
SciPost Phys. 3, 013 (2017)

The ALF (Algorithms for Lattice Fermions) project release 1.0
Documentation for the auxiliary field quantum Monte Carlo code

Martin Bercx, Florian Goth, Johannes S. Hofmann and Fakher F. Assaad

Institut für Theoretische Physik und Astrophysik, Universität Würzburg,
97074 Würzburg, Germany

alf@physik.uni-wuerzburg.de

Abstract

The Algorithms for Lattice Fermions package provides a general code for the finite tem-
perature auxiliary field quantum Monte Carlo algorithm. The code is engineered to be
able to simulate any model that can be written in terms of sums of single-body op-
erators, of squares of single-body operators and single-body operators coupled to an
Ising field with given dynamics. We provide predefined types that allow the user to
specify the model, the Bravais lattice as well as equal time and time displaced observ-
ables. The code supports an MPI implementation. Examples such as the Hubbard model
on the honeycomb lattice and the Hubbard model on the square lattice coupled to a
transverse Ising field are provided and discussed in the documentation. We further-
more discuss how to use the package to implement the Kondo lattice model and the
SU(N)-Hubbard-Heisenberg model. One can download the code from our Git instance
at https://alf.physik.uni-wuerzburg.de and sign in to file issues.

Copyright the ALF Project.
This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License.
Published by the SciPost Foundation.

Received 06-04-2017
Accepted 17-07-2017
Published 16-08-2017

Check for
updates

doi:10.21468/SciPostPhys.3.2.013

You are free to share and benefit from this documentation as long as this license is preserved
and proper attribution to the authors is given. For details, see the ALF project homepage
alf.physik.uni-wuerzburg.de. Contact address: alf@physik.uni-wuerzburg.de.

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Definition of the Hamiltonian 3
1.3 Outline 5

2 Auxiliary Field Quantum Monte Carlo 6
2.1 Formulation of the method 6

2.1.1 The partition function 7
2.1.2 Observables 8
2.1.3 Reweighting and the sign problem 9

2.2 Updating schemes 10
2.2.1 The default: sequential single spin flips 10

1

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
mailto:alf@physik.uni-wuerzburg.de
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.3.2.013&domain=pdf&date_stamp=2017-08-16
http://dx.doi.org/10.21468/SciPostPhys.3.2.013
alf.physik.uni-wuerzburg.de
alf@physik.uni-wuerzburg.de

SciPost Phys. 3, 013 (2017)

2.2.2 Sampling of e−S0,I 10
2.3 Stabilization - a peculiarity of the BSS algorithm 11
2.4 Monte Carlo sampling 12

2.4.1 The Jackknife resampling method 13
2.4.2 An explicit example of error estimation 14

2.5 Pseudo code description 17

3 Data Structures and Input/Output 18
3.1 Implementation of the Hamiltonian and the lattice 18

3.1.1 The Operator type 18
3.1.2 Specification of the model 19
3.1.3 The Lattice type 21

3.2 The observable types Obser_Vec and Obser_Latt 21
3.2.1 Scalar observables 23
3.2.2 Equal time and time displaced correlation functions 23

3.3 File structure 24
3.3.1 Input files 24
3.3.2 Output: Observables 26
3.3.3 Output: Precision 27

3.4 Scripts 28
3.5 Analysis programs 28
3.6 Running the code 30

3.6.1 Compilation 30
3.6.2 Starting a simulation 31
3.6.3 Error analysis 32

4 Examples 32
4.1 The SU(2)-Hubbard model on a square lattice 32

4.1.1 Setting the Hamiltonian: Ham_set 32
4.1.2 Observables 34
4.1.3 Numerical precision 36

4.2 The Mz-Hubbard model on a square lattice 37
4.2.1 The interaction term: Call Ham_V 37
4.2.2 The measurements: Call Obser, Call ObserT 38
4.2.3 Numerical precision 38

4.3 The SU(2)-Hubbard model on the honeycomb lattice 38
4.3.1 Working with multi-orbital unit cells: Call Ham_Latt 38
4.3.2 The hopping term: Call Ham_Hop 39
4.3.3 Observables: Call Obser, Call ObserT 39

4.4 The SU(2)-Hubbard model on a square lattice coupled to a transverse Ising field 40
4.4.1 The Ising term 40
4.4.2 The interaction term: Call Ham_V 40
4.4.3 The function Real (Kind=8) function S0(n,nt) 41

5 Miscellaneous 42
5.1 Other models 42

5.1.1 Kondo lattice model 42
5.1.2 SU(N)-Hubbard-Heisenberg models 42

5.2 Performance, memory requirements and parallelization 43

6 Conclusions and Future Releases 44

2

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

A License 45

References 46

1 Introduction

1.1 Motivation

The auxiliary field quantum Monte Carlo (QMC) approach is the algorithm of choice to sim-
ulate thermodynamic properties of a variety of correlated electron systems in the solid state
and beyond [1–8]. Apart from the physics of the canonical Hubbard model [9,10], the topics
one can investigate in detail include correlation effects in the bulk and on surfaces of topo-
logical insulators [11, 12], quantum phase transitions between Dirac fermions and insulators
[13–17], deconfined quantum critical points [18,19], topologically ordered phases [19], heavy
fermion systems [20,21], nematic [22] and magnetic [23] quantum phase transitions in met-
als, antiferromagnetism in metals [24], superconductivity in spin-orbit split bands [25], SU(N)
symmetric models [26, 27], long-ranged Coulomb interactions in graphene systems [28, 29],
cold atomic gasses [30], low energy nuclear physics [31], entanglement entropies and spec-
tra [32–36], etc. This ever growing list of topics is based on algorithmic progress and on recent
symmetry related insights [37–41] enabling one to find negative sign problem free formula-
tions of a number of model systems with very rich phase diagrams.

Auxiliary field methods can be formulated in very different ways. The fields define the con-
figuration space C . They can stem from the Hubbard-Stratonovich (HS) [42] transformation
required to decouple the many-body interacting term into a sum of non-interacting problems,
or they can correspond to bosonic modes with predefined dynamics such as phonons or gauge
fields. In all cases, the result is that the grand-canonical partition function takes the form,

Z = Tr
�

e−βĤ
�

=
∑

C

e−S(C), (1)

where S is the action of non-interacting fermions subject to a space-time fluctuating auxiliary
field. The high-dimensional integration over the fields is carried out stochastically. In this
formulation of many body quantum systems, there is no reason for the action to be a real
number. Thereby e−S(C) cannot be interpreted as a weight. To circumvent this problem one
can adopt re-weighting schemes and sample |e−S(C)|. This invariably leads to the so called
negative sign problem with associated exponential computational scaling in system size and
inverse temperature [43, 44]. The sign problem is formulation dependent, and as mentioned
above there has been tremendous progress at identifying an ever growing class of negative
sign problem free models covering a rich domain of collective emergent phenomena. For
continuous fields, the stochastic integrations can be carried out with Langevin dynamics or
hybrid methods [45]. However, for many problems one can get away with discrete fields [46].
In this case, Monte Carlo importance sampling will often be put to use [47]. We note that
due to the non-locality of the fermion determinant, see below, cluster updates, such as in the
loop or stochastic series expansion algorithms for quantum spin systems [48–50], are hard to
formulate for this class of problems. The search for efficient updating schemes that enable to
move quickly within the configuration space defines ongoing challenges.

Formulations do not differ only by the choice of the fields, continuous or discrete, and the
sampling strategy, but also by the formulation of the action itself. For a given field configura-

3

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

tion, integrating out fermionic degrees of freedom generically leads to a fermionic determinant
of dimension βN where β corresponds to the inverse temperature and N to the volume of the
system. Working with this determinant leads to the Hirsch-Fye approach [51] and its time
complexity which quantifies the computational effort is given by O (βN)3. 1 The Hirsch-Fye
algorithm is the method of choice for impurity problems, but has generically been outper-
formed by a class of so-called continuous-time quantum Monte Carlo approaches [52–54].
One key point of continuous-time methods is that they are action based and thereby allow to
handle retarded interactions obtained when integrating out fermion or boson baths. In high
dimensions and/or at low temperatures, the cubic scaling originating from the fermionic de-
terminant is expensive. To circumvent this, the hybrid Monte-Carlo approach [5,55] expresses
the fermionic determinant in terms of a Gaussian integral thereby introducing a new variable
in the Monte Carlo integration. The resulting algorithm is the method of choice for lattice
gauge theories in 3+1 dimensions and has been used to provide ab-inito estimates of light
hadron masses starting from quantum chromo dynamics [56].

The algorithm implemented in the ALF project lies between the above two extremes. We
will keep the fermionic determinant, but formulate the problem so as to work only with N ×N
matrices. This Blankenbecler, Scalapino, Sugar (BSS) algorithm scales linearly in imaginary
time β , but remains cubic in the volume N . Furthermore, the algorithm can be formulated
either in a projective manner [3, 4], adequate to obtain zero temperature properties in the
canonical ensemble, or at finite temperatures in the grand-canonical ensemble [2].

The aim of the ALF project is to introduce a general formulation of the finite temperature
auxiliary field QMC method with discrete fields so as to quickly be able to play with different
model Hamiltonians at minimal programming cost. We have summarized the essential aspects
of the auxiliary field QMC approach in this documentation, and refer the reader to Refs. [7,57]
for complete reviews. We will show in all details how to implement a variety of models, run
the code, and produce results for equal time and time displaced correlation functions. The
program code is written in Fortran according to the 2003 standard and is able to natively
utilize MPI for massively parallel runs on todays supercomputing systems.

The ALF package is not the first open source project aimed at providing simulation tools
for correlated quantum matter. The most notable package is certainly the ALPS library [58]. It
is actively maintained and features a whole set of algorithms for strongly correlated quantum
lattice models including Monte Carlo, exact diagonalization, and density matrix renormaliza-
tion group codes. It however does not include the auxiliary field QMC algorithm offered by
the ALF package. Other projects include QUEST [59], TRIQS [60], w2dynamics [61] and
iQist [62]. IQist, TRIQS and w2dynamics focus on approximate solutions via the CT-HYB [52]
algorithm within the dynamical mean field approximation. The QUEST project implements
the same algorithm as in the ALF project but is currently restricted to the Hubbard model and
it does not allow to easily incorporate different Hamiltonians.

The ALF source code is placed under the GNU GPL license. The project is currently hosted
on servers of the university of Würzburg where we have set up a GitLab instance (https://alf.
physik.uni-wuerzburg.de) aimed at encouraging community outreach. Each potential user can
sign in, receive space for his ALF related projects and share them with others. This site serves
the GitLab issue tracker as well as a wiki so that members can collect information they consider
useful for the project. We have set up an E-Mail address for reaching the core developers at
alf@physik.uni-wuerzburg.de.

1Here we implicitly assume the absence of a negative sign problem.

4

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
https://alf.physik.uni-wuerzburg.de
https://alf.physik.uni-wuerzburg.de

SciPost Phys. 3, 013 (2017)

1.2 Definition of the Hamiltonian

The first and most fundamental part of the project is to define a general Hamiltonian which
can accommodate a large class of models. Our approach is to express the model as a sum of
one-body terms, a sum of two-body terms each written as a perfect square of a one body term,
as well as a one-body term coupled to an Ising field with dynamics to be specified by the user.
The form of the interaction in terms of sums of perfect squares allows us to use generic forms
of discrete approximations to the HS transformation [63, 64]. Symmetry considerations are
imperative to enhance the speed of the code. We therefore include a color index reflecting an
underlying SU(N) color symmetry as well as a flavor index reflecting the fact that after the HS
transformation, the fermionic determinant is block diagonal in this index.

The class of solvable models includes Hamiltonians Ĥ that have the following general
form:

Ĥ = ĤT + ĤV + ĤI + Ĥ0,I , where (2)

ĤT =
MT
∑

k=1

Ncol
∑

σ=1

Nfl
∑

s=1

Ndim
∑

x ,y

ĉ†
xσsT

(ks)
x y ĉyσs ≡

MT
∑

k=1

T̂ (k) , (3)

ĤV =
MV
∑

k=1

Uk

¨ Ncol
∑

σ=1

Nfl
∑

s=1

��Ndim
∑

x ,y

ĉ†
xσsV

(ks)
x y ĉyσs

�

+αks

�«2

≡
MV
∑

k=1

Uk

�

V̂ (k)
�2

, (4)

ĤI =
MI
∑

k=1

Ẑk

� Ncol
∑

σ=1

Nfl
∑

s=1

Ndim
∑

x ,y

ĉ†
xσs I

(ks)
x y ĉyσs

�

≡
MI
∑

k=1

Ẑk Î (k) . (5)

The indices and symbols have the following meaning:

• The number of fermion flavors is set by Nfl. After the HS transformation, the action will
be block diagonal in the flavor index.

• The number of fermion colors is set by Ncol. The Hamiltonian is invariant under SU(Ncol)
rotations. 2

• Both the color and the flavor index can describe the spin degree of freedom, the choice
depending on the spin symmetry of the simulated model and the HS transformation.
This point is illustrated in the examples, see Secs. 4.1 and 4.2.

• Ndim is the total number of spacial vertices: Ndim = Nunit cellNorbital, where Nunit cell is
the number of unit cells of the underlying Bravais lattice and Norbital is the number of
(spacial) orbitals per unit cell.

• The indices x and y label lattice sites where x , y = 1, · · · , Ndim.

• Therefore, the matrices T (ks), V(ks) and I (ks) are of dimension Ndim × Ndim.

• The number of interaction terms is labelled by MV and MI . MT > 1 would allow for a
checkerboard decomposition.

• ĉ†
yσs is a second quantized operator that creates an electron in a Wannier state centered

around lattice site y , with color σ, and flavor index s. The operators satisfy the anti-
commutation relations:

¦

ĉ†
yσs, ĉy ′σ′s′

©

= δy,y ′δs,s′δσ,σ′ , and
¦

ĉyσs, ĉy ′σ′s′

©

= 0. (6)
2Note that in the code Ncol ≡ N_SUN.

5

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

The Ising part of the general Hamiltonian (2) is Ĥ0,I + ĤI and has the following properties:

• Ẑk is an Ising spin operator which corresponds to the Pauli matrix σ̂z . It couples to a
general one-body term.

• The dynamics of the Ising spins is given by Ĥ0,I . This term is not specified here; it has to
be specified by the user and becomes relevant when the Monte Carlo update probability
is computed in the code (see Sec. 4.4 for an example).

Note that the matrices T (ks), V(ks) and I (ks) explicitly depend on the flavor index s but not on
the color index σ. The color index σ only appears in the second quantized operators such that
the Hamiltonian is manifestly SU(Ncol) symmetric. We also require the matrices T (ks), V(ks)

and I (ks) to be Hermitian.
As we will detail below, the definition of the above Hamiltonian allows to tackle several

non-trivial models and phenomena. There are however a number of model Hamiltonians that
cannot be simulated with ALF. Since we have opted for discrete fields, the electron-phonon
interaction is not included. Furthermore, continuous HS transformations, that turn out to be
extremely useful to include long-range Coulomb interactions [28, 65, 66], are not accessible
in the present form of the package.3 In many cases such as in 3He, three - or more body
interactions should be included to capture relevant exchange mechanisms [67, 68]. These
higher order processes are not captured in the ALF since it is limited to two-body interactions.
The formulation of the Hamiltonian, has an explicit global U(1) symmetry corresponding to
particle number conservation. Hence using the ALF for a given model implies the existence of
a canonical transformation where a particle number is conserved. Imaginary time dependent
Hamiltonians, required to compute Renyi entropies and entanglement spectra [33, 35, 36]
are not yet in the scope of ALF. Finally, one should also mention that auxiliary field QMC
simulations are Hamiltonian based such that retarded interactions are not included in the ALF.
For this set of problems, CT-INT type approaches are the method of choice [53, 54, 69]. The
above short comings partially define a set of future directions that will be discussed in the
concluding part of this documentation.

1.3 Outline

To use the code, a minimal understanding of the algorithm is necessary. In Sec. 2, we go very
briefly through the steps required to formulate the many-body imaginary-time propagation in
terms of a sum over HS and Ising fields of one-body imaginary-time propagators. The user has
to provide this one-body imaginary-time propagator for a given configuration of HS and Ising
fields. We equally discuss the Monte Carlo updates, the strategies for numerical stabilization
of the code, as well as the Monte Carlo sampling.

Section 3 is devoted to the data structures that are needed to implement the model, as
well as to the input and output file structure. The data structure includes an Operator type
to optimally work with sparse Hermitian matrices, a Lattice type to define one- and two-
dimensional Bravais lattices, and two Observable types to handle scalar observables (e.g.
total energy) and equal time or time displaced two- point correlation functions (e.g. spin-spin
correlations).

The Monte Carlo run and the data analysis are separated: the QMC run dumps the results
of bins sequentially into files which are then analyzed by analysis programs. In Sec. 3.5, we
provide a brief description of the analysis programs for our observable types. The analysis
programs allow for omitting a given number of initial bins in order to account for warmup
times. Also, a rebinning analysis is included to a posteriori take account of long autocorrelation
times. Finally, Sec. 3.6 provides all the necessary details to compile and run the code.

3Note however that one can readily add short ranged interactions by including terms such as (n̂i + n̂ j − 2)2.

6

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

In Sec. 4, we give explicit examples on how to use the code for the Hubbard model on
square and honeycomb lattices, for different choices of the Hubbard-Stratonovich transforma-
tion (see Secs. 4.1, 4.2 and 4.3) as well as for the Hubbard model on a square lattice coupled
to a transverse Ising field (see Sec. 4.4). Our implementation is rather general such that a
variety of other models can be simulated. In Sec. 5 we provide some information on how to
simulate the Kondo lattice model as well as the SU(N) symmetric Hubbard-Heisenberg model.

Finally, in Sec. 6 we list a number of features that are considered for future releases of the
ALF program package.

2 Auxiliary Field Quantum Monte Carlo

2.1 Formulation of the method

Our aim is to compute observables for the general Hamiltonian (2) in thermodynamic equi-
librium as described by the grand-canonical ensemble. We will show below how the grand-
canonical partition function is rewritten as

Z = Tr
�

e−βĤ
�

=
∑

C

e−S(C) +O (∆τ2) (7)

and define the space of configurations C . Note that the chemical potential term is already
included in the definition of the one-body term ĤT , see eq. (3), of the general Hamiltonian.

The outline of this section is as follows. First, we derive the detailed form of the partition
function and outline the computation of observables (Sec. 2.1.1 - 2.1.3). Next, we present the
present update strategy, namely local updates (Sec. 2.2). We equally discuss the measures we
have implemented to make the code numerically stable (Sec. 2.3). Finally, we discuss the au-
tocorrelations and associated time scales during the Monte Carlo sampling process (Sec. 2.4).

The essential ingredients of the auxiliary field quantum Monte Carlo implementation in
the ALF package are the following:

• We will discretize the imaginary time propagation: β = ∆τLTrotter. Generically this
introduces a systematic Trotter error of O (∆τ)2 [70]. We note that there has been con-
siderable effort at getting rid of the Trotter systematic error and to formulate a genuine
continuous-time BSS algorithm [71]. To date, efforts in this direction are based on a
CT-AUX type formulation [72, 73] and face two issues. The first issue is that they are
restricted to a class of models with Hubbard-type interactions

(n̂i − 1)2 = (n̂i − 1)4 , (8)

such that the basic CT-AUX equation [74]

1+
U
K
(n̂i − 1)2 =

1
2

∑

s=±1

eαs(n̂i−1) with
U
K
= cosh(α)− 1 and K ∈ R (9)

holds. The second issue is that in the continuous-time approach it is hard to formulate a
computationally efficient algorithm. Given this situation it turns out that the multi-grid
method [75–77] is an efficient scheme to extrapolate to small imaginary-time steps so
as to eliminate the Trotter systematic error if required.

