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Abstract

We study a system of 1D non-interacting spinless fermions in a confining trap at finite
temperature. We first derive a useful and general relation for the fluctuations of the
occupation numbers valid for arbitrary confining trap, as well as for both canonical and
grand canonical ensembles. Using this relation, we obtain compact expressions, in the
case of the harmonic trap, for the variance of certain observables of the form of sums
of a function of the fermions’ positions, L =

∑

n h(xn). Such observables are also called
linear statistics of the positions. As anticipated, we demonstrate explicitly that these fluc-
tuations do depend on the ensemble in the thermodynamic limit, as opposed to averaged
quantities, which are ensemble independent. We have applied our general formalism to
compute the fluctuations of the number of fermionsN+ on the positive axis at finite tem-
perature. Our analytical results are compared to numerical simulations. We discuss the
universality of the results with respect to the nature of the confinement.
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1 Introduction

The recent experimental progresses in cold atoms [1–3], which have made accessible new
types of observables, have stimulated a renewed interest in the study of fermionic systems
over the past few years. Although some emphasis has been put on many body physics, many
physical aspects of the problem are captured by a simple non-interacting picture. Moreover,
there are practical ways to reach the non-interacting regime experimentally [1,2,4]. Here, we
will restrict ourselves to this case, and consider a system of N fermions in a one dimensional
trap described by the Hamiltonian

Ĥ =
N
∑

i=1

�

p̂2
i

2m
+ V ( x̂ i)

�

. (1)

For specific choices of the confining potential V (x), the positions of the fermions at zero tem-
perature can be mapped onto the eigenvalues of random matrices. This relation is based on
the fact that the ground state of this system takes the form of a Slater determinant:

Ψ0(x1, . . . , xN ) =
1
p

N !
det[ψi−1(x j)]1¶i, j¶N , (2)

where ψk(x) is the one-body eigenfunction of energy εk, with k ∈ N. For example, in the case
of a harmonic confinement V (x) = 1

2 mω2 x2, the joint distribution of the positions, given by
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the modulus square of the many-body wave function, reads:

|Ψ0(x1, . . . , xN )|
2 =

1
ZN

∏

i< j

�

�x i − x j

�

�

2
N
∏

i=1

e−mωx2
i /ħh , (3)

where ZN is a normalisation constant. It is exactly the distribution of the eigenvalues of
matrices in the Gaussian unitary ensemble (GUE) [5, 6]. Similarly, in the case of an infinite
square well, the distribution of the positions can be mapped onto the Jacobi unitary ensemble
(JUE) [7, 8]. This connection to random matrices has allowed to study many properties of
the ground state, like the density, the correlations, the number fluctuations and entanglement
entropy [9–12]. It is interesting to remark that in the cold atom literature, some global results
were derived using the local density approximation (LDA) [13–15], i.e. the Thomas-Fermi
approximation, without realizing the connection to random matrix theory (RMT).

A remarkable recent achievement is the development of Fermi quantum microscopes [16–
18], allowing the direct measurement of the fermions’ positions in a confining trap. Motivated
by this context, several theoretical studies have focused on different observables counting the
fermions in a given spatial domain (see e.g. Refs. [9,10,12,19]). One such observable is the
number N+ of fermions on the positive axis:

N+ =
N
∑

n=1

Θ(xn) , with Θ(x) =

�

1 if x > 0 ,
0 otherwise.

(4)

Thanks to the mapping to RMT, the number N+ of fermions in the domain x > 0 at zero
temperature is precisely the number of positive eigenvalues of GUE random matrices. In the
RMT literature, this number is known as the index, and its statistical properties have been
studied for various RMT ensembles, including the GUE [20,21] and the Cauchy ensemble [22].
For GUE, the mean value of N+ is trivially N/2, but the variance is nontrivial, given by

Var(N+)|T=0 '
1

2π2
ln N + c , c =

1+ γ+ 3 ln 2
2π2

, (5)

where γ the Euler-Mascheroni constant. In the context of fermions, this finite value character-
izes the quantum fluctuations. The logarithmic behaviour can be related to the anticorrelation
of fermions discussed below, see Eq. (29). However in most experiments, the measurements
are done at low but finite temperature. The zero temperature results obtained from RMT are
therefore not sufficient to address these finite temperature properties. Our goal here will be
to characterise the effect of thermal fluctuations on the variance of N+ and to generalise the
result (5) to finite temperature.

Statistical physics provides several tools to analyse thermal fluctuations. When quantum
correlations are dominant, like for the problem we aim to study, it is well known that the most
efficient approach is supplied by the grand canonical ensemble in which the temperature T
and the chemical potential µ are fixed, while the energy and the number of fermions fluctu-
ate. Many-body quantum eigenstates are conveniently labelled by a set of occupation numbers
{nk}, where nk = 1 if the individual eigenstate ψk(x) is occupied by one fermion and nk = 0
otherwise. The grand canonical weight is:

Pg({nk}) =
1
Zg

e−β
∑

k nk(εk−µ) , (6)

where
Zg(ϕ) =

∑

{nk}

ϕ
∑

k nk e−β
∑

k nkεk (7)
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is the grand canonical partition function. β = 1/(kB T ) is the inverse temperature and ϕ = eβµ

the fugacity. In atomic traps, the number of atoms is fixed, which is best described by the mi-
crocanonical or canonical ensembles. Furthermore, due to the evaporative cooling techniques,
the number of atoms is only moderately large, N ∼ 104 to 107, and the equivalence between
statistical physics ensembles is questionable. This has recently motivated several works where
basic quantities, such as occupation numbers, energy, specific heat, etc, have been analysed in
the canonical and microcanonical ensembles (see for instance Refs. [23–28]). In the canonical
ensemble, the number N of fermions is fixed (instead of the chemical potential) and the Gibbs
weight is

