2, for
some mass scale κ, such that b0→ 1 for δ→ 0.

As we review in Appendix A, for −1 <∆φ ≤ 0, the noncompact 1d GFF can be rigorously
defined [58] as a probability measure on the space of distributions R → R defined modulo
an additive constant. In fact, the resulting random distribution is almost surely a continuous
function modulo an additive constant. In other words, such GFF preserves shift symmetry.
Hence, we can compactify the target space and define a compact version of such GFF on the
space of continuous functions R→ S1

1/b0
.

We denote the expectation value in this compact GFF theory by 〈·〉0. The covariance kernel
C(x) = 〈φ(x)φ(0)〉0 is defined only up to an additive constant, as discussed in Appendix A.2.
This simply means that φ is not a well-defined random variable. However, for practical calcu-
lations we still deal with its covariance in intermediate steps, hence it will be convenient to fix
its form. We will choose the normalization and the additive constant so that the covariance
has a well-defined limit for δ→ 0:13

C(x) = −
2
δ
(|x |δ − κ−δ) = −2 log(κ|x |) +O(δ) . (30)

Due to the identification in field space, all well-defined observables must be built out of
∂ n

x φ(x) with n ≥ 1, and vertex operators einb0φ(x), with n ∈ Z. The correlators of ∂ n
x φ(x)

are obtained straightforwardly as derivatives of (products of) C(x), and so they are clearly
independent of the additive constant; those of the vertex operators will be discussed below.
All such operators have positive dimension, and the resulting theory is unitary, as proven
rigorously in [59].14

Remark 1. We point out that while this GFF might seem a bit exotic, its status is not much
different from the standard massless scalar field in d = 1. The latter corresponds to taking
δ = 1, and thus has negative scaling dimension. Therefore, it also needs to be defined by
modding out its zero mode, and thus also in this case the well-defined random variables are
those that are independent of the zero mode. In particular, the variable φ(x) −φ(0) corre-
sponds to the standard Wiener process (Brownian motion), and the growth of the covariance
reproduces the well-known linear growth of the Brownian motion: 〈(φ(x)−φ(0))2〉0 ∼ |x |.
The generalization to δ ̸= 1 is known as fractional Brownian motion, and it was introduced
long ago in [60]. Lastly, the compactification simply corresponds to the restriction of the ran-
dom process to a circle, and in the δ = 1 case it is known as O(2) rigid rotator in the physics
literature (e.g. [61]).

13Notice that continuing to δ < 0 this normalization would differ from that of the GFF in Section 2.1.
14More precisely, in [59] the authors proved reflection positivity of the fractional Brownian motion, that is

obtained from the GFF φ by fixing its value to be zero at the origin.
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Remark 2. Let us ignore for a moment the vertex operators, and define χ(x)∼ ∂xφ(x). With
the measure defined by the expectation value 〈·〉0, such field χ together with its derivatives
and their composite (normal ordered) operators form a set of operators of a CFT (as defined in
Section 2.2.1), closed under OPE. Clearly such CFT is nothing else than the GFF χ of conformal
dimension ∆χ = 1− δ/2. In this case, the compactification of φ has no role and it would be
more logical to directly start with the GFF χ. However, as will become clear below, in order to
construct a dual theory of the 1d LRI we need the vertex operators. These would be nonlocal
operators when written in terms of χ, and although similar nonlocal operators appear for
example when writing correlators of the XY model in terms of a sine-Gordon field [62], it
seems more natural to work with the ancestor of χ, namely the field φ.

Remark 3. Once we include the vertex operators in our set of operators, the GFF φ is no
longer a CFT, because at δ > 0 their correlators are not conformal and they depend explicitly on
the dimensionful compactification radius 1/b0 (see below). Although the theory is Gaussian,
the presence of a dimensionful parameter leads to a classical renormalization group flow, that
is, introducing a renormalization scale µ and defining b̃0 = µ−δ/2 b0, we have a linear beta
function βb̃0

= −δ2 b̃0. This has a UV fixed point at b̃0 = 0, where the vertex operators become
degenerate with the identity, and we recover the CFT of the previous remark. Loosely speaking,
we might qualitatively compare the situation to that of a standard free massive scalar (with
the mass playing the role of b0), which likewise becomes a CFT only in the UV limit.

Correlation function of vertex operators. At δ = 0, the vertex operators Vn(x) ≡ einb0φ(x)

are defined with normal ordering15 and have the following correlators:



Vn1
(x1) · · ·Vnm

(xm)
�

0 = δ0,
∑

i ni

∏

i< j

|x i − x j|2b2
0ni n j , (31)

where we temporarily keep b0 although it equals one at δ = 0. This is derived precisely as in
2d [63], because as reviewed in Appendix A.2, at δ = 0 the field φ(x) is just the boundary
value of a free boson in 2d.

If we take ni = ±1, and introduce the simplified notation V± ≡ V±1, the only non-vanishing
correlators have an equal number of V+ and V−, resulting in

〈V+(x1) · · ·V+(xn)V−(x
′
1) · · ·V−(x

′
n)〉0 =

∏

j<k |x j − xk|2b2
0 |x ′j − x ′k|

2b2
0

∏

j,k |x j − x ′k|
2b2

0

= a−2nb2
0 e2b2

0

�

∑

j<k(log(|x j−xk|/a)+log(|x ′j−x ′k|/a))−
∑

j,k log(|x j−x ′k|/a)
�

.
(32)

In the last expression, we recognize the structure of the Boltzman weight for the Coulomb gas
in eq. (21), except for the ordering constraint. Fitting with the Coulomb gas interpretation of
such correlators, it is common to refer to the parameters ni as “charges” and to the constraint
on the total charge as “neutrality condition”.

At δ > 0, we can similarly obtain the correlators of vertex operators by using a standard
trick (e.g. proposition 23.6.1 of [64]). For a GFF φ of covariance C(x), we have the formula

〈eiφ[ f ]〉0 = e−
1
2 〈φ[ f ]φ[ f ]〉0 , (33)

15The standard definition of normal ordering gives:

Vn(x) = : einb0φ(x) :≡ exp
§

−
1
2

∫

dx1dx2
δ

δφ(x1)
C(x1 − x2)

δ

δφ(x2)

ª

einb0φ(x) = exp
§n2 b2

0

2
C(0)
ª

einb0φ(x) ,

where we typically regularize C(0) introducing a cutoff a and replacing C(0) → C(a). We further multiply by
κn2 b2

0 , so that by virtue of the neutrality condition
∑

i ni = 0 the correlators are independent of κ.
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where φ[ f ] ≡
∫

dx φ(x) f (x). Therefore, choosing f (x) =
∑

i αiδ(x − x i), where the test
function constraint

∫

dx f (x) = 0 (see Appendix A.2) demands that the neutrality condition
∑

i αi = 0 be satisfied, we have

〈eiα1φ(x1) · · · eiαnφ(xn)〉0 = e−
1
2 C(0)
∑

i α
2
i

∏

i< j

e−αiα j C(x i−x j) . (34)

Since C(x) is defined only up to a constant, we could set C(0) to zero. However, for the δ→ 0
limit we choose C(x) as in (30), and thus absorb C(0) by a normal ordering of the vertex
operators, consistently with the δ → 0 limit, where such normal ordering is needed because
of UV divergences (see footnote 15). We thus define the vertex operators at δ > 0 as:

Vn(x) = κ
n2

: einb0φ(x) := κn2
e

1
2 C(0)n2 b2

0 einb0φ(x) . (35)

Notice that while (34) is independent of κ, the choice of normalization above will introduce
a κ-dependence in correlators of vertex operators, due to shift symmetry. This choice, which
appears to be slightly unnatural at fixed δ > 0, is the correct one if we wish to recover the
δ = 0 case in a smooth way.

At this point it should be clear that, identifying b2
0aδ = J , the Boltzmann weight of a

configuration of 2n kinks and anti-kinks in the AYK model in eq. (23) is proportional to the
correlation function of 2n vertex operators, with alternating charges, for a 1d GFF φ of nega-
tive dimension ∆φ = −δ/2, i.e. with covariance (30):

〈V+(x1)V−(x2) . . . V+(x2n−1)V−(x2n)〉0 = κ2ne2b2
0

∑

i< j
(−1)i− j

δ (|x i−x j |δ−κ−δ) . (36)

Therefore, in order to generate the terms appearing in the AYK partition function, we need
to perturb the GFF by the vertex operators. However, in order to force the charges to alter-
nate, we will need to form a product of the vertex operators with an appropriate algebra of
noncommuting operators. Coincidentally, such algebra will be provided precisely by the Pauli
matrices appearing in the 1d SRI.

3.2 Interacting model

We claim that the 1d LRI CFT can be identified with the IR fixed point of the following 1d
continuum model:

Zs(b, g) =
¬

tr Pexp
¦

∫ L/2

−L/2
dx
�

g Og(x) + hOh(x)
�

©¶

0
, (37)

where b = b0 −
p

2h, and b0 = κδ/2, for some arbitrary mass scale κ. The operators in the
exponent are

Og(x)≡ σ̂+V+(x) + σ̂−V−(x) , Oh(x)≡ σ̂3χ(x) , χ(x)≡
i
p

2
∂xφ(x) , (38)

with σ̂± =
1
2(σ̂1 ± iσ̂2). Here σ̂i=1,2,3 are the Pauli matrices

σ̂1 =

�

0 1
1 0

�

, σ̂2 =

�

0 −i
i 0

�

, σ̂3 =

�

1 0
0 −1

�

. (39)

Lastly, tr Pexp in (37) is the trace of the path-ordered exponential of the 2× 2 matrix in curly
brackets. As a reminder, the path ordering means

P exp

�

g

∫

dx A(x)

�

=
∑

n≥0

gn

n!
P

�∫

dx A(x)

�n

=
∑

n≥0

gn

∫

x1≥x2≥...≥xn

� n
∏

i=1

dx i

�

A(x1) · · ·A(xn) .

(40)
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It is convenient to define the defect operator

D(x j , x i)≡ P exp

�

∫ x j

x i

dx
�

g Og(x) + hOh(x)
�

�

, (41)

so that the partition function (37) is16

Zs(b, g) = tr



D(L/2,−L/2)
�

0 . (42)

General correlators of operators O1(x1), . . . ,On(xn), with L/2 > x1 > x2 > . . . > xn > −L/2,
have the form

〈O1(x1) · · ·On(xn)〉D ≡
1
Zs

tr 〈D(L/2, x1)O1(x1)D(x1, x2)O2(x2) · · ·On(xn)D(xn,−L/2)〉0 ,

(43)
where the operators Oi(x) are in general matrix valued.

We have restricted the interaction to a finite region, i.e. the interval [−L/2, L/2], in order
to regularize IR divergences. Any other interval of length L would be equivalent, due to the
translation invariance of the unperturbed theory. We stress that we do not assume periodicity.
As explained in Section 2.3, this IR regularization should rather be thought as imposing that
the LRI model has no kinks in the complement of the interval [−L/2, L/2]. It is also understood
that besides tuning to an IR fixed point, the 1d LRI CFT should be obtained in the limit L→∞.

The first justification of our claim is that we reproduce the AYK partition function (23)
by expanding (37) in g. In order to see that, let us first set h = 0, and expand Zs(b0, g) in
powers of g. Using (40), with A=Og , we find precisely (23), upon the identification b2

0 = J .
Indeed, since σ̂2

+ = σ̂
2
− = 0, only alternating chains of kink and antikink operators σ̂+V+(x)

and σ̂−V−(x) survive. Turning on h, we will show below that it is equivalent to shifting b0 to
b0−
p

2h, hence the partition function only depends on the combination b = b0−
p

2h and the
correspondence with AYK still holds, with J = b2. However, keeping the Oh term will prove
essential in order to consistently renormalize the model, as we will show in section 4. The fact
that such field theoretic renormalization based on (37) will allow us to reproduce (and go be-
yond) the beta functions (24) will provide a second justification of our claim. Further support,
such as the matching of symmetries to those of the LRI and the fulfillment of constraints on
the spectrum of protected operators and on OPE coefficients, which are characteristic of the
LRI, will be detailed in the following.

The partition function (37) is similar to those encountered in impurity models [66, 67],
and the path ordering of 2 × 2 matrices can be traded for a path integral using a complex
bosonic spinor z(x) = {z1(x), z2(x)} subject to z̄(x)z(x) = 1, similarly to [66–68]. We will
review this formulation in Appendix C.1. One advantage of such “coherent state representa-
tion” is that the Pauli matrices are replaced by fields, thus giving the model a more standard
field theoretic appearance, and making it easier to derive Schwinger-Dyson equations and in-
troduce a gauging (as we do in Appendix C.2). On the other hand, the “Pauli representation”
is more convenient for doing perturbative computations, and it makes the link to the SRI more
transparent.

See also Appendix C.3 for an alternative formulation in terms of a (long-range) nonlinear
sigma model. The advantage of this other reformulation is to provide a different point of
view on the compactness of φ, and to allow a more standard implementation of the gauging
in the GFF sector. However, for practical computations we are forced to solve the nonlinear
constraints and thus reintroduce φ.

16Notice that in the periodic case, at s = 1, D(L/2,−L/2) is a special case (spin 1/2) of the “monodromy matrix”
of [65], that was used in [54] to establish a relation between the partition functions of the Kondo and boundary
sine-Gordon models.
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Since the covariance of the GFFφ agrees with that of a free field in s+1= 2−δ dimensions,
our model can be formally interpreted as a one-dimensional defect for the (s+1)-dimensional
free theory. At s = 1, the bulk is two-dimensional and the defect is a boundary condition, with
the vertex operators becoming conformal primaries of the Gaussian theory. The resulting s = 1
model then becomes the bosonized version of the Kondo model [54, 69], already related to
the LRI model by Anderson and Yuval [22]. However, already at s = 1, a number of puzzles
had not been addressed before, namely the field theoretic derivation of the beta functions and
the mismatch of operators between the Kondo fixed points and the LRI CFT. Therefore, our
ensuing RG analysis and identification of the spectrum of operators are novel even at s = 1.

For s = 1−δ < 1, the model (37) is a genuinely new theory. It might seem rather unortho-
dox, since ∆φ < 0 and since the vertex operators do not have a definite scaling dimension in
the GFF. However, it should be clear from the discussion above that the negative-dimension
GFF is a well-defined QFT, and we will see from the RG analysis (in particular end of section
4.3.1) that qualitatively the situation with the perturbation is not too different from that of a
standard massive free scalar perturbed by self-interactions, which are also not scaling opera-
tors for a massive theory.17 Moreover, the analysis presented in the rest of the paper should
provide further evidence that it is a fully consistent theory.

3.2.1 Relation between h and b

Given that Oh(x) is a total derivative, it would be tempting to conclude that its contribution
vanishes in the case of cyclic boundary, and that it reduces to the insertion of new vertex op-
erators at the boundaries in the open case. However, such a conclusion would be wrong, as
it does not take into account the path ordering of Oh with respect to Og , and their noncom-
mutativity. As we will now show, a proper treatment of this interaction leads to uncovering a
relation between the coupling h and the charge b of the vertex operators.

In order to see that, we apply formula (43) to the perturbative expansion itself. Namely, if
we expand only in g, introducing a UV cutoff a, we obtain

Zs = 2
+∞
∑

n=0

g2n

∫

I2n(3a)
tr〈Dh(L/2, x1 + a)σ̂+V+(x1)Dh(x1 − a, x2 + a)σ̂−V−(x2) · · ·

· · · σ̂−V−(x2n)Dh(x2n − a,−L/2)〉0 ,

(44)

where the integration domain was defined in (22) (from now on we occasionally omit the
Lebesgue measure to slim down long expressions), and we introduced the partial defect oper-
ator

Dh(x j , x i)≡D(x j , x i)|g=0
= P exp

�

h σ̂3

∫ x j

x i

dx χ(x)

�

. (45)

At this stage, having decoupled the nonncommuting operators, we can perform the integration
in the exponent, to get

Dh(x j , x i) = exp
�

ih
p

2
σ̂3

�

φ(x j)−φ(x i)
�

�

, (46)

and then use the commutation relation

e−iασ̂3 σ̂± e+iασ̂3 = σ̂± e∓2iα , (47)

17We notice moreover that similar types of non-polynomial non-scaling operators appear also in other contexts,
such as in Lagrangians of nonlinear sigma models and in low-energy effective actions of QED3 [70,71].
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to write

e−
ihp

2
σ̂3φ(x+a)

σ̂±V±(x) e
+ ihp

2
σ̂3φ(x−a) =σ̂±V±(x) e

∓
p

2ihφ(x+a) e+
ihp

2
σ̂3(φ(x−a)−φ(x+a))

−−→
a→0

σ̂±V±(1−p2h/b0)
(x) eh(b0

p
2−h)C(0) ,

(48)

where in the last step we took into account the definition of normal ordered vertex operator
(35). Therefore, for the partition function we obtain

Zs = 2
+∞
∑

n=0

g2n
h

∫

I2n(a)
tr
D

e
ihp

2
σ̂3φ(L/2)σ̂+V1−

p
2h/b0

(x1) · · · σ̂−V−1+
p

2h/b0
(x2n)e

− ihp
2
σ̂3φ(−L/2)
E

0

= 2
+∞
∑

n=0

g2n
h

∫

I2n(a)
tr
¬

σ̂+V1−
p

2h/b0
(x1) · · · σ̂−V−1+

p
2h/b0

(x2n)Dh(L/2,−L/2)
¶

0
,

(49)
where we have defined the multiplicatively renormalized coupling

gh = g eh(b0
p

2−h)C(0) . (50)

At δ = 0, choosing the regularization C(0) → C(a) = −2 log(κa), inverting the relation be-
tween g and gh, and expanding in powers of h, we find

g = gh

�

1+ 2h(
p

2− h) log(κa) + 4h2 log2(κa) +O(h3)
�

. (51)

Therefore, up to a boundary contribution,18 we find that the effect of the new interaction
term is equivalent to shifting b0 → b ≡ b0 − h

p
2, and renormalizing the coupling g. This

implies that we can trade a change in b0 for a change in h, or viceversa. This fact is often used
in the Kondo model (i.e. at δ = 0) in order to set h= 0.19 We will instead set b0 to our favorite
value (in particular, such that b0 = 1 when δ = 0) and keep h ̸= 0 in our model. As we will see
in Section 4, the choice of keeping a nonvaninshing h is forced upon us by the renormalization
flow: indeed the choice h= 0 is not stable under renormalization.

3.2.2 Covariant derivative and Schwinger-Dyson equation

The path ordering introduces some non-trivial dependence of correlators on the end-points of
the partial defect operator D appearing in the right-hand side of (43). Following [67], it is
convenient for this reason to define a defect covariant derivative Dx , by demanding that

tr 〈. . . DxO(x) . . .〉D =
d

d x
tr 〈. . .O(x) . . .〉D , (52)

which, because of (43), is equivalent to

D(x ′, x)DxO(x)D(x , x ′′)≡
d

d x

�

D(x ′, x)O(x)D(x , x ′′)
�

. (53)

For the model at hand we easily find

DxO(x) = ∂xO(x)− [gOg + hOh,O](x) , (54)

18If we had defined the model on a circle, i.e. with periodic boundary conditions at x = −L/2 and x = L/2, the
factor Dh(L/2,−L/2) would be trivial if φ was non-compact, while it would give a nontrivial monodromy in the
compact case.

19The fact that one can trade b for h, or vice versa, is mentioned in various old papers about the Kondo model,
but typically it is either stated without explanation (e.g. [22, 54]) or expressed as a canonical transformation on
the quantum Hamiltonian (e.g. [69,72,73]). We have not found a proof in the literature that uses the path integral
language as does the one provided here.
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where [, ] is the matrix commutator.
The covariant derivative allows us to understand if some operator is a primary or a descen-

dant at the conformal fixed point. Interestingly, DxO can be non-zero even if O has no explicit
dependence on the defect coordinate. An important example for us will be the case of O = σ̂3,
for which we have

Dx σ̂3 = 2g(σ̂+V+ − σ̂−V−) . (55)

This also motivates the following notation. Since in the 〈. . .〉 notation the insertion of operators
without explicit x-dependence is ambiguous, we will sometime write σ̂i(x) for the insertion
of a Pauli matrix at point x . For example, for L/2> x1 > x2 > −L/2 we have:

〈σ̂3(x1)σ̂3(x2)〉D =
1
Zs

tr 〈D(L/2, x1)σ̂3D(x1, x2)σ̂3D(x2,−L/2)〉0 . (56)

We can now derive Schwinger-Dyson equations for our model, assuming for simplicity peri-
odic boundary conditions. As usual, we perform an arbitrary infinitesimal variation
φ(x)→ φ(x)+ϵ(x) in the functional integral, expand to linear order in ϵ(x) and demand that
the correlators are invariant, because it is just a change of variable in the functional integral,
where the measure is translation invariant. Taking into account the GFF action (A.15), we
obtain

0=−
∫ L/2

−L/2
dx ϵ(x)



C−1 ·φ(x) . . .
�

D +

∫ L/2

−L/2
dx ϵ(x) i b0 g〈. . . (σ̂+V+ − σ̂−V−)(x) . . .〉D

+

∫ L/2

−L/2
dx

ih
p

2
〈. . . σ̂3 ∂xϵ(x) . . .〉D ,

(57)

up to contact terms involving other inserted operators. Integration by parts on the last term
leads to



C−1 ·φ(x) . . .
�

D = i b0 g〈. . . (σ̂+V+ − σ̂−V−)(x) . . .〉D −
ih
p

2
〈. . . Dx σ̂3(x) . . .〉D

= ig(b0 −
p

2h)〈. . . (σ̂+V+ − σ̂−V−)(x) . . .〉D ,
(58)

where in the last step we used the covariant derivative introduced above. Notice that we find
again the combination b0 −

p
2h, confirming again that the role of h is to shift b0 by −

p
2h.

The Schwinger-Dyson equations (58), together with the fact that the inverse covariance
C−1 acts on φ as a shadow transform, imply that at the IR fixed point, if the latter is non-
trivial, the spectrum of the model contains a protected operator of scaling dimension 1−∆φ ,
odd under both Z2 and parity. Notably, this cannot be a primary, as in virtue of (55) it must be
a descendant of σ̂3. As we will see, for the s = 1 LRI the only IR fixed point is the trivial one,
and the two primaries do not recombine. On the other hand, for the model at s = 1−δ, there
is a non-trivial IR fixed point and the argument above implies the existence of a protected
operator of dimension 1+δ/2, which must be a descendant of σ̂3. Moreover, the latter must
also have protected dimension ∆σ = δ/2.

3.2.3 Symmetries

For g = h= 0, the UV theory (37) has O(2) global symmetry acting on the target space circle of
φ, and PU(2) global symmetry acting on the 2×2 matrix degrees of freedom A by conjugation.
By turning on Og and Oh, O(2) × PU(2) is broken to the diagonal O(2), generated by U(1)
rotations and Z2 reflection

U(1) : φ(x) 7→ φ(x) +α/b0 , A 7→ e−i α2 σ̂3Aei α2 σ̂3 , (59)

Z2 : φ(x) 7→ −φ(x) , A 7→ σ̂1Aσ̂1 , (60)
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where α ∈ R/2πZ. The model (37) is natural, in the sense that at s = 1 the operators Og and
Oh are the only relevant or marginal operators invariant under this O(2).