• Having isolated the two-body term, we will use the discrete HS transformation [63,64]:

e∆τλÂ2
=

∑

l=±1,±2

γ(l)e
p
∆τλη(l)Â+O (∆τ4) , (10)

7

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

where the fields η and γ take the values:

γ(±1) = 1+
p

6/3, η(±1) = ±
r

2
�

3−
p

6
�

, (11)

γ(±2) = 1−
p

6/3, η(±2) = ±
r

2
�

3+
p

6
�

.

Since the Trotter error is already of order (∆τ2) per time slice, this transformation is
next to exact.

• We will work in a basis for the Ising spins where Ẑk is diagonal: Ẑk|sk〉 = sk|sk〉, where
sk = ±1.

• From the above it follows that the Monte Carlo configuration space C is given by the
combined spaces of Ising spin configurations and of HS discrete field configurations:

C =
�

si,τ, l j,τ with i = 1 · · ·MI , j = 1 · · ·MV , τ= 1 · · · LTrotter

	

. (12)

Here, the Ising spins take the values si,τ = ±1 and the HS fields take the values
l j,τ = ±2,±1.

2.1.1 The partition function

With the above, the partition function of the model (2) can be written as follows.

Z = Tr
�

e−βĤ
�

= Tr

�

e−∆τĤ0,I

MV
∏

k=1

e−∆τUk(V̂ (k))
2

MI
∏

k=1

e−∆τσ̂k Î (k)
MT
∏

k=1

e−∆τT̂ (k)
�LTrotter

+O (∆τ2)

=
∑

C

� MV
∏

k=1

LTrotter
∏

τ=1

γk,τ

�

e−S0,I({si,τ})×

TrF

¨LTrotter
∏

τ=1

� MV
∏

k=1

e
p
−∆τUkηk,τ V̂ (k)

MI
∏

k=1

e−∆τsk,τ Î (k)
MT
∏

k=1

e−∆τT̂ (k)
�«

+O (∆τ2) . (13)

In the above, the trace Tr runs over the Ising spins as well as over the fermionic degrees of
freedom, and TrF only over the fermionic Fock space. S0,I

��

si,τ

	�

is the action corresponding
to the Ising Hamiltonian, and is only dependent on the Ising spins so that it can be pulled out of
the fermionic trace. We have adopted the short hand notation ηk,τ = η(lk,τ) and γk,τ = γ(lk,τ).
At this point, and since for a given configuration C we are dealing with a free propagation, we
can integrate out the fermions to obtain a determinant:

TrF

¨LTrotter
∏

τ=1

� MV
∏

k=1

e
p
−∆τUkηk,τ V̂ (k)

MI
∏

k=1

e−∆τsk,τ Î (k)
MT
∏

k=1

e−∆τT̂ (k)
�«

=

Nfl
∏

s=1

e

MV
∑

k=1

LTrotter
∑

τ=1

p
−∆τUkαk,sηk,τ

Ncol

×

Nfl
∏

s=1

�

det

�

1+
LTrotter
∏

τ=1

MV
∏

k=1

e
p
−∆τUkηk,τV(ks)

MI
∏

k=1

e−∆τsk,τ I (ks)
MT
∏

k=1

e−∆τT(ks)

��Ncol

, (14)

8

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

where the matrices T(ks), V(ks), and I(ks) define the Hamiltonian [Eq. (2) - (5)]. All in all, the
partition function is given by:

Z =
∑

C

e−S0,I({si,τ})
� MV
∏

k=1

LTrotter
∏

τ=1

γk,τ

�

e
Ncol

Nfl
∑

s=1

MV
∑

k=1

LTrotter
∑

τ=1

p
−∆τUkαk,sηk,τ

×

Nfl
∏

s=1

�

det

�

1+
LTrotter
∏

τ=1

MV
∏

k=1

e
p
−∆τUkηk,τV(ks)

MI
∏

k=1

e−∆τsk,τ I (ks)
MT
∏

k=1

e−∆τT (ks)

��Ncol

+O (∆τ2)

≡
∑

C

e−S(C) +O (∆τ2) . (15)

In the above, one notices that the weight factorizes in the flavor index. The color index raises
the determinant to the power Ncol. This corresponds to an explicit SU(Ncol) symmetry for each
configuration. This symmetry is manifest in the fact that the single particle Green functions
are color independent, again for each given configuration C .

2.1.2 Observables

In the auxiliary field QMC approach, the single-particle Green function plays a crucial role. It
determines the Monte Carlo dynamics and is used to compute observables:

〈Ô〉=
Tr
�

e−β ĤÔ
�

Tr
�

e−β Ĥ
� =

∑

C

P(C)〈〈Ô〉〉(C), with P(C) =
e−S(C)

∑

C e−S(C)
. (16)

〈〈Ô〉〉(C) corresponds to the expectation value of Ô for a given configuration C . For a given
configuration C one can use Wick’s theorem to compute 〈〈Ô〉〉(C) from the knowledge of the
single-particle Green function:

G(x ,σ, s,τ|x ′,σ′, s′,τ′) = 〈〈T ĉxσs(τ)ĉ
†
x ′σ′s′(τ

′)〉〉C , (17)

where T corresponds to the imaginary-time ordering operator. The corresponding equal time
quantity reads:

G(x ,σ, s,τ|x ′,σ′, s′,τ) = 〈〈ĉxσs(τ)ĉ
†
x ′σ′s′(τ)〉〉C . (18)

Since for a given HS field translation invariance in imaginary-time is broken, the Green func-
tion has an explicit τ and τ′ dependence. On the other hand it is diagonal in the flavor index,
and independent on the color index. The latter reflects the explicit SU(N) color symmetry
present at the level of individual HS configurations. As an example, one can show that the
equal time Green function at τ= 0 reads [7]:

G(x ,σ, s, 0|x ′,σ, s, 0) =

�

1+
LTrotter
∏

τ=1

B(s)τ

�−1

x ,x ′
(19)

with

B(s)τ =
MT
∏

k=1

e−∆τT (ks)
MV
∏

k=1

e
p
−∆τUkηk,τV(ks)

MI
∏

k=1

e−∆τsk,τ I (ks)
. (20)

To compute equal time as well as time displaced observables, one can make use of Wick’s

9

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

theorem. A convenient formulation of this theorem for QMC simulations reads:

〈〈T c†
x1
(τ1)cx ′1

(τ′1) · · · c
†
xn
(τn)cx ′n

(τ′n)〉〉C =

det

〈〈T c†
x1
(τ1)cx ′1

(τ′1)〉〉C 〈〈T c†
x1
(τ1)cx ′2

(τ′2)〉〉C . . . 〈〈T c†
x1
(τ1)cx ′n

(τ′n)〉〉C
〈〈T c†

x2
(τ2)cx ′1

(τ′1)〉〉C 〈〈T c†
x2
(τ2)cx ′2

(τ′2)〉〉C . . . 〈〈T c†
x2
(τ2)cx ′n

(τ′n)〉〉C
...

...
. . .

...
〈〈T c†

xn
(τn)cx ′1

(τ′1)〉〉C 〈〈T c†
xn
(τn)cx ′2

(τ′2)〉〉C . . . 〈〈T c†
xn
(τn)cx ′n

(τ′n)〉〉C

. (21)

Here, we have defined the super-index x = {x ,σ, s}. In the subroutines Obser and ObserT of
the module Hamiltonian_Examples.f90 (see Sec. 3.2) the user is provided with the equal
time and time displaced correlation function. Using the above formulation of Wick’s theorem,
arbitrary correlation functions can be computed. We note however, that the program is limited
to the calculation of observables that contain only two different imaginary times.

2.1.3 Reweighting and the sign problem

In general, the action S(C) will be complex, thereby inhibiting a direct Monte Carlo sampling
of P(C). This leads to the infamous sign problem. The sign problem is formulation dependent
and as noted above, much progress has been made at understanding the class of models that
can be formulated without encountering this problem [37–40]. When the average sign is not
too small, we can nevertheless compute observables within a reweighting scheme. Here we
adopt the following scheme. First note that the partition function is real such that:

Z =
∑

C

e−S(C) =
∑

C

e−S(C) =
∑

C

ℜ
�

e−S(C)
�

. (22)

Thereby4, and with the definition

sign (C) =
ℜ
�

e−S(C)
�

�

�ℜ
�

e−S(C)
��

�

, (23)

the computation of the observable [Eq. (16)] is re-expressed as follows:

〈Ô〉=

∑

C e−S(C)〈〈Ô〉〉(C)
∑

C e−S(C)

=

∑

C ℜ
�

e−S(C)
� e−S(C)

ℜ[e−S(C)]〈〈Ô〉〉(C)
∑

C ℜ
�

e−S(C)
�

=

n

∑

C

�

�ℜ
�

e−S(C)
��

� sign (C) e−S(C)

ℜ[e−S(C)]〈〈Ô〉〉(C)
o

/
∑

C

�

�ℜ
�

e−S(C)
��

�

�∑

C

�

�ℜ
�

e−S(C)
��

� sign (C)
	

/
∑

C

�

�ℜ
�

e−S(C)
��

�

=

¬

sign e−S

ℜ[e−S]〈〈Ô〉〉
¶

P

〈sign〉P
. (24)

The average sign is

〈sign〉P =

∑

C

�

�ℜ
�

e−S(C)
��

� sign (C)
∑

C

�

�ℜ
�

e−S(C)
��

�

, (25)

4The attentive reader will have noticed that for arbitrary Trotter decompositions, the imaginary time propagator
is not necessarily Hermitian. Thereby, the above equation is correct only up to corrections stemming from the
controlled Trotter systematic error.

10

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

and we have 〈sign〉P ∈ R per definition. The Monte Carlo simulation samples the probability
distribution

P(C) =

�

�ℜ
�

e−S(C)
��

�

∑

C

�

�ℜ
�

e−S(C)
��

�

. (26)

such that the nominator and denominator of Eq. (24) can be computed.
The negative sign problem is an issue since the average sign is a ratio of two partition

functions such that one can argue that [43]

〈sign〉P ∝ e−∆Nβ . (27)

∆ is intensive positive quantity and Nβ denotes the Euclidean volume. In a Monte Carlo
simulation, the error scales as 1/

p

TCPU where TCPU corresponds to the computational time.
Since the error on the average sign has to be much smaller than the average sign itself, one
sees that:

TCPU� e2∆Nβ . (28)

Two comments are in order. First, the presence of a sign problem invariably leads to an ex-
ponential increase of CPU time as a function of the Euclidean volume. And second, ∆ is
formulation dependent. For instance, at finite doping, the SU(2) invariant formulation of the
Hubbard model presented in Sec. 4.1 has a much more severe sign problem than the formula-
tion presented in Sec. 4.2 where the HS field couples to the z-component of the magnetization.
Typically one can work with average signs down to 〈sign〉P ' 0.1.

2.2 Updating schemes

The program allows for different types of updating schemes. Given a configuration C we
propose a new one, C ′, with probability T0(C → C ′) and accept it according to the Metropolis-
Hastings acceptance-rejection probability,

P(C → C ′) =min
�

1,
T0(C ′→ C)W (C ′)
T0(C → C ′)W (C)

�

, (29)

so as to guarantee the stationarity condition. Here, W (C) =
�

�ℜ
�

e−S(C)
��

�.

Variable Type Description

Propose_S0 Logical If true, proposes local moves according to the probability e−S0,I .

Table 1: Variable required to control the updating scheme.

2.2.1 The default: sequential single spin flips

The default updating scheme is a sequential single spin flip algorithm. Consider the Ising spin
si,τ. We will flip it with probability one such that for this local move the proposal matrix is
symmetric. If we are considering the Hubbard-Stratonovich field li,τ we will propose with
probability 1/3 one of the other three possible fields. Again, for this local move, the proposal
matrix is symmetric. Hence in both cases we will accept or reject the move according to

P(C → C ′) =min
�

1,
W (C ′)
W (C)

�

. (30)

It is worth noting that this type of sequential spin flip updating does not satisfy detailed balance
but the more fundamental stationarity condition [47].

11

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

2.2.2 Sampling of e−S0,I

Consider an Ising spin at space-time i,τ and the configuration C . Flipping this spin will gen-
erate the configuration C ′ and we will propose the move according to

T0(C → C ′) =
e−S0,I (C ′)

e−S0,I (C ′) + e−S0,I (C)
= 1−

1

1+ e−S0,I (C ′)/e−S0,I (C)
. (31)

Note that the function S0 in the Hamitonian_example.f90 module computes precisely the
ratio e−S0,I (C ′)/e−S0,I (C) so that T0(C → C ′) does not require any further programming. Thereby
one will accept the proposed move with the probability:

P(C → C ′) =min

�

1,
e−S0,I (C)W (C ′)
e−S0,I (C ′)W (C)

�

. (32)

With Eq. 15 one sees that the bare action S0,I(C) determining the dynamics of the Ising spin
in the absence of coupling to the fermions does not enter the Metropolis acceptance-rejection
step. This sampling scheme is used if the logical variable Propose_S0 is set to true.

2.3 Stabilization - a peculiarity of the BSS algorithm

From (15) it can be seen that for the calculation of the Monte Carlo weight and for the ob-
servables a long product of matrix exponentials has to be formed. On top of that we need to
be able to extract the single-particle Green function for a given flavor index at say time slice
τ= 0. As mentioned above in Eq. (19), this quantity is given by:

G =

�

1+
LTrotter
∏

τ=1

Bτ

�−1

. (33)

To boil this down to more familiar terms from linear algebra we remark that we can recast this
problem as the task to find the solution of the linear system

(1+
∏

τ

Bτ)x = b. (34)

The Bτ ∈ Cn×n depend on the lattice size as well as other physical parameters that can be
chosen such that a matrix norm of Bτ can be unbound in size. From standard perturbation
theory for linear systems it is known that the computed solution x̃ would contain a relative
error of

| x̃ − x |
|x |

= O
�

εκp

�

1+
∏

τ

Bτ

��

. (35)

Here ε denotes the machine precision, which is 2−53 for IEEE double precision numbers, and
κp(M) is the condition number of the matrix M with respect to the matrix p-norm. The
important property that makes straight-forward inversion so badly suited stems from the fact
that

∏

τ Bτ contains exponentially large and small scales as can be seen in Eq. (15). Thereby, as
a function of increasing inverse temperature, the condition number will grow exponentially so
that the computed solution x̃ will often contain no correct digits at all. To circumvent this, more
sophisticated methods have to be employed. We will first of all assume that the multiplication
of NWrap B matrices has an acceptable condition number. Assuming for simplicity that LTrotter
is an integer multiple of NWrap, we can write:

G =

1+

LTrotter
NWrap −1
∏

i=0

NWrap
∏

τ=1

Bi·NWrap+τ

︸ ︷︷ ︸

≡Bi

−1

. (36)

12

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

Within the auxiliary field QMC implementation of the ALF project, we are by default employ-
ing the strategy of forming a product of QR-decompositions which was proven to be weakly
backwards stable in Ref. [78]. The key idea is to efficiently separate the scales of a matrix from
the orthogonal part of a matrix. This can be achieved using a QR decomposition of a matrix
A in the form Ai = QiRi . The matrix Qi is unitary and hence in the usual 2-norm it holds that
κ2(Qi) = 1. To get a handle on the condition number of Ri we will form the diagonal matrix

(Di)n,n = |(Ri)n,n| , (37)

and set R̃i = D−1
i Ri This gives the decomposition

Ai = QiDiR̃i . (38)

Di now contains the row norms of the original Ri matrix and hence attempts to separate off the
total scales of the problem from Ri . This is similar in spirit to the so-called matrix equilibration
which tries to improve the condition number of a matrix by suitably chosen column and row
scalings. Due to a theorem by van der Sluis [79] we know that the choice in Eq. (37) is almost
optimal among all diagonal matrices D from the space of diagonal matrices D in the sense that

κp((Di)
−1Ri)≤ n1/p min

D∈D
κp(D

−1Ri).

Now, given an initial decomposition of A j−1 =
∏

iBi = Q j−1Dj−1T j−1 an update B jA j−1 is
formed in the following three steps:

1. Form M j = (B jQ j−1)Dj−1. Note the parentheses.

2. Do a QR decomposition of M j = Q jDjR j . This gives the final Q j and Dj .

3. Form the updated T matrices T j = R j T j−1.

While this might seem like quite an effort that has to be performed for every multiplication
it has to be noted that even with this stabilization scheme the algorithm preserves the time
complexity class of O (βN3) expressed in the physical parameters inverse temperature β and
lattice size N . While there is no analytical expression for the dependence of the stability on
the physical parameters our experience has been that for a given number of stabilization steps
along the imaginary time axis [in the notation of Eq. (36) this number is LTrotter/NWrap],
the precision will be largely invariant of the system size N , whereas with increasing inverse
temperature β the number of stabilization steps often has to be increased to maintain a given
precision. The effectiveness of the stabilization has to be judged for every simulation from the
output file info (Sec. 3.3.3). For most simulations there are two values to look out for:

• Precision Green

• Precision Phase

The Green function as well as the average phase are usually numbers with a magnitude of
O (1). For that reason we recommend that NWrap is chosen such that the mean precision is of
the order of 10−8 or better. We have included typical values of Precision Phase and of the
mean and the maximal values of Precision Green in the discussion of example simulations,
see Sec. 4.1.3 and Sec. 4.2.3.

13

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

2.4 Monte Carlo sampling

Error estimates in Monte Carlo simulations can be delicate and are based on the central limit
theorem [80]. This theorem requires independent measurements and a finite variance. In this
subsection we will give examples of the issues that a user will have to look out for while using
a Monte Carlo code. Those effects are part of the common lore of the field and we can only
touch on them briefly in this text. For a deeper understanding of the inherent issues of Markov
chain Monte Carlo methods we refer the reader to the pedagogical introduction in chapter
1.3.5 of Krauth [81], the overview article of Sokal [47], the more specialized literature by
Geyer [82] and chapter 6.3 of Neal [83].

In general, one distinguishes local from global updates. As the name suggest, the local
update corresponds to a small change of the configuration, e.g. a single spin flip of one of the
LTrotter(MI + MV) field entries (see Sec. 2.2), whereas a global update changes a significant
part of the configuration. The default update scheme of the implementation at hand are local
updates such that a minimum amount of moves is required to generate a independent config-
uration. The associated time scale is called the autocorrelation time, Tauto, and is generically
dependent upon the choice of the observables.

Our unit of sweeps is defined such that each field is visited twice in a sequential propagation
from τ = 0 to τ = L Trotter and back. A single sweep will generically not suffice to produce an
independent configuration. In fact, the autocorrelation time Tauto characterizes the required
time scale to generate an independent values of 〈〈Ô〉〉C for the observable O. This has several
consequences for the Monte Carlo simulation:

• First of all, we start from a randomly chosen field configuration such that one has to
invest at least one, but generically much more, Tauto to generate relevant, equilibrated
configurations before reliable measurements are possible. This phase of the simulation
is known as the warm-up or burn-in phase. In order to keep the code as flexible as pos-
sible (different simulations might have different autocorrelation times), measurements
are taken from the very beginning. Instead, we provide the parameter n_skip for the
analysis to ignore the first n_skip bins.