Pc({nk}) =
1
Zc

e−β
∑

k nkεk δ∑
k nk ,N , (8)

where
Zc(N) =

∑

{nk}

e−β
∑

k nkεk δ∑
k nk ,N (9)

is the canonical partition function. The constraint on the number of particles included in
the distribution however makes the calculations much more difficult in practice. For large
N , deviations from the thermodynamic limit, and thus differences between predictions from
the ensembles, are supposed to be small. However, it is worth stressing that the equivalence
of ensembles is valid only for thermodynamic quantities (averaged observables), and not for
their fluctuations [29, 30], which are our main interest here. In the present article, we will
introduce a general formalism allowing to study the fluctuations of a wide class of observables
of the form

L =
N
∑

n=1

h(xn) , (10)

known as linear statistics of the positions of the fermions, where h is any given function,
not necessarily linear. For example, the potential energy in a harmonic trap corresponds to
h(x) = x2, whereas the index N+, under consideration here, corresponds to h(x) = Θ(x).
Most theoretical studies of fluctuations at finite temperature were performed in the grand
canonical ensemble [2, 11, 31–33], with the exception of Ref. [28], where the specific form
∑

n x2
n has allowed an exact calculation at all temperatures in both ensembles (see also

Ref. [34]). Our aim here is to introduce a general framework to analyse the fluctuations of
arbitrary linear statistics within both the grand canonical and canonical ensembles.

1.1 Summary of the main results

The fluctuations of the linear statistics L =
∑

n h(xn) have two origins at finite temperature.
For a given many-body quantum state | {nk} 〉, labelled by the occupation numbers, the po-
sitions xn’s fluctuate due to quantum fluctuations. In addition, the occupation numbers nk ’s
themselves fluctuate at finite temperature –this is the thermal fluctuations. To characterize
these thermal fluctuations, we have found a general relation for the correlator of occupation
numbers:

nknl
c,g = (∓)

eβεk nk
c,g − eβεl nl

c,g

eβεk − eβεl
,

�

− for bosons,
+ for fermions,

(11)

where · · ·c,g denotes the thermal average (see also [35]). We stress that this relation (11) is a
very general one, independent of the confining trap. Moreover it is valid both in the canonical
(c) and grand canonical ensemble (g). Note that in the grand canonical case, where the mean
occupation numbers are given respectively by the Bose-Einstein and Fermi-Dirac distributions,
this relation leads to: nknl

g = nk
g nl

g. This is the well-known independence of energy levels.
This relation (11) plays a crucial role for the derivation of our subsequent results.
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Figure 1: Sketch of the different temperature regimes.

We have studied a 1D system of N fermions in a harmonic trap V (x) = 1
2 mω2 x2, where

N is either fixed (canonical ensemble) or fluctuating (grand canonical ensemble). We are
interested in the fluctuations of the number N+ of particles in the domain x > 0. We can
already identify two temperature scales, which will play a role below:

• a quantum scale TQ = ħhω/kB: when T ∼ TQ, the small thermal energy allows only a
few excitations near the Fermi level and the discreteness of the spectrum matters. We
refer to this case as the quantum regime;

• the Fermi temperature TF = Nħhω/kB: when T ∼ TF , the system is dominated by large
thermal fluctuations. All energy levels contribute and the spectrum can be considered
as continuous. Thus we call it the thermal regime.

The quantum regime covers the transition between the regime where the spectrum should
be considered as discrete (T � TQ) and the regime where it can be considered as continuous
(T � TQ), while the thermal regime describes the crossover between the regime dominated by
quantum fluctuations (T � TF ) and the classical regime (T � TF ) [36], cf. Fig.1. Note that,
while in the canonical ensemble N is fixed, in the grand canonical ensemble it is a fluctuating
random variable. Then, in the grand canonical ensemble, the Fermi temperature is defined
as TF = N

g
ħhω/kB. Henceforth, we will denote the variance of the total number of particles

by Varg(N) (the properties of this variance, in particular its T -dependence, are discussed in
Appendix A; it is plotted in Fig. 4 as a function of temperature). We denote Var(N+) the
variance of N+ which is computed in these two different regimes and the different statistical
ensembles.

In the quantum regime T ∼ TQ, we have obtained:

Var(N+)'







Var(N+)|T=0 + FQ(ξ) canonical,

Var(N+)|T=0 + FQ(ξ) +
1
4

Varg(N) grand canonical,
(12)

where the zero temperature variance Var(N+)|T=0 is given by Eq. (5), and we introduced

FQ

�

ξ=
TQ

T

�

=
2
π2

∞
∑

n=1

1
2n− 1

1
e(2n−1)ξ − 1

. (13)

In the grand canonical case, the variance receives a contribution proportional to the fluctua-
tions of the total number of particles, Varg(N). This observation is also valid in the thermal
regime T ∼ TF , where our result reads:

Var(N+)'







N FT (y) canonical,

N
g
FT (y) +

1
4

Varg(N) grand canonical,
(14)
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Figure 2: Variance of the number N+ of fermions in the domain x > 0 as a function of the
temperature, both in the canonical and grand canonical ensembles. Left: quantum regime
T ∼ TQ. Right: thermal regime T ∼ TF . In the grand canonical case, the number of particles
N must be replaced by its mean value N

g
.

where

FT

�

y =
TF

T

�

=
1− e−y

4y
. (15)

In the thermal regime, we have not included the contribution of the quantum fluctuations
at zero temperature, as it is subdominant, of order ln N . We checked that these two regimes
smoothly match together for TQ� T � TF . Plots of these different expressions for the variance
are shown in Fig. 2.

We stress an important difference between the two scaling functions FQ and FT : while the
latter is not universal, i.e. depends on the precise form of the confining potential, the function
FQ is universal.