The model also respects parity x 7→ −x . In order for it to be compatible with the path
ordering, and to preserve Og and Oh, it must act as

parity : φ(x) 7→ −φ(−x) , A 7→ AT . (61)

In the next section, we will confirm the existence of an IR fixed point of (37) at b = 1+O(δ),
g = O(

p
δ). The fixed-point theory thus exhibits O(2)⋊ parity symmetry.

From the point of view of the LRI model, the Z2 symmetry can be understood as the usual
Z2 symmetry for the original Ising spin in the absence of an external magnetic field. Indeed
Z2 maps kinks to antikinks, and vice versa, hence it must swap up-spins with down-spins.
Similarly, parity is in direct correspondence with parity on the Ising side.

On the other hand, the U(1) symmetry has no counterpart in the LRI model. Therefore,
we should assume that the latter corresponds to a superselection sector of the model (37) with
only operators that are neutral under U(1). This is also known as the singlet sector, and we
can restrict to it by gauging the model, as discussed in Appendix C.

U(1)-invariance has the important consequence of excluding any vertex operators with
charge ni different from ±1. Indeed, under the U(1) symmetry, operators have the following
charge

Table 1: Elementary operators and their U(1) charges.

operator U(1) charge
∂ φ 0
Vn n
σ̂3 0
σ̂± ∓1

(62)

This means that the space of U(1)-neutral local operators is generated by

A , B σ̂3 , C V+σ̂+ , D V−σ̂− , (63)

where A, B, C , D are words built out of the letters ∂ nφ with n> 0.
At first sight, such a restriction might seem inconsistent, because already at g = h= 0, i.e.

in the GFF, the OPE of V+ with itself contains V−2. However, V+ by itself is not in the spectrum
of the singlet sector: neutrality under U(1) requires that V+ be always multiplied by σ̂+. And
the product of σ̂+V+ with itself vanishes because σ̂2

+ = 0.

4 Renormalization group analysis

In this section, we discuss some perturbative computations for the model introduced in the
previous section, which we rewrite here for convenience:

Zs(b, g) =
¬

tr Pexp
¦

∫ L/2

−L/2
dx
�

g Og(x) + hOh(x)
�

©¶

0
. (64)

Expectation values 〈. . .〉0 are computed with respect to the GFF theory (A.15), with covariance
(30). The operators Og , Oh are defined in equation (38). We recall that the partition function
depends on g and b = b0−

p
2h, of mass dimension 0 and δ/2, respectively. At δ = 0, we are
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free to choose b0 = 1, so that in this case the UV scaling dimension of both Og and Oh equals
1, but we should keep in mind that for δ > 0, the coupling b0 has positive mass dimension
and thus it has a (purely classical) running.

The UV divergences of the perturbative expansion are regularized by point-splitting, i.e.
by introducing hard core repulsions as in (22), with cutoff length a. The UV divergences in the
a→ 0 limit are then removed by including the appropriate counterterms, so that correlation
functions of renormalized operators are UV-finite when expressed in terms of the renormal-
ized couplings. Beta functions and anomalous dimensions are then obtained from the Callan-
Symanzik equation, which states that renormalized observables are cut-off independent.

We shall distinguish between the model with s = 1, in which case a free boundary CFT
is perturbed by marginal primary operators, from the model with s < 1, in which case a GFF
with a compact and dimensionful target space is perturbed by composite operators that are
not scaling operators. In the latter case we do not have at the moment a proof that the theory
is renormalizable to all orders of the perturbative expansion, but we also found no evidence
to the contrary in our computations. One reason for expecting (37) to be renormalizable is
that, as we will see below, at δ > 0 the theory has a UV fixed point, where both Og and
Oh become relevant scaling operators. Therefore, at least in principle, we could start from
that manifestly renormalizable setting in order to construct our flow. In practice, this is not
very useful, because in this case Og is strictly relevant (i.e. super-renormalizable) and the UV
fixed point turns out to be far from the IR one.20 Moreover, at δ = 0 one of the relevant
perturbations of such UV fixed point becomes exactly marginal, and it becomes impossible to
reach the IR fixed point of interest in this way. The solution is to work with (37) away from
the UV fixed point at δ > 0, but perturbatively in δ and thus close to the fixed point of the
δ = 0 model. Therefore, we begin our analysis from the δ = 0 case.

4.1 Beta functions and fixed point at s = 1

We compute the beta functions for the model with s = 1 by employing conformal perturbation
theory (see e.g. [74] for an extensive review). The basic idea is that it is sufficient to look at
perturbative expansion of one point functions of the perturbing operators, inserted at infinity.
For an operator O(x) with dimension ∆O in a given CFT, its insertion at infinity is defined as

〈O(∞) . . . 〉CFT ≡ lim
x→∞

x2∆O〈O(x) . . . 〉CFT , (65)

and its finiteness is a simple consequence of the conformal properties of correlators.
In our case, we will be considering 〈Og〉D and 〈Oh〉D, where the expectation value 〈. . .〉D

has been defined in (43), and it is here understood to be evaluated perturbatively in g and h.
The fact that correlators appearing in such expansion are the GFF correlators, and hence they
are all conformal at δ = 0, guarantees the existence of the limit.

In this setup, as long as the IR cutoff L is kept finite, UV divergences in the a → 0 limit
can always be removed via coupling renormalization. Indeed we do not need to renormalize
the operator inserted at∞, as it will never be at coinciding point with an operator from the
interaction (as long as this is restricted to a finite interval), and thus it will be sufficient to
renormalize the coupling.

20There is a similar problem when deriving the BKT flow diagram from the sine-Gordon model [62].
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Expanding to quadratic order in the couplings, we have

〈σ̂3χ(∞)〉D =
h
2

tr(σ̂2
3)

∫ L/2

−L/2
dx〈χ(∞)χ(x)〉0

+
g2

2

∫ L/2

−L/2+a
dx1

∫ x1−a

−L/2
dx2 tr[〈σ̂3χ(∞)σ̂+V+(x1)σ̂−V−(x2)〉0 + (12)]

+ . . . (66)

=h L +
g2

2
I1 + . . . ,

〈σ̂+V+(∞)〉D =
g
2

tr(σ̂+σ̂−)

∫ L/2

−L/2
d x 〈V+(∞)V−(x)〉0

+
gh
2

∫ L/2

−L/2+a
dx1

∫ x1−a

−L/2
dx2 tr [〈σ̂+V+(∞)σ̂−V−(x1)σ̂3χ(x2)〉0 + (12)]

+ . . . (67)

=
g
2

L +
gh
2

I2 + . . . ,

where (i j) means exchanging the operators located at x i and x j while preserving the path
ordering. The factors of 1/2 on the right-hand side are due to the partition function in the
denominator appearing in the definition of the expectation value (43).

For the terms linear in the couplings, we used that σ̂2
3 = 1 (the 2 × 2 identity matrix),

tr(σ̂+σ̂−) = 1, and that the two-point functions of χ and V± are unit normalized.
The three-point functions are given in appendix D, and their integrals evaluate to:

I1 = I2 = −2
p

2L(1+ log(a/L)) + 2
p

2a . (68)

Therefore, eq. (66) and (67) feature UV divergences as a → 0, which we can remove by
expressing the bare couplings in terms of renormalized couplings (denoted with subscript r)
as follows:

g = gr + 2
p

2grhr log(a/L) , h= hr +
p

2g2
r log(a/L) . (69)

At the next (i.e. cubic) order in the perturbative expansion, we have:

〈σ̂3χ(∞)〉D
�

�

cubic order =
hg2

2

∫

I3(a)
tr [〈σ̂3χ(∞)σ̂+V+(x1)σ̂−V−(x2)σ̂3χ(x3)〉0,c + 5 perm.]

+
h3

2

∫

I3(a)
tr 〈σ̂3χ(∞)σ̂3χ(x1)σ̂3χ(x2)σ̂3χ(x3)〉0,c

≡ hg2 L I3 + h3 L I4 ,

〈σ̂+V+(∞)〉D
�

�

cubic order =
gh2

2

∫

I3(a)
tr [〈σ̂+V+(∞)σ̂−V−(x1)σ̂3χ(x2)σ̂3χ(x3)〉0,c + 2 perm.]

+
g3

2

∫

I3(a)
tr 〈σ̂+V+(∞)σ̂−V−(x1)σ̂+V+(x2)σ̂+V−(x3)〉0,c

≡ gh2 L I5 + g3 L I6 , (70)

where the integration domain was defined in (22), and 〈. . . 〉0,c means that we are taking the
(order-respecting) connected correlator, obtained by taking into account the expansion of the
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partition function in the denominator of the expectation value (see again (43)). In the case of
four-point functions for generic operators Oi , the connected correlator is:
∫

I3(a)
tr〈O∞(∞)O1(x1)O2(x2)O3(x3)〉0,c ≡

∫

I3(a)
tr〈O∞(∞)O1(x1)O2(x2)O3(x3)〉0

−
∫ L/2

−L/2
dx1 tr〈O∞(∞)O1(x1)〉0

∫

I2(a)
tr〈O2(x2)O3(x3)〉0 ,

(71)
where we used the fact that in the unperturbed CFT one-point functions vanish. Evaluating
the integrals, we find:

I3 = 2I5 = 4 log2(a/L) + 10 log(a/L) + 10−
2π2

3
+ log2+ . . . ,

I4 = −2− log2+ . . . ,

I6 = log2(a/L) + 5 log(a/L)/2−
�

π2 − 12
�

/6+ . . . ,

(72)

where we have implicitly subtracted power-law divergences, and the dots stand for vanishing
terms as a→ 0.

Plugging these integrals into (70), the relation between bare and renormalized couplings
at cubic order is found to be:

g = gr + gr

�

2
p

2hr − g2
r − 2h2

r

�

log(a/L) + 2gr

�

g2
r + 2h2

r

�

log2(a/L) ,

h= hr + g2
r

�p
2− 2hr

�

log(a/L) + 4g2
r hr log2(a/L) .

(73)

Note that the terms linear in gr in the first equation exactly reproduce (51), up to a finite
redefinition of gr (unless κ = 1/L), thus providing a useful crosscheck. However, we should
stress the importance of keeping h in the action, rather than eliminating it in favor of a shifted
b. Indeed we see that the g3 term, i.e. I6, has a double-log divergence, and as there is no g2

term in the renormalization of g, the gh term is crucial for the cancellation of such term, and
thus for the consistency of beta functions.

The beta functions for the bare couplings are given by their derivative with respect to
log(1/a) at fixed renormalized couplings:21

βg = −a
d g
da

, βh = −a
dh
da

, (74)

which, upon re-expressing everything in terms of the bare couplings, give

βg = −2gh(
p

2− h) + g3 +O(g3h, g5) , βh = −g2(
p

2− 2h) +O(g2h2, g4) . (75)

Two comments are in order. First, we notice that the beta functions are invariant under
the reflection h→

p
2−h. Remembering that b = 1−

p
2h (cfr. Section 3.2.1), this is nothing

but the invariance under b → −b of the model. Second, in terms of b = 1 −
p

2h, the beta
functions translate to

βg = (b
2 − 1)g + g3 , βb2 = 4b2 g2 , (76)

which at leading order agree with (24), at s = 1, with J = b2.

21Alternatively, we could define beta functions for the renormalized couplings, by deriving them with respect to
L, at fixed bare couplings. The two schemes are related by a coupling redefinition (e.g. [75]).
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Fixed points

From the computing the zeros of the beta functions above we find one line of RG fixed points
at g⋆ = 0, parametrized by h (or b), with the BKT structure of the RG flow around the special
point g = h= 0 (or g = 0 and b = 1), as shown in fig. 1(a).

Along the line of fixed points we find one marginal operator (i.e. χ), and one operator
with scaling dimension ∆2 = 1− 2h(

p
2− h) = b2. The latter is the dimension of the vertex

operator (with b0 = 1 replaced by b), which becomes relevant or irrelevant at h> 0 or h< 0,
respectively. As explained before, the vertex operators changing from relevant to irrelevant
corresponds to the transition from the disordered to ordered phase. Indeed, as found in [22],
and reviewed in appendix B, the original LRI model corresponds to a line in the {g, h} plane,
parametrized by J = J/T , where J is the Ising coupling and T is the temperature. The critical
temperature corresponds to the point at which such a line intersects the RG trajectory that in
the IR ends at g = h = 0, which therefore is the fixed point characterizing the universality
class of the phase transition. However, the approach to such a fixed point is via a marginally
irrelevant operator, because the operators Og and Oh are marginal at the fixed point. There-
fore, we expect to find logarithmic corrections to scaling in the IR. See Appendix E for more
details on this.

4.2 Spectrum at s = 1

At the fixed point g = h = 0, the theory at s = 1 consists of a compact GFF φ with ∆φ = 0
(or equivalently, the Neumann boundary condition for the d = 2 free compact scalar Φ, see
Appendix A.2) and radius 1, together with an auxiliary C2 Hilbert space. As explained in
Section 3.2.3, the LRI CFT is obtained by restricting to the U(1)-singlet sector.

In light of the list of possible U(1)-singlet operators in (63), we can write down the gen-
erating function for the full spectrum at s = 1

Z1(x , y, q) = trH
�

xα y JqD
�

=
1+ x + q+ x yq
∞
∏

n=1
(1− x yn+1qn)

. (77)

Here D is the dilatation operator, (−1)α is the generator of the global Z2, while (−1)J is
the generator of parity. The construction of (77) is the following: the numerator provides
the seeds for the parity even or odd operators with or without vertex operators, i.e. 1, σ̂3
and V+σ̂+ ± V−σ̂−, while the denominator accounts for the possible words A, B, C , D in (63),
assigning them a factor x for each power of φ, a factor y for each power of ∂ and φ, and a
factor q for each power of ∂ .

The generating function for primaries only is

Z∗1(x , y, q) = 1+ (1− yq)[Z1(x , y, q)− 1] , (78)

where, after having isolated the identity contribution, we subtract the operators that can be
written as a total derivative.

We can use Z∗1 to produce the following table of multiplicities of primaries, up to scaling
dimension ∆= 10:
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Table 2: Operator multiplicities at δ = 0. Here dab stands for the dimension of the
space of primaries with Z2 charge a and parity charge b.

∆ d++ d+− d−+ d−−
0 1 0 1 0
1 2 0 1 0
2 1 0 1 0
3 2 0 1 1
4 2 1 3 0
5 4 0 2 2
6 3 3 5 1
7 7 1 3 5
8 5 6 9 2
9 13 2 6 9

10 8 12 16 4

(79)

The first Z2-even, parity-odd primary appears at ∆ = 4, in agreement with what we saw
at s = 1/2, in Section 2.2.2. This is reassuring since, as explained in Section 2.2.3, we expect
a tower of protected Z2-even parity-odd primaries with ∆ = 4,6, . . . to be present for all
s ∈ (1/2,1).

There are two operators of ∆ = 0, namely the identity and σ̂3. The latter is Z2-odd and
parity-even, so we can identify it with the s→ 1 limit of the operator σ. Moving on to ∆= 1,
we find the following operators

Table 3: Primary operators with ∆= 1 at δ = 0.

operator (−1)α (−1)J

∂ φ −1 +1
∂ φσ̂3 +1 +1

V+σ̂+ + V−σ̂− +1 +1
V+σ̂+ − V−σ̂− −1 −1

(80)

We can identify the first line with χ ∼ ϕ3 (in hindsight, this is why we defined χ = ip
2
∂ φ

in (38)). The second and third line are two linearly independent marginal operators which
are uncharged under both Z2 and parity. Finally, the last line is needed to recombine with the
trivial ∆= 0 conformal multipliet of σ to form a conformal multiplet with ∆σ > 0.

4.3 Beta functions and fixed point at s < 1

Next, we discuss beta functions for the model at δ > 0, i.e. s < 1. While the coupling g
that multiplies the generalized vertex operators remains dimensionless, the coupling h that
multiplies χ has now (mass) dimension equal to δ/2, and so we expect the beta function of h
to start linearly in h. More drastically, while the correlators of Oh remain conformal, Og is no
longer a scaling operator at δ > 0 and its correlators are exponential functions. Nevertheless,
the structure of perturbation theory remains similar to that of the s = 1 model. In particular,
for the computation of beta functions, we will again restrict the interaction to a finite interval
and renormalize one point functions of operators Og and Oh inserted far away from it.

Generalizing (65), we define

〈O(∞) . . . 〉D ≡ lim
x→∞

〈O(x) . . . 〉D
〈O(x)O(0)〉0

. (81)
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Unlike for the conformal case (65), it is in general nontrivial to show that the above definition
leads to a finite result. Fortunately, our UV theory is GFF and upon applying Wick’s theorem, it
is straightforward to see that the above limit is finite for any primary operator that is defined
as a normal-ordered monomial in φ (with derivatives). The case of the vertex operators is
less obvious, but if also all the other operators in the correlator are vertex operators, then the
explicit formula (36), together with the fact that only an even number of alternating charges is
allowed, leads to the same conclusion. The most intricate case is the one of mixed correlators,
but again the finiteness of (81) can be proven with the help of Wick’s theorem, in the same
way as it is employed in Appendix D. Some examples of useful correlators with an operator
inserted at infinity are provided in Appendix D.1.

As in the δ = 0 case, we have, up to higher order perturbative corrections:

〈σ̂3χ(∞)〉D =
h
2

tr(σ̂2
3)

∫ L/2

−L/2
dx〈χ(∞)χ(x)〉0

+
g2

2

∫ L/2

−L/2+a
dx1

∫ x1−a

−L/2
dx2 tr[〈σ̂3χ(∞)σ̂+V+(x1)σ̂−V−(x2)〉0 + (12)]

+
hg2

2

∫

I3(a)
tr [〈σ̂3χ(∞)σ̂+V+(x1)σ̂−V−(x2)σ̂3χ(x3)〉0,c + 5 perm.]

+
h3

2

∫

I3(a)
tr 〈σ̂3χ(∞)σ̂3χ(x1)σ̂3χ(x2)σ̂3χ(x3)〉0,c + . . . ,

〈σ̂+V+(∞)〉D =
g
2

tr(σ̂+σ̂−)

∫ L/2

−L/2
d x 〈V+(∞)V−(x)〉0

+
gh
2

∫ L/2

−L/2+a
dx1

∫ x1−a

−L/2
dx2 tr [〈σ̂+V+(∞)σ̂−V−(x1)σ̂3χ(x2)〉0 + (12)] + . . .

+
gh2

2

∫

I3(a)
tr [〈σ̂+V+(∞)σ̂−V−(x1)σ̂3χ(x2)σ̂3χ(x3)〉0,c + 2 perm.]

+
g3

2

∫

I3(a)
tr 〈σ̂+V+(∞)σ̂−V−(x1)σ̂+V+(x2)σ̂+V−(x3)〉0,c + . . . , (82)

where the finite-δ correlation functions of V± and χ can be found in appendix D.
In practice, evaluating the divergent part of the integrals above for generic δ can be rather

difficult, for those correlators whose exponential factors survive in the limit (81), as for the
〈χV V 〉 or 〈V V V V 〉 cases (see Appendix D.1). Luckily, as long as we are interested in the IR
fixed point properties only at the leading nontrivial order in δ, we can evaluate such integrals
at δ = 0 and thus recover (68) and (72). In order to justify the exchanging of the limit δ→ 0
with the integration, it suffices to notice that at fixed a and L, and for some finite δ∗ > 0, all the
integrands are uniformly bounded functions in the integration range for δ ∈ [0,δ∗]; therefore,
by the dominated convergence theorem we are allowed to exchange limit and integral.

Therefore, taking into account the dimensionality of h, we get

βg = −2gh(
p

2− h) + g3 +O(g3h, g5) , βh = −
δ

2
h− g2(

p
2− 2h) +O(g2h2, g4) . (83)

This is yet not the final answer for the physical RG. Indeed, as explained in Section 3.2.1,
partition function and correlators of U(1)-singlet operators only depend on the combination
b0 −
p

2h, hence the beta function entering the Callan-Symanzik equation for correlators of
singlet oprators is that for such a combination. In standard RG language, what this means
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is that while both h and b0 flow, one of them is a redundant coupling, only the combination
b0 −
p

2h being an essential coupling. Therefore, we define the physical coupling in cutoff
units as b = (b0 −

p
2h)aδ/2, and obtain the beta functions

βg = (b
2 − 1)g + g3 , βb2 = −δb2 + 4b2 g2 , (84)

namely the same as (76) plus the classical contribution due to the dimension of b2. We have
thus shown how a perturbative computation in the model (37) fully reproduces the Koster-
litz beta functions (24), and thus the flow of figure 1, with J = b2, plus a next-to-leading
correction of order g3.

4.3.1 Fixed points

With the beta functions (84), we find a non-trivial fixed point at

g∗ = ±

√

√δ

4
+O(δ3/2) , b2

∗ = 1−
δ

4
+O(δ2) . (85)

We stress that although the fixed point of b2 is of order one, the result is consistent with
perturbation theory, because using that b2

∗ = (b0 −
p

2h∗)2aδ, we find that

h∗ =
δ
p

2

�1
8
+

1
2

log(κa)
�

+O(δ2) , (86)

so that both g∗ and h∗ are perturbative in δ. The choice of sign for g∗ is irrelevant, as the full
set of observables is invariant under g →−g. However, intermediate calculations do depend
on the sign of g∗, hence in the following we will choose g∗ = −

p

δ/4.

IR fixed points and gauging. The fixed point (85) is the one that corresponds to the 1d
CFT for the critical LRI. We should stress that the relevant fixed points are those of βb2 , and
not those of βh, for the reasons explained above. In other words, we are seeking fixed points
for the singlet sector of the model (37), that is, the gauged model. This remark is non-trivial
because gauging and seeking for fixed points do not commute: the condition βb0

= βh = 0 is
stronger than βb2 = 0, and its only fixed point that is perturbatively accessible is the trivial one
at b0 = h= g = 0; conversely, at the nontrivial fixed point of βb2 , the dimensionless couplings
b0aδ/2 and haδ/2 keep flowing, hence we must restrict to the U(1)-singlet sector in order to
have a CFT, because correlators of non-singlet operators in general depend separately on b0
and h.

UV fixed point. Besides the nontrivial fixed point (85), the beta functions (84) admit also a
trivial fixed point at g = b2 = 0. At δ > 0, both g and b2 are relevant perturbations of this
fixed point, which thus is a UV fixed point, as it is also clear from figure 1. Such UV fixed
point describes a a noncompact GFF φ plus a decoupled qubit. Around this point, the model
(37) corresponds to a standard perturbation by relevant operators. Notice that the operator
Og reduces to σ̂++ σ̂−, which is still nontrivial because it does not commute with Oh: we can
repeat the analysis of section 3.2.1, and find that the effective b2 increases under the effect of
the Oh term. Therefore, we see that from an RG perspective we can qualitatively view b2 as
the analogue of a mass parameter m2: perturbing a standard massless free boson ϕ by a ϕ2

term we generate a mass, and an RG flow; if instead we start directly with a massive boson,
self-interactions such as ϕ4 are not scaling operators, they are such only in the UV limit.
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Absence of phase transition at s > 1. For δ < 0, i.e. s > 1, the non-trivial fixed point
(85) becomes complex (real b2

∗ , imaginary g∗). In this case the flow in the real {g, b2} plane
displays only the trivial fixed point at g = b2 = 0, which now has one irrelevant (b2) and
one relevant (g) perturbation. Therefore, trajectories always flow towards large g, i.e. the
symmetric phase, unless we start exactly from g = 0 (i.e. zero temperature), in which case we
end up at the trivial fixed point, where the qubit degree of freedom is decoupled from the GFF.
In other words, the physics of the 1d SRI is reproduced at s > 1.