• Secondly, our implementation averages over a given amount of measurements set by the
variable NSWEEPS before storing the results, known as one bin, on the disk. A bin cor-
responds to NSWEEPS sweeps. The error analysis requires statistically independent bins
to generate reliable confidence estimates. If bins are to small (averaged over a period
shorter then Tauto), the error bars are then typically underestimated. Most of the time,
the autocorrelation time is unknown before the simulation is started. Sometimes the
used compute cluster does not allow single runs long enough to generate appropriately
sized bins. Therefore, we provide the N_rebin parameter that specifies how many bins
are combined into a new bin during the error analysis. In general, one should check
that a further increase of the bin size does not change the error estimate (For an explicit
example, the reader is referred to Sec. 2.4.2 and the appendix of Ref. [57]).

The N_rebin variable can be used to control a second issue. The distribution of the
Monte Carlo estimates 〈〈Ô〉〉C is unknown. The result in the form (mean ± error) as-
sumes a Gaussian distribution. Every original distribution with a finite variance turns
into a Gaussian one, once it is folded often enough (central limit theorem). Due to the
internal averaging (folding) within one bin, many observables are already quite Gaus-
sian. Otherwise one can increase N_rebin further, even if the bins are already indepen-
dent [84].

• The third issue concerns time displaced correlation functions. Even if the configurations
are independent, the fields within the configuration are still correlated. Hence, the data

14

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

for Sα,β(~k,τ) (see Sec. 3.2; Eqn. 65) and Sα,β(~k,τ +∆τ) are also correlated. Setting
the switch N_Cov=1 triggers the calculation of the covariance matrix in addition to the
usual error analysis. The covariance is defined by

COVττ′ =
1

NBin

�

Sα,β(~k,τ)− 〈Sα,β(~k,τ)〉
� �

Sα,β(~k,τ′)− 〈Sα,β(~k,τ′)〉
��

. (39)

An example where this information is necessary is the calculation of mass gaps extracted
by fitting the tail of the time displaced correlation function. Omitting the covariance
matrix will underestimate the error.

2.4.1 The Jackknife resampling method

For each observable Â, B̂, Ĉ · · · the Monte Carlo program computes a data set of NBin (ideally)
independent values where for each observable the measurements belong to the same statis-
tical distribution. In the general case, we would like to evaluate a function of expectation
values, f (〈Â〉, 〈B̂〉, 〈Ĉ〉 · · ·) – see for example the expression (24) for the observable including
reweighting – and are interested in the statistical estimates of its mean value and the standard
error of the mean. A numerical method for the statistical analysis of a given function f which
properly handles error propagation and correlations among the observables is the Jackknife
method, which is, like the related Bootstrap method, a resampling scheme [85]. Here we
briefly review the delete-1 Jackknife scheme which is based on the idea to generate Nbin new
data sets of size Nbin−1 by consecutively removing one data value from the original set. By A(i)
we denote the arithmetic mean for the observable Â, without the i-th data value Ai , namely

A(i) ≡
1

NBin − 1

NBin
∑

k=1, k 6=i

Ak . (40)

As the corresponding quantity for the function f (〈Â〉, 〈B̂〉, 〈Ĉ〉 · · ·), we define

f(i)(〈Â〉, 〈B̂〉, 〈Ĉ〉 · · ·)≡ f (A(i), B(i), C(i) · · ·) . (41)

Following the convention in the literature, we will denote the final Jackknife estimate of the
mean by f(·) and its standard error by ∆ f . The Jackknife mean is given by

f(·)(〈Â〉, 〈B̂〉, 〈Ĉ〉 · · ·) =
1

NBin

NBin
∑

i=1

f(i)(〈Â〉, 〈B̂〉, 〈Ĉ〉 · · ·) , (42)

and the standard error, including bias correction, is given by

(∆ f)2 =
NBin − 1

NBin

NBin
∑

i=1

�

f(i)(〈Â〉, 〈B̂〉, 〈Ĉ〉 · · ·)− f(·)(〈Â〉, 〈B̂〉, 〈Ĉ〉 · · ·)
�2

. (43)

In case of f = 〈Â〉, the results (42) and (43) reduce to the plain sample average and the
standard, bias corrected, estimate of the error.

2.4.2 An explicit example of error estimation

In the following we use one of our examples, the Hubbard model on a square lattice in the Mz
Hubbard-Stratonovich decoupling (see Sec. 4.2), to show explicitly how to estimate errors. We
will equally show that the autocorrelation time is dependent upon the choice of the observable.
In fact, different observables within the same run can have different autocorrelation times and

15

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

a)

0

0.005

0.01

0.015

0.02

0.025

0 100 200 300 400 500

b)

A

u

t

o

o

r

r

e

l

a

t

i

o

n

tQMC

SŜz

(SŜx + SŜy)/2

(SŜx + SŜy + SŜz)/3

E

r

r

o

r

NRebin

SŜz

(SŜx + SŜy)/2

(SŜx + SŜy + SŜz)/3

Figure 1: The autocorrelation function AutoÔ(tQMC) (a) and the scaling of the error with
effective bin size (b) of three equal time spin-spin correlation functions Ô of the Hubbard
model in the Mz decoupling (see Sec. 4.2). Simulations were done on a 6× 6 square lattice,
with U/t = 4 and β t = 6. The original bin contained only one sweep and we calculated
around one million bins on a single core. The different autocorrelation times for the x y-plane
compared to the z-direction can be detected from the decay rate of the autocorrelation function
(a) and from the point where saturation of the error sets in (b), which defines the required
effective bin size for independent measurements. Apparently and as argued in the text, the
improved estimator (SŜx + SŜ y + SŜz)/3 has the smallest autocorrelation time.

of course, this time scale depends on the parameter choice. Hence, the user has to check
autocorrelations of individual observables for each simulation! Typical regions of the phase
diagram that require special attention are critical points where length scales diverge.

To determine the autocorrelation time, we calculate the correlation function

AutoÔ(tQMC) =
NBin−tQMC
∑

i=0

�

Oi −

Ô
��

�

Oi+tQMC
−

Ô
�

�

�

Oi −

Ô
�� �

Oi −

Ô
�� , (44)

where Oi refers to the Monte Carlo estimate of the observable Ô in the ith bin. This func-
tion typically shows an exponential decay and the decay rate defines the autocorrelation time.
Figure 1 (a) shows the autocorrelation functions AutoÔ(tQMC) for three spin-spin-correlation
functions [Eq. (65)] at momentum ~k = (π,π) and at τ = 0: Ô = SŜz for the z spin direction,
Ô = (SŜx + SŜ y)/2 for the x y plane, and Ô = (SŜx + SŜ y + SŜz)/3 for the total spin. The Hub-
bard model has a SU(2) spin symmetry. However, we chose a HS field which couples to the
z-component of the magnetization, Mz , such that each configuration breaks this symmetry. Of
course, after Monte Carlo averaging one expects restoration of the symmetry. The model, on
bipartite lattices, shows spontaneous spin-symmetry breaking at T = 0 and in the thermody-
namic limit. At finite temperatures, and within the so-called renormalized classical regime,
quantum antiferromagnets have a length scale that diverges exponentially with decreasing
temperatures [86]. The parameter set chosen for Fig. 1 is non-trivial in the sense that it places
the Hubbard model in this renormalized classical regime where the correlation length is sub-
stantial. Figure 1 clearly shows a very short autocorrelation time for the x y-plane whereas
we detect a considerably longer autocorrelation time for the z-direction. This is a direct con-
sequence of the long magnetic length scale and the chosen decoupling. The physical reason
for the long autocorrelation time corresponds to the restoration of the SU(2) spin symmetry.
This insight can be used to define an improved, SU(2) symmetric estimator for the spin-spin

16

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

correlation function, namely (SŜx + SŜ y + SŜz)/3. Thereby, global spin rotations are no longer
an issue and this improved estimator shows the shortest autocorrelation time as seen clearly
in Fig. 1 (b). Other ways to tackle large autocorrelation can be global updates or parallel
tempering.

Using the time series of Monte Carlo samples we would like to obtain estimates of the
mean and the standard error of the mean. A simple method which we will describe in this
tutorial is the rebinning method, also known in the literature as rebatching, where a fixed
number (denoted by N_rebin) of adjacent original bins are aggregated to form a new ef-
fective bin. In addition to measuring the decay rate of the autocorrelation function (44), a
measure for the autocorrelation time can be also obtained by the rebinning method. For a
comparison to other methods of estimating the autocorrelation time we refer the reader to the
literature [82,83,87]. A reliable error analysis requires independent bins, otherwise the error
is typically underestimated. This behavior is observed in Fig. 1 (b), where the effective bin
size has been systematically increased by rebinning. If the effective bin size is smaller than the
autocorrelation time the error will be underestimated. When the effective bin size becomes
larger than the autocorrelation time converging behavior sets in and in this region the error
estimate will be correct.

For the analysis of the Monte Carlo data (see Sec. 3.5), the user can provide a finite value
for N_auto to trigger the computation of autocorrelation functions AutoÔ(tQMC) in the range
tQMC = [0,N_auto]. Since these computations are quite time consuming and require many
Monte Carlo bins the default value is N_auto=0 if unspecified. To produce Fig. 1, we set
N_auto= 500 and used a total of approximately one million bins.

17

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

2.5 Pseudo code description

Algorithm 1 Basic structure of the auxiliary field QMC implementation in Prog/main.f90
1: call ham_set . Set the Hamiltonian and the lattice
2: call confin . Read in an auxiliary-field configuration or generate it randomly

3: for n= LTrotter to 1 do . Fill the storage, needed for the first actual Monte Carlo sweep
4: call wrapul . Compute propagation matrices and store them at stabilization points
5: end for

6: for nbc = 1 to Nbin do . Loop over bins. The bin defines the unit of Monte Carlo time

7: for nsw = 1 to Nsweep do . Loop over sweeps. Each sweep updates twice
. (upward and downward in imag. time) the space-time lattice of auxiliary fields

8: for nτ = 1 to LTrotter do . Upward sweep
9: call wrapgrup . Propagate Green fct. from ntau − 1 to nτ, and compute new

. estimate of Green fct. at nτ, using sequential updates

. Stabilization:
10: if nτ = stabilization point in imaginary time then
11: call wrapur . Compute propagation from previous stabilization point to nτ

. Storage management:

. Read from storage: propagation from LTrotter to nτ

. Write to storage : the just computed propagation
12: call cgr . Recalculate the Green function at time nτ in a stable way
13: call control_precisionG . Compare propagated and recalculated Green fct.
14: end if

15: if nτ ∈ [LOBS_ST, LOBS_EN] then . Measure the equal time observables
16: call obser
17: end if
18: end for

19: for nτ = LTrotter to 1 do . Downward sweep
. Repeat the above steps (update, propagation, stabilization, equal time
. measurements) for the downward direction in imaginary time

20: end for

21: if nτ = 1 then . Measure the time displaced observables
22: call tau_m
23: end if
24: end for
25: call pr_obs . Calculate measurement averages for current bin and write them to disk
26: call confout . Write auxiliary-field configuration to disk
27: end for

18

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

3 Data Structures and Input/Output

3.1 Implementation of the Hamiltonian and the lattice

The module Hamiltonian, contained in the file Hamiltonian.f90, defines the model
Hamiltonian, the lattice under consideration and the desired observables (Table 2). We
have collected a number of example Hamiltonians, lattices and observables in the file
Hamiltonian_Examples.f90. The examples are described in Sec. 4. To implement a user-
defined model, only the module Hamiltonian has to be set up. Accordingly, this documenta-
tion focusses almost entirely on this module and the subprograms it includes. The remaining
parts of the code may hence be treated as a black box.

To specify the Hamiltonian, one needs an Operator and a Lattice type as well as a type
for the observables. These three data structures will be described in the following sections.

Subprogram Description Section

Ham_Set Reads in model and lattice parameters from the file parameters
and it sets the Hamiltonian by calling Ham_latt, Ham_hop,
and Ham_V.

Ham_hop Sets the hopping term ĤT by calling Op_make and Op_set. 3.1.1, 3.1.2
Ham_V Sets the interaction terms ĤV and ĤI by calling Op_make

and Op_set. 3.1.1, 3.1.2
Ham_Latt Sets the lattice by calling Make_Lattice. 3.1.3
S0 A function which returns an update ratio for the Ising term

ĤI ,0. 4.4.3
Alloc_obs Assigns memory storage to the observables
Obser Computes the scalar observables and equal-time correlation

functions. 3.2
ObserT Computes time-displaced correlation functions. 3.2
Init_obs Initializes the observables to zero.
Pr_obs Writes the observables to the disk by calling Print_bin.

Table 2: Overview of the subprograms of the module Hamiltonian to define the Hamiltonian,
the lattice and the observables. The highlighted subroutines have to be modified by the user.

3.1.1 The Operator type

The fundamental data structure in the code is the data structure Operator. It is implemented
as a Fortran derived data type. This type is used to define the Hamiltonian (2). In general,
the matrices T(ks), V(ks) and I(ks) are sparse Hermitian matrices. Consider the matrix X of
dimension Ndim×Ndim, as a representative for each of the above three matrices. Let us denote
with {z1, · · · , zN} a subset of N indices, for which

X x ,y

�

6= 0 if x , y ∈ {z1, · · · zN}
= 0 otherwise

(45)

Usually, we have N � Ndim. We define the N × Ndim matrices P as

Pi,x = δzi ,x , (46)

where i ∈ [1, · · · , N] and x ∈ [1, · · · , Ndim]. The matrix P selects the non-vanishing entries of
X , which are contained in the rank-N matrix O:

X = PT OP , (47)

19

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

and

X x ,y =
N
∑

i, j

Pi,xOi, j Pj,y =
N
∑

i, j

δzi ,xOi jδz j ,y . (48)

Since the P matrices have only one non-vanishing entry per column, they can conveniently be
stored as a vector ~P, with entries

Pi = zi . (49)

There are many useful identities which emerge from this structure. For example:

eX = ePT OP =
∞
∑

n=0

�

PT OP
�n

n!
= 1+ PT

�

eO −1
�

P , (50)

since
PPT = 1N×N . (51)

In the code, we define a structure called Operator to capture the above. This type
Operator bundles several components that are needed to define and use an operator ma-
trix in the program.

3.1.2 Specification of the model

Variable Type Description

Op_X%N Integer Effective dimension N
Op_X%O Complex Matrix O of dimension N × N
Op_X%P Integer Matrix P encoded as a vector of dimension N
Op_X%g Complex Coupling strength g
Op_X%alpha Complex Constant α
Op_X%type Integer Parameter to set the type of HS transformation

(1 = Ising, 2 = discrete HS for perfect-square term)
Op_X%U Complex Matrix containing the eigenvectors of O
Op_X%E Real Eigenvalues of O
Op_X%N_non_zero Integer Number of non-vanishing eigenvalues of O

Table 3: Member variables of the Operator type. In the left column, the letter X is a place-
holder for the letters T and V, indicating hopping and interaction operators, respectively. The
highlighted variables have to be specified by the user.

In this section we show how to specify the Hamiltonian (2) in the code. More pre-
cisely, we have to set the matrix representation of the imaginary-time propagators – e−∆τT (ks)

,
e
p
−∆τUkηkτV(ks)

, and e−∆τskτ I (ks)
– that appear in the partition function (15). For each pair of

indices (k, s), these terms have the general form

Matrix Exponential= egφ(type)X . (52)

In case of the perfect-square term, we additionally have to set the constant α, see the definition
of the operators V̂ (k) in Eq. (4). The data structures which hold all the above information are
variables of the type Operator (see Table 3). For each pair of indices (k, s), we store the
following parameters in an Operator variable:

• ~P and O defining the matrix X [see Eq. (47)]

20

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

• the constants g, α

• optionally: the type type of the discrete fields φ

In case of the Ising term, we store type=1 which sets φkτ = skτ. In case of the perfect-square
term, the field results from the discrete HS transformation (10) and we store type=2 which
sets φkτ = ηkτ. Note that we have dropped the color index σ, since the implementation uses
the SU(Ncol) invariance of the Hamiltonian.

Accordingly, the following data structures fully describe the Hamiltonian (2):

• For the hopping Hamiltonian (3), we have to set the exponentiated hopping matrices
e−∆τT (ks)

:

In this case X(ks) = T(ks). Precisely, a single variable Op_T describes the operator matrix

�Ndim
∑

x ,y

ĉ†
x T (ks)

x y ĉy

�

, (53)

where k = [1, MT] and s = [1, Nfl]. To make contact with the general expression (52) we
set g = −∆τ (and α = 0). In case of the hopping matrix, the type variable Op_T%type
is neglected by the code. All in all, the corresponding array of structure variables is
Op_T(MT,N f l).

• For the interaction Hamiltonian (4), which is of perfect-square type, we have to set the
exponentiated matrices e

p
−∆τUkηkτV(ks)

:

In this case, X= V(ks). A single variable Op_V describes the operator matrix:

��Ndim
∑

x ,y

ĉ†
x V (ks)

x ,y ĉy

�

+αks

�

, (54)

where k = [1, MV] and s = [1, Nfl]. To make contact with the general expression (52)
and to set the constant α, we choose g =

p

−∆τUk and α= αks. The discrete Hubbard-
Stratonovich decomposition which is used for the perfect-square interaction, is selected
by setting the type variable to Op_V%type= 2. All in all, the required structure variables
Op_V are defined using the array Op_V(MV,N f l).

• For the Ising interaction Hamiltonian (5), we have to set the exponentiated matrices
e−∆τskτ I (ks)

:

In this case, X = I (k,s). A single variable Op_V then describes the operator matrix:

�Ndim
∑

x ,y

ĉ†
x I (ks)

x y ĉy

�

, (55)

where k = [1, MI] and s = [1, Nfl]. To make contact with the general expression (52),
we set g = −∆τ (and α = 0). The Ising interaction is specified by setting the type
variable Op_V%type=1. All in all, the required structure variables are contained in the
array Op_V(MI,N f l).

• In case of a full interaction [perfect-square term (4) and Ising term (5)], we define the
corresponding doubled array Op_V(MV+MI,N f l) and set the variables separately for
both ranges of the array according to the above.