1.2 Outline of the paper

The paper is organised as follows: Section 2 introduces the linear statistics for fermions. A
general formula for the variance of linear statistics is obtained. In Section 3 we derive universal
relations on the occupation numbers, which are useful to derive our results for the variance. We
check our formulae in Section 4 by recovering the results of Ref. [28] on the potential energy.
The case of the index variance for fermions in a harmonic well is discussed in Section 5. We end
the paper with some concluding remarks. Some technical details are relegated to Appendices.

2 Observables of the form of linear statistics

Consider a system of spinless and non-interacting fermions in a confining potential V (x). We
denote ψk(x) the one-particle wave-function associated to the energy εk, with k ∈ N. These
energy levels are non-degenerate in one dimension. In the absence of interaction, a many-body
quantum state can be conveniently labelled by the set of occupation numbers {nk}, where
nk = 0 or 1 for fermions. The total number of fermions is then N =

∑

k nk fermions. The
associated many-body wave function takes the form of a Slater determinant combining the
one-particle wave functions of the occupied levels:

Ψ{nk}(x1, . . . , xN ) =
1
p

N !
det[ψki

(x j)]1¶i, j¶N , (16)
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where {ki}i=1,...,N is the list of occupied levels: nk = 1 if k ∈ {ki}.
We will consider the situation where the fermions are subjected to thermal fluctuations.

In the following, we describe these fluctuations either in the canonical or the grand canonical
ensemble. Since the description of our system of fermions involves two different sets of ran-
dom variables, the positions and the occupation numbers, we are led to define two types of
averaging:

• the “quantum average”, denoted 〈· · ·〉| {nk} 〉, which corresponds to averaging over the
positions of the fermions. This averaging is defined for a given quantum state | {nk} 〉,
with fixed number N =

∑

k nk of particles, as:




F(x1, . . . , xp)
�

| {nk} 〉
=

∫

dx1 . . . dxN

�

�Ψ{ni}(x1, . . . , xN )
�

�

2
F(x1, . . . , xp) , (17)

for any function F of p ¶ N positions. In the following we will often omit the subscript
| {nk} 〉 for simplicity.

• the “thermal average”, which corresponds to averaging over the occupation numbers.
This averaging depends on the ensemble under consideration. We denote it · · ·c in the
canonical ensemble and · · ·g in the grand canonical ensemble. For any function G of the
occupation numbers, it is defined as

G({nk})
c,g
=
∑

{nk}

Pc,g({nk}) G({nk}) , (18)

wherePc,g({nk}) represents the canonical or grand canonical measures given by Eqs. (8)
and (6) respectively.

The quantum and thermal average will involve first averaging over the positions of the
fermions {xn}, Eq. (17), and then over the occupation numbers, Eq. (18). At zero temper-
ature, the system is frozen in its ground state Ψ0 and only the quantum average remains:




F(x1, . . . , xp)
�c,g�
�

�

T=0
=

∫

dx1 . . . dxN |Ψ0(x1, . . . , xN )|
2 F(x1, . . . , xp) . (19)

Such integrals can be evaluated by making use of the determinantal structure of Ψ0, as we
will see in section 2.1. When going to finite temperature, the excited states contribute to the
thermal averaging:




F(x1, . . . , xp)
�c,g
=
∑

{nk}

Pc,g({nk})
∫

dx1 . . . dxN

�

�Ψ{ni}(x1, . . . , xN )
�

�

2
F(x1, . . . , xp) . (20)

The integral over the positions can still be computed by using the determinantal structure, but
the summation over the quantum states makes the problem much more challenging.

In the following, we will study a wide class of observables which take the form of linear
statistics L of positions of the fermions, Eq. (10). Our aim is to study the variance

Varc,g(L ) = 〈L 2〉
c,g
−
�

〈L 〉
c,g�2

. (21)

In order to compute this variance, we first need to evaluate the quantum averages 〈L 〉 and



L 2
�

in a given quantum state | {nk} 〉. This is the object of the next section. The thermal
averaging will be discussed in Section 3.
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2.1 Quantum averages and determinantal structure

Let us first consider a quantum state | {nk} 〉, which contains N =
∑

k nk particles. It is conve-
nient to use the fact that the positions of the fermions, in that given state, is a determinantal
point process [11, 33]. This means that the modulus square of the many-body wave function
can be rewritten as a determinant

�

�Ψ{nk}(x1, . . . , xN )
�

�

2
=

1
N !

det
�

K(x i , x j; {nk})
�

1¶i, j¶N , (22)

where we have introduced the kernel

K(x , y; {nk}) =
∞
∑

k=0

nk ψ
∗
k(x)ψk(y) . (23)

Since the wave functions are orthogonal, this kernel verifies the reproducibility property
∫

K(x , y; {nk})K(y, z; {nk})dy = K(x , z; {nk}) , (24)

where we used that n2
k = nk since nk = 0 or 1 for fermions. The direct consequence of this

property is that the n-points correlation function also takes a simple determinantal form:

Rn(x1, . . . , xn) =
N !

(N − n)!