4.4 Anomalous dimensions

4.4.1 Leading near-marginal operators at the fixed point

By standard RG arguments, linearizing the beta functions around the IR fixed point (85) we
find the linear combination of Oh and Og that behave as scaling operators at the fixed point,
along with their IR scaling dimensions ∆± = 1+ω±. The quantities ω± are the eigenvalues
of the stability matrix:

Bi j = ∂iβ j|g∗,b2
∗
=

�

−1+ b2
∗ + 3g2

∗ 8b2
∗ g∗

g∗ 4g2
∗ −δ

�

, (87)

where indices i, j run over the couplings {g, b2}. Diagonalizing this matrix, we find
ω± = ±

p
2δ+δ/4+O(δ3/2), and thus the IR scaling dimensions

∆± = 1±
p

2δ+δ/4+O(δ3/2) . (88)

The associated scaling operators O± are the linear combinations

O± = a−∆±
∑

i∈{g,b2}

v i
±Õi , (89)

where we introduced the notation Õi ≡Oia
∆0

i , with ∆0
i being the canonical (or engineering)

dimension of Oi , and where v i
± is the i-th component of a left-eigenvector of Bi j , corresponding

to the eigenvalueω±. We stress that the scaling operators are written directly in terms of bare
operators, because the beta functions of bare couplings are associated to the Callan-Symanzik
equations for bare correlators.

We find v± = (±
1p
2
+
p
δ

8 +O(δ),−2), and thus:

a∆±O± =
1
p

2
(Õh ± Õg) +

p
δ

8
Õg +O(δ) , (90)

where we used Õb2 = − 1
2
p

2
Õh +O(δ), that follows from the relation between b and h.22

The signs in the definition of O± depend on the sign of the fixed point g∗. If we had picked
the other sign, g∗ = +

p
δ/2, we would have found the same expression up to the change

Og → −Og , which is obvious from the action. Notice that at leading order, this corresponds
to exchanging O+↔O−, but this property is broken by the term of order

p
δ.

One might wonder how robust the O(δ) correction for ∆± is, given the order at which we
have computed the beta functions. The hypothetical higher-order corrections to the beta func-
tions above are constrained as follows. First, both βg and βb2 are even functions of b. Second,
due to the charge neutrality constraint, βg (βb2) is an odd (even) function of g. Third, the beta

22An integrated operator Õi is obtained by deriving the action with respect to the associated (dimensionless)
coupling. Therefore, we have Õb2 = ( ∂ b2

∂ (haδ/2) )
−1 Õh.
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functions are computed as expansions in powers of g and h, that can then be rearranged as se-
ries in g and b2−1. Lastly, we assume that the beta functions coefficients depend analytically
on δ. All in all, we have

βg =
∑

n=0

∑

m=0

a(1)n,m(δ)g
2n+1(b2 − 1)m , βb2 = −δb2 +

∑

n=1

∑

m=0

a(2)n,m(δ)g
2n(b2 − 1)m , (91)

with
a(1)n,m(δ) =
∑

k=0

a(1)n,m,kδ
k , a(2)n,m(δ) =

∑

k=0

a(2)n,m,kδ
k , (92)

and, in order to match (84),

a(1)0,0,0 = 0 , a(1)0,1,0 = a(1)1,0,0 = 1 , a(2)1,0,0 = a(2)1,1,0 = 4 . (93)

Using this ansatz it is not difficult to verify that the corrections to (84) affect the fixed point
location and critical exponents starting from O(δ3/2), and the eigenvectors from O(δ), hence
the predictions (88) and (90) are robust.

4.4.2 Anomalous dimensions of σ̂3 and χ

As we discussed in Section 2, the spectrum of the 1d LRI CFT should contain two protected
primary operators which are even under parity and odd under global Z2. In the near-crossover
description, these two operators are σ̂3 and χ, with protected dimensions

∆σ =
δ

2
, ∆χ = 1−

δ

2
. (94)

For σ̂3, we have argued in Section 3.2.2 that its dimension is protected as a consequence of the
Schwinger-Dyson equations; for χ, its dimension must be 1+∆φ , and as usual in long-range
models φ has no anomalous dimension. We now want to verify that these conclusions are
corroborated by actual computations with our model.

The anomalous dimension of an operator O can be computed by treating O as a perturba-
tion with coupling λ, and computing the beta function βλ for this new coupling. From there,
the scaling dimension is obtained from ∂λβλ evaluated at the fixed point at λ = 0, via the
formula ∂λβλ|g∗;λ=0 = ∆O − d. Considering the expectation value of σ̂3, the first non-trivial
contribution is at quadratic order in g and h, for which we obtain:

〈σ̂3(∞)〉D =
λ

2

∫

dy tr〈σ̂3(∞)σ̂3(y)〉0

+
λg2

2

∫

dy1 dy2 dy3 tr
�

〈σ̂3(∞)σ̂3(y1)Og(y2)Og(y3)〉0,c + perms
�

+
λh2

2

∫

d y1 d y2 d y3 tr
�

〈σ̂3(∞)σ̂3(y1)Oh(y2)Oh(y3)〉0,c + perms
�

=λIσ0 +λg2 Iσ1 +λh2 Iσ2 ,

(95)

with

Iσ0 = L , Iσ1 = L
�

2+ log2+ 2 log
a
L
+ . . .
�

, Iσ2 = −L(2+ log 2) + . . . , (96)

where the dots represent higher-order corrections in a. Removing the logarithmic divergences
requires the introduction of the renormalized coupling λr via the relation

λ= λr − 2λr g2
r log

a
L
+ . . . , (97)
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and introducing the dimensionless coupling λ̃= aλ, we find the following beta function:

βλσ = −
dλ̃

d log a
= −λ̃+ 2λ̃g2 + . . . (98)

Given that the canonical dimension of σ̂3 is zero, we can identify ∆σ with the anomalous
dimension, which is thus

γσ = 1+ ∂λβλ = 2g2 → ∆σ = γσ|g=g∗ =
δ

2
. (99)

That this dimension does not receive higher-order corrections in δ is guaranteed by the
Schwinger-Dyson equation (58), which fixes Dx σ̂3 to be a descendant operator of protected
scaling dimension 1+δ/2 at the non-trivial IR fixed point. In order to match the engineering
and scaling dimension of the spin operator, we define σ ≡ a−∆σσ̂3, that we will use in the
following.

Let us now turn to χ, with tree-level dimension 1−δ/2. Repeating the same calculations
we find that all terms are zero except the linear term, which evaluates to λL. Hence, χ does
not get an anomalous dimension. It is not difficult to check that the same conclusion holds for
higher orders in δ.

All in all, we reproduce (94) and find that they are indeed protected and will not receive
corrections at higher orders in δ.

4.5 OPE coefficients

In this section, we compute the following correlation functions:

〈ψi(x1)ψ j(x2)O±(x3)〉D , 〈O±(x1)O±(x2)O±(x3)〉D ,

〈O+(x1)O+(x2)O−(x3)〉D , 〈O+(x1)O−(x2)O−(x3)〉D ,
(100)

where we denote ψi = {σ,χ} for brevity.
At the IR fixed point, where the LRI becomes a 1d CFT, we expect the form of these corre-

lation functions to be consistent with conformal symmetry – see Section 2.2.1. In particular,
assuming that all Oi = {ψi ,O±} flow to (scalar) conformal primaries in the IR, we must have
that

〈Oi(x1)〉D = 0 ,

〈Oi(x1)O j(x2)〉D =
δi jNiN j

x2∆i
12

,

〈Oi(x1)O j(x2)Ok(x3)〉D =
ci jkNiN jNk

x
∆ik+∆ j

12 x
∆i j+∆k

13 x
∆ ji+∆k

23

,

(101)

where ci jk are the OPE coefficients, and Ni are the (scheme-dependent) normalization factors
computed in appendix F.23

Our computation proceeds as follows: we compute three-point functions in a perturbative
expansion in the couplings g and h, and expand the correlators in δ before integrating them,
as we did for the beta functions. Then, we tune the couplings to their fixed-point values, which
are given as expansions in

p
δ. The overall result is thus arranged as a power series in

p
δ.

23In order to identify the basis of conformal primaries at the IR fixed point, operators O± must mix with the
identity 1, so that (90) is replaced by (F.5), and χ must mix with σ, so that χ is replaced by [χ] in (F.13). In order
to avoid notational overburden, in the following we omit the square braket on χ. We refer the reader to appendix
F for the detailed calculation.
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4.5.1 Tree level

At O(δ0), there are no nonzero three-point functions involving only σ,χ. The ones between
σ,χ and O±, the leading marginal operators defined in (90), are nonzero:

〈σ(x1)χ(x2)O±(x3)〉D =
1/
p

2

x2
23

. (102)

Thus the OPE coefficients with σ,χ at tree level are given by:

cψiψ j± =
1−δi j
p

2
, cψiψ jψk

= 0 . (103)

The OPE coefficients involving only O± are nonzero at tree level as well. Using the correlation
functions between χ and V± given in appendix D, we immediately find

c±±± =
3
2

, c++− = c−−+ = −
1
2

. (104)

4.5.2 Order
p
δ

At order
p
δ, it is sufficient to consider three-point functions perturbed by g Og . The OPE

coefficients cψiψ jψk
remain zero at this order, while cψiψ j± get corrected. Starting with cσσ±

we find

〈σ(x1)σ(x2)O±(x3)〉D =
g∗
2

∫

d y tr〈Pσ̂3(x1)σ̂3(x2)
1
p

2
([Õh]± [Õg])(x3)Og(y)〉0,c , (105)

where we emphasize that the correlator is evaluated at the fixed point g∗. The assumed or-
dering of the three external points is L

2 > x1 > x2 > x3 > −
L
2 , and we will keep this ordering

throughout this section. The integrals can be straightforwardly computed and, taking the limit
L→∞, give:

g∗
2

∫

d y tr〈Pσ̂3(x1)σ̂3(x2)
1
p

2
([Õh]± [Õg])(x3)Og(y)〉0,c = ∓

g∗
p

2x12

x13 x23
, (106)

which, comparing to the expressions of eq. (101) and using the normalization factors com-
puted in appendix F gives:

cσσ± = ±
1
p

2

p

δ . (107)

Repeating the computation for tr〈χ(x1)χ(x2)O±(x3)〉D gives the result cχχ± = 0.
The other OPE coefficients cσχ±, c±±±, c±±∓ can be computed in a similar way. Note how-

ever that they have a nonzero value already at tree level, and are therefore sensitive to the
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O(
p
δ) corrections to O±, see (F.5). Taking into account this correction, we compute

〈σ(x1)χ(x2)O±(x3)〉D = tr〈σ(x1)χ(x2)O±(x3)〉0

+
g∗
2

∫

d y tr〈Pσ(x1)χ(x2)O±(x3)Og(y)〉0,c +O(δ)

=a1−∆±−∆σ
�

Iσχ±0 + g∗ I
σχ±
1 +O(δ)
�

, (108)

〈O±(x1)O±(x2)O±(x3)〉D = tr〈O±(x1)O±(x2)O±(x3)〉0

+
g∗
2

∫

d y tr〈PO±(x1)O±(x2)O±(x3)Og(y)〉0,c +O(δ)

=a3−3∆±
�

I±±±0 + g∗ I
±±±
1 +O(δ)
�

, (109)

〈O+(x1)O+(x2)O−(x3)〉D = tr〈O+(x1)O+(x2)O−(x3)〉0

+
g∗
2

∫

d y tr〈PO+(x1)O+(x2)O−(x3)Og(y)〉0,c +O(δ)

=a3−2∆+−∆−
�

I++−0 + g∗ I
++−
1 +O(δ)
�

, (110)

〈O+(x1)O−(x2)O−(x3)〉D = tr〈O+(x1)O−(x2)O−(x3)〉0

+
g∗
2

∫

d y tr〈PO+(x1)O−(x2)O−(x3)Og(y)〉0,c +O(δ)

=a3−2∆−−∆+
�

I+−−0 + g∗ I
+−−
1 +O(δ)
�

, (111)

where

Iσχ±0 =
p

2

2x2
23

, Iσχ±1 = ±
2 log
�

x13 x23
a x12

�

x2
23

,

I±±±0 =
3
�

4±
p

2δ
�

8x12 x13 x23
±
p
δ

a
p

2

�

1

x2
12

+
1

x2
13

+
1

x2
23

�

,

I±±±1 = ±
p

2
a

�

1

x2
12

+
1

x2
13

+
1

x2
23

�

±
12 log
� x12 x13 x23

a3

�

− 9

2
p

2x12 x13 x23

,

I++−0 = −
p
δ

a
p

2x2
12

+
p

2δ− 4
8x12 x13 x23

, I++−1 = −
p

2

ax2
12

+
4 log
�

x13 x23a
x3

12

�

+ 1

2
p

2x12 x13 x23

,

I+−−0 =
p
δ

a
p

2x2
23

−
p

2δ+ 4
8x12 x13 x23

, I+−−1 =
p

2

ax2
23

+
4 log
�

x3
23

x12 x13a

�

− 1

2
p

2x12 x13 x23

.

(112)

This results in the following values for the OPE coefficients at the fixed point at O(
p
δ):

cσχ± =
1
p

2
∓
p
δ

16
, c±±± =

3
2
±

39
p
δ

16
p

2
, c++− = −

1
2
+
p
δ

16
p

2
, c+−− = −

1
2
−
p
δ

16
p

2
. (113)

4.5.3 Order δ

While computing the order O(δ) correction to cσχ±, c±±±, c±±∓ requires including the O(δ)
corrections to O±, in eq. (F.20), we can compute the OPE coefficients cσσ± to order O(δ)
straight away.
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The three-point function is given by

〈σ(x1)σ(x2)O±(x3)〉D = tr〈σ(x1)σ(x2)O±(x3)〉0 +
g∗
2

∫

d y tr〈Pσ(x1)σ(x2)O±(x3)Og(y)〉0,c

+
g2
∗

4

∫

dy1 dy2 tr〈Pσ(x1)σ(x2)O±(x3)Og(y1)Og(y2)〉0,c

+
h∗
2

∫

dy1 tr〈Pσ(x1)σ(x2)O±(x3)Oh(y)〉0,c +O(δ3/2)

=a1−2∆σ−∆±
�

Iσσ±0 + g∗ I
σσ±
1 + g2

∗ I
σσ±
2 + h∗ I

σσ±
3 +O(δ3/2)
�

=
cσσ±N 2

σN±
(x12)2∆σ−∆±(x13)∆±(x23)∆±

,

(114)
where we have explicitly included the normalizations Nσ,N± that differ from 1 at this or-
der. The expressions are given in (F.10) and (F.19). The perturbation Oh contributes as well.
Evaluating the integrals, we find

Iσσ±0 =
1
a

�

±

√

√δ

2
−

1
2
δ log(8aκ)

�

, Iσσ±1 = ±
p

2
a
∓
p

2x12

x13 x23
+
p

δ

�

1
4a
−

x12

4x13 x23

�

,

Iσσ±2 =
log64

a
∓

4x12(log ax12
x13 x23
− 1)

x13 x23
, Iσσ±3 =

p
2

a
.

(115)
Adding all contributions and evaluating them at the fixed point, we obtain

cσσ± = ±
p
δ
p

2
−

15
16
δ+O(δ3/2) . (116)

What about cχχ±? We would not need to worry about higher-order corrections to O±, however
this would require us to use the three-point function 〈χ(x1)χ(x2)χ(x3)〉 at arbitrary s. An
easier way to obtain these OPE coefficients is by exploiting the OPE relations mentioned in
Section 2.2 and given in (18), which relate cχχ± to cσσ± and cσχ±. The result is given in
(236).

5 Analytic conformal bootstrap analysis

In this section, we study the 1d LRI CFT using analytic conformal bootstrap and determine
CFT data of light primary operators perturbatively in

p
δ. The bootstrap results are in perfect

agreement with the RG calculations of the previous section and extend them to higher orders
and to other observables. This agreement provides strong evidence for the conformal invari-
ance of the IR fixed point, as well as for validity of the proposed field-theoretic description.

5.1 Setting up the problem

Our bootstrap analysis rests on the following assumptions:

1. The critical 1d LRI is described by a family of 1d reflection-positive CFTs, as defined in
Section 2.2.1, parametrized by δ ∈ [0,1/2), possessing a global Z2 and parity symmetry.

2. As δ → 0+, the CFT data tend continuously to those of the exact solution at s = 1,
identified in Section 4.2, and denoted by ∆(0)i and c(0)i jk .
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Table 4: Primary operators with ∆(0) = 0,1, 2.

operator form at δ = 0 ∆(0) Z2 parity

identity 1 0 +1 +1

σ σ̂3 0 −1 +1

Og σ̂+V+ + σ̂−V− 1 +1 +1

Oh iσ̂3∂ φ/
p

2 1 +1 +1

χ i∂ φ/
p

2 1 −1 +1

ρ − :(∂ φ)2: /(2
p

2) 2 +1 +1

eρ σ̂3 :(∂ φ)2: /(2
p

2) 2 −1 +1

3. The CFT data admit an asymptotic expansion in nonnegative powers of
p
δ as δ→ 0+,

i.e.

∆i(δ)∼
∞
∑

n=0

∆
(n)
i δ

n
2 , ci jk(δ)∼

∞
∑

n=0

c(n)i jkδ
n
2 . (117)

4. The CFT contains Z2-odd parity-even primaries σ, χ of exact scaling dimensions
∆σ = δ/2 and ∆χ = 1−δ/2.

Eventually, we will also make an additional small assumption regarding the behaviour of the
CFT data under

p
δ → −

p
δ. In the rest of this section, we will use assumptions 1 and 4 to

constrain ∆(n)i , c(n)i jk for n> 0.

Let us start by summarizing the δ = 0 CFT data of primary operators with∆(0) ≤ 2, shown
in Table 4.24 Since we normalize the two-point function of φ as 〈φ(x)φ(y)〉= −2 log |x − y|,
all of the operators in the table have unit-normalized two-point functions.

The space of Z2-even primaries with∆(0) = 1 is two-dimensional, spanned by Og , Oh. For
δ > 0, we expect that the degeneracy is lifted, giving rise to a pair of primaries O+, O−. As
δ→ 0+, we must have

�

O+
O−

�

→ A

�

Og
Oh

�

, (118)

where A ∈ GL2(R). Since both sets {O+,O−}, {Og ,Oh} are orthonormal, we have in fact
A ∈ O(2). By possibly multiplying O+ by −1, we can arrange A ∈ SO(2). It follows that at
δ = 0+ we must have

O+ = cosθ Og + sinθ Oh ,

O− = − sinθ Og + cosθ Oh ,
(119)

where θ ∈ [0, 2π). By possibly multiplying both O+ and O− by −1, and switching O+↔O−,
we can arrange θ ∈ [0,π/2). We will see below that the conformal bootstrap fixes θ uniquely.

Next, let us discuss the OPE of light primaries at δ = 0+. We have σ(x)σ(y) = σ̂2
3 = 1,

and so c(0)
σσP = 0 for all primaries P ̸= 1. Next, we have

σ(x)χ(y) = iσ̂3∂ φ(y)/
p

2=Oh(y) = cosθ O−(y) + sinθ O+(y) . (120)

It follows that
c(0)σχ+ = sinθ , c(0)σχ− = cosθ , (121)

24Note that all of the listed primaries are parity-even. Strictly at δ = 0, there is also a ∆= 1, Z2-odd, parity-odd
primary σ̂+V+ − σ̂−V−, but the latter becomes the first descendant of σ at δ = 0+, as we know from Section 3.2.2,
and as we recover below from the bootstrap perspective.
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and c(0)
σχP = 0 for all other primaries. Let us consider the δ = 0+ OPEs

σ(x)O+(y) = sinθ σ̂3Oh(y) + cosθ σ̂3Og(y) = sinθ χ(y) + cosθ [σ̂+V+(y)− σ̂−V−(y)] ,

σ(x)O−(y) = cosθ σ̂3Oh(y)− sinθ σ̂3Og(y) = cosθ χ(y)− sinθ [σ̂+V+(y)− σ̂−V−(y)] .
(122)

We see that the OPEs contain the primary χ, with the expected coefficients c(0)σ+χ = c(0)σχ+ = sinθ

and c(0)σ−χ = c(0)σχ− = cosθ . However, there is also the operator in the square bracket, propor-
tional to ∂ σ for δ > 0. To understand its appearance, consider the OPE of general parity-even
primaries

Pi(x1)P j(x2) =
∑

k

ci jk(−1)Jk |x12|−∆i−∆ j+∆k
�

Pk(x2) +
∆k+∆i−∆ j

2∆k
x12∂Pk(x2) + . . .

�

. (123)

Let us substitute Pi = σ, P j = O± and focus on the contribution of Pk = σ. Since ∆σ → 0
as δ → 0, the pole 1/∆k in the coefficient of ∂ σ can cancel with a zero of cσ±σ to yield
a nonvanishing contribution of the first descendant in the limit, although the primary is not
present. This is precisely what happens in (122), as we will verify in the next subsection.

In the following, we will also need the δ = 0 OPE coefficients of the possible triples of O±,
namely c(0)+++, c(0)++−, c(0)+−−, and c(0)−−−. The only nonvanishing three-point function between Og
and Oh is

〈Og(x1)Og(x2)Oh(x3)〉=
p

2
|x12 x13 x23|

. (124)

It follows that

c(0)+++ = 3
p

2(sinθ )(cosθ )2 , c(0)−−− = 3
p

2(sinθ )2(cosθ ) ,

c(0)++− =
p

2[(cosθ )3 − 2(sinθ )2(cosθ )] , c(0)+−− =
p

2[(sinθ )3 − 2(sinθ )(cosθ )2] .
(125)

5.2 The crossing equations of light primaries up to O(
p
δ)

We begin the task of constraining the CFT data by considering the crossing equations of the
〈σσOaOb〉 correlators (here and in the following a, b = ±). The crossing equation (13) takes
the form25

∞
∑

m=0

cσσmcabmG∆σ,∆σ,∆a ,∆b
∆m

(z) =
∞
∑

m=0

cσamcσbmG∆σ,∆b ,∆a ,∆σ
∆m

(1− z) , (126)

where the sum on both sides runs over all primary operators. Due to the factor cσσm, the
LHS only receives nonzero contributions from Z2-even, parity-even primaries, while the RHS
from Z2-odd primaries of either parity. Let us expand both sides around δ = 0. At O(δ0),
the LHS only contains the identity operator and equals z−2δab. At the same time, the RHS
only contains σ and χ at O(δ0). Indeed, χ contributes because c(0)σaχ c(0)

σbχ ̸= 0. On the other

hand, it may seem that σ should not contribute since c(0)σaσc(0)
σbσ = 0. However, the conformal

block G∆σ,∆b ,∆a ,∆σ
∆σ

goes like δ−1 as δ → 0. In agreement with the discussion after (123),
the singular contribution comes from the first descendant of σ. More concretely, the δ → 0
expansion of the t-channel conformal blocks takes the form

G∆σ,∆b ,∆a ,∆σ
∆σ

(1− z) = z−2δ−1 + z−2
�

(∆(1)a +∆
(1)
b )(1− log z)−∆(1)a log(1− z)

�

δ−
1
2 +O(δ0) ,

G∆σ,∆b ,∆a ,∆σ
∆χ

(1− z) = z−2 + z−2
�

−(∆(1)a +∆
(1)
b ) log z −∆(1)a log(1− z)

�

δ
1
2 +O(δ) .