21

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

3.1.3 The Lattice type

We have a lattice module which can generate one- and two-dimensional Bravais lattices. Note
that the orbital structure of each unit cell has to be specified by the user in the Hamiltonian
module. The user has to specify unit vectors ~a1 and ~a2 as well as the size of the lattice. The
size is characterized by two vectors ~L1 and ~L2 and the lattice is placed on a torus (periodic
boundary conditions):

ĉ~i+~L1
= ĉ~i+~L2

= ĉ~i . (56)

The function call

Call Make_Lattice(L1, L2, a1, a2, Latt)

will generate the lattice Latt of type Lattice. Note again that the orbital structure of the
unit cell has to be provided by the user. The reciprocal lattice vectors are defined by:

~ai · ~gi = 2πδi, j , (57)

and the Brillouin zone corresponds to the Wigner-Seitz cell of the lattice. With ~k =
∑

i αi ~gi ,
the k-space quantization follows from:

�

~L1 · ~g1 ~L1 · ~g2
~L2 · ~g1 ~L2 · ~g2

��

α1
α2

�

= 2π

�

n
m

�

(58)

such that

~k = n~b1 +m~b2 , with

~b1 =
2π

(~L1 · ~g1)(~L2 · ~g2)− (~L1 · ~g2)(~L2 · ~g1)

�

(~L2 · ~g2)~g1 − (~L2 · ~g1)~g2

�

, and

~b2 =
2π

(~L1 · ~g1)(~L2 · ~g2)− (~L1 · ~g2)(~L2 · ~g1)

�

(~L1 · ~g1)~g2 − (~L1 · ~g2)~g1

�

. (59)

The Lattice module equally handles the Fourier transformation. For example the sub-
routine Fourier_R_to_K carries out the transformation:

S(~k, :, :, :) =
1

Nunit cell

∑

~i,~j

e−i~k·(~i−~j)S(~i − ~j, :, :, :) , (60)

and Fourier_K_to_R the inverse Fourier transform

S(~r, :, :, :) =
1

Nunit cell

∑

~k∈BZ

ei~k·~rS(~k, :, :, :). (61)

In the above, the unspecified dimensions of the structure factor can refer to imaginary-time
and orbital indices.

3.2 The observable types Obser_Vec and Obser_Latt

Our definition of the model includes observables [Eq. (24)]. We have defined two observable
types: Obser_vec for an array of scalar observables such as the energy, and Obser_Latt
for correlation functions that have the lattice symmetry. In the latter case, translation sym-
metry can be used to provide improved estimators and to reduce the size of the output.
We also obtain improved estimators by taking measurements in the imaginary-time interval
[LOBS_ST,LOBS_EN] (see the parameter file in Sec. 3.3.1) thereby exploiting the invariance

22

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

Variable Type Description

Latt%a1_p, Latt%a2_p Real Unit vectors ~a1, ~a2
Latt%L1_p, Latt%L2_p Real Vectors ~L1, ~L2 that define the topology of the lattice.

Tilted lattices are thereby possible to implement.
Latt%N Integer Number of lattice points, Nunit cell
Latt%list Integer Maps each lattice point i = 1, · · · , Nunit cell to a real

space vector denoting the position of the unit cell:
~Ri = list(i,1) ~a1 + list(i,2) ~a2 ≡ i1~a1 + i2~a2

Latt%invlist Integer Invlist(i1, i2) = i
Latt%nnlist Integer j = nnlist(i, n1, n2), n1, n2 ∈ [−1, 1]

~R j = ~Ri + n1~a1 + n2~a2
Latt%imj Integer ~Rim j(i, j) = ~Ri − ~R j . im j, i, j ∈ 1, · · · , Nunit cell
Latt%BZ1_p, Latt%BZ2_p Real Reciprocal space vectors ~gi (See Eq. 57)
Latt%b1_p, Latt%b1_p Real k-quantization (See Eq. 59)
Latt%listk Integer Maps each reciprocal lattice point k = 1, · · · , Nunit cell

to a reciprocal space vector
~kk = listk(k,1)~b1 + listk(k,2)~b2 ≡ k1

~b1 + k2
~b2

Latt%invlistk Integer Invlistk(k1, k2) = k
Latt%b1_perp_p,
Latt%b2_perp_p Real Orthonormal vectors to ~bi . For internal use.

Table 4: Components of the Lattice type for two-dimensional lattices using as example the
default lattice name Latt. The highlighted variables have to be specified by the user. Other
components of the Lattice are generated upon calling: Call Make_Lattice(L1, L2,
a1, a2, Latt).

under translation in imaginary-time. Note that the translation symmetries in space and in time
are broken for a given configuration C but restored by the Monte Carlo sampling. In general,
the user defines the size and the number of bins in the parameter file, each bin having a given
amount of sweeps. Within a sweep we run sequentially through the HS and Ising fields, from
time slice 1 to time slice LTrotter and back. The results of each bin are written to a file and
analyzed at the end of the run.

To accomplish the reweighting of observables (see Sec. 2.1.3), for each configuration the
measured value of an observable is multiplied by the factors ZS and ZP:

ZS= sign(C) , (62)

ZP=
e−S(C)

ℜ
�

e−S(C)
� . (63)

They are computed from the Monte Carlo phase of a configuration,

phase=
e−S(C)
�

�e−S(C)
�

�

, (64)

which is provided by the main program. Note that each observable structure also includes the
average sign [Eq. (25)].

3.2.1 Scalar observables

This data type is described in Table 5 and is useful to compute an array of scalar observ-
ables. Consider a variable Obs of type Obser_vec. At the beginning of each bin, a call to

23

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

Obser_Vec_Init in the module observables_mod.f90 will set Obs%N=0, Obs%Ave_sign
=0 and Obs%Obs_vec(:)=0. Each time the main program calls the routine Obser in the
Hamiltonian module, the counter Obs%N is incremented by one, the sign (see Eq. 23) is
accumulated in the variable Obs%Ave_sign, and the desired observables (multiplied by the

sign and e−S(C)

ℜ[e−S(C)] , see Sec. 2.1.2) are accumulated in the vector Obs%Obs_vec. At the end of

Variable Type Description Contribution of
configuration C

Obs%N Int. Number of measurements
Obs%Ave_sign Real Cumulated sign [Eq. (25)] sign(C)
Obs%Obs_vec(:) Compl. Cumulated vector of

observables [Eq. (24)] 〈〈Ô(:)〉〉C
e−S(C)

ℜ[e−S(C)] sign (C)

Obs%File_Vec Char. Name of output file

Table 5: Components of the Obser_vec type. The table lists the data included in a variable
Obs of type Obser_vec.

the bin, a call to Print_bin_Vec in module observables_mod.f90 will append the result
of the bin in the file File_Vec_scal. Note that this subroutine will automatically append the
suffix _scal to the the filename File_Vec. This suffix is important to allow automatic analysis
of the data at the end of the run.

3.2.2 Equal time and time displaced correlation functions

Variable Type Description Contribution of
configuration C

Obs%N Int. Number of measurements
Obs%Ave_sign Real Cumulated sign [Eq. (25)] sign(C)
Obs%Obs_latt Compl. Cumululated correlation

(~i − ~j,τ,α,β) function [Eq. (24)] 〈〈Ô~i,α(τ)Ô~j,β〉〉C
e−S(C)

ℜ[e−S(C)]sign(C)

Obs%Obs_latt0(α) Compl. Cumulated expectation

value [Eq. (24)] 〈〈Ô~i,α〉〉C
e−S(C)

ℜ[e−S(C)] sign (C)

Obs%File_Latt Char. Name of output file

Table 6: Components of the Obser_latt type. The table lists the data included in a variable
Obs of type Obser_latt.

This data type (see Table 6) is useful so as to deal with equal time as well as imaginary-time
displaced correlation functions of the form:

SÔ,α,β(~k,τ) =
1

Nunit cell

∑

~i,~j

e−~k·(~i−~j)
�

〈Ô~i,α(τ)Ô~j,β〉 − 〈Ô~i,α〉〈Ô~j,β〉
�

. (65)

Here, translation symmetry of the Bravais lattice is explicitly taken into account. The correla-

24

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

tion function splits in a correlated part S(corr)
Ô,α,β

(~k,τ) and a background part S(back)
Ô,α,β

(~k):

S(corr)
Ô,α,β

(~k,τ) =
1

Nunit cell

∑

~i,~j

e−i~k·(~i−~j)〈Ô~i,α(τ)Ô~j,β〉 , (66)

S(back)
Ô,α,β

(~k) =
1

Nunit cell

∑

~i,~j

e−i~k·(~i−~j)〈Ô~i,α(τ)〉〈Ô~j,β〉

= Nunit cell 〈Ôα〉〈Ôβ〉δ(~k) , (67)

where translation invariance in space and time has been exploited to obtain the last line. The
background part depends only on the expectation value 〈Ôα〉, for which we use the following
estimator

〈Ôα〉 ≡
1

Nunit cell

∑

~i

〈Ô~i,α〉 . (68)

Consider a variable Obs of type Obser_latt. At the beginning of each bin a call to the
subroutine Obser_Latt_Init in the module observables_mod.f90 will initialize the ele-
ments of Obs to zero. Each time the main program calls the Obser or ObserT routines one
accumulates the quantity 〈〈Ô~i,α(τ)Ô~j,β〉〉C

e−S(C)

ℜ[e−S(C)]sign(C) in Obs%Obs_latt(~i − ~j,τ,α,β)

and 〈〈Ô~i,α〉〉C
e−S(C)

ℜ[e−S(C)] sign (C) in Obs%Obs_latt0(α). At the end of each bin, a call to

Print_bin_Latt in the module observables_mod.f90 will append the result of the bin
in the specified file Obs%File_Latt. Note that the routine Print_bin_Latt carries out the
Fourier transformation and prints the results in k-space. We have adopted the following nam-
ing conventions. For equal time observables, defined by having the second dimension of the
array Obs%Obs_latt(~i − ~j,τ,α,β) set to unity, the routine Print_bin_Latt attaches the
suffix _eq to Obs%File_Latt. For time displaced correlation functions we use the suffix _tau.

3.3 File structure

Directory Description

Prog/ Main program and subroutines
Libraries/ Collection of mathematical routines
Analysis/ Routines for error analysis
Examples/ Example simulations for Hubbard-type models
Start/ Parameter files and scripts
Documentation/ Documentation of the QMC code.

Table 7: Overview of the directories.

The code package consists of the program directories Prog/, Libraries/ and
Analysis/. The example simulations corresponding to the walkthroughs of Sec. 4.1 - 4.4
are included in Examples/. The package content is summarized in Table 7.

3.3.1 Input files

The input files are listed in Table 8. To enable restarting a previous simulation (see Table 10)
or to use a given HS and Ising field configuration as input for a new simulation, the program
reads in the files confin_<threadnumber> in case they are present. It goes without saying
that the dimensions of the thereby defined field configuration (number of threads, lattices size,
and number of time slices) have to match the corresponding values of the parameter file. The

25

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

File Description

parameters This collects input data. We can set here the parameters for
the lattice, which model, variables of the QMC process, and
the error analysis.

seeds List of integer numbers to initialize the random number
generator and to start a simulation from scratch.

(confin_<threadnumber>) (Optionally, a HS and Ising field configuration can be
provided as input.)

Table 8: Overview of the input files in Start/ required for a simulation.

parameter file Start/parameters has the following form – using as an example the SU(2)-
symmetric Hubbard model on a square lattice (see Sec. 4.1 for a detailed walkthrough):

!==
! Variables for the Hubb program
!--
&VAR_lattice
L1 = 4 ! Length in direction a_1
L2 = 4 ! Length in direction a_2
Lattice_type = "Square" ! a_1 = (1,0),a_2=(0,1), Norb=1, N_coord=2
!Lattice_type ="Honeycomb"! a_1 = (1,0),a_2 =(1/2,sqrt(3)/2),Norb=2,N_coord=3
Model = "Hubbard_SU2" ! Sets Nf=1, N_sun=2. HS field couples to the

! density
!Model = "Hubbard_Mz" ! Sets Nf=2, N_sun=1. HS field couples to the

! z-component of magnetization.
!Model="Hubbard_SU2_Ising"! Sets Nf_1, N_sun=2 and runs only for the square

! lattice
! Hubbard model coupled to transverse Ising field

/
&VAR_Hubbard ! Variables for the Hubbard model
ham_T = 1.D0 ! Hopping parameter
ham_chem= 0.D0 ! chemical potential
ham_U = 4.D0 ! Hubbard interaction
Beta = 5.D0 ! inverse temperature
dtau = 0.1D0 ! Thereby Ltrot=Beta/dtau
/

&VAR_Ising ! Model parameters for the Ising code
Ham_xi = 1.d0 ! Only needed if Model="Hubbard_SU2_Ising"
Ham_J = 0.2d0
Ham_h = 2.d0
/

&VAR_QMC ! Variables for the QMC run
Nwrap = 10 ! Stabilization. Green functions is computed from

! scratch after each time interval Nwrap*Dtau
NSweep = 500 ! Number of sweeps
NBin = 2 ! Number of bins
Ltau = 1 ! 1 for calculation of time displ. Green functions;

! 0 otherwise
LOBS_ST = 1 ! Start measurements at time slice LOBS_ST
LOBS_EN = 50 ! End measurements at time slice LOBS_EN
CPU_MAX = 0.1 ! Code will stop after CPU_MAX hours.

! If not specified, code will stop after Nbin bins.
/
&VAR_errors ! Variables for analysis programs

26

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

n_skip = 1 ! Number of bins that will be skipped.
N_rebin = 1 ! Rebinning
N_Cov = 0 ! If set to 1 covariance will be computed

! for unequal time correlation functions.
N_auto = 100 ! If set to >0 autocorrelation function will be

! computed for scalar and equal time observables.
/

3.3.2 Output: Observables

File Description

info After completion of the simulation, this file documents para-
meters of the model, the QMC run and simulation metrics
(precision, acceptance rate, wallclock time).

X_scal Results of equal time measurements of scalar observables.
The placeholder X stands for the observables Kin,Pot,Part,
and Ener.

Y_eq,Y_tau Results of equal time and time displaced measurements of cor-
relation functions. The placeholder Y stands for Green,SpinZ,
SpinXY, and Den.

confout_<threadnumber> Output files for the HS and Ising field configuration.

Table 9: Overview of the standard output files. See Sec. 3.2 for the definitions of observables
and correlation functions.

The standard output files are listed in Table 9. The output of the measured data is organized
in bins. One bin corresponds to the arithmetic average over a fixed number of individual
measurements which depends on the chosen measurement interval [LOBS_ST,LOBS_EN] on
the imaginary-time axis and on the number NSweep of Monte Carlo sweeps. If the user runs an
MPI parallelized version of the code, the average also extends over the number of MPI threads.
The formatting of the output for a single bin depends on the observable type, Obs_vec or
Obs_Latt:

• Observables of type Obs_vec: For each additional bin, a single new line is added to the
output file. In case of an observable with N_size components, the formatting is

N_size+1 <measured value,1> ... <measured value,N_size>
<measured sign>

The counter variable N_size+1 refers to the number of measurements per line, includ-
ing the phase measurement. This format is required by the error analysis routine (see
Sec. 3.5). Scalar observables like kinetic energy, potential energy, total energy and par-
ticle number are treated as a vector of size N_size=1.

• Observables of type Obs_Latt: For each additional bin, a new data block is added to the
output file. The block consists of the expectation values [Eq. (68)] contributing to the
background part [Eq. (67)] of the correlation function, and the correlated part [Eq. (66)]
of the correlation function. For imaginary-time displaced correlation functions, the for-
matting of the block follows this scheme:

<measured sign> <N_orbital> <N_unit_cell> <N_time_slices> <dtau>
do alpha = 1, N_orbital

27

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

〈Ôα〉
enddo
do i = 1, N_unit_cell

<reciprocal lattice vector k(i)>
do tau = 1, N_time_slices

do alpha = 1, N_orbital
do beta = 1, N_orbital
〈S(cor r)

Ô,α,β
(k(i),τ)〉

enddo
enddo

enddo
enddo

The same block structure is used for equal time correlation functions, except for the
entries <N_time_slices> and <dtau> which are not present in the latter. Using this
structure for the bins as input, the full correlation function SÔ,α,β(~k,τ) [Eq. (65)] is then
calculated by calling the error analysis routine (see Sec. 3.5).

3.3.3 Output: Precision

The finite temperature auxiliary field QMC algorithm is known to be numerically unstable,
as discussed in Sec. 2.3. The origin the numerical instabilities arises from the imaginary-
time propagation which invariably leads to exponentially small and exponentially large scales.
Numerical stabilization of the code is delicate and has been pioneered in Ref. [2] for the finite-
temperature algorithm and in Refs. [3, 4] for the zero temperature projective algorithm. As
shown in Ref. [7] scales can be omitted in the ground state algorithm – thus rendering it very
stable – but have to be taken into account in the finite-temperature code. Apart from runtime
information, the file info contains important information concerning the stability of the code.
It is important to know that numerical stabilization is delicate and there is no guarantee that
it will work for all models.

If the numerical stabilization turns out to be bad, one option is to reduce the value of the
parameter Nwrap in the parameter file. For performing the stabilization of the involved matrix
multiplications we rely on routines from LAPACK. Hence it is very likely that your results may
change significantly if you switch the LAPACK implementation. In order to offer a simple
baseline to which people can quickly switch if they want to see whether their results depend
on the library used for linear algebra routines we have included parts of the LAPACK-3.6.1
reference implementation from http://www.netlib.org/lapack/. You can switch to the QR
decomposition related routines from the LAPACK reference implementation by including the
switch -DQRREF into the PROGRAMCONFIGURATION string. To use these routines you need
to link against a lapack library that implements at least the LAPACK-3.4.0 interface.5

To provide further flexibility, we have kept the history of different stabilization schemes.
Our default strategy is quick and generically works well but we have encountered some models
where it fails. If this applies to your model, you can use the switch -DSTAB2 (stabilization
scheme based on the QR decomposition, but not using the LAPACK reference implementation)
or -DSTAB1 (stabilization scheme based on singular value decomposition) in the header of
the file Makefile and recompile the code.

Typical values for the numerical precision can be found in the examples of Sec. 4 (see
Sec. 4.1.3 and 4.2.3).

5 We have encountered some compiling issues with this flag. In particular the older intel ifort compiler version
10.1 fails for all optimization levels.

28

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
http://www.netlib.org/lapack/

SciPost Phys. 3, 013 (2017)

3.4 Scripts

Script Description Section

setenv.sh Exports the path variable. 3.6
Start/analysis.sh Starts the error analysis. 3.5, 3.6
Start/out_to_in.sh Copies the output configurations of HS and Ising spins

to the respective input files. 3.6

Table 10: Overview of the bash script files.

3.5 Analysis programs

Program Description

cov_scal.f90 In combination with the script analysis.sh, the bin files with suffix _scal
are read in, and the corresponding files with suffix _scalJ are produced.
They contain the result of the Jackknife rebinning analysis (see Sec. 2.4).

cov_eq.f90 In combination with the script analysis.sh, the bin files with suffix _eq
are read in, and the corresponding files with suffix _eqJR and _eqJK are
produced. They correspond to correlation functions in real and Fourier
space, respectively.

cov_tau.f90 In combination with the script analysis.sh, the bin files X_tau are read in,
and the directories X_kx_ky are produced for all kx and ky greater or equal
to zero. Here X is a place holder from Green, SpinXY, etc as specified in
Alloc_obs(Ltau) (See section 4.1.2). Each directory contains a file
g_kx_ky containing the time displaced correlation function traced over the
orbitals. It also contains the covariance matrix if N_cov is set to unity in
the parameter file (see Sec. 3.3.1).
Equally, a directory X_R0 for the local time displaced correlation function
is generated.

Table 11: Overview of analysis programs that are called within the script analysis.sh.