∫

dxn+1 . . . dxN

�

�Ψ{nk}(x1, . . . , xN )
�

�

2

= det
�

K(x i , x j; {nk})
�

1¶i, j¶n . (25)

In particular, the one-point function is given by

R1(x) = N

∫

dx2 . . . dxN

�

�Ψ{nk}(x1, . . . , xN )
�

�

2
= K(x , x; {nk}) . (26)

When averaged over nk ’s in the grand canonical ensemble, using Eq. (6), this is precisely the
mean density of fermions

〈ρ(x)〉
g
= K(x , x; {nk

g}) (27)

where ρ(x) =
∑

nδ(x − xn) and 〈· · ·〉
g

is the usual quantum and statistical average. The
two-point correlation function reads:

R2(x , y) = K(x , x; {nk})K(y, y; {nk})− K(x , y; {nk})2 . (28)

When averaged over nk ’s in the grand canonical ensemble, this is related to the familiar relation
for the density-density correlation function in the Fermi gas

〈ρ(x)ρ(y)〉
g

corr = δ(x − y) 〈ρ(x)〉
g
−
�

�

�K(x , y; {nk
g})
�

�

�

2
, (29)

where the minus sign is related to the effective repulsion between fermions due to the Pauli
principle. When the density can be considered constant, equal to ρ̄, the zero temperature
kernel is the famous sine-kernel K(x , y)|T=0 = ρ̄ sinc[ρ̄π(x − y)], where sinc(z) = sin z/z,
related to the anti-correlations

〈ρ(x)ρ(y)〉corr = ρ̄ δ(x − y)− ρ̄2 sinc2[ρ̄π(x − y)] (in bulk). (30)
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Using these properties we can easily express the quantum average of the linear statis-
tics (10):

〈L 〉| {nk} 〉 =

® N
∑

n=1

h(xn)

¸

= N 〈h(x1)〉 , (31)

where we used the symmetry under the exchange of particles. Therefore, only the one-point
function, Eq. (26), is needed for this computation:

〈L 〉| {nk} 〉 =

∫

h(x)R1(x)dx =

∫

h(x)K(x , x , {nk})dx . (32)

Using the expression of the kernel, Eq. (23), one can express this average in terms of the
one-particle wave functions:

〈L 〉| {nk} 〉 =
∑

k

nk

∫

h(x) |ψk(x)|
2 dx . (33)

We can similarly compute the mean square:



L 2
�

| {nk} 〉
= N




h(x1)
2
�

+ N(N − 1) 〈h(x1)h(x2)〉

=

∫

h(x)2R1(x) dx +

∫

h(x)h(y)R2(x , y) dxdy

=
∑

k

nkBk +
∑

k,l

nknl(Ak,kAl,l − (Ak,l)
2) , (34)

where we have introduced the matrix elements

Ak,l =

∫

h(x)ψ∗k(x)ψl(x)dx , Bk =

∫

h(x)2 |ψk(x)|
2 dx . (35)

Using these definitions, we can rewrite (33) as:

〈L 〉| {nk} 〉 =
∑

k

nkAk,k . (36)

This derivation shows that one only needs to compute the matrix elements Ak,l and Bk to
perform the quantum averages involved in the variance of a linear statistics L .

2.2 A general formula for the variance

Using the results of the quantum average, Eqs. (34,36), one can straightforwardly take the
thermal average

〈L 〉
c,g
=
∑

k

nk
c,gAk,k , (37)

〈L 2〉
c,g
=
∑

k

nk
c,gBk +

∑

k,l

nknl
c,g(Ak,kAl,l − (Ak,l)

2) , (38)

in the canonical or grand canonical ensemble. Combining these two relations, we obtain a
general expression for the variance of a linear statistics:

Varc,g(L ) =
∑

k

nk
c,gBk −

∑

k,l

nk
c,gnl

c,g(Ak,l)
2 +

∑

k 6=l

Covc,g(nk, nl)(Ak,kAl,l − (Ak,l)
2) (39)
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where Covc,g(nk, nl) = nknl
c,g − nk

c,gnl
c,g. The difference between the two ensembles clearly

appears on this relation. Indeed, the covariance of occupation numbers is zero in the grand
canonical ensemble: Covg(nk, nl) = 0 for k 6= l. We will see that this term gives an additional
contribution of the same order as the first two.

In order to use this formula for the variance, one first needs to compute the coefficients
Ak,l and Bk, which will be analysed in Appendix C. Then, the sums over the levels need to
be evaluated. An important piece of the calculation is a relation on the occupation numbers
which will be derived in the next section.

3 Occupation numbers

In this section, we derive general relations involving the occupation numbers, valid both in the
canonical and grand canonical ensembles. Although this article focuses on fermionic systems,
we will also consider the bosonic case for the sake of generality.

3.1 Grand canonical ensemble

Let us first consider the case of the grand canonical ensemble. In this ensemble, the mean
occupation numbers are the well-known Bose-Einstein and Fermi-Dirac distributions:

nk
g =







1
eβ(εk−µ) − 1

for bosons, with µ < ε0

1
eβ(εk−µ) + 1

for fermions
(40)

where µ is the chemical potential, which controls the mean number of particles

N
g
=
∑

k

nk
g . (41)

The variance of the occupation numbers is also known:

Varg(nk) = (n2
k)

g
− (nk

g)2 = nk
g(1± nk

g) , (42)

with the upper sign for bosons and the lower sign for fermions. The simplicity and the success
of the grand canonical ensemble relies on the independence of individual energy levels, i.e.
the absence of correlations between occupation numbers:

Covg(nk, nl) = nknl
g − nk

g nl
g = 0 if k 6= l . (43)

3.2 Canonical ensemble

In the canonical ensemble, the total number of particles is fixed to N . This constraint in-
duces correlations between the occupation numbers associated to different levels, which are
in general very difficult to handle. The mean canonical occupation numbers are obtained by
averaging with the canonical measure (8):

nk
c =

∑

{ni}

nk Pc({ni}) =
1

Zc(N)

∑

{ni}

nk e−β
∑

i niεi δ∑
i ni ,N . (44)

The general strategy of statistical physics is to introduce generating functions, i.e. consider
the sum

∞
∑

N=0

ϕN
∑

{ni}

nk e−β
∑

i niεi δ∑
i ni ,N = Zg(ϕ)

∑

{ni}

nk Pg({ni}) = Zg(ϕ) nk
g , (45)
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where we recognised the grand canonical measure, Eq. (6). We can then deduce nk
c by a

contour integral which selects the ϕN term in Eq. (45):

nk
c =

1
Zc(N)

∮

dϕ
2iπ

Zg(ϕ)