(127)
25By a slight abuse of notation, the lower indices labeling CFT data ∆i , ci jk will take both numerical values

i ∈ Z≥0 (when we sum over all primaries), as well as specific values i = σ,χ,+,−, . . . (when we refer to a specific
primary).
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Equality of the s-channel and t-channel at O(δ0) is thus equivalent to

δab = c(1)σσac(1)
σσb + c(0)σχac(0)

σχ b . (128)

In other words (c(1)σσ+)
2 = (cosθ )2, (c(1)σσ−)

2 = (sinθ )2, c(1)σσ+c(1)σσ− = − sinθ cosθ . There are
two solutions

c(1)σσ+ = s cosθ , c(1)σσ− = −s sinθ , (129)

where s = ±1. The reason for the existence of two solutions is an additional Z2 symmetry
of the δ = 0 theory. This symmetry acts on all operators by conjugation by σ̂3. It leaves σ,
χ and Oh invariant, sends Og 7→ −Og , and thus exchanges O−↔ O+. It is not a symmetry
of the δ > 0 theory. Instead, it exchanges pairs of equivalent solutions of the bootstrap. It is
equivalent to the 2π monodromy around δ = 0, i.e. the mapping

p
δ 7→ −

p
δ. Without loss

of generality, we will restrict to one branch of solutions by setting s = 1.
Let us expand (126) to O(

p
δ). On the RHS, the only contributions can arise from cor-

rections to the exchange of σ and χ since cσam = O(
p
δ) for m ̸= σ,χ. On the LHS, the

contributions arise from the O(
p
δ) correction to the identity conformal block, as well as from

the exchange of O− and O+, which appear for the first time at this order. In principle, there
could also be exchanges of other primaries P for which c(1)

σσP ̸= 0 and c(0)abP ̸= 0. By using (125)
and (127), we find that the crossing equations for a, b = ± are then equivalent to the finite
number of constraints

θ =
π

4
, ∆

(1)
+ =
p

2 , ∆
(1)
− = −

p
2 , c(1)σχ+ = −c(1)σχ− , c(2)σσ+ = c(2)σσ− = c(1)σχ− − 1 , (130)

as well as the statement that c(1)
σσP c(0)abP = 0 unless P = O±. We can now also update (121),

(125), and (129) using the correct value of θ

c(0)σχ+ = c(0)σχ− =
1
p

2
, c(1)σσ+ = −c(1)σσ− =

1
p

2
, c(0)+++ = c(0)−−− =

3
2

, c(0)++− = c(0)+−− = −
1
2

.

(131)
Note also that c(0)χχ+ = c(0)χχ− = 0. Indeed, at δ = 0, χ is a generalized free field with ∆χ = 1.
The χ ×χ OPE contains only 1 and double trace operators with ∆= 2, 4, . . ..

5.2.1 Other crossing equations

Let us analyze other four-point functions of σ, χ, O+, O−. We will study the complete set of
such correlators for which σ appears at least once among the external operators. Consider a
four-point function Gi jkℓ(z) where σ appears N times among the external operators, where
N = 1, 2,3, 4 . It turns out that the perturbative expansion of Gi jkℓ(z) up to and including

O(δ
N−1

2 ) involves only a finite number of conformal blocks in both the s- and the t-channel.
This is because at δ = 0, the σ×P OPE contains a finite number of primaries, for any primary
P . Indeed, we saw in the previous subsection that Gσσ±± (for which N = 2) involves only
exchanges of 1 and O± in the s-channel and only σ and χ in the t-channel, up to O(

p
δ).

Independent crossing equations in 1d CFTs are labeled by cyclic orderings of quadruples of
primaries (i, j, k,ℓ). Indeed, the crossing equation (13) for Gi jkℓ is invariant under the cyclic
shift (i, j, k,ℓ) → ( j, k,ℓ, i). This follows immediately from identities satisfied by conformal
blocks

G
∆ j ,∆i ,∆ℓ,∆k

∆m
(z) = (1− z)−∆i+∆ j+∆k−∆ℓ G

∆i ,∆ j ,∆k ,∆ℓ
∆m

(z) ,

G
∆ j ,∆k ,∆ℓ,∆i

∆m
(z) = z−∆i+∆ j+∆k−∆ℓ G

∆i ,∆ℓ,∆k ,∆ j

∆m
(z) .

(132)

If the 1d CFT is also invariant under parity, the crossing equation for Gi jkℓ is equivalent to that
for Gℓk ji .
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It follows that the full set of crossing equations with at least one external σ and only σ, χ,
O+, O− as external states arises by equating the s- and t-channel in the correlators

N = 4 : 〈σσσσ〉 ,
N = 3 : 〈σσσχ〉 ,
N = 2 : 〈σσχχ〉 , 〈σχσχ〉 , 〈σσOaOb〉 , 〈σOaσOb〉
N = 1 : 〈σχχχ〉 , 〈σχOaOb〉 , 〈σOaχOb〉 .

(133)

It turns out that if we work to O(δ
N−1

2 ), then the crossing equations for each of these correlators
are automatically satisfied by the CFT data (130), (131). Explicit formulas for the correlators
are summarized later in Section 5.7.

5.3 Higher-order analysis

In order to bootstrap the CFT data to higher orders in
p
δ, we have to contend with the

fact that infinitely many primary operators appear in the OPE. For a four-point function with
N = 1,2, 3,4 externalσ insertions, we will consider the crossing equation at O(δ

N
2 ). This is the

first order at which an infinite sum over conformal blocks occurs. Let us write the asymptotic
expansion of a four-point function Gi jkℓ(z) as follows:

Gi jkℓ(z)∼
∞
∑

n=0

G(n)i jkℓ(z)δ
n
2 . (134)

Consider the s- and t-channel OPE of G(N)i jkℓ(z). The only operators with ∆(0) = 0, 1 are 1, σ,
χ, O+, and O−. Correspondingly, we separate the contribution of these operators to the two
OPEs as follows

G(N)i jkℓ(z) = Gs,L
i jkℓ(z) + Gs,H

i jkℓ(z) = G t,L
i jkℓ(z) + G t,H

i jkℓ(z) . (135)

Here Gs,L
i jkℓ(z) and G t,L

i jkℓ(z) denote the total contribution of the “light” operators 1, σ, χ, O+,

and O− to the s-channel and t-channel conformal block expansion. Similarly, Gs,H
i jkℓ(z) and

G t,H
i jkℓ(z) denote the total contribution of the “heavy” operators, i.e. those with ∆(0) ≥ 2. Since

primary operators with ∆(0) ≥ 2 appear for the first time at this order, Gs,H
i jkℓ(z) and G t,H

i jkℓ(z)
admit an expansion in conformal blocks all of whose scaling dimensions are evaluated at δ = 0

Gs,H
i jkℓ(z) =

∞
∑

n=2

Ai jkℓ
n G

∆
(0)
i ,∆(0)j ,∆(0)k ,∆(0)

ℓ
n (z) ,

G t,H
i jkℓ(z) =

∞
∑

n=2

Ajkℓi
n G

∆
(0)
i ,∆(0)

ℓ
,∆(0)k ,∆(0)j

n (1− z) .

(136)

Here Ai jkℓ
n is the coefficient of the leading order in δ in the sum of the expression (−1)Jm ci jmckℓm

over all primaries Pm such that ∆(0)m = n:

Ai jkℓ
n =
∑

m:∆(0)m =n

(−1)Jm ci jmckℓm|δ N
2

. (137)

5.3.1 Analytic functionals

The crossing equation (135) allows us to solve for Ai jkℓ
n and Ajkℓi

n in terms of the CFT data
appearing in Gs,L

i jkℓ(z) and G t,L
i jkℓ(z). To solve for Ai jkℓ

n , we will apply a version of analytic func-
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tionals [76]. In particular, we will make use of bases of analytic functionals [77] dual to
conformal blocks with integer scaling dimensions.26

Let m1, m2, m3, m4 ∈ {0, 1} and n ∈ {2,3, . . .}. Let us define a family of linear functionals
ω

m1,m2,m3,m4
n acting on functions f (z) holomorphic in C\(−∞, 0]∪ [1,∞) by the formula

ω
m1,m2,m3,m4
n [ f ] =

1
2+i∞
∫

1
2−i∞

G1−m1,1−m2,1−m3,1−m4
1−n (z) f (z)

dz
2πi

. (138)

Note that the conformal block G1−m1,1−m2,1−m3,1−m4
1−n (z) is well defined for the specified range

of m1,2,3,4 and n. It is a rational function of z taking the form

G1−m1,1−m2,1−m3,1−m4
1−n (z) = zm3+m4−n−1

2F1(1+m1−m2− n, 1−m3+m4− n; 2−2n; z) , (139)

where the hypergeometric 2F1 is a polynomial in z of degree n− 1+min(m2 −m1, m3 −m4).
We claim that this set of functionals is dual to the s-channel conformal blocks of integer di-
mensions, in the sense

ω
m1,m2,m3,m4
n [Gm1,m2,m3,m4

n′ (·)] = δnn′ , (140)

for all integer n, n′ ≥ 2. Furthermore, all of the functionals annihilate the t-channel conformal
blocks of integer dimensions

ω
m1,m2,m3,m4
n [Gm1,m4,m3,m2

n′ (1− ·)] = 0 , (141)

for all n, n′ ∈ Z, n, n′ ≥ 2. To understand these statements, first note that the actions on
s-channel and t-channel conformal blocks are finite. Indeed,

G1−m1,1−m2,1−m3,1−m4
1−n (z)Gm1,m2,m3,m4

n′ (z) = O(z−2 log |z|) ,

G1−m1,1−m2,1−m3,1−m4
1−n (z)Gm1,m4,m3,m2

n′ (1− z) = O(z−2 log |z|) ,
(142)

as z→±i∞, and thus the integral in (138) converges. To evaluate (140), we close the contour
to the left to pick up the residue at z = 0 and use

Resz=0

�

G1−m1,1−m2,1−m3,1−m4
1−n (z)Gm1,m2,m3,m4

n′ (z)
�

= δnn′ , (143)

which we state without proof.27 To evaluate (141), we close the contour to the right. We
encounter no pole at z = 1 since n′ ≥ m2 +m3, and thus the integral vanishes.

To solve for Ai jkℓ
n , we write the crossing equation (135) as

∞
∑

n=2

Ai jkℓ
n G

∆
(0)
i ,∆(0)j ,∆(0)k ,∆(0)

ℓ
n (z) = G t,L

i jkℓ(z)− G
s,L
i jkℓ(z) +

∞
∑

n=2

Ajkℓi
n G

∆
(0)
i ,∆(0)

ℓ
,∆(0)k ,∆(0)j

n (1− z) . (144)

Let us apply the analytic functionalωm1,m2,m3,m4
n to this equation. If we can swap the functional

action with the infinite sums on both sides, it follows from (140), (141) that

Ai jkℓ
n =ω

∆
(0)
i ,∆(0)j ,∆(0)k ,∆(0)

ℓ
n [G t,L

i jkℓ(z)− G
s,L
i jkℓ(z)] . (145)

A sufficient condition for the functional to be swappable with the infinite sums is that the
integral (138) is finite for f (z) = Gs,H

i jkℓ(z) and f (z) = G t,H
i jkℓ(z) [78]. Whether this holds or not

is directly determined by the asymptotics of Ai jkℓ
n as n→∞. In the ensuing analysis, we will

be able to check it directly. In fact, we will encounter situations where the swappability does
not hold unless we use subtracted functionals, which possess a larger domain of swappability.

26In fact the functionals used here are simpler than those of [77] since they only have simple, rather than double
zeros at integer ∆.

27The claim is a version of orthogonality of different solutions of the same Sturm-Liouville type ODE.
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5.3.2 Crossing of 〈σσσσ〉 at O(δ2)

Let us consider the case of 〈σσσσ〉. The crossing equation (144) becomes

∞
∑

n=2

Aσσσσn G0,0,0,0
n (z) = G t,L

σσσσ(z)− G
s,L
σσσσ(z) +

∞
∑

n=2

Aσσσσn G0,0,0,0
n (1− z) . (146)

Here
Aσσσσn =
∑

m:∆(0)m =n

(c(2)σσm)
2 ≥ 0 , (147)

where we used (−1)Jm = 1 for all m such that cσσm ̸= 0. Let us recall the definitions

Gs,L
σσσσ(z) =
∑

m∈{0,+,−}

�

(cσσm)
2 G∆σ,∆σ,∆σ,∆σ

∆m
(z)
�

�

�

�

δ2
,

G t,L
σσσσ(z) = Gs,L

σσσσ(1− z) .
(148)

In order to extract Aσσσσn using functionals ω0,0,0,0
n , we need to check swappability. The idea

is to use Aσσσσn ≥ 0 to relate the behaviour of

Gs,H
σσσσ(z) =

∞
∑

n=2

Aσσσσn G0,0,0,0
n (z) , (149)

in the limit z → i∞ to its behaviour as z → 1. The latter can be estimated from the RHS
of (146)

∞
∑

n=2

Aσσσσn G0,0,0,0
n (z)

z→1
= O
�

(log(1− z))2
�

. (150)

A standard argument using the radial coordinate [79] then implies

∞
∑

n=2

Aσσσσn G0,0,0,0
n (z)

z→i∞
= O
�

(log |z|)2
�

. (151)

Since G1,1,1,1
1−n (z)

z→i∞
= O(z−2), it follows that the functionals are swappable and we get

Aσσσσn =ω0,0,0,0
n [Gs,L

σσσσ(1− z)− Gs,L
σσσσ(z)] . (152)

The integrals on the RHS can be done in a closed form

Aσσσσn =
�

(−1)nn(n− 1)(1− 8c(1)σχ− −∆
(2)
+ −∆

(2)
− ) + n(n− 1) + 2

� ((n− 2)!)2

n2(2n− 2)!
. (153)

Since Aσσσσn must be nonnegative, it follows that

0≤ 8c(1)σχ− +∆
(2)
+ +∆

(2)
− ≤ 2 . (154)

The sum over conformal blocks (149) defining Gs,H
σσσσ(z) can now also be done in a closed

form. The resulting correlator Gs,L
σσσσ(z) + Gs,H

σσσσ(z) is crossing symmetric if and only if the
following additional constraint holds:

c(3)σσ− − c(3)σσ+p
2

= c(1)σχ−(c
(1)
σχ− − 2) +

π2

6
− 2 . (155)
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This identity is also equivalent to ω0,0,0,0
1 [Gs,L

σσσσ(1−z)−Gs,L
σσσσ(z)] = 0, which holds because

in this case the functional ω0,0,0,0
1 is well-defined and swappable. We will present the answer

for the full correlator in (237), once all the unknowns have been fixed.
Incidentally, we should ask whether there could have been∆≥ 2 contributions to 〈σσσσ〉

already at O(δ). In fact, it is not hard to see that such contributions are forbidden. The crucial
point is that, as we remarked in Section 5.2.1, the total contribution of 1, O+, and O− to
〈σσσσ〉 at O(δ) is already crossing symmetric on its own. We can then use the analytic
functionals ω0,0,0,0

n to solve for the sum of (c(1)
σσP)

2 over all P with ∆(0)P = n ≥ 2, analogously
to (152). The difference is that at O(δ), Gs,L

σσσσ(1 − z) − Gs,L
σσσσ(z) = 0, and applying the

analytic functionals gives vanishing total OPE squared.

5.3.3 Crossing of 〈σσχχ〉 at O(δ)

Let us proceed by studying the correlator 〈σσχχ〉. The crossing equation at O(δ) reads
∞
∑

n=2

Aσσχχn G0,0,1,1
n (z) = G t,L

σσχχ(z)− G
s,L
σσχχ(z) +

∞
∑

n=2

Aσχχσn G0,1,1,0
n (1− z) . (156)

Here
Aσσχχn =
∑

m:∆(0)m =n

c(2)σσmc(0)χχm , Aσχχσn =
∑

m:∆(0)m =n

(c(1)σχm)
2 ≥ 0 , (157)

where we used c(1)χσm = (−1)Jm c(1)σχm. Recall that the χ ×χ OPE at δ = 0 only contains double-

trace operators, all of which have even scaling dimensions. It follows that Aσσχχn = 0 for n
odd. We have

Gs,L
σσχχ(z) =
∑

m∈{0,+,−}

�

cσσmcχχm G
∆σ,∆σ,∆χ ,∆χ
∆m

(z)
�

�

�

�

δ
,

G t,L
σσχχ(z) =
∑

m∈{σ,χ}

�

(cσχm)
2 G

∆σ,∆χ ,∆χ ,∆σ
∆m

(1− z)
�

�

�

�

δ
.

(158)

To apply the analytic functionals and solve for Aσσχχn , we need to analyze the z → i∞ limit
of Gs,H

σσχχ(z). We have for all z ∈ C\(−∞, 0]∪ [1,∞)
�

�

�

�

�

∞
∑

n=2

Aσσχχn G0,0,1,1
n (z)

�

�

�

�

�

=

�

�

�

�

�

�

∞
∑

m:∆(0)m ≥2

c(2)σσmc(0)χχm G0,0,1,1
n (z)

�

�

�

�

�

�

≤
∞
∑

m:∆(0)m ≥2

|c(2)σσm||c
(0)
χχm| |G

0,0,1,1
n (z)|

= |z|−1
∞
∑

m:∆(0)m ≥2

|c(2)σσm|
q

|G0,0,0,0
n (z)||c(0)χχm|
q

|G1,1,1,1
n (z)|

≤ |z|−1

√

√

√

√

∞
∑

m:∆(0)m ≥2

(c(2)σσm)2 |G
0,0,0,0
n (z)|

√

√

√

√

∞
∑

m:∆(0)m ≥2

(c(0)χχm)2 |G
1,1,1,1
n (z)| .

(159)
The first equality follows by definition of Aσσχχn , and the last inequality is Cauchy-Schwartz.
We have already estimated the argument of the first square root in (151). The argument of the
second square root is essentially 〈χχχχ〉. The standard radial-coordinate argument relating
z→ i∞ to z→ 1 implies it is bounded in the limit z→ i∞. It follows

�

�

�

�

�

∞
∑

n=2

Aσσχχn G0,0,1,1
n (z)

�

�

�

�

�

z→i∞
= O(|z−1 log(z)|) . (160)
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The kernels defining the functionalsω0,0,1,1
n approach a constant at infinity. It follows that they

do not necessarily commute with the sum over conformal blocks. To remedy the situation, we
define the subtracted functionals

eω0,0,1,1
n =ω0,0,1,1

n + (−1)n
((n− 1)!)2

(2n− 2)!
ω

0,0,1,1
1 , (161)

for n ≥ 2. The kernel of eω0,0,1,1
n is O(z−1) and therefore commutes with the sums over n

in (156). We get
Aσσχχn = eω0,0,1,1

n [G t,L
σσχχ(z)− G

s,L
σσχχ(z)] . (162)

The integrals defining the functional action can be done in a closed form. The condition that
Aσσχχn = 0 for n odd is equivalent with the constraint

p
2(c(1)χχ+ − c(1)χχ−) = 8c(1)σχ− −∆

(2)
+ −∆

(2)
− . (163)

The final answer is

Aσσχχn = [1+ (−1)n]
2(n− 1)((n− 2)!)2

n(2n− 2)!
. (164)

Gs,H
σ,σ,χ,χ(z) can now be evaluated in a closed form

Gs,H
σσχχ(z) =

∞
∑

n=2

Aσσχχn G0,0,1,1
n (z) =

[log(1− z)]2

z2
. (165)

Let us now rewrite (156) as

∞
∑

n=2

Aσχχσn G0,1,1,0
n (1− z) = Gs,L

σσχχ(z) +Gs,H
σσχχ(z)− G

t,L
σσχχ(z) . (166)

The RHS admits the expansion on the LHS if and only if

c(2)σχ+ + c(2)σχ− +
p

2(c(1)σχ−)
2 = 0 . (167)

The formula for Aσχχσn then reads

Aσχχσn = [n(n− 1)− 2(−1)n]
((n− 2)!)2

(2n− 2)!
. (168)

Note that this formula passes the nontrivial consistency check Aσχχσn ≥ 0 for all n≥ 2.
At this point, we can obtain another constraint on the CFT data by recalling that the space

of Z2-even primaries with ∆(0) = 2 is one-dimensional, spanned by ρ =:χ2: /
p

2. It follows
that

Aσσσσ2 = (c(2)σσρ)
2 , Aσσχχ2 = c(2)σσρc(0)χχρ . (169)

It follows directly from the definition of ρ that c(0)χχρ =
p

2. Equation (164) then predicts

c(2)σσρ =
1
p

2
. (170)

Hence Aσσσσ2 = 1/2. By comparing this prediction to (153), we obtain the constraint

8c(1)σχ− +∆
(2)
+ +∆

(2)
− = 1 , (171)

which in particular satisfies (154) and which allows us to simplify the formula for Aσσσσn

Aσσσσn = [n(n− 1) + 2]
((n− 2)!)2

n2(2n− 2)!
. (172)
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5.3.4 Crossing of 〈σχσχ〉 at O(δ)

Our next step is to consider the crossing equation of 〈σχσχ〉 at O(δ)

∞
∑

n=2

Aσχσχn G0,1,0,1
n (z) = Gs,L

σχσχ(1− z)− Gs,L
σχσχ(z) +

∞
∑

n=2

Aσχσχn G0,1,0,1
n (1− z) . (173)

Here
Aσχσχn =
∑

m:∆(0)m =n

(−1)Jm(c(1)σχm)
2 , (174)

and
Gs,L
σχσχ(z) =
∑

m∈{+,−}

�

(cσχm)
2 G

∆σ,∆χ ,∆σ,∆χ
∆m

(z)
�

�

�

�

δ
. (175)

To study the swappability of functionals, we need to estimate

Gs,H
σχσχ(z) =

∞
∑

n=2

Aσχσχn G0,1,0,1
n (z) , (176)

as z→ i∞. Note that we have |Aσχσχn | ≤ Aσχχσn . It follows

�

�

�Gs,H
σχσχ(z)
�

�

�≤
∞
∑

n=2

Aσχχσn |G0,1,0,1
n (z)|

=
∞
∑

n=2

Aσχχσn | z
z−1 |

n−1|2F1(n− 1, n− 1;2n; z
z−1)|

≤
∞
∑

n=2

[n(n− 1)− 2(−1)n]
((n− 2)!)2

(2n− 2)!
| z
z−1 |

n−1
2F1(n− 1, n− 1;2n; | z

z−1 |)

= O(log(z)) .