Here we briefly discuss the analysis programs which read in bin/s and carry out the error
analysis. (See Sec. 2.4 for a more detailed discussion.) Error analysis is based on the central
limit theorem, which requires bins to be statistically independent, and also the existence of a
well-defined variance for the observable under consideration. The former will be the case if
bins are longer than the autocorrelation time. The latter has to be checked by the user. In the
parameter file listed in Sec. 3.3.1, the user can specify how many initial bins should be omitted
(variable n_skip). This number should be at least comparable or lager than the autocorrela-
tion time. The analysis of the autocorrelation time is triggered by specifying a positive value
for N_auto that is turned off be default (N_auto = 0). The rebinning variable N_rebin will
merge N_rebin bins into a single new bin. If the autocorrelation time is smaller than the effec-
tive bin size, the error should become independent of the bin size and thereby of the variable
N_rebin. Our analysis is based on the Jackknife resampling [57, 85], which includes proper
treatment of the sign. As listed in Table 11 we provide three analysis programs to account for
the three observable types. The programs can be found in the directory Analysis and are
executed by running the bash shell script analysis.sh. In the following, we describe the
formatting of the output files mentioned in Table 13.

29

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

File Description

parameters Contains also variables for the error analysis:
n_skip, N_rebin, N_Cov and N_auto (see Sec. 3.3.1)

X_scal, Y_eq, Y_tau Monte Carlo bins (see Table 9)

Table 12: Standard input files for the error analysis.

File Description

X_scalJ Jackknife mean and error of X, where X stands for Kin, Pot, Part,
and Ener.

X_scal_Auto_N QMC-time resolved autocorrelation and rebinning analysis of X,
where X stands for Kin, Pot, Part, and Ener and N labels the
component if X is a vector.

Y_eqJR and Y_eqJK Jackknife mean and error of Y, where Y stands for Green, SpinZ,
SpinXY, and Den.
The suffixes R and K refer to real and reciprocal space, respectively.

Y_R0/g_R0 Time-resolved and spatially local Jackknife mean and error of Y,
where Y stands for Green, SpinZ, SpinXY, and Den.

Y_eq_Auto_Tr_kx_ky QMC-time resolved autocorrelation and rebinning analysis of Y,
where Y stands for Green, SpinZ, SpinXY, and Den.

Y_kx_ky/g_kx_ky Time resolved and ~k-dependent Jackknife mean and error of Y,
where Y stands for Green, SpinZ, SpinXY, and Den.

Table 13: Standard output files of the error analysis.

• For the scalar quantities X, the output files X_scalJ have the following formatting:

Effective number of bins, and bins: <N_bin - n_skip> <N_bin>

OBS : 1 <mean(X)> <error(X)>

OBS : 2 <mean(sign)> <error(sign)>

• For the autocorrelation analysis of scalar quantities X, the output files X_scal_Auto_N
have the following formatting:

do i = 1, N_auto
tau(i)/n_rebin Auto_X(tau) <error(X)>

enddo

• For the equal time correlation functions Y, the formatting of the output files Y_eqJR and
Y_eqJK follows this structure:

do i = 1, N_unit_cell
<k_x(i)> <k_y(i)>
do alpha = 1, N_orbital
do beta = 1, N_orbital

alpha beta Re<mean(Y)> Re<error(Y)> Im<mean(Y)> Im<
error(Y)>
enddo

30

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

enddo
enddo

where Re and Im refer to the real and imaginary part, respectively.

• For the autocorrelation analysis of equal time quantities Y, the output files
Y_eq_Auto_Tr_kx_ky have the following formatting:

do i = 1, N_auto
tau(i)/n_rebin Auto_Tr[Y](tau) <error(Tr[Y])>

enddo

• The imaginary-time displaced correlation functions Y are written to the output files
Y_R0/g_R0, when measured locally in space, and to the output files Y_kx_ky/g_kx_ky
when they are measured ~k-resolved. Both output files have the following formatting:

do i = 0, Ltau
tau(i) <mean(Tr[Y])> <error(Tr[Y])>

enddo

where Tr corresponds to the trace over the orbital degrees of freedom.

3.6 Running the code

In this section we describe the steps how to compile and run the code, as well as how to
perform the error analysis of the data.

3.6.1 Compilation

The environment variables and the directives to compile the code are set in the following
makefile Makefile:

-DMPI selects MPI.
-DSTAB1 Alternative stabilization, using the singular value decomposition.
-DSTAB2 Alternative stabilization, lapack QR with manual pivoting.
Packed form of QR factorization is not used.
(no flag) Default stabilization, using lapack QR with pivoting.
Packed form of QR factorization is used.
-DQRREF Enables reference lapack implementation of QR decomposition.
Recommendation: just use the -DMPI flag if you want to run in parallel or
leave it empty for serial jobs.
The default stabilization, no flag, is generically the best.
PROGRAMCONFIGURATION = -DMPI
PROGRAMCONFIGURATION =
f90 = gfortran
export f90
F90OPTFLAGS = -O3 -Wconversion -fcheck=all
F90OPTFLAGS = -O3
export F90OPTFLAGS
F90USEFULFLAGS = -cpp -std=f2003
F90USEFULFLAGS = -cpp
export F90USEFULFLAGS
FL = -c ${F90OPTFLAGS} ${PROGRAMCONFIGURATION}
export FL
DIR = ${CURDIR}
export DIR

31

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

Libs = ${DIR}/Libraries/
export Libs
LIB_BLAS_LAPACK = -llapack -lblas
export LIB_BLAS_LAPACK

all: lib ana program

lib:
cd Libraries && $(MAKE)

ana:
cd Analysis && $(MAKE)

program:
cd Prog && $(MAKE)

clean: cleanall
cleanall: cleanprog cleanlib cleanana
cleanprog:

cd Prog && $(MAKE) clean
cleanlib:

cd Libraries && $(MAKE) clean
cleanana:

cd Analysis && $(MAKE) clean
help:

@echo "The following are some of the valid targets of this Makefile"
@echo "all, program, lib, ana, clean, cleanall, cleanprog, cleanlib,

cleanana"

In the above, the GNU Fortan compiler gfortran is set.6 We provide a set of options for com-
pilation of the QMC code. The present options are -DMPI, -DQRREF, -DSTAB1, and -DSTAB2.
They can be included in the string variable PROGRAMCONFIGURATION by the user, as shown
above. The program can be compiled and ran either in single-thread mode (default) or in
multi-threading mode (define -DMPI) using the MPI standard for parallelization. The remain-
ing three compiler options select a particular stabilization scheme for the matrix multiplica-
tions (see Sec. 3.3.3). To compile the libraries, the analysis routines and the QMC program at
once, just execute the single command:

make

To clean up all directories and remove the object files and executables, execute the command
make clean. As can be seen in the above makefile, there exist also rules to compile/clean up
the library, the analysis routines and the QMC program separately.

3.6.2 Starting a simulation

To start a simulation from scratch, the following files have to be present: parameters and
seeds. To run a single-thread simulation, for example by using the parameters of one of the
Hubbard models described in Sec. 4, issue the command

./Prog/Examples.out

To restart the code using an existing simulation as a starting point, first run the script
out_to_in.sh to set the input configuration files.

6A known issue with the alternative Intel Fortran compiler ifort is the handling of automatic, temporary arrays
which ifort allocates on the stack. For large system sizes and/or low temperatures this may lead to a runtime
error. One solution is to demand allocation of arrays above a certain size on the heap instead of the stack. This
is accomplished by the ifort compiler flag -heap-arrays [n] where [n] is the minimal size (in kilobytes, for
example n=1024) of arrays that are allocated on the heap.

32

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

3.6.3 Error analysis

Note that the error analysis script requires the presence of the environment variable DIR which
defines the path to the error analysis programs. So before starting the error analysis, one has
to make this variable available which is done by the script setenv.sh. The command is

source ./setenv.sh

To perform an error analysis based on the Jackknife resampling method (Sec. 2.4.1) of the
Monte Carlo bins for all observables run the script analysis.sh (see Sec. 3.5). In case that
the parameter N_auto is set to a finite value the script will also trigger the computation of
autocorrelation functions (Sec. 2.4.2).

4 Examples

4.1 The SU(2)-Hubbard model on a square lattice

To implement a Hamiltonian, the user has to provide a module which specifies the lattice, the
model, as well as the observables they wish to compute. In this section, we describe the module
Hamiltonian_Examples.f90 which contains an implementation of the Hubbard model on
the square lattice. A sample run for this model can be found in Examples/Hubbard_SU2_
Square/. The input files are parameters and seeds (see Tab. 8). The output files are info,
confout, and files with suffixes _scal, _eq, and _tau that contain the raw measurements
(see Tab. 9).

The Hamiltonian reads

H =
2
∑

σ=1

Nunit cell
∑

x ,y=1

c†
xσTx ,y cyσ +

U
2

∑

x

� 2
∑

σ=1

�

c†
xσcxσ − 1/2

�

�2

. (69)

We can make contact with the general form of the Hamiltonian by setting: Nfl = 1,
Ncol ≡ N_SUN = 2, MT = 1, T (ks)

x y = Tx ,y , MV = Nunit cell, Uk = −
U
2 , V (ks)

x y = δx ,yδx ,k, αks = −
1
2

and MI = 0.

4.1.1 Setting the Hamiltonian: Ham_set

The main program will call the subroutine Ham_set in the module Hamiltonian_Hub.f90.
The latter subroutine defines the public variables

Type (Operator), dimension(:,:), allocatable :: Op_V
Type (Operator), dimension(:,:), allocatable :: Op_T
Integer, allocatable :: nsigma(:,:)
Integer :: Ndim, N_FL, N_SUN, Ltrot

which specify the model. The array nsigma contains the HS field. The routine Ham_set
will first read the parameter file, then set the lattice, Call Ham_latt, set the hopping, Call
Ham_hop, and set the interaction, call Ham_V. The parameters are read in from the file
parameters, see Sec. 3.3.1.

The lattice: Call Ham_latt The choice Lattice_type = "Square" sets ~a1 = (1, 0)
and ~a2 = (0,1) and for an L1 × L2 lattice ~L1 = L1~a1 and ~L2 = L2~a2. The call to Call
Make_Lattice(L1, L2, a1, a2, Latt)will generate the lattice Latt of type Lattice.
For the Hubbard model on the square lattice, the number of orbitals per unit cell is given by
NORB=1 such that Ndim ≡ Nunit cell · NORB= Latt%N · NORB, since Nunit cell = Latt%N.

33

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

The hopping term: Call Ham_hop The hopping matrix is implemented as follows. We
allocate an array of dimension 1× 1 of type operator called Op_T and set the dimension for
the hopping matrix to N = Ndim. One allocates and initializes this type by a single call to the
subroutine Op_make:

call Op_make(Op_T(1,1),Ndim)

Since the hopping does not break down into small blocks, we have P = 1 and

Do i= 1,Ndim
Op_T(1,1)%P(i) = i

Enddo

We set the hopping matrix with

DO I = 1, Latt%N
Ix = Latt%nnlist(I,1,0)
Iy = Latt%nnlist(I,0,1)
Op_T(1,1)%O(I ,Ix) = cmplx(-Ham_T, 0.d0,kind(0.D0))
Op_T(1,1)%O(Ix, I) = cmplx(-Ham_T, 0.d0,kind(0.D0))
Op_T(1,1)%O(I ,Iy) = cmplx(-Ham_T, 0.d0,kind(0.D0))
Op_T(1,1)%O(Iy, I) = cmplx(-Ham_T, 0.d0,kind(0.D0))
Op_T(1,1)%O(I ,I) = cmplx(-Ham_chem,0.d0,kind(0.D0))

ENDDO

Here, the integer function j= Latt%nnlist(I,n,m) is defined in the lattice module and
returns the index of the lattice site ~I + n~a1 + m~a2. Note that periodic boundary condi-
tions are already taken into account. The hopping parameter Ham_T as well as the chem-
ical potential Ham_chem are read from the parameter file. To completely define the hop-
ping we further set: Op_T(1,1)%g = -Dtau , Op_T(1,1)%alpha = cmplx(0.d0,0.d0,
kind(0.D0)) and call the routine Op_set(Op_T(1,1)) so as to generate the unitary trans-
formation and eigenvalues as specified in Table 3. Recall that for the hopping, the variable
Op_set(Op_T(1,1))%type is not required. Note that although a checkerboard decomposi-
tion is not used here, it can be implemented by considering a larger number of sparse hopping
matrices.

The interaction term: Call Ham_V To implement this interaction, we allocate an array of
Operator type. The array is called Op_V and has dimensions Ndim × Nfl = Ndim × 1. We set
the dimension for the interaction term to N = 1, and allocate and initialize this array of type
Operator by repeatedly calling the subroutine Op_make:

do i = 1,Ndim
call Op_make(Op_V(i,1),1)

enddo

For each lattice site i, the matrices P are of dimension 1×Ndim and have only one non-vanishing
entry. Thereby we can set:

Do i = 1,Ndim
Op_V(i,1)%P(1) = i

34

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

Op_V(i,1)%O(1,1) = cmplx(1.d0,0.d0, kind(0.D0))
Op_V(i,1)%g = sqrt(cmplx(-dtau*ham_U/dble(N_SUN),0.D0,kind(0.D0)))
Op_V(i,1)%alpha = cmplx(-0.5d0,0.d0, kind(0.D0))
Op_V(i,1)%type = 2
Call Op_set(Op_V(i,1))

Enddo

so as to completely define the interaction term.

4.1.2 Observables

At this point, all the information for the simulation to start has been provided. The code will
sequentially go through the operator list Op_V and update the fields. Between time slices
LOBS_ST and LOBS_EN the main program will call the routine Obser(GR,Phase,Ntau)
which is provided by the user and handles equal time correlation functions. If Ltau=1 the
main program will call the routine ObserT(NT, GT0,G0T,G00,GTT, PHASE) which is
again provided by the user and handles imaginary-time displaced correlation functions.

The user will have to implement the observables he/she wants to compute. Here we will
describe how to proceed.

Allocating space for the observables: Call Alloc_obs(Ltau) For four scalar or vector
observables, the user will have to declare the following:

Allocate (Obs_scal(4))
Do I = 1,Size(Obs_scal,1)

select case (I)
case (1)

N = 2; Filename ="Kin"
case (2)

N = 1; Filename ="Pot"
case (3)

N = 1; Filename ="Part"
case (4)

N = 1, Filename ="Ener"
case default

Write(6,*) ’ Error in Alloc_obs ’
end select
Call Obser_Vec_make(Obs_scal(I),N,Filename)

enddo

Here, Obs_scal(1) contains a vector of two observables so as to account for the x- and
y-components of the kinetic energy for example.

For equal time correlation functions we allocate Obs_eq of type Obser_Latt. Here we
include the calculation of spin-spin and density-density correlation functions alongside equal
time Green functions.

Allocate (Obs_eq(4))
Do I = 1,Size(Obs_eq,1)

select case (I)
case (1)

Ns = Latt%N; No = Norb; Filename ="Green"

35

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

case (2)
Ns = Latt%N; No = Norb; Filename ="SpinZ"

case (3)
Ns = Latt%N; No = Norb; Filename ="SpinXY"

case (4)
Ns = Latt%N; No = Norb; Filename ="Den"

case default
Write(6,*) ’ Error in Alloc_obs ’

end select
Nt = 1
Call Obser_Latt_make(Obs_eq(I),Ns,Nt,No,Filename)

enddo

For the Hubbard model Norb = 1 and for equal time correlation functions Nt = 1. If Ltau
= 1 then the code will allocate space for time displaced quantities. The same structure as
for equal time correlation functions will be used albeit with Nt = Ltrot + 1. At the begin-
ning of each bin, the main program will set the bin observables to zero by calling the routine
Init_obs(Ltau). The user does not have to edit this routine.

Measuring equal time observables: Obser(GR,Phase,Ntau) The equal time Green func-
tion,

GR(x,y,σ)= 〈cx ,σc†
y,σ〉, (70)

the phase factor phase [Eq. (64)], and time slice Ntau are provided by the main program.
Here, x and y label both unit cell as well as the orbital within the unit cell. For the Hubbard
model described here, x corresponds to the unit cell. The Green function does not depend on
the color index, and is diagonal in flavor. For the SU(2) symmetric implementation there is
only one flavor, σ = 1 and the Green function is independent on the spin index. This renders
the calculation of the observables particularly easy.

An explicit calculation of the potential energy 〈U
∑

~i n̂~i,↑n̂~i,↓〉 reads

Obs_scal(2)%N = Obs_scal(2)%N + 1
Obs_scal(2)%Ave_sign = Obs_scal(2)%Ave_sign + Real(ZS,kind(0.d0))
Do i = 1,Ndim

Obs_scal(2)%Obs_vec(1)=Obs_scal(2)%Obs_vec(1)+(1-GR(i,i,1))**2*Ham_U*ZS*ZP
Enddo

Here ZS= sign(C) [see Eq. (23)], ZP= e−S(C)

ℜ[e−S(C)] [see Eq. (64)] and Ham_U corresponds to the

Hubbard-U term.
Equal time correlations are also computed in this routine. As an explicit example, we consider
the equal time density-density correlation:

〈n~i,αn~j,β〉 − 〈n~i,α〉〈n~j,β〉 . (71)

For the calculation of such quantities, it is convenient to define:

GRC(x,y,s)= δx ,y − GR(y,x,s) , (72)

such that GRC(x,y,s) corresponds to 〈〈ĉ†
x ,s ĉy,s〉〉. In the program code, the calculation of the

equal time density-density correlation function looks as follows:

36

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

Obs_eq(4)%N = Obs_eq(4)%N + 1 ! Even if it is redundant, each observable
! carries its own counter and sign.

Obs_eq(4)%Ave_sign = Obs_eq(4)%Ave_sign + Real(ZS,kind(0.d0))
Do I1 = 1,Ndim

I = List(I1,1) ! = I1 (The Hubbard model on the square
no_I = List(I1,2) ! = 1 lattice has one orbital per unit

! cell)
Do J1 = 1,Ndim

J = List(J1,1)
no_J = List(J1,2)
imj = latt%imj(I,J)
Obs_eq(4)%Obs_Latt(imj,1,no_I,no_J) = &

& Obs_eq(4)%Obs_Latt(imj,1,no_I,no_J) + &
& (GRC(I1,I1,1) * GRC(J1,J1,1) * N_SUN * N_SUN + &
& GRC(I1,J1,1) * GR(I1,J1,1) * N_SUN) * ZP * ZS

Enddo
Obs_eq(4)%Obs_Latt0(no_I) = &
& Obs_eq(4)%Obs_Latt0(no_I)+GRC(I1,I1,1) * N_SUN * ZP * ZS

Enddo

Note that we consider the square lattice of the single site Hubbard model as a special case
of a multiorbital problem as described in Sec. 4.3.1 At the end of each bin the main program
will call the routine Pr_obs(LTAU). This routine will append the result of the bins in the
specified file, with appropriate suffix.

Measuring time displaced observables: ObserT(NT, GT0,G0T,G00,GTT, PHASE) This
subroutine is called by the main program at the beginning of each sweep, provided that LTAU
is set to unity. NT runs from 0 to Ltrot and denotes the imaginary time difference. For a given
time displacement, the main program provides:

GT0(x,y,s) = 〈〈ĉx ,s(N t∆τ)ĉ†
y,s(0)〉〉= 〈〈T ĉx ,s(N t∆τ)ĉ†

y,s(0)〉〉

G0T(x,y,s) = −〈〈ĉ†
y,s(N t∆τ)ĉx ,s(0)〉〉= 〈〈T ĉx ,s(0)ĉ

†
y,s(N t∆τ)〉〉

G00(x,y,s) = 〈〈ĉx ,s(0)ĉ
†
y,s(0)〉〉

GTT(x,y,s) = 〈〈ĉx ,s(N t∆τ)ĉ†
y,s(N t∆τ)〉〉 (73)

In the above we have omitted the color index since the Green functions are color independent.
The time displaced spin-spin correlations 4〈〈Ŝz

~i
(τ)Ŝz

~j
(0)〉〉 are thereby given by:

4〈〈Ŝz
~i
(τ)Ŝz

~j
(0)〉〉= −2 G0T(J1,I1,1) GT0(I1,J1,1) . (74)

Note that the above holds for the SU(2) HS transformation discussed in this chapter. The
handling of time displaced correlation functions is identical to that of equal time correlations.