ϕN+1
nk

g , (46)

where the integrals run over a closed contour winding once around the origin in the counter-
clockwise direction. The partition functions Zc and Zg being related by

Zg(ϕ) =
∑

N

ϕN Zc(N) , Zc(N) =

∮

dϕ
2iπ

Zg(ϕ)

ϕN+1
, (47)

we can rewrite the occupation numbers as

nk
c =

∮

dϕ
2iπ

Zg(ϕ)

ϕN+1
nk

g

∮

dϕ
2iπ

Zg(ϕ)

ϕN+1

. (48)

A similar relation clearly holds for any average quantity, for instance

nknl
c =

1
Zc(N)

∮

dϕ
2iπ

Zg(ϕ)

ϕN+1
nknl

g =

∮

dϕ
2iπ

Zg(ϕ)

ϕN+1
nknl

g

∮

dϕ
2iπ

Zg(ϕ)

ϕN+1

. (49)

We will first derive general expressions for (48,49). In a second step we will analyse the large
N limit by a saddle point method. The two results will be useful in the next sections.

3.2.1 General representation for the covariance

To evaluate the numerator in Eq. (48), we only need to determine the coefficient of the term
ϕN in the expansion of Zg(ϕ)nk

g as a power series in ϕ. This series can be obtained by using
Eqs. (40,47). Then, isolating the term proportional to ϕN yields:

nk
c =

N
∑

p=1

(±1)p−1 Zc(N − p)
Zc(N)

e−pβεk , (50)

where the upper sign is for bosons, and the lower sign for fermions. This relation was known
in the literature, see e.g. Refs. [26, 37, 38]. Similarly, we can obtain the expression for the
product of occupation numbers:

nknl
c =

N−1
∑

p=1

N−p−1
∑

q=1

(±1)p+q Zc(N − p− q)
Zc(N)

e−pβεk e−qβεl , for k 6= l . (51)

This last relation can be found in the case of bosons in Ref. [26]. It can be simplified by
introducing s = p+ q:

nknl
c =

N−1
∑

s=2

(±1)s
Zc(N − s)

Zc(N)
e−βsεl

s−1
∑

p=1

e−βp(εk−εl )

=
N
∑

s=2

(±1)s
Zc(N − s)

Zc(N)
e−β(s−1)εl − e−β(s−1)εk

eβεk − eβεl
. (52)
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Separating this expression into two sums, we recognise the expressions of nk
c and nl

c, Eq. (50),
thus,

nknl
c = (∓)

eβεk nk
c − eβεl nl

c

eβεk − eβεl
. (53)

We derived this relation in the canonical ensemble, but one can easily check that it also holds
in the grand-canonical one, where it becomes nknl

g = nk
gnl

g. Therefore, this is a very general
relation, valid for any system of non interacting bosons or fermions, either in the canonical or
grand canonical ensemble.

We have extended this analysis to the p-point correlation functions in Ref. [35].

3.2.2 Saddle point estimate for large N

Despite having obtained general relations (50,51), their large N analysis remains a challenge.
For this purpose, we perform a saddle point analysis of Eqs. (48,49). For all the integrals, the
saddle point ϕ? is given by the condition

∑

k

nk
g = N , (54)

which fixes the fugacity (or the chemical potential) such that the grand canonical mean number
of particles in the trap is equal to the fixed canonical number N . Then, the integral (48) yields:

nk
c = nk

g +O (N−1) . (55)

This indicates that the statistics of the occupation numbers are the same at leading order in
N in the canonical and grand-canonical ensembles. This is not surprising since we expect
both ensembles to be equivalent for averaged quantities in the thermodynamic limit. The
equivalence of thermodynamic results however only holds for averages and not for variances or
covariances, as it is well-known [29]. Performing the same saddle point analysis with Eq. (49)
yields

nknl
c = nk

g nl
g +O (N−1) . (56)

Since we will need the covariance of occupation numbers, we push the saddle point approxima-
tion of Eqs. (48,49) to the next order, see Appendix B, in order to get the O (N−1) corrections.
After many simplifications, we obtain the compact expression:

Covc(nk, nl) = −
Varg(nk)Varg(nl)
∑

p Varg(np)
+O (N−2) , (57)

where Varg(nk) is given by Eq. (42). Note that since Varg(nk) = Varc(nk) + O (N−1), we can
express this covariance in terms of the variance of occupation numbers in any ensemble. We
chose to express it in terms of the grand canonical one since the expressions are simpler in this
case. In the canonical ensemble, N =

∑

k nk is fixed, which implies the sum rule
∑

k

Varc(nk) +
∑

k 6=l

Covc(nk, nl) = 0 . (58)

It is clear that Eq. (57) is consistent with this sum rule, up to O (N0).
However relation (57) is valid as long as the covariance is a O (N−1) correction to the

saddle point approximation. It is the case when the denominator, which corresponds to the
variance of the total number of particles in the grand-canonical ensemble, is of order N :
∑

p Varg(np) = Varg(N) = O (N). As discussed in Appendix A, this is verified only in the ther-
mal regime T ∼ TF . Therefore, this relation for the covariance can only be used this regime.
In the quantum regime T ∼ TQ we will instead rely on the exact relation (53).
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3.3 A symmetry relation for fermion occupation numbers

Let us now consider fermions in a harmonic trap V (x) = 1
2 mω2 x2, which will be the main

focus of the paper. In this case, the spectrum is linear, εn = (n+
1
2)ħhω, n ∈ N.