(177)

To go to the second line, we used a standard transformation of 2F1 hypergeometric functions.
To go to the third line, we used (168) and the positivity of coefficients of the series expansion
in the 2F1. To go to the last line, we explicitly evaluated the sum on the third line and took
the limit z→∞.

Since the kernels of the functionals ω0,1,0,1
n go like z−2 for n ≥ 2, these can be safely

swapped with the sum over conformal blocks. We find

Aσχσχn =ω0,1,0,1
n [Gs,L

σχσχ(1−z)−Gs,L
σχσχ(z)] = [(−1)n−1n(n−1)(∆(2)+ +∆

(2)
− )+1]

2((n− 2)!)2

(2n− 2)!
.

(178)
Let us recall again that due to the factor (−1)Jm , we must have |Aσχσχn | ≤ Aσχχσn and note that
Aσχχσ2 = 0. It follows Aσχσχ2 = 0, which gives the constraint

∆
(2)
+ +∆

(2)
− =

1
2

. (179)

Hence

Aσχσχn = [(−1)n−1n(n− 1) + 2]
((n− 2)!)2

(2n− 2)!
= (−1)n−1Aσχχσn . (180)

The last equality implies that, for all primary operators Pm, c(1)σχm ̸=0 only if (−1)Jm=(−1)∆
(0)
m −1.

Since there are no parity-odd primaries with ∆(0)m = 2, this fact explains why we found
Aσχχσ2 = 0 in the first place.
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5.3.5 Summary of results so far

So far, we have implemented crossing of 〈σσOaOb〉 up to O(
p
δ), 〈σσχχ〉 and 〈σχσχ〉 up

to O(δ), and 〈σσσσ〉 up to O(δ2). This has lead to the following constraints on the CFT data:

∆
(1)
± = ±

p
2 , ∆

(2)
+ +∆

(2)
− =

1
2

,

c(0)σχ± =
1
p

2
, c(1)σχ± = ∓

1
16

, c(2)σχ+ + c(2)σχ− = −
1

128
p

2
,

c(1)σσ± = ±
1
p

2
, c(2)σσ± = −

15
16

, c(3)σσ+ − c(3)σσ− =
p

2

�

543
256
−
π2

6

�

,

c(1)χχ+ − c(1)χχ− = 0 , c(0)+++ = c(0)−−− =
3
2

, c(0)++− = c(0)+−− = −
1
2

.

(181)

We will now consider crossing symmetry of the remaining correlators in (133).

5.3.6 Crossing of 〈σσσχ〉 at O(δ3/2)

The crossing equation takes the form

∞
∑

n=2

Aσσσχn G0,0,0,1
n (z) = G t,L

σσσχ(z)− G
s,L
σσσχ(z) +

∞
∑

n=2

Aσσσχn G0,1,0,0
n (1− z) . (182)

Here
Aσσσχn =
∑

m:∆(0)m =n

c(2)σσmc(1)σχm , (183)

and
Gs,L
σσσχ(z) =
∑

m∈{+,−}

�

cσσmcσχm G
∆σ,∆σ,∆σ,∆χ
∆m

(z)
�

�

�

�

δ
3
2

,

G t,L
σσσχ(z) =
∑

m∈{+,−}

�

cσσmcσχm G
∆σ,∆χ ,∆σ,∆σ
∆m

(1− z)
�

�

�

�

δ
3
2

.
(184)

To check for the swappability of functionals, we estimate

|
∞
∑

n=2

Aσσσχn G0,0,0,1
n (z)| ≤

∞
∑

n=2

|Aσσσχn | |G0,0,0,1
n (z)|

≤
∞
∑

n=2

Æ

Aσσσσn

q

Aσχχσn | z
z−1 |

n−1|2F1(n− 1, n; 2n; z
z−1)|

≤
∞
∑

n=2

[(n− 1)n+ 2]((n− 2)!)2

n(2n− 2)!
| z
z−1 |

n−1
2F1(n− 1, n; 2n; | z

z−1 |)

= O(log z) .

(185)

Since the kernels of theω0,0,0,1
n functionals are O(z−2) for all n≥ 2, they can be swapped with

the sum over conformal blocks. We find

Aσσσχn =ω0,0,0,1
n [G t,L

σσσχ(z)− G
s,L
σσσχ(z)] = 0 , (186)

for all n ≥ 0. The equation holds because all of the hitherto unknown parameters only
appear through an overall prefactor, multiplying the function (2z − 1)/z. The latter func-
tion satisfies (186). Note that based on previous information, we could have predicted that
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Aσσσχn = 0 for n even. This is because c(2)σσm ̸= 0 only if (−1)Jm = 1, and c(1)σχm ̸= 0 only if

(−1)Jm = (−1)∆
(0)
m −1. For n odd, (186) is a new fact.

We can now go back to the crossing equation (182), which becomes Gs,L
σσσχ(z) = G t,L

σσσχ(z).
This is in turn equivalent to the new constraint

∆
(2)
− +
p

2c(2)σχ− −
p

2c(3)σσ− =
303
128
−
π2

6
. (187)

5.3.7 Crossing of 〈σχχχ〉 at O(
p
δ)

The crossing equation takes the form

Gs,L
σχχχ(z) +

∞
∑

n=2

Aσχχχn G0,1,1,1
n (z) = Gs,L

σχχχ(1− z) +
∞
∑

n=2

Aσχχχn G0,1,1,1
n (1− z) , (188)

where

Gs,L
σχχχ(z) =
∑

m∈{+,−}

�

cσχmcχχm G
∆σ,∆χ ,∆χ ,∆χ
∆m

(z)
�

�

�

�

δ
1
2

, Aσχχχn =
∑

m:∆(0)m =n

c(1)σχmc(0)χχm . (189)

Based on previous findings, we can conclude that in fact Aσχχχn = 0 for all n. Indeed, since
the χ × χ OPE at δ = 0 contains only the identity and double traces, we have c(0)χχm ̸= 0

only if (−1)Jm = (−1)∆
(0)
m = 1. On the other hand, we have seen that c(1)σχm ̸= 0 only if

(−1)Jm = (−1)∆
(0)
m −1. Thus c(1)σχmc(0)χχm = 0 for all primaries Pm.

The crossing equation (188) does not impose any additional constraints on the CFT data.

5.3.8 Crossing of 〈σσO±O±〉 at O(δ)

The crossing equations take the form

∞
∑

n=2

Aσσab
n G0,0,1,1

n (z) = G t,L
σσab(z)− G

s,L
σσab(z) +

∞
∑

n=2

Aσabσ
n G0,1,1,0

n (1− z) , (190)

with a, b ∈ {+,−}. Here

Aσσab
n =
∑

m:∆(0)m =n

c(2)σσmc(0)abm , Aσabσ
n =
∑

m:∆(0)m =n

c(1)σamc(1)
σbm ,

(191)

and
Gs,L
σσab(z) =
∑

m∈{0,+,−}

�

cσσmcabm G∆σ,∆σ,∆a ,∆b
∆m

(z)
�

�

�

�

δ
,

G t,L
σσab(z) =
∑

m∈{σ,χ}

�

cσmacσmb G∆σ,∆b ,∆a ,∆σ
∆m

(1− z)
�

�

�

�

δ
.

(192)

The situation with swappability of functionals is identical to the correlator 〈σσχχ〉, discussed
in Section 5.3.3. In particular, ω0,0,1,1

n are not swappable, but the subtracted version eω0,0,1,1
n ,

defined in (161), are swappable. We have

Aσσab
n = eω0,0,1,1

n [G t,L
σσab(z)− G

s,L
σσab(z)] . (193)

We then perform the sums over conformal blocks to obtain

Gs,H
σσab(z) =

∞
∑

n=2

Aσσab
n G0,0,1,1

n (z) . (194)
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Then we extract Aσabσ
n from

∞
∑

n=2

Aσabσ
n G0,1,1,0

n (z) = Gs,L
σσab(1− z) +Gs,H

σσab(1− z)− G t,L
σσab(1− z) . (195)

It turns out that the existence of the expansion on the LHS imposes additional constraints on
the CFT data. If these constraints are not satisfied, the RHS contains a spurious conformal
block G0,1,1,0

1 (z). The constraints are

2∆(2)− +
p

2(c(1)+++− c(1)++−) =
23
8

, 2∆(2)− +
p

2(c(1)−−−− c(1)+−−) = −
15
8

,
p

2(c(1)++−− c(1)+−−) =
1
8

.

(196)
We can use these to solve for c(1)+++, c(1)++−, and c(1)+−− in terms of∆(2)− and c(1)−−−. Once we impose
the constraints, we obtain

Aσσ++n = Aσσ−−n =
(n− 1) [n(n− 1) + 4+ 2(−1)n]

2n
((n− 2)!)2

(2n− 2)!
,

Aσσ+−n = Aσσ−+n = −
(n− 1) [n(n− 1)− 2(−1)n]

2n
((n− 2)!)2

(2n− 2)!
,

(197)

and

Aσ++σn = Aσ−−σn = [n(n− 1) + 1− (−1)n]
((n− 2)!)2

(2n− 2)!
,

Aσ+−σn = Aσ−+σn = −[1+ (−1)n]
((n− 2)!)2

(2n− 2)!
.

(198)

The above formulas for Aσσab
n and Aσabσ

n pass several nontrivial consistency checks. Firstly,
recall that the spaces of bothZ2-even andZ2-odd primaries with∆(0) = 2 are one-dimensional,
spanned by ρ, eρ. As δ→ 0, we have ρ→:χ2: /

p
2 and eρ→:σχ2: /

p
2. It follows that

Aσσab
2 = c(2)σσρc(0)abρ , Aσabσ

2 = c(1)
σaeρc(1)

σbeρ . (199)

Recall from (170) that c(2)σσρ = 1/
p

2. Equations (197) then predict

c(0)++ρ = c(0)−−ρ =
p

2 , c(0)+−ρ = 0 . (200)

These results can be verified explicitly in the free theory at δ = 0. Indeed, they are equivalent
to the following three-point functions between ρ and the operators Og , Oh

cg gρ = chhρ =
p

2 , cghρ = 0 . (201)

cghρ = 0 is immediate from the matrix structure, chhρ =
p

2 is a simple exercise with Wick
contractions. cg gρ =

p
2 requires more work but holds too.

For another consistency check, involving eρ, note that (199) implies

Aσ++σ2 Aσ−−σ2 = (Aσ+−σ2 )2 . (202)

Indeed, (198) predicts that both sides equal 1.
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5.3.9 Crossing of 〈σO±σO±〉 at O(δ)

The crossing equations takes the form

∞
∑

n=2

Aσaσb
n G0,1,0,1

n (z) = G t,L
σaσb(z)− G

s,L
σaσb(z) +

∞
∑

n=2

Aσaσb
n G0,1,0,1

n (1− z) , (203)

with a, b ∈ {+,−}. Here
Aσaσb

n =
∑

m:∆(0)m =n

(−1)Jm c(1)σamc(1)
σbm , (204)

and
Gs,L
σaσb(z) =
∑

m∈{σ,χ}

�

cσamcσbm G∆σ,∆a ,∆σ,∆b
∆m

(z)
�

�

�

�

δ
,

G t,L
σaσb(z) =
∑

m∈{σ,χ}

�

cσamcσbm G∆σ,∆b ,∆σ,∆a
∆m

(1− z)
�

�

�

�

δ
= Gs,L

σbσa(1− z) .
(205)

To study the swappability of functionals, note that

|Aσ+σ+n | ≤ Aσ++σn , |Aσ−σ−n | ≤ Aσ−−σn = Aσ++σn , |Aσ−+σn | ≤
Æ

Aσ++σn Aσ−−σn = Aσ++σn .
(206)

Using the same reasoning as in Section 5.3.4, we conclude that the functionals ω0,1,0,1
n are

swappable. Their application produces

Aσ+σ+n = Aσ−σ−n = [(−1)n + 1]
n!(n− 2)!
2(2n− 2)!

,

Aσ+σ−n = Aσ−σ+n = {[(−1)n − 1]n(n− 1)− 4}
((n− 2)!)2

2(2n− 2)!
.

(207)

5.3.10 Crossing of 〈σχO±O±〉 at O(
p
δ)

The crossing equations take the form

∞
∑

n=2

Aσχab
n G0,1,1,1

n (z) = G t,L
σχab(z)− G

s,L
σχab(z) +

∞
∑

n=2

Aσbaχ
n G0,1,1,1

n (1− z) , (208)

with a, b ∈ {+,−}. Here

Aσχab
n =
∑

m:∆(0)m =n

(−1)Jm c(1)σχmc(0)abm ,

Aσabχ
n =
∑

m:∆(0)m =n

(−1)Jm c(1)σamc(0)bχm =
∑

m:∆(0)m =n

c(1)σamc(0)
χ bm ,

(209)

and
Gs,L
σχab(z) =
∑

m∈{+,−}

�

cσχmcabm G
∆σ,∆χ ,∆a ,∆b

∆m
(z)
�

�

�

�p
δ

,

G t,L
σχab(z) =
∑

m∈{σ,χ}

�

cχamcσbm G
∆σ,∆b ,∆a ,∆χ
∆m

(1− z)
�

�

�

�p
δ

.
(210)

Following the same logic as in the previous subsections, we find that the functionals ω0,1,1,1
n

are not swappable with the sum over conformal blocks on the LHS of (208). We can define
subtracted functionals

eω0,1,1,1
n =ω0,1,1,1

n + (−1)n
n((n− 1)!)2

(2n− 2)!
ω

0,1,1,1
1 , (211)
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which are swappable. We obtain

Aσχab
n = eω0,1,1,1

n [G t,L
σχab(z)− G

s,L
σχab(z)] . (212)

Since the space of Z2-even primaries with ∆(0) = 2 is spanned by ρ, and since we know
from (168) that c(1)σχρ = 0, we conclude Aσχ++2 = Aσχ−−2 = Aσχ+−2 = 0. This condition imposes
the following constraint on the CFT data

24∆(2)− + 16
p

2c(1)−−− − 8
p

2c(1)χχ− + 33= 0 . (213)

The functionals (212) and the crossing equation (208) then lead to a unique answer for the
coefficients

Aσχ++n = −Aσχ−−n = [1− (−1)n][n(n− 1) + 2]
(n− 1)!(n− 2)!

2(2n− 2)!
,

Aσχ+−n = −Aσχ−+n = −[1+ (−1)n][n(n− 1)− 2]
(n− 1)!(n− 2)!

2(2n− 2)!
,

(214)

and

Aσ++χn = −Aσ−−χn = [(−1)n(n− 2)(n+ 1)− 4]
(n− 1)!(n− 2)!

2(2n− 2)!
,

Aσ+−χn = −Aσ−+χn = (−1)n+1[n(n− 1) + 2]
(n− 1)!(n− 2)!

2(2n− 2)!
.

(215)

5.3.11 Crossing of 〈σO±χO±〉 at O(
p
δ)

The last crossing equation that we will consider takes the form

∞
∑

n=2

Aσaχ b
n G0,1,1,1

n (z) = G t,L
σaχ b(z)− G

s,L
σaχ b(z) +

∞
∑

n=2

Aσbχa
n G0,1,1,1

n (1− z) , (216)

with a, b ∈ {+,−}. Here
Aσaχ b

n =
∑

m:∆(0)m =n

(−1)Jm c(1)σamc(0)
χ bm ,

(217)

and
Gs,L
σaχ b(z) =
∑

m∈{σ,χ}

�

cσamcχ bm G
∆σ,∆a ,∆χ ,∆b

∆m
(z)
�

�

�

�p
δ

,

G t,L
σaχ b(z) =
∑

m∈{σ,χ}

�

cσbmcχam G
∆σ,∆b ,∆χ ,∆a

∆m
(1− z)
�

�

�

�p
δ
= Gs,L

σbχa(1− z) .
(218)

Again, we can use the subtracted functionals eω0,1,1,1
n of (211) to extract Aσaχ b

n by applying
them to (216)

Aσaχ b
n = eω0,1,1,1

n [G t,L
σaχ b(z)− G

s,L
σaχ b(z)] . (219)

The answer is

Aσ+χ+n = −Aσ−χ−n = [(n− 2)(n+ 1)− 4(−1)n]
(n− 1)!(n− 2)!

2(2n− 2)!
= (−1)nAσ++χn ,

Aσ+χ−n = −Aσ−χ+n = −[n(n− 1) + 2]
(n− 1)!(n− 2)!

2(2n− 2)!
= (−1)nAσ+−χn .

(220)

The relation Aσaχ b
n = (−1)nAσabχ

n satisfied by these formulas is explained by observing that at

δ = 0 the χ×O± OPE contains only double trace operators χ
↔
∂ nO± with∆= 2+n and parity

(−1)n.
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5.4 Consistency checks

We can combine the previous results (198), (207) to obtain sums of c(1)σamc(1)
σbm over Pm with

fixed ∆(0)m and (−1)Jm . Indeed, we have

Aσabσ
n,even :=
∑

m:∆(0)m =n
(−1)Jm=+1

c(1)σamc(1)
σbm =

Aσabσ
n + Aσaσb

n

2
,

Aσabσ
n,odd :=
∑

m:∆(0)m =n
(−1)Jm=−1

c(1)σamc(1)
σbm =

Aσabσ
n − Aσaσb

n

2
.

(221)

The resulting expressions need to pass a number of consistency checks. The first consistency
check arises from the observation that Aσ++σn,even, Aσ−−σn,even, Aσ++σn,odd and Aσ−−σn,odd are sums of squares.
Therefore, they must be non-negative. We can easily check that this is indeed the case for the
above formulas.

The second consistency check is to note that for any n ≥ 2 such that the space of
Z2-odd and respectively parity even, odd is zero-dimensional, we must have respectively
Aσ++σn,even = Aσ−−σn,even = Aσ+−σn,even = 0, Aσ++σn,odd = Aσ−−σn,odd = Aσ+−σn,odd = 0. We see from (79) that this
is the case for odd parity with n = 2, 4 and never the case for even parity. Again, this agrees
with the above formulas.

The third consistency check are the Cauchy-Schwartz inequalities

(Aσ+−σn,even)
2 ≤ Aσ++σn,evenAσ−−σn,even , (Aσ+−σn,odd )

2 ≤ Aσ++σn,odd Aσ−−σn,odd . (222)

Furthermore, whenever the relevant space of primaries is one-dimensional, the inequality must
be saturated. From (79), we must have saturation for even parity with n= 2, 3 and odd parity
with n = 3,6. Again, it is not hard to check that all of these properties are satisfied by the
above formulas.

We can carry out another consistency check by noting that the space of Z2-odd, parity-
even primaries with ∆(0) = 2 is one-dimensional. At δ = 0, it is spanned by eρ = χ2σ̂3/

p
2. It

follows from the field theory description at δ = 0 that

c(0)
χ+eρ = c(0)

χ−eρ = 1 . (223)

This is consistent with (215), which furthermore predicts

c(1)
σ+eρ = −1 , c(1)

σ−eρ = 1 . (224)

We must therefore have
Aσ++σ2 = Aσ−−σ2 = −Aσ+−σ2 = 1 , (225)

which indeed agrees with (198).
One more check follows from considering the space of Z2-odd primaries with∆(0) = 3. For

each parity, this space is one-dimensional (79). Let us denote the corresponding parity-even
primary µ, and parity-odd primary µ′. From (198) and (207), we find

c(1)σ+µ = −c(1)σ−µ = ±
1
p

6
, c(1)

σ+µ′ = c(1)
σ−µ′ = ±

1
p

6
, (226)

where the choice of sign on the RHS corresponds to the ambiguity in the definition of µ, µ′.
It follows that we must have

Aσ++χ3 = Aσ−+χ3 = ±
1
p

6
c(0)
χ+µ′ , Aσ+−χ3 = Aσ−−χ3 = ±

1
p

6
c(0)
χ−µ′ , (227)
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where the two signs on the RHS must be the same. This is consistent with (215), which
furthermore predicts

c(0)
χ+µ′ = −c(0)

χ−µ′ = ±

√

√2
3

. (228)

This result can be checked by a calculation in the free theory at δ = 0.

5.5 Solution for the CFT data

Let us combine the constraints we have derived to determine the CFT data. The constraints
consist of (181) together with (187), (196), and (213). They constitute 9 linear equations for
the 12 unknowns

∆
(2)
± , c(2)σχ± , c(3)σσ± , c(1)χχ± , c(1)+++ , c(1)+−− , c(1)+−− , c(1)−−− . (229)

In order to find a unique solution, we will make use of the expected symmetry of the CFT data
under the switch O+↔O−, accompanied by

p
δ 7→ −

p
δ. Note that this symmetry does leave

the lower-order results in (181) invariant. To implement the symmetry at higher orders, let
us impose the following 3 equations

c(1)χχ+ = −c(1)χχ− , c(2)σχ+ = c(2)σχ− , c(3)σσ+ = −c(3)σσ− . (230)

We then find a unique solution

∆± = 1±
p

2
p

δ+
δ

4
+O(δ

3
2 ) ,

cσχ± =
1
p

2
∓
p
δ

16
−

δ

256
p

2
+O(δ

3
2 ) ,

cσσ± = ±
p
δ
p

2
−

15
16
δ±
�

543
256
−
π2

6

�

δ
3
2

p
2
+O(δ2) ,

cχχ± = O(δ) ,

c+++ =
3
2
+

39

16
p

2

p

δ+O(δ) , c++− = −
1
2
+
p
δ

16
p

2
+O(δ) ,

c−−− =
3
2
−

39

16
p

2

p

δ+O(δ) , c+−− = −
1
2
−
p
δ

16
p

2
+O(δ) .

(231)

Reassuringly, the solution exhibits the symmetry also for ∆± and c±±±, although we only im-
posed it for cχχ±, cσχ±, and cσσ±. As promised, the solution agrees with predictions of the RG
method of Section 4.

5.6 Checking the OPE relation

As we discussed in Section 2.2, the OPE coefficients involving σ and χ in the critical 1d LRI
must satisfy certain relations. Specifically, for any four primaries φi , φ j , φk, φℓ, we have [44]
(see also appendix G)

cσi jcχkℓ

cχ i jcσkℓ
=
Γ
�

∆σ+∆i−∆ j+ai j
2

�

Γ
�

∆σ−∆i+∆ j+ai j
2

�

Γ
�

1−∆σ+∆k−∆ℓ+akℓ
2

�

Γ
�

1−∆σ−∆k+∆ℓ+akℓ
2

�

Γ
�1−∆σ+∆i−∆ j+ai j

2

�

Γ
�1−∆σ−∆i+∆ j+ai j

2

�

Γ
�

∆σ+∆k−∆ℓ+akℓ
2

�

Γ
�

∆σ−∆k+∆ℓ+akℓ
2

� ,

(232)
where ai j = [1− (−1)Ji+J j ]/2= Ji + J j mod 2.