4.1.3 Numerical precision

The directory Examples/Hubbard_SU2_Square contains an example simulation of the 4×4
Hubbard model at U/t = 4 and β t = 10. Information on the numerical stability is included
in the following lines of the corresponding file info:

Precision Green Mean, Max : 1.2918865817224671E-014 4.0983018995027644E-011
Precision Phase, Max : 5.0272908791449966E-012
Precision tau Mean, Max : 8.4596701790588625E-015 3.5033530012121281E-011

37

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

showing the mean and maximum difference between the wrapped and from scratched com-
puted equal and time displaced Green functions [7]. A stable code should produce results
where the mean difference is smaller than the stochastic error. The above example shows a
very stable simulation since the Green function is of order one.

4.2 The Mz-Hubbard model on a square lattice

The Hubbard Hamiltonian can equally be written as:

H =
2
∑

σ=1

Nunit cell
∑

x ,y=1

c†
xσTx ,y cyσ −

U
2

∑

x

�

c†
x ,↑cx↑ − c†

x ,↓cx↓

�2
. (75)

We can make contact with the general form of the Hamiltonian (see Eq. 2) by setting: Nfl = 2,
Ncol ≡ N_SUN = 1, MT = 1, T (ks)

x y = Tx ,y , MV = Nunit cell, Uk =
U
2 , V (k,s=1)

x y = δx ,yδx ,k,

V (k,s=2)
x y = −δx ,yδx ,k, αks = 0 and MI = 0. The coupling of the HS fields to the z-component of

the magnetization breaks the SU(2) spin symmetry. Nevertheless the z-component of the spin
remains a good quantum number such that the imaginary-time propagator – for a given HS
field – is block diagonal in this quantum number. This corresponds to the flavor index which
runs from one to two labelling spin up and spin down degrees of freedom. In the parameter
file listed in Sec. 3.3.1 setting the model variable to Hubbard_Mz will carry out the simula-
tion in the above representation. With respect to the SU(2) case, the changes required in the
Hamiltonian_Examples.f90 module are minimal and essentially effect only the interac-
tion term, and the calculation of observables. We note that in this formulation the hopping
matrix can be flavor dependent such that a Zeeman magnetic field can be introduced. If the
chemical potential is set to zero, this will not generate a negative sign problem [37, 88, 89].
A sample run for this model can be found in Examples/Hubbard_Mz_Square/. The input
files are parameters and seeds (see Tab. 8). The output files are info, confout, and files
with suffixes _scal, _eq, and _tau that contain the raw measurements (see Tab. 9).

4.2.1 The interaction term: Call Ham_V

The interaction term is now given by:

Allocate(Op_V(Ndim,N_FL))
do nf = 1,N_FL

do i = 1, Ndim
Call Op_make(Op_V(i,nf),1)

enddo
enddo
Do nf = 1,N_FL

nc = 0
X = 1.d0
if (nf == 2) X = -1.d0
Do i = 1,Ndim

nc = nc + 1
Op_V(nc,nf)%P(1) = I
Op_V(nc,nf)%O(1,1) = cmplx(1.d0, 0.d0, kind(0.D0))
Op_V(nc,nf)%g = X*SQRT(CMPLX(DTAU*ham_U/2.d0, 0.D0, kind(0.D0)))
Op_V(nc,nf)%alpha = cmplx(0.d0, 0.d0, kind(0.D0))
Op_V(nc,nf)%type = 2
Call Op_set(Op_V(nc,nf))

Enddo
Enddo

In the above, one will see explicitly that there is a sign difference between the coupling of the
HS field in the two flavor sectors.

38

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

4.2.2 The measurements: Call Obser, Call ObserT

Since the spin up and spin down Green functions differ for a given HS configuration, the Wick
decomposition will take a different form. In particular, the equal time spin-spin correlation
functions 4〈〈Ŝz

~i
Ŝz
~j
〉〉 calculated in the subroutine Obser will take the form:

4〈〈Ŝz
x Ŝz

y〉〉= GRC(x,y,1) * GR(x,y,1) + GRC(x,y,2) * GR(x,y,2) +

(GRC(x,x,2) - GRC(x,x,1))*(GRC(y,y,2) - GRC(y,y,1))

Here, GRC is defined in Eq. 72. Equivalent changes will have to be carried out for other equal
time and time displaced observables.

Apart from these modifications, the program will run in exactly the same manner as for
the SU(2) case.

4.2.3 Numerical precision

The directory Examples/Hubbard_Mz_Square contains an example simulation of the 4× 4
Hubbard model at U/t = 4 and β t = 10. Information on the numerical stability is included
in the following lines of the corresponding file info:

Precision Green Mean, Max : 5.0823874429126405E-011 5.8621144596315844E-006
Precision Phase, Max : 0.0000000000000000
Precision tau Mean, Max : 1.5929357848647394E-011 1.0985132530727526E-005

This is still an excellent precision but nevertheless choosing a HS field which couples to
the z-component of the magnetization apparently leads to numerical results that are a couple
of order of magnitudes less precise than a HS decomposition coupling to the charge (compare
with Sec. 4.1.3).

4.3 The SU(2)-Hubbard model on the honeycomb lattice

The Hamilton module Hamiltonian_Examples.f90 can also carry out simulations for the
Hubbard model on the Honeycomb lattice by setting in the parameter file Lattice_type=
"Honeycomb" (see Sec. 3.3.1). A sample run for this model can be found in Examples/
Hubbard_SU2_Honeycomb/. The input files are parameters and seeds (see Tab. 8). The
output files are info, confout, and files with suffixes _scal, _eq, and _tau that contain the
raw measurements (see Tab. 9).

4.3.1 Working with multi-orbital unit cells: Call Ham_Latt

This model is an example of a multi-orbital unit cell, and the aim of this section is to document
how to implement this in the code. The Honeycomb lattice is a triangular Bravais lattice with
two orbitals per unit cell. The routine Ham_Latt will set:

Norb = 2
N_coord = 3
a1_p(1) = 1.D0 ; a1_p(2) = 0.d0
a2_p(1) = 0.5D0 ; a2_p(2) = sqrt(3.D0)/2.D0
L1_p = dble(L1) * a1_p
L2_p = dble(L2) * a2_p

and then call Make_Lattice(L1_p,L2_p,a1_p,a2_p,Latt) so as to generate the tri-
angular lattice. The coordination number of this lattice is N_coord=3 and the number

39

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

of orbitals per unit cell corresponds to NORB=2. The total number of orbitals is thereby:
Ndim=Latt%N*NORB. To easily keep track of the orbital and unit cell, we define a super-index
as shown below:

Allocate (List(Ndim,2), Invlist(Latt%N,Norb))
nc = 0
Do I = 1,Latt%N ! Unit-cell index

Do no = 1,Norb ! Orbital index
nc = nc + 1 ! Super-index labeling unit cell

! and orbital
List(nc,1) = I ! Unit-cell of super index nc
List(nc,2) = no ! Orbital of super index nc
Invlist(I,no) = nc ! Super-index for given unit cell

! and orbital
Enddo

Enddo

With the above lists one can run through all the orbitals and at each time keep track of
the unit-cell and orbital index. We note that when translation symmetry is completely absent
one can work with a single unit cell, and the number of orbitals will then correspond to the
number of lattice sites.

4.3.2 The hopping term: Call Ham_Hop

Some care has to be taken when setting the hopping matrix. In the Hamilton module
Hamiltonian_Examples.f90 we do this in the following way:

DO I = 1, Latt%N ! Loop over unit cell
do no = 1,Norb ! Runs over orbitals and

! sets the chemical potential
I1 = invlist(I,no)
Op_T(nc,n)%O(I1 ,I1) = cmplx(-Ham_chem, 0.d0, kind(0.D0))

enddo
I1 = Invlist(I,1) ! Orbital A of unit cell I
Do nc1 = 1,N_coord ! Loop over coordination number

select case (nc1)
case (1)

J1 = invlist(I,2) ! Orbital B of unit cell i
case (2)

J1=invlist(Latt%nnlist(I,1,-1),2) ! Orbital B of unit cell i+a_1-a_2
case (3)

J1=invlist(Latt%nnlist(I,0,-1),2) ! Orbital B of unit cell i-a_2
case default

Write(6,*) ’ Error in Ham_Hop ’
end select
Op_T(nc,n)%O(I1,J1) = cmplx(-Ham_T, 0.d0, kind(0.D0))
Op_T(nc,n)%O(J1,I1) = cmplx(-Ham_T, 0.d0, kind(0.D0))

Enddo
Enddo

As apparent from the above, hopping matrix elements are non-zero only between the A and B
sublattices.

4.3.3 Observables: Call Obser, Call ObserT

In the multi-orbital case, the correlation functions have additional orbital indices. This is
automatically taken care of in the routines Call Obser and Call ObserT since we have

40

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

already considered the Hubbard model on the square lattice to correspond to a multi-orbital
unit cell albeit with the special choice of one orbital per unit cell.

4.4 The SU(2)-Hubbard model on a square lattice coupled to a transverse Ising
field

The model we consider here is very similar to the above, but has an additional coupling to a
transverse field:

H =
2
∑

σ=1

∑

x ,y

c†
xσTx ,y cyσ +

U
2

∑

x

� 2
∑

σ=1

�

c†
xσcxσ − 1/2

�

�2

+ ξ
∑

σ,〈x ,y〉

Ẑ〈x ,y〉

�

c†
xσcyσ + h.c.

�

− h
∑

〈x ,y〉

X̂〈x ,y〉 − J
∑

〈〈x ,y〉〈x ′,y ′〉〉

Ẑ〈x ,y〉 Ẑ〈x ′,y ′〉 (76)

We can make contact with the general form of the Hamiltonian by setting: Nfl = 1,
Ncol ≡ N_SUN = 2, MT = 1, T (ks)

x y = Tx ,y , MV = Nunit cell ≡ Ndim, Uk = −
U
2 , V (ks)

x y = δx ,yδx ,k,

αks = −
1
2 and MI = 2Nunit cell. The last two terms of the above Hamiltonian describe a trans-

verse Ising field model on the bonds of the square lattice. This type of Hamiltonian has recently
been extensively discussed [19, 22, 90]. Here we adopt the notation of Ref. [19]. Note that
〈〈x , y〉〈x ′, y ′〉〉 denotes nearest neighbor bonds. The modifications required to generalize the
Hubbard model code to the above model are two-fold. First, one has to specify the func-
tion Real(Kind=8)functionS0(n,nt), and second, modify the interaction Call Ham_V.
A sample run for this model can be found in Examples/Hubbard_SU2_Ising_Square/.
The input files are parameters and seeds (see Tab. 8). The output files are info, confout,
and files with suffixes _scal, _eq, and _tau that contain the raw measurements (see Tab. 9).

4.4.1 The Ising term

Since the Ising field lives on bonds we have to provide a data structure defining this quantity.
A bond has an anchor site as well as an orientation. The routine Setup_Ising_action
initializes the arrays L_bond and L_bond_inv that contain this information.

nc = 0
Do n_orientation = 1,N_coord
Do I = 1, Latt%N

nc = nc + 1
L_bond(I,n_orientation) = nc
L_bond_inv(nc,1) = I
L_bond_inv(nc,2) = n_orientation

enddo
enddo

The two legs of the bond are given by the anchor ~I and ~I + ~anorientation
.

4.4.2 The interaction term: Call Ham_V

The dimension of Op_V is now (MI + MV) × Nfl = ((Ncoord + 1)Ndim) × 1 since each site has
Ncoord = 2 bonds for the square lattice.

do i = 1,N_coord*Ndim ! Runs over bonds for Ising inter.
call Op_make(Op_V(i,1),2)

41

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

enddo
do i = N_coord*Ndim+1, (N_coord+1)*Ndim ! Runs over sites for Hubbard inter.

call Op_make(Op_V(i,1),1)
enddo

The first N_coord*Ndim operators run through the 2N bonds of the square lattice and are
given by:

Do nc = 1,Ndim*N_coord ! Runs over bonds. Coordination number = 2.
! For the square lattice Ndim = Latt%N

I1 = L_bond_inv(nc,1) ! Anchor of the bond
! L_bond_inv is setup in Setup_Ising_action

if (L_bond_inv(nc,2) == 1) I2 = Latt%nnlist(I1,1,0) ! Second site of
if (L_bond_inv(nc,2) == 2) I2 = Latt%nnlist(I1,0,1) ! the bond
Op_V(nc,1)%P(1) = I1
Op_V(nc,1)%P(2) = I2
Op_V(nc,1)%O(1,2) = cmplx(1.d0 ,0.d0, kind(0.D0))
Op_V(nc,1)%O(2,1) = cmplx(1.d0 ,0.d0, kind(0.D0))
Op_V(nc,1)%g = cmplx(-dtau*Ham_xi,0.D0,kind(0.D0))
Op_V(nc,1)%alpha = cmplx(0d0,0.d0, kind(0.D0))
Op_V(nc,1)%type = 1

Enddo

Here, ham_xi defines the coupling strength between the Ising and fermion degree of freedom.
As for the Hubbard case, the last Ndim operators read:

nc = N_coord*Ndim
Do i = 1, Ndim

nc = nc + 1
Op_V(nc,1)%P(1) = i
Op_V(nc,1)%O(1,1)= cmplx(1.d0 ,0.d0, kind(0.D0))
Op_V(nc,1)%g = sqrt(cmplx(-dtau*ham_U/(DBLE(N_SUN)),0.D0,kind(0.D0)))
Op_V(nc,1)%alpha = cmplx(-0.5d0,0.d0, kind(0.D0))
Op_V(nc,1)%type = 2

Enddo

4.4.3 The function Real (Kind=8) function S0(n,nt)

As mentioned above, a configuration now includes both HS spins and Ising spins and is given
by

C =
�

si,τ, l j,τ with i = 1 · · ·MI , j = 1 · · ·MV ,τ= 1, LTrot ter

	

. (77)

This configuration is stored in the integer array nsigma(M_V + M_I, Ltrot). With the
above ordering of Hubbard and Ising interaction terms, and a for a given imaginary time,
the first 2*Ndim fields correspond to the Ising interaction and the next Ndim ones to the
Hubbard interaction. The first argument of the function S0, namely n, corresponds to the
index of the operator string Op_V(n,1). If Op_V(n,1)%type = 2 then S0(n,nt) re-
turns 1. Note that type=2 refers to spins that stem from a HS transformation. If however
Op_V(n,1)%type = 1 then function S0 returns

e−S0,I
�

s1,τ,··· ,−sn,τ,···sMI ,τ
�

e−S0,I
�

s1,τ,··· ,sn,τ,···sMI ,τ
� (78)

That is, if n≤ 2∗Ndim, S0(n,nt) returns the ratio of the new weight to the old weight of the
Ising Hamiltonian upon flipping a single Ising spin sn,τ. Otherwise, S0(n,nt) returns unity.

42

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

5 Miscellaneous

5.1 Other models

The aim of this section is to briefly mention a small selection of other models that can be
studied using the QMC code of the ALF project.

5.1.1 Kondo lattice model

Simulating the Kondo lattice with the QMC code of the ALF project requires rewriting of the
model along the lines of Refs. [20,21,91]. Adopting the notation of these articles, the Hamil-
tonian that one will simulate reads:

Ĥ = −t
∑

〈~i,~j〉,σ

�

ĉ†
~i,σ

ĉ
~j,σ
+H.c.

�

︸ ︷︷ ︸

≡Ĥt

−
J
4

∑

~i

�

∑

σ

ĉ†
~i,σ

f̂
~i,σ
+ f̂ †

~i,σ
ĉ
~i,σ

�2

+
U
2

∑

~i

�

n̂ f
~i
− 1

�2

︸ ︷︷ ︸

≡ĤU

. (79)

This form is included in the general Hamiltonian (2) such that the above Hamiltonian can be
implemented in our program package. The relation to the Kondo lattice model follows from
expanding the square of the hybridization to obtain:

Ĥ = Ĥt + J
∑

~i

�

~̂Sc
~i
· ~̂S f
~i
+ η̂z,c

~i
· η̂z, f
~i
− η̂x ,c

~i
· η̂x , f
~i
− η̂y,c

~i
· η̂y, f
~i

�

+ ĤU . (80)

where the η-operators relate to the spin-operators via a particle-hole transformation in one
spin sector:

η̂α~i
= P̂−1Ŝα~i P̂ with P̂−1 ĉ

~i,↑
P̂ = (−1)ix+iy ĉ†

~i,↑
and P̂−1 ĉ

~i,↓
P̂ = ĉ

~i,↓
(81)

Since the η̂ f - and Ŝ f -operators do not alter the parity [(−1)n̂
f
~i] of the f -sites,

�

Ĥ ,ĤU

�

= 0. (82)

Thereby, and for positive values of U , doubly occupied or empty f -sites – corresponding to
even parity sites – are suppressed by a Boltzmann factor e−βU/2 in comparison to odd parity
sites. Choosing βU adequately essentially allows to restrict the Hilbert space to odd parity
f -sites. In this Hilbert space η̂x , f = η̂y, f = η̂z, f = 0 such that the Hamiltonian (79) reduces
to the Kondo lattice model.

5.1.2 SU(N)-Hubbard-Heisenberg models

SU(2N)-Hubbard-Heisenberg [26,27] models can be written as:

Ĥ = −t
∑

〈~i,~j〉

�

~̂c†
~i
~̂c
~j
+H.c.

�

︸ ︷︷ ︸

≡Ĥt

−
J

2N

∑

〈~i,~j〉

�

D̂†
~i,~j

D̂
~i,~j
+ D̂

~i,~j
D̂†
~i,~j

�

︸ ︷︷ ︸

≡ĤJ

+
U
N

∑

~i

�

~̂c†
~i
~̂c
~i
−

N
2

�2

︸ ︷︷ ︸

≡ĤU

(83)

Here, ~̂c†
~i
= (ĉ†

~i,1
, ĉ†
~i,2

, · · · , ĉ†
~i,N
) is an N -flavored spinor, and D̂~i,~j = ~̂c

†
~i
~̂c~j . To use the QMC code

of the ALF package to simulate this model, one will rewrite the J -term as a sum of perfect
squares,

ĤJ = −
J

4N

∑

〈~i,~j〉

�

D̂†
〈~i,~j〉
+ D̂〈~i,~j〉

�2
−
�

D̂†
〈~i,~j〉
− D̂〈~i,~j〉

�2
, (84)

43

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

so to manifestly bring it into the form of the general Hamiltonian(2). It is amusing to note
that setting the hopping t = 0, charge fluctuations will be suppressed by the Boltzmann factor

e−βU/N
�

~̂c†
~i
~̂c
~i
− N

2

�2

since in this case
�

ĤJ ,ĤU

�

= 0. This provides a route to use the auxiliary
field QMC algorithm to simulate – free of the sign problem – SU(2N)-Heisenberg models in
the self-adjoint antisymmetric representation 7. For odd values of N recent progress in our
understanding of the origins of the sign problem [40] allows us to simulate a set of non-trivial
Hamiltonians [19,92], without encountering the sign problem.