In the grand canonical ensemble, the Fermi-Dirac distribution (40) has a the well-known
symmetry around the chemical potential µ:

1
eβ(ε−µ) + 1

= 1−
1

e−β(ε−µ) + 1
, (59)

which is usually interpreted as the particle-hole symmetry. In the case of a discrete spectrum,
setting the chemical potential in the middle of a gap, µ = N f ħhω, where N f is an integer, the
relation reduces to:

nN f +k
g = 1− nN f −k−1

g . (60)

Due to the linearity of the spectrum, we have N
g
= N f up to exponentially small correction

∼ (kBT/ħhω)e−N f ħhω/(kBT ).
In the canonical ensemble the occupation numbers (50), are expressed in terms of the

canonical partition function. For the harmonic oscillator, it can be computed analytically, and
the result can be found in a few textbooks [30,39]:

Zc(N) = e−
N2βħhω

2

N
∏

n=1

1
1− e−nβħhω . (61)

Using this result, the expression of the occupation numbers (50) greatly simplifies near the
Fermi level in the large N limit:

nN+k
c '

∞
∑

p=1

(−1)p−1 e−
βħhω

2 p(2k+p+1) , (62)

with corrections exponentially small with N . Using this expression, it is straightforward to
show that the canonical occupation numbers also exhibit the particle-hole symmetry around
the Fermi level:

nN+k
c = 1− nN−k−1

c , (63)

which is exactly the same as the grand canonical relation (60).
These symmetries (60,63), along with relations (53,57) on the occupation numbers will

be essential for our study of linear statistics for fermions in a harmonic trap. We will first check
our approach by recovering the recent results of Ref. [28] on the potential (or kinetic) energy
of the fermions. Then, we will apply our method to the observable introduced in Section 1:
the number N+ of fermions on the positive axis, given by Eq. (4).

4 A first check: potential energy of fermions in a harmonic trap

In the harmonic trap, the one-particle wave functions are expressed in terms of Hermite poly-
nomials:

ψn(x) =
√

√ α

2nn!
p
π

Hn(αx) e−α
2 x2/2 , α=

s

mω
ħh

, (64)

with energies εn = (n+ 1/2)ħhω, n ∈ N. We denote {xn} the positions of the fermions.
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Recently, the distribution of the potential energy Ep, or equivalently the kinetic energy,
was obtained in Ref. [28] for any temperature T or fixed number N of fermions (canonical
ensemble). However their method is restricted to the study of the potential energy

Ep =
1
2

mω2 I , I =
N
∑

n=1

x2
n , (65)

which is a specific linear statistics (10), with h(x) = x2. They have obtained two different
scaling functions describing the quantum and thermal regimes:

Varc(I)'
N2

2α4
Vq

�

T
TQ

�

for T ∼ TQ (66)

and

Varc(I)'
N3

2α4
Vth

�

T
TF

�

for T ∼ TF (67)

where the two scaling functions are

Vq (z) = coth
1
z

, (68)

Vth (z) = z
�

−6z2 Li2(1− e1/z)− 1− coth
1
2z

�

, (69)

where Lis(z) =
∑∞

k=0 zk/ks is the polylogarithm function. One can check that these two ex-
pressions (66,67) smoothly match in the intermediate regime TQ � T � TF = N TQ, as the
two scaling function present the limiting behaviours Vq (z) ' z for z→∞ and Vth (z) ' z for
z → 0. In this section we will check using our more general approach that we recover these
results.

In this particular case of linear statistics with h(x) = x2, the matrix elements (35) can be
computed exactly:

Bk =
3

2α4

�

k2 + k+
1
2

�

, (70)

Ak,l =
1
α2

§�

k+
1
2

�

δk,l +
1
2

Æ

(k+ 1)(k+ 2)δk+2,l +
1
2

Æ

k(k− 1)δk−2,l

ª

. (71)

4.1 Quantum regime

In this regime, the small temperature T ∼ TQ allows only a few excitations above the Fermi
level εN . Therefore, we expect the main contribution to come from the proximity of this level.
At leading order in N , for fixed k and l, the matrix elements become:

BN+k '
3N2

2α4
, (72)

AN+k,N+l '
Nħh
mω

§

δk,l +
1
2
δk+2,l +

1
2
δk−2,l

ª

. (73)

Using these expressions in Eq. (39), the variance of I becomes, at leading order:

Varc(I)'
N2

4α4

∞
∑

k=−∞

�

2 nN+k
c − nN+knN+k−2

c − nN+knN+k+2
c� , (74)
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where we extended the summation to −∞ instead of −N , since the corrections are exponen-
tially small. Using then relation (53), this becomes

Varc(I)'
N2

4α4
coth(βħhω)

+∞
∑

k=−∞
(nN+k

c − nN+k+2
c) . (75)

This last sum cannot be separated into two sums because they would both diverge. Using the
symmetry of the mean occupation numbers around the Fermi level, see Eq. (63), we get

∞
∑

k=−∞
(nN+k

c − nN+k+2
c) = nN−2

c − nN
c + nN−1

c − nN+1
c + 2

∞
∑

k=0

(nN+k
c − nN+k+2

c) . (76)

Under this form, the sum can be separated into two sums. This yields

∞
∑

k=−∞
(nN+k

c − nN+k+2
c) = 2(nN

c + nN+1
c) + nN−2

c − nN
c + nN−1

c − nN+1
c . (77)

Finally, using again Eq. (63) gives

∞
∑

k=−∞
(nN+k

c − nN+k+2
c) = 2 . (78)

Therefore, we recover the result of Ref. [28] in the quantum regime, Eq. (66):

Varc(I)'
N2

2α4
coth(βħhω) . (79)

4.2 Thermal regime

We now consider the regime where the temperature is of the order of the Fermi temperature
T ∼ TF . We fix y = βNħhω = TF/T and let N →∞. In this case, we can use the results of
section 3.2.2, for instance

nk
c ' nk

g +O (N−1) =
1

eβ(εk−µ) + 1
+O (N−1) , (80)

where the chemical potential µ is fixed by
∑

k nk
g = N . This sum over k can be replaced by

an integral over x = k/N since the discreteness of the spectrum plays no role in this regime:

∑

k

nk
g ' N

∫ ∞

0

dx
ey(x−µ/(Nħhω)) + 1

=
N
y

ln
�

1+ eyµ/Nħhω� . (81)

Imposing that this sum is the total number of particles yields:1

µ= Nħhω+
Nħhω

y
ln(1− e−y) +O (N0) , y =

TF

T
. (82)

Therefore, we can rewrite the occupation numbers (80) as

nk
c ' f y(k/N) +O (N−1) , (83)

1 A more precise treatement of the steepest descent equation
∑

k nk
g = N , with the help of the Euler-MacLaurin

formula
∑∞

k=0 f (k) =
∫∞

0
dx f (x)−

∑∞
p=1

Bp
p! f (p−1)(0) with Bp the Bernoulli number (B1 = −1/2, B2 = 1/6, etc),

shows that the zero temperature limit of the chemical potential is precisely in the middle of the energy gap above
the last occupied level: µ= Nħhω+O (N−1) = (εN + εN−1)/2.
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where we introduced the notation

f y(x) =
1

ey(x−1)

1− e−y
+ 1

(84)

for the Fermi-Dirac distribution in terms of convenient variables. In most cases, the approxi-
mation (83) is sufficient. However, the corrections are essential when the fluctuations of the
occupation numbers contribute. For instance, the covariances in the last term of Eq. (39) must
be evaluated using Eq. (57). Replacing now the sums over k by integrals over x = k/N , and
keeping only the leading order of the matrix elements (70,71) yields:

Varc(I)'
N3

α4

∫ ∞

0

�

3
2

f y(x)− f y(x)
2
�

x2 dx −
N

2α4

∫ ∞

0

f y(x)
2 x2 dx

−
N3

α4

�∫ ∞

0

f y(x)(1− f y(x))x dx

�2

∫ ∞

0

f y(x)(1− f y(x)) dx

. (85)

Evaluating these integrals, we finally obtain

Varc(I)'
N3

2α4 y

�

−
6
y2

Li2(1− ey)− 1− coth
y
2

�

for y =
TF

T
. (86)

Hence we recover the result of Ref. [28] in the thermal regime, Eq. (67). This verification
validates our approach to compute the variance of linear statistics.

4.3 Discussion

It is interesting to comment on the physical content of these results, and in particular compare
the fluctuations of the potential energy with the fluctuations of the total energy E = Ec + Ep,
which, in the canonical ensemble, can be related to the heat capacity studied in detail in [30]
by Varc(E) = kBT2 CV . From (61), we get

Varc(E) =
N
∑

n=1

�

nħhω/2
sinh(nβħhω/2)

�2

'











(ħhω)2 e−ħhω/(kBT ) for T � TQ
π2

3
(kBT )3

ħhω = π2

3 N(kBT )2
� T

TF

�

for TQ� T � TF

N(kBT )2 for T � TF

. (87)

In the low temperature regime, the exponential suppression of the fluctuations can be related
to the existence of a gap ħhω in the excitation spectrum. The result in the intermediate regime
TQ � T � TF has been rewritten in terms of the Fermi temperature to make clear that it
corresponds to the classical result Varc(E) ' N(kBT )2 (given by the equipartition theorem)
multiplied by the small factor T/TF � 1. This well-known suppression factor originates from
the Pauli principle, which restricts thermal fluctuations to take place in a small window of
width kBT around the Fermi level.

The fluctuations of the potential energy are given by Eq. (66) and (67):

Varc(Ep)'











1
8 N2(ħhω)2

�

1+ 2e−2ħhω/(kBT )
�

for T � TQ
1
8 N2ħhω kBT = 1

8 N(kBT )2
� TF

T

�

for TQ� T � TF
1
2 N(kBT )2 for T � TF

. (88)
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The finite value Varc(Ep) ∼ (Nħhω)2 at T = 0 is a manifestation of the quantum fluctuations
in the ground state, like Eq. (5). The relative classical fluctuations (for T � TF ) behaves as
Varc(Ep)/

�

Ep
c�2 ' 1/N , as expected, while the relative quantum fluctuations reach the value

Varc(Ep)/
�

Ep
c�2
= 2/N2 at T = 0. The comparison between the potential energy and the total

energy is more interesting: in the classical regime (T � TF ), we have Varc(Ep)' (1/2)Varc(E),
as it should for the harmonic potential. In the regime dominated by quantum correlations
(T � TF ), we have rather Varc(Ep)� Varc(E). This observation has interesting consequences
for the correlations of kinetic and potential energies. We express the variance of the total
energy E = Ec + Ep, and use the fact that Ec and Ep have the same statistical properties for
harmonic confinement:

Varc(E) = 2Varc(Ep) + 2Covc(Ec , Ep) . (89)

In the classical regime T � TF , we have obtained Varc(Ep) = Varc(Ec) ' (1/2)Varc(E),
which is related to the well-known fact that the kinetic and potential energy are uncorre-
lated: Covc(Ec , Ep) ' 0. In the regime T � TF , we have obtained that Varc(Ep) � Varc(E),
implying that potential and kinetic energies are anti-correlated

Covc(Ec , Ep)
Æ

Varc(Ec)Varc(Ep)
' −1 for T � TF , (90)

so that the fluctuations can be related as δEp ' −δEc .