50

https://scipost.org
https://scipost.org/SciPostPhys.20.2.029


SciPost Phys. 20, 029 (2026)

Let us test whether these relations are satisfied by the CFT data (231) derived using the
bootstrap. There are three choices for (i, j, k,ℓ) ∈ {σ,χ,O+,O−}4 giving rise to independent
constraints:

(i, j, k,ℓ) = (σ,O+,σ,O−) , (i, j, k,ℓ) = (σ,O+,χ,O+) , (i, j, k,ℓ) = (σ,O−,χ,O−) .
(233)

Considering first the case (i, j, k,ℓ) = (σ,O+,σ,O−), the bootstrap solution (231) predicts

cσσ+cσχ−
cσχ+cσσ−

= −1+
7
p
δ

2
p

2
−

49
16
δ+O(δ

3
2 ) . (234)

At the same time, the RHS of (232) evaluates to

−1+
7
p
δ

2
p

2
−

�

49
16
+
∆
(3)
+ +∆

(3)
−p

2

�

δ+O(δ
3
2 ) . (235)

We see that (232) holds automatically up to O(δ) since ∆(3)+ + ∆
(3)
− = 0 by virtue of thep

δ 7→ −
p
δ symmetry. This agreement is a highly nontrivial consistency check of our results.

Moving on to the cases (i, j, k,ℓ) = (σ,O±,χ,O±), we find that the corresponding relation
is satisfied by the bootstrap solution (231) up to O(δ). When we impose the OPE relation up
to O(δ2), we obtain the new result

cχχ± = −
π2

2
δ∓

11π2

16
p

2
δ

3
2 +O(δ2) . (236)

5.7 Four-point functions

Let us conclude this section by collecting the analytic bootstrap results for the four-point func-
tions that we studied. We obtained them by combining the OPE contribution of ‘light’ operators
1,σ,χ,O+,O− with that of ‘heavy’ operators, using the closed formulas for Ai jkℓ

n . We begin
with all four-point functions involving only σ and χ:

Gσσσσ(z) =1− [log z + log(1− z)]δ

+
�

−6Li3
� z

z−1

�

+ 4 log(1−z
z )Li2(z) + log3(1− z) +

1
2

log2(z) +
1
2

log2(1− z)

− log2(z) log(1− z) +
1
3
π2 log(1− z) +

1
2

log(z) log(1− z)
�

δ2 +O(δ3) ,

Gσσσχ(z) =
p

2z−1 [z log z + (1− z) log(1− z)]δ+O(δ2) ,

Gσσχχ(z) =z−2 + z−2[log z + (log(1− z))2]δ+O(δ2) ,

Gσχσχ(z) =1+ [log z − log(1− z)]2δ+O(δ2) ,

Gσχχχ(z) =O(δ) .
(237)

Next, we list the four-point functions involving only σ, O+, and O−:

Gσσ±±(z) =z−2 ∓
p

2z−2 [2 log z + log(1− z)]
p

δ

+ z−2
�

−Li2(z) + log2(1− z) + 4 log2(z) + 3 log(z) log(1− z)

−1
2 log(z)− 3

4 log(1− z) + z
2(1−z)

�

δ+O(δ
3
2 ) ,

Gσσ±∓(z) =z−2
�

Li2(z) + log(1− z) log(z)− 1
2 log(1− z) + z

2(z−1)

�

δ+O(δ
3
2 ) ,

Gσ±σ±(z) =∓ 1
4
p

2

p

δ+
�

−1
4 log(z(1− z)) + z

2(1−z) +
1
2z +

π2

6

�

δ+O(δ
3
2 ) ,

Gσ±σ∓(z) =1±
p

2[log z − log(1− z)]
p

δ

+
�

�

log
� z

1−z

��2 − 3
4 log(z(1− z)) + 1

2(z−1)z −
π2

6 +
31
64

�

δ+O(δ
3
2 ) .

(238)
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We conclude with all four-point functions involving σ, χ, O+ and O−:

Gσχ±±(z) =
1

p
2z(1− z)

±
4z2 − 9z + 8(z − 1) log(1− z) + 9

8(z − 1)2z

p

δ+O(δ) ,

Gσχ±∓(z) =
1

p
2z(z − 1)

±
(z − 2)z − 2(z − 1) log(1− z)

2(z − 1)2z

p

δ+O(δ) ,

Gσ±χ±(z) =
1

p
2z(z − 1)

±
9(z − 1)z − 8(z − 1)z log[z(1− z)] + 4

8(z − 1)2z2

p

δ+O(δ) ,

Gσ±χ∓(z) =
1

p
2z(1− z)

±
2z(1− z) log
� z

1−z

�

− 2z + 1

2(z − 1)2z2

p

δ+O(δ) .

(239)

6 Conclusions and future directions

In this paper, we elaborated on the weakly coupled description of the short-range crossover
for the 1d long-range Ising model universality class, presented in [21].

For all s ∈ (1/2,1), the 1d LRI has an interacting IR fixed point. While a weakly coupled
description near s = 1/2 is provided by a GFF withϕ4 interaction, this model becomes strongly
coupled near s = 1 and an alternative, weakly coupled field-theoretic description remained
unknown for a long time. We have filled this gap, introducing the model in equation (37),
which generalizes the Kondo model by giving a non-vanishing canonical dimension −δ/2,
with 0 ≤ δ < 1, to the scalar field φ. We claim that the U(1)-singlet sector of its weakly
interacting fixed point describes the 1d LRI CFT at s = 1−δ.

The idea behind the model is based on the physical description of the 1d LRI provided by
Anderson and Yuval [22, 46–48] for s = 1, and extended by Kosterlitz [23] to s < 1. They
recognized that at low temperatures, the 1d LRI close to s = 1 could be written as a dilute
gas of kinks and antikinks, with the (anti)kinks describing domain walls where the spins of
the LRI flip. At s = 1, this Coulomb gas admits various other descriptions, such as a pertur-
bative expansion of the Kondo model, that in its bosonized version is similar to the boundary
sine-Gordon model, but with an extra single spin-1/2 degree of freedom implementing the
constraint of alternating kinks and antikinks. The latter description is the starting point for
our model (37), that extends it to s < 1.

There is a loose analogy between our construction and the corresponding higher-
dimensional model of [9,10]. In 1d, the zero-temperature SRI model has a single qubit degree
of freedom, with the spin field represented by the Pauli matrix σ̂3, see Section 2.4. We can
thus view the Oh interaction in our model (37) as the analog of the σχ interaction of [9,10].
Indeed our notation for the operator χ was not accidental, as also in our case it represents
the shadow of the spin field in the LRI CFT. The main difference in 1d is the need to introduce
operators that create kinks and antikinks, otherwise the model would be trivial, and in par-
ticular it would not lead to the LRI CFT at s < 1, or to the logarithmic corrections at s = 1.
As the (anti)kink-generating operators cannot be written in a local way in terms of χ, we are
led to introducing the ancestor field φ, such that χ ∼ ∂ φ. In terms of φ and of the sl2-triplet
{σ̂3, σ̂+, σ̂−}, the (anti)kink-generating operators are the vertex operators σ̂±e±ib0φ , which
we combined in the Og interaction in (37).

Our model (37) can appear to be nonstandard for at least three reasons: (i) the unper-
turbed theory is a compact GFF with negative scaling dimension; (ii) the perturbation Og is
not a scaling operator of the unperturbed theory; (iii) the perturbations involve matrix de-
grees of freedom and a path-ordering. However, as we have argued in the main text, and as
corroborated by the overall self-consistency of our results, none of these aspects should cause
headaches.
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Concerning the first point, 1d GFF with negative scaling dimension is standard in the
mathematical literature, corresponding to the fractional Brownian motion [60]. Indeed, as
reviewed in Appendix A, this class of theories arises from a probability measure on the space
of continuous functions, defined modulo a global additive constant. In other words, these are
shift-symmetric Gaussian theories, their well-defined local observables have positive scaling
dimension, and their target space can be consistently compactified.

Regarding the fact that Og is not a scaling operator of the unperturbed theory, we make the
following remarks. Firstly, even in standard massive perturbation theory, operators such as ϕ4

are not scaling operators, they only become such in the UV limit, when the mass is neglected.
Similarly, one could consider the UV limit of our model, in which case b0 → 0. In this limit,
Og reduces to a scaling operator of vanishing dimension. Moreover, in that same limit, one
could expand Og in an infinite series of relevant scaling operators. Since the U(1) symmetry
protects their relative coefficients, they still only give rise to a single coupling. Unfortunately,
we have not obtained a proof of renormalizability to all orders in this framework. Having said
that, we found no evidence that counterterms of irrelevant operators should be added, up to
second order of the perturbative expansion. Lastly, the RG computations of Section 4, and
their agreement with the bootstrap computations of Section 5, corroborate our point of view,
showing that the model provides a perturbative computational framework for extracting CFT
data of the 1d LRI near s = 1.

As for the fact that the interactions involve matrix degrees of freedom, we notice that
similar models appear naturally in condensed-matter systems, like the Kondo model itself,
and more generally for systems with localized impurities, see for example [66,67]. Moreover,
the 2× 2 matrices and the associated path ordering could be traded for a path integral using
a complex bosonic spinor [66–68], as reviewed in Appendix C.1.

An advantage of our description is the possibility to easily compute, in a systematic way,
a host of CFT data, consisting of operator scaling dimensions and OPE coefficients, perturba-
tively in the couplings g, h. In Section 4 we have done this for the first few low-lying operators,
including the two marginally relevant operators O±, which are linear combinations of Og ,Oh
appearing in (37). Since our model describes a family of 1d CFTs, we compared the pertur-
bative results against results obtained by the analytic conformal bootstrap in Section 5. Here,
the only input are the symmetries of the theory, and the spectrum at s = 1. We found complete
agreement with the perturbative RG computations, and extended them to higher orders and
other observables. This includes a large class of four-point correlation functions of light fields,
which themselves encode an infinite set of CFT data.

The agreement solidifies our claim that the fixed point of (37) describes the 1d LRI near
s = 1. The results for scaling dimensions and OPE coefficients are summarized in Table 5, and
those for four-point functions in Section 5.7.

The nonlocality of the 1d LRI implies several nonperturbative properties of the CFT data.
In particular, certain ratios of OPE coefficients involving σ and χ are given by ratios of gamma
functions of the scaling dimensions, see Section 2.2.3. These OPE relations have been used as
important constraints in bootstrap studies of the long-range Ising model [14,44].28 However,
we did not use them as an input in our analytic bootstrap analysis. Instead, the OPE relations
are satisfied automatically (and in a rather nontrivial manner) by the bootstrap solution, which
serves as another important consistency check. See Section 5.6 for more details.

It is interesting to compare the perturbative RG and the conformal bootstrap treatment.
The RG treatment provides a self-contained definition of the model, and a framework where
any quantity can in principle be calculated to any order in perturbation theory. In practice, the
conformal bootstrap arrives at the final results more efficiently, by virtue of operating directly

28Similar relations can be derived for other models describing interacting defects, such as boundaries, in a free
bulk CFT [80,81].
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Table 5: Summary of results for scaling dimensions and OPE coefficients from per-
turbative computations and analytic bootstrap.

Observable Value
∆σ

δ
2 (exact)

∆χ 1− δ2 (exact)
∆± 1±

p
2δ+ δ

4 +O(δ3/2)

cσσ± ±
q

δ
2 −

15δ
16 ±
�

543
256 −

π2

6

�

δ3/2
p

2
+O(δ2)

cσχ±
1p
2
∓
p
δ

16 −
δ

256
p

2
+O(δ3/2)

cχχ± −π
2δ
2 ∓

11π2δ3/2

16
p

2
+O(δ2)

c±±±
3
2 ±

39
p
δ

16
p

2
+O(δ)

c+±− −1
2 ±

p
δ

16
p

2
+O(δ)

at the conformal fixed point, and by focusing only on the pertinent quantities. Note that the
only input from the RG model needed to perform the conformal bootstrap calculation was the
knowledge of the spectrum of scaling dimensions strictly at δ = 0.

One may wonder whether the conformal bootstrap could be used to completely replace the
perturbative RG treatment. Perturbative RG can, at least in principle, determine all the CFT
data to all orders in

p
δ. We have seen that, to the first few orders, the conformal bootstrap

does determine at least some CFT data with greater ease. To continue in this manner to higher
orders and for other pieces of the CFT data, it will be necessary to enlarge the set of external
operators in the four-point functions whose crossing symmetry is imposed. It is plausible that
crossing symmetry of all four-point functions does determine the CFT data to all orders (and
even non-perturbatively at finite δ). However, we are not aware of any result that would imply
that in order to determine a given finite set of CFT data to a given finite perturbative order,
only a finite number of crossing equations will be needed. In this sense, perturbative RG has
not been superseded. However, see [82] for an analogous situation in geometry where the
bootstrap provably determines all the data.

We conclude with several open questions, left for future work. It would be interesting to
explore other possible formulations of our model. For example, it might be useful to find a
formulation reinterpreting it as a boundary theory of a massive scalar in AdS2. By a standard
AdS/CFT construction [83], the GFF φ could be viewed as the boundary theory of a bulk
Klein-Gordon field with squared mass m2 = δ

2 (1+
δ
2 ) and negative-branch boundary condition

∆− =
1
2 −
q

1
4 +m2, which is admissible [84] for m2 < 3/4, i.e. δ < 1, the upper bound

corresponding to the value at which the GFF reduces to the standard 1d free scalar. It would
be nice to construct the 1d LRI as a suitable boundary condition for this AdS theory.

It would also be interesting to study the interpolation of CFT data in the range 1/2< s < 1,
with both s−1/2 and 1−s not infinitesimal. The perturbative results that we obtained here near
s = 1, together with perturbative results for the ϕ4 description near s = 1/2 (derived at three
loop for any dimension in [14,26]), provide useful benchmark points for any nonperturbative
study aiming at addressing such question. They could be also used to attempt an interpolation
by means of resummations, but this approach is hampered by the small order at which the
perturbative series are currently computed (see nevertheless [27] for some progress in three
dimensions). Monte Carlo simulations offer another approach to study the nonperturbative
interpolation between the ϕ4 and the near short-range regimes. Only a few results for the 1d
LRI are available [85–88], and it would be desirable to improve them to enable a comparison
with our results. Another approach that could be adapted to this problem is provided by the
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functional renormalization group (see e.g. [89]), already applied to long-range models for
example in [90,91].

Since the critical 1d LRI corresponds to a family of 1d CFTs, one could use the numerical
conformal bootstrap [92] (see [93, 94] for reviews) to identify the 1d LRI and bound its CFT
data, as was done for the higher-dimensional LRI in [14,44]. It is also an interesting target for
the multipoint numerical bootstrap, recently developed for one-dimensional CFTs [95,96].

The Ising model, either in its short-range or long-range version, is a cornerstone of statis-
tical physics, and thus the problem solved in [21] and this paper was a particularly pressing
one. Similar questions can be asked for a variety of other 1d long-range models. For the long-
range O(N) model, a perturbative description near the short-range end was already provided
by Kosterlitz in [23], in the form of a long-range nonlinear O(N) sigma model, see also [97].
For other models, such as the long-range Blume-Capel (or tricritical Ising) model or the long-
range Potts model [98–100], the situation is much more open. Same holds true for their
particularly important limits, such as the self-avoiding walks [101] and percolation [102], or
for disordered versions of these models [103,104].

We hope to come back to these questions in the near future.
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A Generalized free field on the line

A d-dimensional generalized free field theory (GFF) is the quantum field theory of a sin-
gle scalar ϕ, whose only nonvanishing connected n-point function is the two-point function
〈ϕ(x)ϕ(y)〉 ≡ C(x − y), assumed to be invariant under rotations and translations. All other
(not connected) n-point functions are obtained as sums over Wick contractions. In other
words, a GFF is a centered Gaussian measure, and as such it can be defined without intro-
ducing any action functional, see e.g. [64,105], whose explicit expression we postpone to the
following subsections.

Assuming also reflection positivity, GFFs provide the simplest examples of QFTs satisfying
the standard axioms [64, 106]. If furthermore we take C(x) ∝ 1/|x |2∆ϕ , with ∆ϕ being
the scaling dimension of ϕ, then the GFF is also conformally invariant, it is known in the
mathematical literature as fractional Gaussian field [58], and for ∆ϕ = (d − 2)/2 it reduces to
the standard massless free scalar.

We restrict now to a GFF in d = 1, reserving the name GFF precisely for the case of a
fractional Gaussian field. For ∆ϕ > 0, it provides the simplest example of a 1d CFT as defined
in Section 2.2.1. For ∆ϕ < 0, its definition and conformal properties are slightly more subtle,
but it is also a well studied random field, associated to the fractional Brownian motion with
so-called Hurst parameter H = −∆ϕ, see for example [58, 59, 107]. The intermediate case
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∆ϕ = 0 corresponds to the log-correlated Gaussian field [108], which shares many technical
aspects with the∆ϕ < 0 case, and which in d = 1 coincides with the usual 2d free field theory
restricted to a line, as we will recall below.

We review here in simplified terms the construction of the GFF probability measure and
the associated action functional, referring for more details to the original literature from which
we draw our presentation [58,64,107,109].

The main idea behind the rigorous construction of a GFF is to use the Bochner-Minlos
theorem. Let S(R) be the Schwartz space of test functions f : R → R whose derivatives
of all orders exist and decay faster than any polynomial at infinity, and let Z[ f ] be a given
complex-valued functional on such space. Let us introduce also the space S ′(R) of tempered
distributions, i.e. the space of continuous linear functionals on S(R), so that if ϕ ∈ S ′(R) and
f ∈ S(R), then the canonical pairing ϕ[ f ] = (ϕ, f ) ∈ R exists, and we formally write

ϕ[ f ] =

∫

R
dx ϕ(x) f (x) . (A.1)

One nice feature of S(R) and S ′(R) is that the Fourier transform and its inverse act as linear
endomorphisms on these spaces.

The Bochner-Minlos theorem states that there exists a unique probability measure µ on
S ′(R), such that Z[ f ] is the characteristic function (or generating functional) of µ, i.e. its
Fourier transform

Z[ f ] =

∫

S ′(R)
dµ(ϕ) eiϕ[ f ] , (A.2)

if and only if Z[ f ] is continuous, Z[0] = 1, and Z[ f ] is positive definite, i.e.

n
∑

j,k=1

z j z̄kZ[ f j − fk]≥ 0 , ∀ f1, . . . , fn ∈ S(R) , and z1, . . . , zn ∈ C . (A.3)

A GFF is then defined by the assignment of a characteristic function of the form

Z
GFF
[ f ] = e−

1
2 〈ϕ[ f ]ϕ[ f ]〉 = e−

1
2

∫

dxdy C(x−y) f (x) f (y) . (A.4)

If the exponent can be cast in the form of an inner product in some space, then it is straightfor-
ward to show that Z

GFF
[ f ] is positive (proposition 2.4 of [58]) and the Bochner-Minlos theorem

applies. In following this argument, it is important to treat separately the cases of positive and
negative scaling dimension, as we will now explain.

This construction might seem beyond the scope of our paper: after all, except for the choice
of covariance, Z

GFF
[ f ] is the standard generating functional for Gaussian correlators, familiar

to any field theorist. And indeed at the end things are essentially as straightforward as they
seem, if 0 < ∆ϕ < 1/2. However, outside such range things become more involved, and
following the steps of a rigorous construction leads to important insights.

Assume that C(x) is normalized in such a way that in momentum space it reads

C̃(p) =
1

|p|1−2∆ϕ
. (A.5)

In other words, the covariance is precisely defined as the fractional Laplacian (e.g. [110])
of power −ζ = ∆ϕ − 1/2. One would like to apply the Bochner-Minlos theorem with the
characteristic functional being given as above, with the choice

〈ϕ[ f ]ϕ[ f ]〉= || f ||2
H∆ϕ−1/2(R)

≡
∫

dp
2π

f̃ (−p) |p|2∆ϕ−1 f̃ (p) , (A.6)
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where || f ||H−ζ(R) is by definition the norm on the Sobolev space H−ζ(R), i.e. the Hilbert
space completion of the set of Schwartz functions having finite norm. For 0 < ∆ϕ < 1/2, i.e.
0< ζ < 1/2, the norm (A.6) is finite for all Schwartz functions, hence the existence of the GFF
as a probability measure is established.29 On the contrary, for∆ϕ < 0, i.e. ζ > 1/2, the singu-
larity at p = 0 renders the norm divergent, unless f̃ (n)(0) = 0 for n≤ ⌊−∆ϕ⌋. Therefore, in the
latter case one introduces the subspace Sr(R) of Schwartz space spanned by test functions that
in momentum space vanish at the origin, together with all the derivatives of order less or equal
to the nonnegative integer r (equivalently, such that in position space

∫

dx P(x) f (x) = 0 for
all polynomials P(x) of degree r). The norm (A.6) is then finite in the restricted space of test
functions S⌊−∆ϕ⌋(R), and we can establish the existence of the corresponding GFF measure on

its dual space S ′⌊−∆ϕ⌋(R). We refer to [58] for more details.30

In the remainder of this appendix we review some other aspects of the GFF, distinguishing
the cases of positive and negative scaling dimensions, and introducing some of the notation
used in the main body of the paper.

A.1 GFF with positive scaling dimension

As remarked above, the GFF can be introduced without the need of an action functional.
Nevertheless, it is convenient to write an explicit action, as for example this simplifies the
derivation of Schwinger-Dyson equations. Moreover, this will make the nonlocal nature of the
GFF explicit.

For positive scaling dimenssion, we write ∆ϕ = (1 − s)/2, with s < 1, as in Section 2,
which corresponds to taking ζ= s/2. In path integral language, we can view the 1d GFF as a
functional integral over ϕ, and write for example31

C(x)≡ 〈ϕ(x)ϕ(0)〉 ≡
∫

[dϕ]e−SGFF [ϕ]ϕ(x)ϕ(0) . (A.7)

The action S
GFF
[ϕ] is most naturally defined in momentum space. We normalize it as

S
GFF
[ϕ] =

1
2

∫ +∞

−∞

dp
2π
ϕ̃(−p)|p|sϕ̃(p) , (A.8)

so that the covariance takes the precise form (A.5), as can be seen starting from (A.2) with
dµ(ϕ) = [dϕ]e−SGFF [ϕ], and using the translation invariance of [dϕ] to obtain (A.4) with norm
(A.6).

The appearance of |p|s in the action makes evident its definition in terms of fractional
Laplacian. Indeed, among several equivalent definitions [110], the easiest definition of the
fractional Laplacian is in Fourier space, where (−∂ 2

x )
s/2ϕ(x) is defined as the multiplication

operator |p|sϕ̃(p). Going to position space one finds a representation as a hypersingular inte-
gral operator:

(−∂ 2)s/2ϕ(x) = lim
r→0

cs

∫

|x−x ′|>r
dx ′

ϕ(x)−ϕ(x ′)
|x − x ′|1+s

, (A.9)

where

cs = −
2s Γ (1+s

2 )

π1/2Γ (−s/2)
= Γ (s+ 1) sin
�πs

2

�

/π . (A.10)

29The upper bound ∆ϕ < 1/2 comes from demanding that the norm is finite also in position space.
30Notice that in [58] the parameter s corresponds to half our s, i.e. it coincides with the ζ introduced above (the

latter being a notation used for example also in [25,26]).
31The normalization of the Gaussian is implicit in the functional measure [dϕ], i.e.