5.2 Performance, memory requirements and parallelization

As mentioned in the introduction, the auxiliary field QMC algorithm scales linearly in inverse
temperature β and cubic in the volume Ndim. Using fast updates, a single spin flip requires
(Ndim)2 operations to update the Green function upon acceptance. As there are LTrotter × Ndim
spins to be visited, the total computational cost for one sweep is of the order of β(Ndim)3. This
operation dominates the performance, see Fig. 2. A profiling analysis of our code shows that
80-90% of the CPU time is spend in ZGEMM calls of the BLAS library provided in the MKL
package by Intel. Consequently, the single-core performance is next to optimal.

10

100

1000

10000

256 400 576 784 1024 1296

W

a

l

l

-

l

o

k

t

i

m

e

Ndim

QMC simulation

�t ∼ x3

Figure 2: Volume scaling behavior of the auxiliary field QMC code of the ALF project on Super-
MUC (phase 2/Haswell nodes) at the LRZ in Munich. The number of sites Ndim corresponds
to the system volume. The plot confirms that the leading scaling order is due to matrix multi-
plications such that the runtime is dominated by calls to ZGEMM.

For the implementation which scales linearly in β , one has to store LTrotter/NWrap inter-
mediate propagation matrices of dimension N ×N . For large lattices and/or low temperatures
this dominates the total memory requirements that can exceed 2 GB memory for a sequential
version.

At the heart of Monte Carlo schemes lies a random walk through the given configuration
space. This is easily parallalized via MPI by associating one random walker to each MPI task.
For each task, we start from a random configuration and have to invest the autocorrelation
time Tauto to produce an equilibrated configuration. Additionally we can also profit from an
OpenMP parallelized version of the BLAS/LAPACK library for an additional speedup, which
also effects equilibration overhead NMPI × Tauto/NOMP, where NMPI is the number of cores and
NOMP the number of OpenMP threads. For a given number of independent measurements

7 This corresponds to a Young tableau with single column and N/2 rows.

44

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

Nmeas, we therefore need a wall-clock time given by

T =
Tauto

NOMP

�

1+
Nmeas

NMPI

�

. (85)

As we typically have Nmeas/NMPI � 1, the speedup is expected to be almost perfect, in accor-
dance with the performance test results for the auxiliary field QMC code on SuperMUC [see
Fig. 3 (a)].

For many problem sizes, 2 GB memory per MPI task (random walker) suffices such that we
typically start as many MPI tasks as there are physical cores per node. Due to the large amount
of CPU time spent in MKL routines, we do not profit from the hyper-threading option. For large
systems, the memory requirement increases and this is tackled by increasing the amount of
OpenMP threads to decrease the stress on the memory system and to simultaneously reduce
the equilibration overhead [see Fig. 3 (b)]. For the displayed speedup, it was crucial to pin
the MPI tasks as well as the OpenMP threads in a pattern which keeps the threads as compact
as possible to profit from a shared cache. This also explains the drop in efficiency from 14 to
28 threads where the OpenMP threads are spread over both sockets.

We store the field configurations of the random walker as checkpoints, such that a long
simulation can be easily split into several short simulations. This procedure allows us to take
advantage of chained jobs using the dependency chains provided by the batch system.

1

10

100

28 56 112 224 448 896 1792

(a)

1

10

1 2 4 7 14 28

(b)

P

e

r

f

o

r

m

a

n

e

(1
/T

)

Number of ores

QMC simulation

ideal ∼ x

P

e

r

f

o

r

m

a

n

e

(1
/T

)

Number of OpenMP threads

QMC simulation

ideal ∼ x

Figure 3: MPI (a) and OpenMP (b) scaling behavior of the auxiliary field QMC code of the ALF
project on SuperMUC (phase 2/Haswell nodes) at the LRZ in Munich. The MPI performance
data was normalized to 28 cores and was obtained using a problem size of Ndim = 400. This
is a medium to small system size that is the least favorable in terms of MPI synchronization
effects. The OpenMP performance data was obtained using a problem size of Ndim = 1296.
Employing 2 and 4 OpenMP threads introduces some synchronization/management overhead
such that the per-core performance is slightly reduced, compared to the single thread efficiency.
Further increasing the amount of threads to 7 and 14 keeps the efficiency constant. The drop
in performance of the 28 thread configuration is due to the architecture as the threads are
now spread over both sockets of the node. To obtain the above results, it was crucial to pin
the processes in a fashion that keeps the OpenMP threads as compact as possible.

6 Conclusions and Future Releases

In its present form, the auxiliary field QMC code of the ALF project allows to simulate a large
class of non-trivial models, both efficiently and at minimal programming cost. There are many

45

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013

SciPost Phys. 3, 013 (2017)

possible extensions which deserve to be considered in future releases. The model Hamiltoni-
ans we have presented so far are imaginary-time independent. This however can be easily
generalized to imaginary-time dependent model Hamiltonians thus allowing, for example, to
access entanglement properties of interacting fermionic systems [33–35,93]. Generalizations
to include global moves are equally desirable. This is a prerequisite to play with recent ideas of
self-learning algorithms [94] so as to possibly avoid the issue of critical slowing down. Parallel
tempering schemes are equally desirable, so as to possibly alleviate long autocorrelation times.
Most of the above has already been tested and will be available in the next major release of
the ALF package.

On the longer term, we foresee further possible developments. At present, the QMC code
of this package is restricted to discrete HS fields such that implementations of the long-range
Coulomb repulsion – as introduced in [28,65,66] – are not yet included. Extensions to contin-
uous HS fields are certainly possible, but require an efficient upgrading scheme such as hybrid
molecular dynamics [45]. An implementation of the ground state projective QMC method
within ALF is equally desirable. Efforts in the above directions will be pursued on the longer
term.

As it stands, programming a new model certainly requires some detailed knowledge of the
algorithm. To facilitate access we hope to maintain an increasing number of model Hamilto-
nians in the ALF repository. A further step is to aim at cross compatibility with other major
projects, especially the ALPS [58] project.

Acknowledgments

We are very grateful to S. Beyl, M. Hohenadler, F. Parisen Toldin, M. Raczkowski, T. Sato,
J. Schwab, Z. Wang, and M. Weber for constant support during the development of this project.
We equally thank G. Hager, M. Wittmann, and G. Wellein for useful discussions and support.
FFA would also like to thank T. Lang and Z. Y. Meng for developments of the auxiliary field
code as well as T. Grover for many discussions.

Funding information MB thanks the Bavarian Competence Network for Technical and Sci-
entific High Performance Computing (KONWIHR) for financial support. FG and JH thank
the SFB-1170 for financial support under projects Z03 and C01. FFA thanks the DFG-funded
FOR1807 and FOR1346 for partial financial support. Part of the optimization of the code was
carried out during the Porting and Tuning Workshop 2016 offered by the Forschungszentrum
Jülich. Calculations to extensively test this package were carried out both on SuperMUC at
the Leibniz Supercomputing Centre and on JURECA [95] at the Jülich Supercomputing Centre.
We thank both institutions for generous allocation of computing time.

A License

The ALF code is provided as an open source software such that it is available to all and we hope
that it will be useful. If you benefit from this code we ask that you acknowledge the ALF col-
laboration as mentioned on our homepage alf.physik.uni-wuerzburg.de. The Git repository at
alf.physik.uni-wuerzburg.de gives us the tools to create a small but vibrant community around
the code and provides a suitable entry point for future contributors and future developments.
The homepage is also the place where the original source files can be found. With the com-
ing public release it was necessary to add copyright headers to our source files. The Creative
Commons licenses are a good way to share our documentation and it is also well accepted by

46

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
alf.physik.uni-wuerzburg.de
alf.physik.uni-wuerzburg.de

SciPost Phys. 3, 013 (2017)

publishers. Therefore this documentation is licensed to you under a CC-BY-SA license. This
means you can share it and redistribute it as long as you cite the original source and license
your changes under the same license. The details are in the file license.CCBYSA that you should
have received with this documentation. The source code itself is licensed under a GPL license to
keep the source as well as any future work in the community. To express our desire for a proper
attribution we decided to make this a visible part of the license. To that end we have exercised
the rights of section 7 of GPL version 3 and have amended the license terms with an additional
paragraph that expresses our wish that if an author has benefitted from this code that he/she
should consider giving back a citation as specified on alf.physik.uni-wuerzburg.de. This is not
something that is meant to restrict your freedom of use, but something that we strongly expect
to be good scientific conduct. The original GPL license can be found in the file license.GPL and
the additional terms can be found in license.additional. In favour to our users, the ALF code
contains part of the lapack implementation version 3.6.1 from http://www.netlib.org/lapack.
Lapack is licensed under the modified BSD license whose full text can be found in license.BSD.
With that being said, we hope that the ALF code will prove to you to be a suitable and high-
performance tool that enables you to perform quantum Monte Carlo studies of solid state
models of unprecedented complexity.

The ALF project’s contributors.

References

[1] R. Blankenbecler, D. J. Scalapino and R. L. Sugar, Monte Carlo calculations of coupled
boson-fermion systems, Phys. Rev. D 24, 2278 (1981), doi:10.1103/PhysRevD.24.2278.

[2] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gubernatis and R. T. Scalettar,
Numerical study of the two-dimensional Hubbard model, Phys. Rev. B 40, 506-516 (1989),
doi:10.1103/PhysRevB.40.506.

[3] G. Sugiyama and S. E. Koonin, Auxiliary field Monte-Carlo for quantum many-body ground
states, Ann. Phys. 168, 1 (1986), doi:10.1016/0003-4916(86)90107-7.

[4] S. Sorella, S. Baroni, R. Car and M. Parrinello, A Novel Technique for the Simula-
tion of Interacting Fermion Systems, Europhys. Lett. 8, 663 (1989), doi:10.1209/0295-
5075/8/7/014.

[5] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett.
B 195, 216 (1987), doi:10.1016/0370-2693(87)91197-X.

[6] A. D. Kennedy, Algorithms for Dynamical Fermions, arXiv:hep-lat/0607038v2.

[7] F. F. Assaad and H. G. Evertz, World-line and determinantal quantum Monte Carlo meth-
ods for spins, phonons and electrons, in H. Fehske, R. Schneider and A. Weiße (eds.),
Computational Many-Particle Physics, vol. 739 of Lecture Notes in Physics, pp. 277–356.
Springer, Berlin Heidelberg, ISBN 978-3-540-74685-0, (2008) doi:10.1007/978-3-540-
74686-7_10.

[8] J. Gubernatis, N. Kawashima and P. Werner, Quantum Monte Carlo Meth-
ods, Cambridge University Press, Cambridge, ISBN 9780511902581 (2016),
doi:10.1017/CBO9780511902581.

47

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
alf.physik.uni-wuerzburg.de
http://www.netlib.org/lapack
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevB.40.506
http://dx.doi.org/10.1016/0003-4916(86)90107-7
http://dx.doi.org/10.1209/0295-5075/8/7/014
http://dx.doi.org/10.1209/0295-5075/8/7/014
http://dx.doi.org/10.1016/0370-2693(87)91197-X
https://arxiv.org/abs/hep-lat/0607038v2
http://dx.doi.org/10.1007/978-3-540-74686-7_10
http://dx.doi.org/10.1007/978-3-540-74686-7_10
http://dx.doi.org/10.1017/CBO9780511902581

SciPost Phys. 3, 013 (2017)

[9] D. J. Scalapino, Numerical Studies of the 2D Hubbard Model, pp. 495–526, Springer
New York, New York, NY, ISBN 978-0-387-68734-6, doi:10.1007/978-0-387-68734-6_13
(2007).

[10] J. P. F. LeBlanc et al., Solutions of the two-dimensional Hubbard model: Benchmarks
and results from a wide range of numerical algorithms, Phys. Rev. X 5, 041041 (2015),
doi:10.1103/PhysRevX.5.041041.

[11] M. Hohenadler, T. C. Lang and F. F. Assaad, Correlation effects in quantum spin-
Hall insulators: A quantum Monte Carlo study, Phys. Rev. Lett. 106, 100403 (2011),
doi:10.1103/PhysRevLett.106.100403.

[12] D. Zheng, G.-M. Zhang and C. Wu, Particle-hole symmetry and interaction
effects in the Kane-Mele-Hubbard model, Phys. Rev. B 84, 205121 (2011),
doi:10.1103/PhysRevB.84.205121.

[13] F. F. Assaad and I. F. Herbut, Pinning the order: The nature of quantum critical-
ity in the Hubbard model on honeycomb lattice, Phys. Rev. X 3, 031010 (2013),
doi:10.1103/PhysRevX.3.031010.

[14] F. Parisen Toldin, M. Hohenadler, F. F. Assaad and I. F. Herbut, Fermionic quantum crit-
icality in honeycomb and π-flux Hubbard models: Finite-size scaling of renormalization-
group-invariant observables from quantum Monte Carlo, Phys. Rev. B 91, 165108 (2015),
doi:10.1103/PhysRevB.91.165108.

[15] Y. Otsuka, S. Yunoki and S. Sorella, Universal quantum criticality in the metal-insulator
transition of two-dimensional interacting Dirac electrons, Phys. Rev. X 6, 011029 (2016),
doi:10.1103/PhysRevX.6.011029.

[16] S. Chandrasekharan and A. Li, Quantum critical behavior in three di-
mensional lattice Gross-Neveu models, Phys. Rev. D 88, 021701 (2013),
doi:10.1103/PhysRevD.88.021701.

[17] V. Ayyar and S. Chandrasekharan, Massive fermions without fermion bilinear condensates,
Phys. Rev. D 91, 065035 (2015), doi:10.1103/PhysRevD.91.065035.

[18] Z.-X. Li, Y.-F. Jiang, S.-K. Jian and H. Yao, Fermion-induced quantum critical points: type-II
Landau-forbidden transitions, arXiv:1512.07908.

[19] F. F. Assaad and T. Grover, Simple fermionic model of deconfined phases and phase transi-
tions, Phys. Rev. X 6, 041049 (2016), doi:10.1103/PhysRevX.6.041049.

[20] F. F. Assaad, Quantum Monte Carlo simulations of the half-filled two-dimensional Kondo
lattice model., Phys. Rev. Lett. 83, 796 (1999), doi:10.1103/physrevlett.83.796.

[21] S. Capponi and F. F. Assaad, Spin and charge dynamics of the ferromagnetic and antiferro-
magnetic two-dimensional half-filled Kondo lattice model, Phys. Rev. B 63, 155114 (2001),
doi:10.1103/physrevb.63.155114.

[22] Y. Schattner, S. Lederer, S. A. Kivelson and E. Berg, Ising nematic quantum crit-
ical point in a metal: A Monte Carlo study, Phys. Rev. X 6, 031028 (2016),
doi:10.1103/PhysRevX.6.031028.

[23] X. Y. Xu, K. Sun, Y. Schattner, E. Berg and Z. Y. Meng, Non-Fermi-liquid at (2+1)d ferro-
magnetic quantum critical point, arXiv:1612.06075.

48

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
http://dx.doi.org/10.1007/978-0-387-68734-6_13
http://dx.doi.org/10.1103/PhysRevX.5.041041
http://dx.doi.org/10.1103/PhysRevLett.106.100403
http://dx.doi.org/10.1103/PhysRevB.84.205121
http://dx.doi.org/10.1103/PhysRevX.3.031010
http://dx.doi.org/10.1103/PhysRevB.91.165108
http://dx.doi.org/10.1103/PhysRevX.6.011029
http://dx.doi.org/10.1103/PhysRevD.88.021701
http://dx.doi.org/10.1103/PhysRevD.91.065035
https://arxiv.org/abs/1512.07908
http://dx.doi.org/10.1103/PhysRevX.6.041049
http://dx.doi.org/10.1103/physrevlett.83.796
http://dx.doi.org/10.1103/physrevb.63.155114
http://dx.doi.org/10.1103/PhysRevX.6.031028
https://arxiv.org/abs/1612.06075

SciPost Phys. 3, 013 (2017)

[24] E. Berg, M. A. Metlitski and S. Sachdev, Sign-problem–free quantum Monte
Carlo of the onset of antiferromagnetism in metals, Science 338, 1606 (2012),
doi:10.1126/science.1227769.

[25] H.-K. Tang, X. Yang, J. Sun and H.-Q. Lin, Berezinskii-Kosterlitz-Thoules phase transition of
spin-orbit coupled Fermi gas in optical lattice, EPL 107, 40003 (2014), doi:10.1209/0295-
5075/107/40003.

[26] F. F. Assaad, Phase diagram of the half-filled two-dimensional SU(n) Hubbard-
Heisenberg model: A quantum Monte Carlo study, Phys. Rev. B 71, 075103 (2005),
doi:10.1103/PhysRevB.71.075103.

[27] T. C. Lang, Z. Y. Meng, A. Muramatsu, S. Wessel and F. F. Assaad, Dimerized solids and
resonating plaquette order in SU(n)-Dirac fermions, Phys. Rev. Lett. 111, 066401 (2013),
doi:10.1103/PhysRevLett.111.066401.

[28] M. Hohenadler, F. Parisen Toldin, I. F. Herbut and F. F. Assaad, Phase di-
agram of the Kane-Mele-Coulomb model, Phys. Rev. B 90, 085146 (2014),
doi:10.1103/PhysRevB.90.085146.

[29] H.-K. Tang, E. Laksono, J. N. B. Rodrigues, P. Sengupta, F. F. Assaad and S. Adam,
Interaction-driven metal-insulator transition in strained graphene, Phys. Rev. Lett. 115,
186602 (2015), doi:10.1103/PhysRevLett.115.186602.

[30] M. Rigol, A. Muramatsu, G. G. Batrouni and R. T. Scalettar, Local quantum criti-
cality in confined fermions on optical lattices, Phys. Rev. Lett. 91, 130403 (2003),
doi:10.1103/PhysRevLett.91.130403.

[31] D. Lee, Lattice simulations for few- and many-body systems, Prog. Part. Nucl. Phys. 63,
117 (2009), doi:10.1016/j.ppnp.2008.12.001.

[32] T. Grover, Entanglement of interacting fermions in quantum Monte Carlo calculations, Phys.
Rev. Lett. 111, 130402 (2013), doi:10.1103/PhysRevLett.111.130402.

[33] P. Broecker and S. Trebst, Rényi entropies of interacting fermions from determinantal
quantum Monte Carlo simulations, J. Stat. Mech. P08015 (2014), doi:10.1088/1742-
5468/2014/08/p08015.

[34] F. F. Assaad, T. C. Lang and F. Parisen Toldin, Entanglement spectra of interact-
ing fermions in quantum Monte Carlo simulations, Phys. Rev. B 89, 125121 (2014),
doi:10.1103/PhysRevB.89.125121.

[35] F. F. Assaad, Stable quantum Monte Carlo simulations for entanglement spectra of interact-
ing fermions, Phys. Rev. B 91, 125146 (2015), doi:10.1103/PhysRevB.91.125146.