∫

[dϕ]e−SGFF [ϕ] = 1.
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This can be derived by first writing

(p2)s/2 =
1

Γ (−s/2)

∫ +∞

0

dt
e−t p2
− 1

t1+s/2
,

whose validity is trivially checked by rescaling t → t/p2 and recognizing that the integral
reduces to |p|s times the Cauchy-Saalschütz representation of Γ (−s/2) for 0 < s < 2. The
singular integral representation is then found by going back to position space and exchanging
the order of integration [109].

Multiplying (A.9) by 1
2ϕ(x) and integrating over x , we arrive at the action written in

position space:

S
GFF
[ϕ] =

cs

4

∫ +∞

−∞
dx1dx2

(ϕ(x1)−ϕ(x2))
2

|x1 − x2|1+s
. (A.11)

Written as in (A.11), the action is manifestly positive for 0< s < 2, and the integral is regular
at x1 ∼ x2.32

The covariance in position space is of course the Fourier transform of 1/|p|s, which reads

C(x) =
−c−s

|x |1−s
, (A.12)

and is a well-defined tempered distribution for 0< s < 1. Notice that the restriction to positive
s, i.e. the upper bound ∆ϕ < 1/2, is also understood from the lattice point of view, as it
is known that a positive s is needed for the existence of the thermodynamic limit [111]. The
restriction to s < 1 is instead needed for the positivity of∆ϕ, without which the Schwartz space
needs to be restricted, as explained above, and as further elaborated in the next subsection.

A.2 GFF with negative scaling dimension

We now consider the case−1<∆ϕ < 0, relevant to the construction of our model in Section 3.
In this case, adopting a notation consistent with Section 3, we rename the fundamental field
as φ, we denote the expectation value in this GFF theory by 〈·〉0, and we set ∆φ = −δ/2, i.e.
2ζ= 2− s = 1+δ.

As explained above, in this range of scaling dimensions, the 1d GFF can be rigorously con-
tructed as a probability measure on the space of distributions in S ′0(R), the dual space of S0(R),
the latter being the space of Schwartz functions satisfying the constraint

∫

dx f (x) = 0. There-
fore, the covariance kernel is defined only up to an additive constant. Indeed, the covariance
kernel C(x) is defined as

〈φ[ f1]φ[ f2]〉0 =
∫

dx dy C(x − y) f1(x) f2(y) , (A.13)

where f1, f2 ∈ S0(R). As a consequence, if a function C(x) satisfies (A.13), so does C(x) + c,
for some constant c. Notice, that by such definition, we also have

〈φ[ f1]φ[ f2]〉0 =
∫

dx dy 〈φ(x)φ(y)〉0 f1(x) f2(y)

= −
1
2

∫

dx dy 〈(φ(x)−φ(y))2〉0 f1(x) f2(y) .
(A.14)

32Sometimes the action is written as proportional to
∫

dx1dx2ϕ(x1)ϕ(x2)/|x1− x2|1+s. This expression is clearly
singular at x1 ∼ x2 due to the kernel diverging with a power greater than one. It could be defined by analytic
continuation from s < 0, but that would make properties like positivity and shift invariance of the action less
transparent.
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However, one should keep in mind that this equality only holds for f1, f2 ∈ S0(R). In partic-
ular, while 〈φ(x)φ(y)〉0 is defined only up to a constant, 〈(φ(x)−φ(y))2〉0 is a well-defined
quantity, the variance of the random variable φ(x)−φ(y). The latter is indeed the stationary-
increment form of the fractional Brownian motion with Hurst parameter H = −∆φ . In field
theoretic applications we are rather interested in local observables, hence the appropriate
well-defined random variables are derivatives of φ, and their products: since for example
〈∂ φ(x)∂ φ(y)〉0 = ∂x∂y〈φ(x)φ(y)〉0, it is clear that no additive constant ambiguity survives.

The GFF theory has a similar action as before

S0[φ] =
Nδ
4

∫ +∞

−∞
dx1dx2

(φ(x1)−φ(x2))2

|x1 − x2|2+δ
. (A.15)

We can also (formally) express the action as S0[φ] =
1
2φ · C

−1 ·φ, with obvious dot notation,
and C−1 ·φ to be interpreted as (proportional to) the fractional Laplacian (equation (A.9) with
s→ 2− s).

For convenience, we will choose the normalization and the additive constant so that the
covariance has our desired limit for δ→ 0:

C(x) = −
2
δ
(|x |δ − κ−δ) = −2 log(κ|x |) +O(δ) . (A.16)

This normalization corresponds to choosing Nδ = δ
2 c1+δc−1−δ in the action.

GFF as a boundary theory. At δ = 0, the 1d GFF has a natural interpretation as a boundary
theory. Consider the half plane Σ ≃ R×R+, where we use coordinates x ≡ (x , y) such that
the boundary is located at y = 0. On Σ, we define the free theory of a bosonic bulk field Φ(x),
with action normalized as

S0[Φ] =
1

4π

∫

Σ

d2x∂µΦ∂
µΦ , (A.17)

and with Neumann boundary conditions, i.e.

∂yΦ(x , y)|y=0 = 0 , x ∈ R . (A.18)

In other words, the restriction of the bulk field Φ(x , y) to the boundary

Φ(x , 0) = φ(x) , x ∈ R , (A.19)

is a dynamical field with propagator33

C(x)≡ 〈φ(x)φ(0)〉0 = −2 log(κ|x |) . (A.20)

The non-local action of eq. (A.15) is recovered from (A.17) with the help of a result by Caf-
farelli and Silvestre [112], according to which a Dirichlet boundary condition is mapped to a
Neumann boundary condition with the aid of a fractional Laplacian. In two dimensions, this
means that if Φ(x) satisfies

∂ µ∂µΦ(x , y) = 0 , (A.21)

33If we denote C(x) = − log |x| the propagator on R2, such that − 1
2π∂µ∂

µC(x) = δ(2)(x), then the propagator on
R×R+ with Neumann boundary conditions at y = 0 is

C(x1 − x2) + C(x1 − x̄2) ,

where we defined x̄ = (x ,−y). This gives an effective factor of two for the boundary-to-boundary propagator
(y1 = y2 = 0).
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with Dirichlet boundary condition (A.19), then

lim
y→0+

∂yΦ(x , y) = −(−∂ 2
x )

1/2φ(x)≡
1
π

∫

dx ′
φ(x)−φ(x ′)
|x − x ′|2

. (A.22)

Therefore, integrating (A.17) by parts and using the equations of motion of Φ(x), that in the
path integral formalism is equivalent to performing the Gaussian integral, we are left with the
boundary term

S0[φ] =
1

8π2

∫ +∞

−∞
dx1dx2

(φ(x1)−φ(x2))2

|x1 − x2|2
, (A.23)

that coincides with the δ→ 0 limit of (A.15), and now the Neumann boundary conditions for
Φ(x) are equivalent to the field equations for φ(x).

By analytic continuation, this connection can be generalized to δ > 0, so that the GFF be-
comes equivalent to conformal line defect for a free theory in noninteger dimension D = 2−δ.
Although unitarity of the combined bulk and defect system is not guaranteed in fractional di-
mension (see e.g. [113]), this defect description has the advantage that it is manifestly local.

B From continuum 1d LRI to AYK model

We provide here a simple, but not rigorous, derivation of the AYK model, and its Coulomb gas
limit, from the continuum long-range Ising model of equation (5). First, we rewrite the latter
as

S[ϕ] =−
cs

2s(1− s)

∫ +∞

−∞
dxdy
�

|x − y|1−s − a1−s
�

∂xϕ(x)∂yϕ(y)

+
λ4

4

∫ +∞

−∞
dx
�

ϕ(x)2 −ρ2
�2 −λ1

∫ +∞

−∞
dx ϕ(x) +

θ

2

∫ +∞

−∞
dx
�

∂xϕ(x)
�2

,

(B.1)

where in the first term we have integrated by parts once in x and once in y , and we have
subtracted a vanishing term (the product of two integrals of total derivatives) so that the
limit s → 1 is manifestly going to produce a logarithm. In the potential we have instead
introduced ρ2 = −λ2/λ4 (assuming λ2 < 0) and discarded a constant term, and we have
introduced a constant source (λ1) and a short-range term (∝ θ) for full comparison to the
original construction of Anderson and Yuval and of Kosterlitz.

We now consider the limit λ4 → +∞ at finite ρ, which is justified by the behavior of
the bare couplings near the fixed point, when using a momentum cutoff. In such limit, the
potential enforces the condition ϕ(x) = ±ρ, and a generic configuration is of the type drawn
in figure 2, which is a continuous version of the blocks of up or down Ising spins. Therefore,
the derivative of the field is nonzero (and divergent) only at the points where the sign changes
(also known as kinks and anti-kinks). That is, the field derivative configurations are restricted
to take the form

∂ ϕn(x) =

¨

0 , if n= 0 ,

±ρ
∑2n

i=1(−1)iδ(x − x i) , if n> 0 , and L
2 > x1 > x2 > . . .> x2n > −

L
2 ,

(B.2)

where the even number of delta functions is due to having assumed that outside the interval
[− L

2 , L
2 ] there are no kinks and the field has the same sign on both sides of it.

In order to tame singular expressions, we use a heat kernel regularization for the delta
functions, namely, we replace

δ(x)→ δa(x)≡
p

2
a

e−2π x2

a2 , (B.3)
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-L/2 L/2
x

-ρ

+ρ

φ(x)

Figure 2: A typical low-temperature configuration of kinks and antikinks in the LRI
model, with n= 2 and a/L ∼ 10−2.

where the normalization is chosen such that
∫ +∞
−∞ dx δa(x)2 = 1/a. The latter will thus pro-

vide a regularization of the short-range term.
Plugging the field configuration (B.2), with regularized delta functions, into the action

(B.1), we obtain

S[ϕn] =−
cs ρ

2

2s(1− s)

1...2n
∑

i ̸= j

(−1)i+ j
�

|x i − x j|1−s − a1−s
�

+λ1ρ
∑

i

(−1)i(x i − x i−1)

+ 2nρ2

�

θ

2a
+

cs a1−s f (1− s)
2s(1− s)

�

,

(B.4)

where we have discarded terms of order O(a|x i−x j|−s) relative to those of order O(|x i−x j|1−s),
and we have introduced a function f (z) = κz+O(z2), which results from the integration over
pairs of kinks at x i = x j .

The resulting action has the same form as the classical Hamiltonian of the AYK model [23],
see (23), and in the limit s→ 1, it becomes

S[ϕn] = −
ρ2

2π

1...2n
∑

i ̸= j

(−1)i+ j log(|x i− x j|/a)+λ1ρ
∑

i

(−1)i(x i− x i−1)+nρ2(θ/a+κ/π) , (B.5)

which was previously obtained by Anderson and Yuval [22].
In the partition function, we accordingly replace the functional measure by a sum over

configurations of the type (B.2), and we arrive at the partition function (21) of a Coulomb gas
with charges of alternating sign, with the following identifications:

g = exp(−ρ2(θ/a+ κ/π)/2) , J = ρ2/2π , H/a = 2λ1ρ . (B.6)

Such relations are nonuniversal, so it is not surprising that in our derivation in the continuum
they differ slightly from those obtained by Anderson and Yuval. However, they are qualitatively
similar, and in particular they imply that the LRI model without short-range term (θ = 0) and
external field (λ1 = 0) is a line in the {g,J } plane, parametrized by ρ2.
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C Alternative formulations and gauging

C.1 Coherent state representation

The partition function in (37) is expressed as mix of path integral and operator pictures. A
more homogeneous representation is possible by noticing that the defect operator D in (41)
can be thought as an evolution operator with a time-dependent Hamiltonian, if x is inter-
preted as Euclidean time. This leads to the so-called coherent state representation (see for
example [53, 66–68]), that is, a path integral representation in terms of a complex bosonic
spinor z(x) = {z1(x), z2(x)}, subject to the constraint z̄(x)z(x) = 1. Following the same con-
struction as in the references above, we can write

trD =
∫

[dzdz̄]δ(z̄z − 1)e−SD[z,φ] , (C.1)

with

SD[z,φ] =

∫

dx
�

z̄(x)∂ z(x)− g
�

Ŝ+(x)V+(x) + Ŝ−(x)V−(x)
�

− h Ŝ3(x)χ(x)
�

, (C.2)

where now the spin operators are represented as

Ŝ±(x) = z̄(x)σ̂±z(x) , Ŝ3(x) = z̄(x)σ̂3z(x) . (C.3)

The coherent state representation makes it easier to exploit field equations, which now
write

δ(S0 + SD)
δφ

= 0 ⇒ C−1 ·φ(x) = ig
�

Ŝ+(x)V+(x)− Ŝ−(x)V−(x)
�

−
ih
p

2
∂ Ŝ3(x) . (C.4)

In order to eliminate ∂ Ŝ3(x), and recover (58), we can then use a linear combination of the
field equations for z and z̄:

z̄σ̂3
δSD
δz̄
−
δSD
δz
σ̂3z = 0 , (C.5)

with which we recover the equivalent of (55):

∂x Ŝ3 = 2g(Ŝ+V+ − Ŝ−V−) . (C.6)

C.2 Gauging

In the coherent state representation, the U(1) symmetry acts as

φ(x)→ φ(x) +α/b0 , z(x)→ ei α2 σ̂3z(x) , (C.7)

and it could thus be gauged by introducing a gauge field A(x) via the replacements34

∂xφ(x)→ ∂xφ(x) + A(x)/b0 , ∂xz(x)→ Dz(x)≡ (∂x +
i
2
σ̂3A(x))z(x) , (C.8)

34The first replacement requires that we first integrate by part twice in the nonlocal kinetic term:
∫ +∞

−∞
dxdy

(φ(x)−φ(y))2

|x − y|3−s
= −

1
(1− s)(2− s)

∫ +∞

−∞
dxdy(φ(x)−φ(y))2∂x∂y

1
|x − y|1−s

=
2

(1− s)(2− s)

∫ +∞

−∞
dxdy

∂ φ(x)∂ φ(y)
|x − y|1−s

.
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with the gauge transformation

A(x)→ A(x)− ∂xα(x) . (C.9)

We thus obtain the total action

Sgauge[φ, A, z, z̄] =
2Ns

(1− s)(2− s)

∫ +∞

−∞
dxdy

(∂ φ(x) + A(x))(∂ φ(y) + A(y))
|x − y|1−s

+

∫

dx

�

z̄(x)Dz(x)− g
�

Ŝ+(x)V+(x) + Ŝ−(x)V−(x)
�

− h Ŝ3(x)
�

χ(x) +
i
p

2
A(x)
�

�

.

(C.10)

Since in d = 1 gauge fields are non-dynamical, they could in principle be eliminated from the
action. In fact A(x) only appears quadratically, so it could be easily be integrated out. This
would lead to new terms in the effective action, which however are irrelevant under the RG
flow. Alternatively, we can fix the gauge A(x) = 0. Either way, the only effect of gauging would
be to restrict observables to be gauge singlets. Moreover, we gain the equations of motion of
A(x):

δSgauge

δA(x)
= 0 ⇒

A=0
(1−
p

2h) Ŝ3(x)∝
∫ +∞

−∞
dy

∂ φ(y)
|x − y|1−s

, (C.11)

that we recognize being the shadow relation between Ŝ3(x) and χ(x).

C.3 Nonlinear sigma model formulation

It is actually possible to recast the model (37) in yet another form, one that makes the gauging
look more standard. Introducing the complex field U(x), subject to the constraint
Ū(x)U(x) = 1, we claim that (37) is equivalent to the partition function for the following
U(1) nonlinear sigma model:

SNLSM[φ] = −
2 c2−s

8π(1− s)(2− s)b2
0

∫ +∞

−∞
dxdy

Ū(x)∂xU(x) Ū(y)∂yU(y)
|x − y|1−s

1− logTrD , (C.12)

with

D ≡ P exp

�

∫ L/2

−L/2
dx
�

g
�

σ̂+U(x) + σ̂−Ū(x)
�

+
h
p

2 b0

σ̂3 Ū(x)∂xU(x)
�

�

. (C.13)

We can indeed solve easily the constraint and identify U(x) = eib0φ(x), and the correspondence
of the interactions is obvious. For the Gaussian part, we have used again a double integration
by parts.

In this formulation the fundamental field is U(x), and not φ(x), which is introduced
to solve the constraint and parametrize the circle. Notice that M(x) ≡ Ū(x)∂xU(x) is the
Maurer-Cartan form, so it is natural to express the kinetic term with it. In fact, if the theory
was local, we would have a noninteracting action that is quadratic both in terms of M(x) and
of U(x), because M(x)2 = −∂x Ū(x)∂xU(x), by virtue of the constraint. In the long-range
case instead it is quadratic only in M(x).

The U(1) symmetry is now

U(x)→ U(x)e2iα , σ̂i → e−iασ̂3σ̂ie
iασ̂3 , (C.14)
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and its gauging can be implemented by introducing a covariant derivative

DxU(x) = (∂x + 2A(x))U(x) ,

plus the same treatment as above for the z sector.
Notice that the presence of the Pauli matrices sector, as well as the absence of rotation

invariance in one dimension, allow the introduction of nontrivial interactions that would oth-
erwise be incompatible with symmetries.

Notice also that the kinetic term in (C.12) differs from the long-range O(2) nonlinear sigma
model studied in [97] in a crucial way. The action in [97] involves the product ∂x Ū(x)∂yU(y),
which differs from −Ū(x)∂xU(x) Ū(y)∂yU(y) for x ̸= y . In particular, the latter is quadratic
in φ, while the former is not, thus explaining why the O(2)model of [97] has a nontrivial beta
function, even without our g and h terms.

D Correlators of V± and χ in the GFF

In this section, we compute some GFF correlators involving the operators

V±(x)≡ κ : e±ib0φ(x) : , χ(x)≡
i
p

2
∂xφ(x) , (D.1)

for generic δ, where the normal ordering was defined in footnote 15, and we assume that
b0→ 1 for δ→ 0.

We recall that correlators between vertex operators read (here and below x i j ≡ x i− x j and
a is a UV cutoff)

〈Vn1
(x1) · · ·Vnm

(xm)〉0 = δ0,
∑

i ni
κm e2b2

0

∑

i< j
ni n j
δ (|x i j |δ−κ−δ) . (D.2)

For example, we have

〈V+(x1)V−(x2)〉0 = κ2 e−
2b2

0
δ (|x12|δ−κ−δ) ,

〈V+(x1)V−(x2)V+(x3)V−(x4)〉0 = κ4 e2b2
0

∑

i< j
(−1)i− j

δ (|x i j |δ−κ−δ) .
(D.3)

In the δ = 0 limit, we get:

〈V+(x1)V−(x2)〉0 =
1
|x12|2

, 〈V+(x1)V−(x2)V+(x3)V−(x4)〉0 =
|x13|2|x24|2

|x14|2|x23|2|x34|2|x12|2
.

(D.4)
The correlation functions of χ with itself are obtained from correlators of φ by acting with

derivatives, giving:

〈χ(x1)χ(x2)〉0 =
1−δ
|x12|2−δ

, 〈χ(x1)χ(x2)χ(x3)〉0 = 0 ,

〈χ(x1)χ(x2)χ(x3)χ(x4)〉0 = (1−δ)2
�

1
|x12|2−δ|x34|2−δ

+
1

|x13|2−δ|x24|2−δ

+
1

|x14|2−δ|x23|2−δ

�

.

(D.5)

To compute mixed correlation functions of χ with V±, one can exploit theφ-dependence of
V± and the Wick theorem. To that end, we remind that Wick’s theorem gives (in the following
formula, Oi[φ] is a φ-composite)

〈φ(x)
n
∏

i=1

Oi[φ](x i)〉0 =
n
∑

i=1

〈φ(x)φ(x i)〉〈O1[φ](x1) · · ·
δOi[φ]
δφ

(x i) · · ·On[φ](xn)〉0 , (D.6)
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which we can iterate. Alternatively, we can use the following trick. Introduce auxiliary vertex
operators Vα = : eiαφ :, and use the identity:

〈χ(x i) . . . 〉=
��

lim
αi→0

∂x Vαi
(x i)

αi
p

2

�

. . .

�

, (D.7)

in combination with the general formula (34) for correlators of vertex operators.
For mixed three-point functions with V± and χ we find

〈χ(x1)V±(x2)V∓(x3)〉0 = ±
p

2b0

�

xδ−1
12 − xδ−1

13

�

〈V+(x2)V−(x3)〉0 ,

〈V±(x1)V∓(x2)χ(x3)〉0 = ∓
p

2b0

�

xδ−1
13 − xδ−1

23

�

〈V+(x1)V−(x2)〉0 ,

〈V±(x1)χ(x2)V∓(x3)〉0 = ∓
p

2b0

�

xδ−1
12 + xδ−1

23

�

〈V+(x1)V−(x3)〉0 ,

(D.8)

where from now on we assume x i > x i+1 in order to get rid of some signum functions, and
because anyway in our model we only need path-ordered correlators.

In the δ = 0 limit we get

〈χ(x1)V±(x2)V∓(x3)〉0 =
±
p

2
x12 x13 x23

,

〈V±(x1)V∓(x2)χ(x3)〉0 =
±
p

2
x13 x23 x12

,

〈V±(x1)χ(x2)V∓(x3)〉0 =
∓
p

2
x12 x23 x13

.

(D.9)

Mixed four-point functions can be computed analogously. For simplicity, we report here
the results in the δ = 0 limit only:

〈χ(x1)χ(x2)V+(x3)V−(x4)〉0 = 〈V+(x1)V−(x2)χ(x3)χ(x4)〉0 =
1

x2
12 x2

34

+
2

x13 x23 x14 x24
,

〈χ(x1)V+(x2)χ(x3)V−(x4)〉0 = 〈V+(x1)χ(x2)V−(x3)χ(x4)〉0 =
1

x2
13 x2

24

−
2

x12 x23 x14 x34
,

〈χ(x1)V+(x2)V−(x3)χ(x4)〉0 = 〈V+(x1)χ(x2)χ(x3)V−(x4)〉0 =
1

x2
14 x2

23

+
2

x12 x13 x24 x34
.

(D.10)

D.1 Insertions at infinity

Pushing the operator at position x1 to infinity, according to the definition (81), the three-point
functions (D.8) reduce to

〈χ(∞)V±(x2)V∓(x3)〉0 = ±
p

2b0 x23 〈V+(x2)V−(x3)〉0 ,

〈V±(∞)V∓(x2)χ(x3)〉0 = ±
p

2b0 xδ−1
23 ,

〈V±(∞)χ(x2)V∓(x3)〉0 = ∓
p

2b0 xδ−1
23 .

(D.11)

The limit δ→ 0 are easily obtained and they coincide with what one obtains by using in (D.9)
the standard CFT definition of operator at infinity.

As an example, we give also the case of homogeneous four-point functions:

〈V+(∞)V−(x2)V+(x3)V−(x4)〉0 = κ2 e2b2
0

∑i, j=2,3,4
i< j

(−1)i− j

δ (|x i j |δ−κ−δ) −−→
δ→0

|x24|2

|x23|2|x34|2
,

〈χ(∞)χ(x2)χ(x3)χ(x4)〉0 = (1−δ)
�

1
|x34|2−δ

+
1

|x24|2−δ
+

1
|x23|2−δ

�

.