[36] P. Broecker and S. Trebst, Numerical stabilization of entanglement computation in
auxiliary-field quantum Monte Carlo simulations of interacting many-fermion systems,
Phys. Rev. E 94, 063306 (2016), doi:10.1103/PhysRevE.94.063306.

[37] C. Wu and S.-C. Zhang, Sufficient condition for absence of the sign problem in
the fermionic quantum Monte Carlo algorithm, Phys. Rev. B 71, 155115 (2005),
doi:10.1103/PhysRevB.71.155115.

[38] E. F. Huffman and S. Chandrasekharan, Solution to sign problems in half-
filled spin-polarized electronic systems, Phys. Rev. B 89, 111101 (2014),
doi:10.1103/PhysRevB.89.111101.

49

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
http://dx.doi.org/10.1126/science.1227769
http://dx.doi.org/10.1209/0295-5075/107/40003
http://dx.doi.org/10.1209/0295-5075/107/40003
http://dx.doi.org/10.1103/PhysRevB.71.075103
http://dx.doi.org/10.1103/PhysRevLett.111.066401
http://dx.doi.org/10.1103/PhysRevB.90.085146
http://dx.doi.org/10.1103/PhysRevLett.115.186602
http://dx.doi.org/10.1103/PhysRevLett.91.130403
http://dx.doi.org/10.1016/j.ppnp.2008.12.001
http://dx.doi.org/10.1103/PhysRevLett.111.130402
http://dx.doi.org/10.1088/1742-5468/2014/08/p08015
http://dx.doi.org/10.1088/1742-5468/2014/08/p08015
http://dx.doi.org/10.1103/PhysRevB.89.125121
http://dx.doi.org/10.1103/PhysRevB.91.125146
http://dx.doi.org/10.1103/PhysRevE.94.063306
http://dx.doi.org/10.1103/PhysRevB.71.155115
http://dx.doi.org/10.1103/PhysRevB.89.111101

SciPost Phys. 3, 013 (2017)

[39] Z.-X. Li, Y.-F. Jiang and H. Yao, Solving the fermion sign problem in quantum Monte
Carlo simulations by Majorana representation, Phys. Rev. B 91, 241117 (2015),
doi:10.1103/PhysRevB.91.241117.

[40] Z. C. Wei, C. Wu, Y. Li, S. Zhang and T. Xiang, Majorana positivity and the fermion
sign problem of quantum Monte Carlo simulations, Phys. Rev. Lett. 116, 250601 (2016),
doi:10.1103/PhysRevLett.116.250601.

[41] Z.-X. Li, Y.-F. Jiang and H. Yao, Majorana-time-reversal symmetries: A fundamental princi-
ple for sign-problem-free quantum Monte Carlo simulations, Phys. Rev. Lett. 117, 267002
(2016), doi:10.1103/PhysRevLett.117.267002.

[42] J. Hubbard, Calculation of partition functions, Phys. Rev. Lett. 3, 77 (1959),
doi:10.1103/PhysRevLett.3.77.

[43] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino and R. L. Sugar,
Sign problem in the numerical simulation of many-electron systems, Phys. Rev. B 41, 9301
(1990), doi:10.1103/PhysRevB.41.9301.

[44] M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations
to fermionic quantum Monte Carlo simulations, Phys. Rev. Lett. 94, 170201 (2005),
doi:10.1103/PhysRevLett.94.170201.

[45] S. Duane and J. B. Kogut, Hybrid stochastic differential equations applied to quantum
chromodynamics, Phys. Rev. Lett. 55, 2774 (1985), doi:10.1103/PhysRevLett.55.2774.

[46] J. E. Hirsch, Discrete Hubbard-Stratonovich transformation for fermion lattice models,
Phys. Rev. B 28, 4059 (1983), doi:10.1103/PhysRevB.28.4059.

[47] A. D. Sokal, Monte Carlo Methods in Statistical Mechanics: Foundations and New Algo-
rithms, in C. DeWitt-Morette, P. Cartier and A. Folacci (eds.), Functional Integration,
NATO ASI Series (Series B: Physics) 361, Springer, Boston, MA, doi:10.1007/978-1-
4899-0319-8_6.

[48] H. G. Evertz, G. Lana and M. Marcu, Cluster algorithm for vertex models, Phys. Rev. Lett.
70, 875 (1993), doi:10.1103/PhysRevLett.70.875.

[49] A. W. Sandvik, Stochastic series expansion method with operator-loop update, Phys. Rev. B
59, R14157 (1999), doi:10.1103/PhysRevB.59.R14157.

[50] O. F. Syljuåsen and A. W. Sandvik, Quantum Monte Carlo with directed loops, Phys. Rev. E
66, 046701 (2002), doi:10.1103/PhysRevE.66.046701.

[51] J. E. Hirsch and R. M. Fye, Monte Carlo method for magnetic impurities in metals, Phys.
Rev. Lett. 56, 2521 (1986), doi:10.1103/PhysRevLett.56.2521.

[52] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Continuous-
time Monte Carlo methods for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011),
doi:10.1103/RevModPhys.83.349.

[53] F. F. Assaad, Continuous-time QMC Solvers for Electronic Systems in Fermionic and Bosonic
Baths, in E. Pavarini, E. Koch, D. Vollhardt, and A. Lichtenstein (eds.), DMFT at 25:
Infinite Dimensions: Lecture Notes of the Autumn School on Correlated Electrons 4, Verlag
des Forschungszentrum Jülich, Jülich, ISBN 978-3-89336-953-9 (2014).

50

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
http://dx.doi.org/10.1103/PhysRevB.91.241117
http://dx.doi.org/10.1103/PhysRevLett.116.250601
http://dx.doi.org/10.1103/PhysRevLett.117.267002
http://dx.doi.org/10.1103/PhysRevLett.3.77
http://dx.doi.org/10.1103/PhysRevB.41.9301
http://dx.doi.org/10.1103/PhysRevLett.94.170201
http://dx.doi.org/10.1103/PhysRevLett.55.2774
http://dx.doi.org/10.1103/PhysRevB.28.4059
http://dx.doi.org/10.1007/978-1-4899-0319-8_6
http://dx.doi.org/10.1007/978-1-4899-0319-8_6
http://dx.doi.org/10.1103/PhysRevLett.70.875
http://dx.doi.org/10.1103/PhysRevB.59.R14157
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/10.1103/RevModPhys.83.349

SciPost Phys. 3, 013 (2017)

[54] F. F. Assaad and T. C. Lang, Diagrammatic determinantal quantum Monte Carlo meth-
ods: Projective schemes and applications to the Hubbard-Holstein model, Phys. Rev. B 76,
035116 (2007), doi:10.1103/PhysRevB.76.035116.

[55] R. T. Scalettar, D. J. Scalapino and R. L. Sugar, New algorithm for the numerical simulation
of fermions, Phys. Rev. B 34, 7911 (1986), doi:10.1103/PhysRevB.34.7911.

[56] S. Durr et al., Ab Initio Determination of Light Hadron Masses, Science 322, 1224 (2008),
doi:10.1126/science.1163233.

[57] F. F. Assaad, Quantum Monte Carlo methods on lattices: The determinantal method, in
J. Grotendorst, D. Marx and A. Muramatsu (eds.), Lecture notes of the Winter School on
Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms. 10,
pp. 99–155. Publication Series of the John von Neumann Institute for Computing, Jülich
(2002).

[58] B. Bauer et al., The ALPS project release 2.0: open source software for strongly correlated
systems, J. Stat. Mech. P05001 (2011), doi:10.1088/1742-5468/2011/05/p05001.

[59] Quest: Quantum electron simulation toolbox, http://quest.ucdavis.edu, accessed: 2017-
06-14.

[60] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Messio and P. Seth, TRIQS:
A toolbox for research on interacting quantum systems, Comput. Phys. Commun. 196, 398
(2015), doi:10.1016/j.cpc.2015.04.023.

[61] w2dynamics, https://w2dynamics.physik.uni-wuerzburg.de/W2Dynamics/
W2Dynamics, accessed: 2017-06-14.

[62] L. Huang, Y. Wang, Z. Y. Meng, L. Du, P. Werner and X. Dai, iQIST: An open source
continuous-time quantum Monte Carlo impurity solver toolkit, Comput. Phys. Commun.
195, 140 (2015), doi:10.1016/j.cpc.2015.04.020.

[63] Y. Motome and M. Imada, A Quantum Monte Carlo Method and Its Applications to Multi-
Orbital Hubbard Models, J. Phys. Soc. Jpn. 66, 1872 (1997), doi:10.1143/JPSJ.66.1872.

[64] F. F. Assaad, M. Imada and D. J. Scalapino, Charge and spin structures of a dx2−y2
super-

conductor in the proximity of an antiferromagnetic Mott insulator, Phys. Rev. B 56, 15001
(1997), doi:10.1103/PhysRevB.56.15001.

[65] R. Brower, C. Rebbi and D. Schaich, Hybrid Monte Carlo simulation on the graphene hexag-
onal lattice, arXiv:1204.5424.

[66] M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson and M. I. Polikarpov, Monte Carlo
study of the semimetal-insulator phase transition in monolayer graphene with a
realistic interelectron interaction potential, Phys. Rev. Lett. 111, 056801 (2013),
doi:10.1103/PhysRevLett.111.056801.

[67] M. Roger, J. H. Hetherington and J. M. Delrieu, Magnetism in solid 3he, Rev. Mod. Phys.
55, 1 (1983), doi:10.1103/RevModPhys.55.1.

[68] J. Werner and F. F. Assaad, Ring-exchange periodic Anderson model for 3He bilayers, Phys.
Rev. B 90, 205122 (2014), doi:10.1103/PhysRevB.90.205122.

[69] P. Werner and A. J. Millis, Efficient dynamical mean field simulation of the Holstein-Hubbard
model, Phys. Rev. Lett. 99, 146404 (2007), doi:10.1103/PhysRevLett.99.146404.

51

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
http://dx.doi.org/10.1103/PhysRevB.76.035116
http://dx.doi.org/10.1103/PhysRevB.34.7911
http://dx.doi.org/10.1126/science.1163233
http://dx.doi.org/10.1088/1742-5468/2011/05/p05001
http://quest.ucdavis.edu
http://dx.doi.org/10.1016/j.cpc.2015.04.023
https://w2dynamics.physik.uni-wuerzburg.de/W2Dynamics/W2Dynamics
https://w2dynamics.physik.uni-wuerzburg.de/W2Dynamics/W2Dynamics
http://dx.doi.org/10.1016/j.cpc.2015.04.020
http://dx.doi.org/10.1143/JPSJ.66.1872
http://dx.doi.org/10.1103/PhysRevB.56.15001
https://arxiv.org/abs/1204.5424
http://dx.doi.org/10.1103/PhysRevLett.111.056801
http://dx.doi.org/10.1103/RevModPhys.55.1
http://dx.doi.org/10.1103/PhysRevB.90.205122
http://dx.doi.org/10.1103/PhysRevLett.99.146404

SciPost Phys. 3, 013 (2017)

[70] R. M. Fye, New results on Trotter-like approximations, Phys. Rev. B 33, 6271 (1986),
doi:10.1103/PhysRevB.33.6271.

[71] M. Iazzi and M. Troyer, Efficient continuous-time quantum Monte Carlo al-
gorithm for fermionic lattice models, Phys. Rev. B 91, 241118 (2015),
doi:10.1103/PhysRevB.91.241118.

[72] S. M. A. Rombouts, K. Heyde and N. Jachowicz, Quantum Monte Carlo method
for fermions, free of discretization errors, Phys. Rev. Lett. 82, 4155 (1999),
doi:10.1103/PhysRevLett.82.4155.

[73] E. Gull, P. Werner, O. Parcollet and M. Troyer, Continuous-time auxiliary-field Monte
Carlo for quantum impurity models, EPL 82, 57003 (2008), doi:10.1209/0295-
5075/82/57003.

[74] S. Rombouts, K. Heyde and N. Jachowicz, A discrete Hubbard-Stratonovich decom-
position for general, fermionic two-body interactions, Phys. Lett. A 242, 271 (1998),
doi:10.1016/S0375-9601(98)00197-2.

[75] D. Rost, E. V. Gorelik, F. Assaad and N. Blümer, Momentum-dependent pseudogaps
in the half-filled two-dimensional Hubbard model, Phys. Rev. B 86, 155109 (2012),
doi:10.1103/PhysRevB.86.155109.

[76] D. Rost, F. F. Assaad and N. Blümer, Quasi-continuous-time impurity solver for the dy-
namical mean-field theory with linear scaling in the inverse temperature, Phys. Rev. E 87,
053305 (2013), doi:10.1103/PhysRevE.87.053305.

[77] N. Blümer, Multigrid Hirsch-Fye quantum Monte Carlo method for dynamical mean-field
theory, arXiv:0801.1222.

[78] Z. Bai, C. Lee, R.-C. Li and S. Xu, Stable solutions of linear systems involv-
ing long chain of matrix multiplications, Lin. Algebra Appl. 435, 659 (2011),
doi:10.1016/j.laa.2010.06.023.

[79] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math. 14, 14
(1969), doi:10.1007/BF02165096.

[80] J. W. Negele and H. Orland, Quantum many-particle systems, Frontiers in physics,
Addison-Wesley, Redwood City, California. (1988).

[81] W. Krauth, Statistical Mechanics: Algorithms and Computations, Oxford University Press,
ISBN 9780198515364 (2006).

[82] C. J. Geyer, Practical Markov chain Monte Carlo, Statistical Science 7(4), 473 (1992).

[83] R. M. Neal, Probabilistic inference using Markov chain Monte Carlo methods, (1993).

[84] M. Bercx, J. S. Hofmann, F. F. Assaad and T. C. Lang, Spontaneous particle-hole symme-
try breaking of correlated fermions on the Lieb lattice, Phys. Rev. B 95, 035108 (2017),
doi:10.1103/PhysRevB.95.035108.

[85] B. Efron and C. Stein, The jackknife estimate of variance, Ann. Statist. 9, 586 (1981),
doi:10.1214/aos/1176345462.

[86] S. Chakravarty, B. I. Halperin and D. R. Nelson, Low-temperature behavior of
two-dimensional quantum antiferromagnets, Phys. Rev. Lett. 60, 1057 (1988),
doi:10.1103/PhysRevLett.60.1057.

52

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
http://dx.doi.org/10.1103/PhysRevB.33.6271
http://dx.doi.org/10.1103/PhysRevB.91.241118
http://dx.doi.org/10.1103/PhysRevLett.82.4155
http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1016/S0375-9601(98)00197-2
http://dx.doi.org/10.1103/PhysRevB.86.155109
http://dx.doi.org/10.1103/PhysRevE.87.053305
https://arxiv.org/abs/0801.1222
http://dx.doi.org/10.1016/j.laa.2010.06.023
http://dx.doi.org/10.1007/BF02165096
http://dx.doi.org/10.1103/PhysRevB.95.035108
http://dx.doi.org/10.1214/aos/1176345462
http://dx.doi.org/10.1103/PhysRevLett.60.1057

SciPost Phys. 3, 013 (2017)

[87] M. B. Thompson, A Comparison of Methods for Computing Autocorrelation Time,
arXiv:1011.0175.

[88] I. Milat, F. F. Assaad and M. Sigrist, Field induced magnetic ordering transition in Kondo
insulators., Eur. Phys. J. B 38, 571 (2004), doi:10.1140/epjb/e2004-00154-5.

[89] M. Bercx, T. C. Lang and F. F. Assaad, Magnetic field induced semimetal-to-canted-
antiferromagnet transition on the honeycomb lattice, Phys. Rev. B 80, 045412 (2009),
doi:10.1103/PhysRevB.80.045412.

[90] X. Y. Xu, K. S. D. Beach, K. Sun, F. F. Assaad and Z. Y. Meng, Topological phase transi-
tions with SO(4) symmetry in (2+1)d interacting Dirac fermions, Phys. Rev. B 95, 085110
(2017), doi:10.1103/PhysRevB.95.085110.

[91] K. S. D. Beach, P. A. Lee and P. Monthoux, Field-induced antiferromagnetism in the Kondo
insulator, Phys. Rev. Lett. 92, 026401 (2004), doi:10.1103/physrevlett.92.026401.

[92] Z.-X. Li, Y.-F. Jiang and H. Yao, Fermion-sign-free Majorana-quantum-Monte-Carlo studies
of quantum critical phenomena of Dirac fermions in two dimensions, New J. Phys. 17,
085003 (2015), doi:10.1088/1367-2630/17/8/085003.

[93] F. F. Assaad, Interface superconductivity: Get it strained, Nat. Phys. 10, 905 (2014),
doi:10.1038/nphys3161.

[94] X. Y. Xu, Y. Qi, J. Liu, L. Fu and Z. Y. Meng, Self-learning determinantal quantum Monte
Carlo method, Phys. Rev. B 96, 041119 (2017), doi:10.1103/PhysRevB.96.041119.

[95] Jülich Supercomputing Centre, JURECA: General-purpose supercomputer at Jülich Super-
computing Centre, JLSRF 2, A62 (2016), doi:10.17815/jlsrf-2-121.

53

https://scipost.org
https://scipost.org/SciPostPhys.3.2.013
https://arxiv.org/abs/1011.0175
http://dx.doi.org/10.1140/epjb/e2004-00154-5
http://dx.doi.org/10.1103/PhysRevB.80.045412
http://dx.doi.org/10.1103/PhysRevB.95.085110
http://dx.doi.org/10.1103/physrevlett.92.026401
http://dx.doi.org/10.1088/1367-2630/17/8/085003
http://dx.doi.org/10.1038/nphys3161
http://dx.doi.org/10.1103/PhysRevB.96.041119
http://dx.doi.org/10.17815/jlsrf-2-121

	Introduction
	Motivation
	Definition of the Hamiltonian
	Outline

	Auxiliary Field Quantum Monte Carlo
	Formulation of the method
	The partition function
	Observables
	Reweighting and the sign problem

	Updating schemes
	The default: sequential single spin flips
	Sampling of e-S0,I

	Stabilization - a peculiarity of the BSS algorithm
	Monte Carlo sampling
	The Jackknife resampling method
	An explicit example of error estimation

	Pseudo code description

	Data Structures and Input/Output
	Implementation of the Hamiltonian and the lattice
	The Operator type
	Specification of the model
	The Lattice type

	The observable types Obser_Vec and Obser_Latt
	Scalar observables
	 Equal time and time displaced correlation functions

	File structure
	Input files
	Output: Observables
	Output: Precision

	Scripts
	Analysis programs
	Running the code
	Compilation
	Starting a simulation
	Error analysis

	Examples
	The SU(2)-Hubbard model on a square lattice
	Setting the Hamiltonian: Ham_set
	Observables
	Numerical precision

	The Mz-Hubbard model on a square lattice
	The interaction term: Call Ham_V
	The measurements: Call Obser, Call ObserT
	Numerical precision

	The SU(2)-Hubbard model on the honeycomb lattice
	Working with multi-orbital unit cells: Call Ham_Latt
	The hopping term: Call Ham_Hop
	Observables: Call Obser, Call ObserT

	The SU(2)-Hubbard model on a square lattice coupled to a transverse Ising field
	The Ising term
	The interaction term: Call Ham_V
	The function Real (Kind=8) function S0(n,nt)

	Miscellaneous
	Other models
	Kondo lattice model
	SU(N)-Hubbard-Heisenberg models

	Performance, memory requirements and parallelization

	Conclusions and Future Releases
	License
	References