(D.12)
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E Logarithmic corrections to scaling at the crossover

In this appendix, we study the logarithmic corrections to the scaling behavior of the critical
1d LRI Ising theory at the crossover. As discussed in the main text, at s = 1 the flow to the IR
fixed-point theory at g = h= 0 is controlled by a marginally irrelevant operator (a linear com-
bination of Og and Oh). A standard argument [61], also employed for the higher-dimensional
LRI in appendix B of [10], shows that in the presence of marginally irrelevant operators, the
CFT predictions for the IR behavior of correlators at criticality receive logarithmic corrections.

Starting from the s = 1 theory, let us turn on the Oh and Og perturbations. The general
solution of the the Callan-Symanzik equation for the two-point function of σ(x) = σ3 is

〈σ(r)σ(0)〉=
c(r)
r2∆σ

, r > 0 , (E.1)

where ∆σ is the conformal dimension in the unperturbed theory. Up to an overall function
that is constant at leading order, we have that

c(r)∝ exp

�

−2

∫ r

1

d log r ′ γσ( ḡ(r
′, g0, h0), h̄(r ′, g0, h0))

�

. (E.2)

In the equation above, ḡ and h̄ are the running couplings, whereas g0, h0 are the values of
the couplings at r = 1, i.e. the starting point of the RG flow. Finally, γσ is the anomalous
dimension of σ, which in 4.4.2 was found to be

γσ = 2g2 . (E.3)

The running couplings are the solution to the differential equations

−
d g

d log r
= βg , −

dh
d log r

= βh , (E.4)

where βg and βh are the beta functions of the s = 1 theory in eq. (75), which here we truncate
to the leading non-trivial order, i.e. βg = −2

p
2gh and βh −

p
2g2. In this approximation, the

quantity W = 2h2− g2 is constant along the flow, i.e. 2h2− g2 = 2h2
0− g2

0 , and it parametrizes
the deviation from the phase transition line, i.e. the separatrix between regions I and I I in
fig. 1, panel (a).

The flow equations are easily solved. In the region I (i.e. W > 0, h0 < 0, g0 > 0), we find:

ḡ(r, g0, h0) = 2
p

W

p
Ae−2

p
W log r

1− Ae−4
p

W log r
, (E.5)

h̄(r, g0, h0) = −
p

W

�

1+ Ae−4
p

W log r
�

p
2
�

1− Ae−4
p

W log r
� , (E.6)

with A= (
p

2h0 +
p

W )/(
p

2h0 −
p

W ).
Tuning to the transition line, W → 0, we obtain

ḡ2(r, g0, h0) =
4h2

0
�p

2− 4h0 log r
�2 , (E.7)

and thus

c(r)∝ exp

�

−4

∫ r

1

d log r ′ ḡ2(r ′, g0, h0)

�

∝ exp

�

−4
h0p

2− 4h0 log r

�

≃ exp
§

1
log r

ª

≃ 1+
1

log r
+ . . . ,

(E.8)
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where in the last two steps we used the large r limit. We see that the logarithmic corrections
to scaling appear, but only as subleading behavior. However, remembering that ∆σ = 0 and
that at the critical temperature the 1d LRI model at s = 1 has a non-vanishing magnetization,
the logarithmic correction gives a nontrivial result for the connected two-point function, as
noticed early on in [114].

It is interesting to also consider the two-point function of vertex operators, as it leads to
a more standard outcome. Consider the two-point function of Og , that at the fixed point
g = h= 0 of the s = 1 theory is simply

〈Og(r)Og(0)〉0 =
1
r2

. (E.9)

Turning on g and h, this will get corrections, starting at order h, and then with quadratic
corrections g2 and h2, and so on. On the critical line (W = 0), g and h are proportional to
each other, hence to leading order we can retain just the linear contribution in h. The latter
leads to the correction

〈Og(r)Og(0)〉=
1

r2(1−2
p

2h)
+O(g2, h2) =

1

r2(1−
p

2h)2
+O(g2) , (E.10)

where in the second step we used the exact result at g = 0, see Section 3.2.1. This show that
the anomalous dimension of Og is −2

p
2h, in agreement with what we obtain from the beta

functions in the leading-order approximation. In order to take into account the effect of g > 0,
we use again the CS equation, again tuned to the critical line W = 0. Using similar formulas
as above, but with γOg

= −2
p

2h, we find

c(r)∝ exp

�

4
p

2

∫ r

1

d log r ′ h̄(r ′, g0, h0)

�

∝ exp
�

−2 log(1− 2
p

2h0 log r)
	

≃
1

(1− 2
p

2h0 log r)2
∼

1
(log r)2

.
(E.11)

Therefore, also the two-point function of Og displays logarithmic corrections to scaling, with
exponent −2.

F One- and two-point functions to O(δ)

In this appendix, we compute one- and two-point correlation functions with σ,χ and O±.
At the IR fixed point the LRI is a 1d CFT, and we check that such correlation functions are
consistent with the expected form for correlators of conformal primaries, see Section 2.2.1.

F.1 One-point functions

The case of σ and χ is trivial: their one-point functions vanish identically to all orders of
perturbation theory, as a consequence of Z2 symmetry.35

For Og , we find that O(g2, h) terms vanish (by the neutrality condition) and in the L→∞
limit we have:

〈Og(x)〉D =
g
2

∫

dy tr〈POg(x)Og(y)〉0 =
2g
a
+O(g3, hg) . (F.1)

35Away from criticality, we should find a symmetric phase where they still vanish, as well as a broken phase with
〈σ〉D ̸= 0. However, the latter can only be seen in the limit of vanishing Z2-breaking external field, or from the
large-distance behavior of the two-point function. In the s = 1 case, we expect symmetry breaking even at the
critical temperature, and this is associated to the decoupling of the GFF and C2 sectors at the fixed point, with the
C2 sector reproducing the zero-temperature 1d SRI physics.
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We can as usual subtract the power-law divergence, and thus set the one-point function to
zero by including a mixing term with the identity, i.e. we define the shifted operator [Og] as

[Og] =Og + Zg11 , (F.2)

with Zg1 = −2g/a+O(g3, hg), so that 〈[Og]〉D = O(g3, hg).
For Oh we find:

〈Oh(x)〉D =
g2

4

∫

dy1

∫

dy2 tr〈POh(x)Og(y1)Og(y2)〉0 +
h
2

∫

dy tr〈POh(x)Oh(y)〉0

= 6
p

2 log 2
g2

a
+

2h
a
+O(g4, hg2) , (F.3)

and so we define
[Oh] =Oh + Zh11 , (F.4)

with Zh1 = −(6
p

2 log 2 g2 + 2h)/a+O(g4, hg2), so that 〈[Oh]〉D = O(g4, hg2).
Lastly, we rewrite O± by replacing the bare Og,h in (90) with (F.2) and (F.4),

a∆±O± =
1
p

2
([Õh]± [Õg]) +

p
δ

8
[Õg] +O(δ) , (F.5)

and therefore we obtain 〈O±(x)〉D = O(δ3/2), where we have used g ∼
p
δ and h∼ δ.

F.2 Two-point functions

We move on to the computation of the two-point functions. We have already computed the
anomalous dimensions in Section 4.4, and now focus on the finite part to extract the normal-
ization of the operators, which is needed for the computation of OPE coefficients in Section
4.5.

F.2.1 For σ and χ

Let us start with the two-point function of σ. Since tr〈σ(x)σ(0)〉0 = 1, we have that:

〈σ(x)σ(0)〉D = 1+
g2

4

∫

dy1 dy2 tr〈Pσ(x)σ(0)Og(y1)Og(y2)〉0,c

+
h
2

∫

dy tr〈Pσ(x)σ(0)Oh(y)〉0

= 1+ 4g2 log
�

2a
x

�

+O(g4, hg2) .

(F.6)

(Above and below, we take L/2> x > 0> −L/2.) We can remove the UV divergence as a→ 0
by defining the renormalized operator

[σ]r = Zσσ+ other possible mixings, (F.7)

with Zσ = 1− 2g2 log(a/L) +O(g4, hg2). The renormalized two-point function then reads

〈[σ(x)]r[σ(0)]r〉D = 1+ 4g2 log
�

2L
x

�

+O(g4, hg2) . (F.8)

In this renormalization scheme, the renormalized correlator does not depend on the UV cutoff,
and thus one obtains the Callan-Symanzik equation for the bare correlator:

0= a
d

da
〈[σ(x)]r[σ(0)]r〉D = Z2

σ

�

a
∂

∂ a
− βi

∂

∂ gi
− 2γσ

�

〈σ(x)σ(0)〉D , (F.9)
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with the beta functions given in (84) and anomalous dimension γσ ≡ −a d log Zσ
da = 2g2. We

can use the Callan-Symanzik equation to resum the large logarithms in the bare correlator,
and to find the explicit form of the latter at the IR fixed point

〈σ(x)σ(0)〉D =
aδN 2

σ

(x2)δ/2
+O(δ3/2) , N 2

σ = 1+δ log2 , (F.10)

where we have used the perturbative result (F.6) for the normalization factor. Except for the
latter, the result above turns out to be valid to all orders, thanks to the Schwinger-Dyson
equation (58). In fact, combining the latter with (55), we have

∂x1
∂x2
〈σ(x1)σ(x2)〉D = −

1

g2(b0 −
p

2h)2
〈C−1 ·φ(x1)C

−1 ·φ(x2)〉D∝
1

|x1 − x2|2(1+d/2)
,

(F.11)
where in the last step we used the fact that the dimension of φ is not corrected, as usual in
long-range models.

We now consider two-point functions involving χ. First, note that there is a non-vanishing
mixing with σ, as

〈σ(x)χ(0)〉D =
g2

4

∫

dy1 dy2 tr〈Pσ(x)χ(0)Og(y1)Og(y2)〉0,c

+
h
2

∫

dy tr〈Pσ(x1)χ(x2)Oh(y)〉0 +O(g3, gh)

=
2h
a
+

2
p

2g2 log2
a

+O(g3, gh) .

(F.12)

We can orthogonalize the two operators by defining a shifted χ as

[χ] = χ + Zχσσ+ other possible mixings, (F.13)

with Zχσ = −
2h
a −

2
p

2g2 log2
a +O(g4, hg2).

Finally, for the two-point of χ, corrections linear in g and in h are zero due to an odd
number of Pauli matrices, while the O(g2) term

g2

4

∫

dy1 dy2 tr〈Pχ(x)χ(0)Og(y1)Og(y2)〉0,c , (F.14)

vanishes, or in other words, the correlator
∫

tr〈Pχ(x)χ(0)Og(y1)Og(y2)〉0 is totally discon-
nected. Hence, at the fixed point we have

〈[χ](x)[χ](0)〉D =
1−δ
(x2)1−δ/2

+O(δ3/2) , (F.15)

which again is exact, up to normalization, because χ ∝ ∂ φ and the dimension of φ is not
corrected.

F.2.2 For Og , Oh and O±
We now want to compute the two-point functions of O±. As a first step, let us consider those
of Og and Oh. For the diagonal parts of their correlators, we have that (neglecting O(g3, gh)
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terms, as well as corrections in δ to the perturbative terms)

〈Og(x)Og(0)〉D =κ2e−
2b2

0(|x |δ−κ−δ)
δ

+
g2

4

∫

dy1 dy2 tr〈POg(x)Og(0)Og(y1)Og(y2)〉0,c

+
h
2

∫

dy tr〈POg(x)Og(0)Oh(y)〉0

=κ2e−
2b2

0(|x |δ−κ−δ)
δ

+
g2

x2

�

2 log
� x

a

�

(10 log
� x

a

�

− 3)− 10+ log4
�

+
4g2

a2

+
4
p

2h
x2

log
� x

a

�

,

〈Oh(x)Oh(0)〉D =
1−δ
(x2)1−δ/2

+
g2

4

∫

dy1 dy2 tr〈POh(x)Oh(0)Og(y1)Og(y2)〉0,c

=
1−δ
(x2)1−δ/2

+
2g2

x2

�

8 log2
� x

a

�

− 2 log
� x

2a

��

.

(F.16)

The power-law divergent term cancels exactly upon including the mixing term with the iden-
tity, as in eq. (F.2). For the off-diagonal piece we have

〈Og(x)Oh(0)〉D =
g
2

∫

dy tr〈POg(x)Oh(0)Og(y)〉0 +O(g3, gh)

=
4
p

2g log(x/a)
x2

+O(g3, gh) .

(F.17)

Turning to the scaling operators O± of equation (F.5), and using the above results, at the
IR fixed point we find (neglecting O

�

δ3/2
�

terms)

〈O±(x)O±(0)〉D =
N 2
±

(x2)∆±
, 〈O+(x)O−(0)〉D = 0 , (F.18)

with

N 2
± = 1±

p
δ

4
p

2
+
δ

96

�

96 log 2− 16π2 − 93
�

. (F.19)

In the diagonal correlators 〈O±(x)O±(0)〉D we have resummed the logarithms into an expo-
nent form via an argument based on the Callan-Symanzik equation, as we have done above
for σ. Concerning the mixed two-point function 〈O+(x)O−(0)〉D, in order to ensure that it is
indeed zero, up to O

�

δ3/2
�

, the order-δ term of (F.5) has been fixed to

a∆±O± =
1
p

2
(Õh ± Õg) +

p
δ

8
Õg ±

δ

27

�

48 log 2− 16π2 − 45+ 96 log2(aκ)
�

Õg +O(δ3/2) .

(F.20)
This should in principle be derivable from the beta functions as we did at order

p
δ for (90),

but it would require us to push them to the next order.

G The defect description of LRI

As demonstrated in [33], the p-dimensional LRI CFT can be realized as a co-dimension
q = D − p conformal defect for the free bulk massless scalar field Φ, which propagates in the
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D-dimensional bulk. Reference [14] investigated the advantages of this construction to system-
atically constrain the dynamics of LRI using the defect conformal bootstrap approach [115].

In this defect realization, the bulk is fictitious. The spectrum of the LRI CFT is built out of
operators constrained to lie on the p-dimensional defect, in the zero transverse spin sector. This
latter restriction follows from the fact that the conformal defect description enjoys a manifest
SO(p+ 1,1)× SO(q) symmetry, while in the original LRI there is no SO(q) symmetry.

G.1 The defect description from the ϕ4 formulation

As we discussed in Section 2, the ϕ4 description of the p-dimensional LRI is given in terms
of a generalized-free scalar field ϕ with quartic interaction – see equation (2). The non-local
equation of motion implies that, at the IR fixed point, ϕ, ϕ3 form a shadow pair of operators
with protected scaling dimensions

∆ϕ =
p− ε

4
, ∆ϕ3 = p−∆ϕ , (G.1)

where we have set s = (p+ ε)/2.
In the defect description, we interpret the field ϕ(x) as a defect mode of a free bulk mass-

less scalar field Φ(y, x), which propagates in D fractional dimensions (y represent q transverse
directions in the bulk, while x are coordinates along the p-dimensional defect). The action
is36

S =

∫

dq y dp x
1
2
(∂Φ)2 +

∫

dp x
λ4

4
ϕ(x)4 , (G.2)

with the condition that Φ(0, x) = ϕ(x), so that integrating out the q transverse directions gives
back the original non-local action. In this description, we have that ∆Φ = D/2− 1= p−ε

4 , and
so the co-dimension of the defect is q = 2− p

2 −
ε
2 .

The ‘defect modes’ of Φ, ϕ and ϕ3, form a shadow pair. In other words, the bulk-defect
OPE of Φ (in the zero transverse spin sector) at the IR fixed point reads

Φ(y, x) = bΦ,+
0 ψ+0 (x) + bΦ,−

0 |y|
pψ−0 (x) + . . . , (G.3)

where the ellipsis denotes contributions from defect conformal descendants. The scaling di-
mensions of ψ±0 are then protected by the free-bulk equation of motion [115]:

∆+ =
p− ε

4
, ∆− = p−∆ϕ , (G.4)

and, up to a normalization, ϕ (ϕ3) can be identified with ψ+0 (ψ−0 ). Other defect operators
such as ϕ2, ϕ4, and so on are instead not protected.

It is interesting to note that the extension to the bulk necessarily comes with an ambi-
guity, corresponding to a change of boundary condition. For example, we are free to rep-
resent the same LRI as a defect in a different bulk theory, i.e. with the boundary condition
Φ(0, x) = ϕ(x)3. Compared with the other boundary condition, this would be a dual confor-
mal defect with co-dimension q′ = 4− q and (ψ±0 )

′ =ψ∓0 .

G.2 The defect description from the crossover for p = 1

As we discussed in Section 3, the weakly coupled model near crossover is given in term of
a compact generalized-free scalar φ(x), with dimension ∆φ = −δ, coupled to a two-level
system – see equation (3.2). By gauge invariance, φ is not part of the physical spectrum of

36Compared to (2), here we have set λ2 = 0 in order to reach the IR fixed point.
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the theory. In this description, at the IR fixed point the operators σ(x) and χ(x)≡ ip
2
∂xφ(x)

form a shadow pair of protected operators with dimensions

∆σ = δ/2 , ∆χ = 1−δ/2 . (G.5)

In the defect description, we can interpret χ as the defect mode of a free massless bulk
scalar Φ(y, x) in co-dimension q = 3− δ, i.e. we write Φ(0, x) = χ(x) and identify χ ∼ ψ+0
and σ ∼ ψ−0 . We can view the vertex operators Vn(x) of the description in Section 3.2 as
disorder operators that induce a discontinuity of 2πn in the field φ(x), corresponding to a
delta-function source of magnitude 2πn in ∂xφ(x) at the point x . In equations:

Vn(x) = κ
n2

: einb0φ(x) :∼ κ2einb0
∫ x
−∞ dx ′χ(x ′) , n ∈ Z . (G.6)

The action reads

S =

∫

dq y dx
1
2
(∂Φ)2 + log trPexp

¨

∫ L/2

−L/2
dx
�

g Õg(x) + hOh(x)
�

«

, (G.7)

where again Oh(x) = σ̂3χ(x) and Õg ≡ σ̂+V+(x) + σ̂−V−(x), and σ̂’s are the same combina-
tions of Pauli matrices as before.

An even more complicated description is obtained by switching the role of ψ+0 and ψ−0 .
Compared with the other boundary condition, this would be a conformal defect with co-
dimension q′ = 4− q = 1−δ and (ψ±0 )

′ =ψ∓0 .

G.3 OPE relations

Regardless of which particular description we use, defect OPE coefficients with one defect
mode ψ(±)0 and any other defect operator are constrained into OPE relations. When a non-
local Lagrangian description of LRI – such as (2) – becomes available, such OPE relations follow
from the non-local equation of motion, see e.g. discussion in [33, 44]. In the realization of
p-dimensional LRI as a conformal defect, as we now explain, the same OPE relations follow
from a non-perturbative argument: bulk locality.37

Consider unit-normalized defect primaries (restricted to the zero transverse-spin sector,
as usual). For any scalar defect primary O with scaling dimension ∆O, and a defect primary
T with scaling dimension ∆T and symmetric traceless spin J , the corresponding three-point
function takes the form:38

〈ψi(x1)O(x2)T
(J)(θ ,∞)〉=

ciOT

(x12)(∆i+∆O−∆T )
P(J)∥ ( x̂12,θ ) , (G.8)

(in the following, ψ1 ≡ψ
(+)
0 and ψ2 ≡ψ

(−)
0 ) with

P(J)∥ ( x̂12,θ )≡ (− x̂12•I( x̂3)•θ )
J , x̂a ≡

xa

|x |
, Iab( x̂)≡ δab − 2 x̂a x̂ b . (G.9)

The OPE relations for LRI read [14,116]:

c2OT = −
1

R(aΦ2)

Γ
�

1− p
2 +∆1

�

Γ
�

J+p−∆1+∆O−∆T
2

�

Γ
�

J+p−∆1−∆O+∆T
2

�

Γ
�

1+ p
2 −∆1

�

Γ
�

J+∆1+∆O−∆T
2

�

Γ
�

J+∆1−∆O+∆T
2

� c1OT , (G.10)

37See [80, 81, 116] for a more general application of this principle to constraints theories with boundaries and
defects, and [117,118] for more applications of this principle to general QFTs in AdS.

38For any symmetric and traceless SO(p) tensor of spin J we define O(J)(θ , x)≡ θ a1 . . .θ a jOa1 ...aJ (x), θ•θ = 0.
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where R(aΦ2) is the following bulk-dependent factor

R(aΦ2)≡ bΦ,−
0 /bΦ,+

0 , 〈Φ2(x)〉=
aΦ2

|x⊥|D−2
, (G.11)

and bΦ,±
0 and aΦ2 are related by bulk-defect crossing as [14]:

(bΦ,−
0 )2 = aΦ2

Γ (p)Γ
�

q−2
2

�

Γ
� p

2

�

Γ
�

p+q−2
2

� , (bΦ,+
0 )2 = 1−

Γ
�

p+q−2
2

�

Γ
�

4−q
2

�

Γ
� q

2

�

Γ
�

p−q+2
2

� (bΦ,−
0 )2 . (G.12)

For O =ψi , we find

c11T = κ1(∆T , J)c12T , c22T = κ2(∆T , J)c12T , (G.13)

with

κ1(∆T , J) = −R(aΦ2)
Γ
�

4−q
2

�

Γ
�

J+∆T
2

�

Γ
�

J+p+q−2−∆T
2

�

Γ
� q

2

�

Γ
�

J+p−∆T
2

�

Γ
�

J+2−q+∆T
2

� ,

κ2(∆T , J) = −
1

R(aΦ2)

Γ
� q

2

�

Γ
�

J+∆T
2

�

Γ
�

J+p−q+2−∆T
2

�

Γ
�

4−q
2

�

Γ
�

J+p−∆T
2

�

Γ
�

J−2+q+∆T
2

� .

(G.14)

For the p = 1 case, starting with the most general three-point function with ψi and two
arbitrary local primaries Ok, with quantum numbers (∆Ok

, Jk)

〈ψi(x1)O1(x2)O2(∞)〉=
ciO1O2

(x12)
∆i+∆O1

−∆O2
(sign x12)

J , J ≡ J1 + J2 mod 2 , (G.15)

bulk locality implies OPE relations as (G.10), where J → Ji + J j mod 2, ∆O → ∆O1
, and

∆T →∆O2
(see [116] for a detailed derivation). From there, taking ψ1 ∼ σ, ψ2 ∼ χ, as well

as O1 and O2 in the set {Oi ,O j ,Ok,Ol}, we see that, equation (G.10) implies equation (18).
Similarly, equation (G.13) implies (19) for p = 1, using ψ1 ∼ σ, ψ2 ∼ χ and T ∼O.

A tower of protected spin-odd operators By Bose symmetry, for J odd we must have that
c11T = c22T = 0, while leaving c12T unconstrained. Combining with the OPE relations (G.14),
for non-integer q this condition requires that:

∆T = p+ J + 2n , J odd. (G.16)

Hence, all odd-spin operators in ψ1 ×ψ2 must have protected dimensions as above.
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