5 Index variance for fermions in a harmonic trap

We now apply the general considerations of sections 2 and 3 to the study of the index N+,
corresponding to the number of fermions on the positive axis. It is given by Eq. (4). This
quantity is a linear statistics: it is of the form (10), with h(x) = Θ(x). Therefore, we can use
the results of section 2. In particular, the variance of N+ is given by Eq. (39), with

Ak,l =

∫ ∞

0

ψk(x)ψl(x) dx , (91)

and

Bk = Ak,k =

∫ ∞

0

ψk(x)
2 dx =

1
2

. (92)

This last relation is exact, due to the symmetry of the potential. Using this result, we can
rewrite Eq. (39) as:

Varc,g(N+) =
1
4

∑

k

nk
c,g +

1
4

 

∑

k

Varc,g(nk) +
∑

k 6=l

Covc,g(nk, nl)

!

−
∑

k 6=l

nknl
c,g(Ak,l)

2 . (93)

The first term gives the mean number of particles. Moreover the second term has a simple
structure thanks to the fact that the matrix elements Bk and Ak,k are equal and independent
of k, in Eq. (92). Note that this property in Eq. (92) is specific to the choice of the observable
considered here, namely the index N+. Writing N =

∑

k nk, the second term can be simply
identified as the variance of the total number of particles

Varc,g(N) =
∑

k

Varc,g(nk) +
∑

k 6=l

Covc,g(nk, nl) (94)
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where obviously Varc(N) = 0 by definition, while Varg(N) is finite. Thus:

Varc,g(N+) =
1
4

N
c,g
+

1
4

Varc,g(N)−
∑

k 6=l

nknl
c,g(Ak,l)

2 . (95)

Before studying into detail the variance of N+ at any temperature, we will first discuss the
limit of high temperature in which the fermions behave as classical particles.

5.1 High temperature limit: the Maxwell-Boltzmann regime

We start by considering the simplest limiting case, the limit of high temperature T � TF .
In this case the fermions can be considered as classical particles as the thermal fluctuations
dominate. Therefore, their positions {xn} are independent, and they follow the Maxwell-
Boltzmann distribution:

Proba(xn ∈ [x , x + dx]) =

√

√βmω2

2π
e−βmω2 x2/2 dx = p(x) dx . (96)

The probability that a particle is in the domain x > 0 is p+ =
1
2 . We now need to distinguish

the statistical ensembles:

• In the canonical ensemble, the number N of particles in the trap is fixed. Therefore, the
mean number of particles with position xn > 0 is:

N+
c
= N p+ =

N
2

. (97)

To compute the variance, we also need the square of N+:

(N+)2 =
�

∑

n

Θ(xn)

�2

=
∑

n

Θ(xn) +
∑

n6=m

Θ(xn)Θ(xm) , (98)

from which we deduce:

(N+)2
c
= N p+ + N(N − 1)p2

+ =
N(N + 1)

4
. (99)

From these results, we can deduce the variance:

Varc(N+) =
N
4

. (100)

• Let us now consider the grand canonical ensemble in which the number N of fermions
fluctuates. In this case, the expressions are simply obtained by averaging Eqs. (97,99)
over N :

N+
g
=

N
g

2
, (101)

(N+)2
g
=

N
g

4
+

N2
g

4
. (102)

From which we deduce:

Varg(N+) =
N

g

4
+

1
4

Varg(N) , (103)

where we have introduced the variance of the total number of particles
Varg(N) = N2

g
− (Ng

)2. The properties of this variance and its temperature dependence
are discussed in Appendix A.
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Let us remark that even though the relation between canonical and grand canonical variances
(103) has been derived in the classical Maxwell-Boltzmann regime it actually turns out to be
much more general, as we discuss in Subsection 5.4 below.

In the limit of high temperature T � TF , the index variance thus reads:














Varc(N+)'
N
4

canonical,

Varg(N+)'
N

g

2
grand canonical.

(104)

5.2 Canonical ensemble

We have derived in the previous sections a general expression for Var(N+), Eq. (95), which
involves the matrix elements Ak,l and occupation numbers. The coefficients Ak,l are computed
in Appendix C, and we studied the occupation numbers in Section 3. In this section we will
combine these results to derive a more explicit expression for the index variance of fermions
in a harmonic trap Varc(N+), in the canonical ensemble. In this case, since the total number
N of fermions is fixed, Varc(N) = 0 and Eq. (95) reduces to:

Varc(N+) =
N
4
−
∞
∑

k,l=0
k 6=l

nknl
cA2

k,l . (105)

We will compute this variance first in the quantum regime T ∼ TQ, then in the thermal regime
T ∼ TF .

5.2.1 Quantum regime

This regime can be reached for finite β = 1/kB T by letting the number N of fermions become
large. Since we already know the variance ofN+ at zero temperature, Eq. (5), we will focus on
the difference between the variance at temperature T and the one at zero temperature T = 0:

∆Varc(N+) = Varc(N+)|T − Varc(N+)|T=0 . (106)

At T = 0, Eq. (105) is still valid, but with fixed occupation numbers. Only the N lowest energy
levels are occupied, thus

nk = nk
c =

�

1 if k < N ,
0 if k ¾ N .

(107)

Therefore, we have from Eq. (105):

∆Varc(N+) = −
∞
∑

k,l=0
k 6=l

nknl
cA2

k,l +
N−1
∑

k,l=0
k 6=l

A2
k,l . (108)

Since the main differences between the occupation numbers at zero and finite temperature
are visible near the Fermi level N − 1, we shift the indices in the sums to start the summation
from the Fermi level:

∆Varc(N+) =
N−1
∑

k,l=0
k 6=l

(1− nN−k−1nN−l−1
c)A2

N−k−1,N−l−1 −
∞
∑

k,l=0
k 6=l

nN+knN+l
cA2

N+k,N+l

− 2
N−1
∑

k=0

∞
∑

l=0

nN−k−1nN+l
cA2

N−k−1,N+l . (109)
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First, for large N , we can let the summations go to infinity, as the corrections are exponentially
small with N . Then, since the coefficients Ak,l given by Eq. (168) are non zero only if k and l
have different parity, we get:

∆Varc(N+) =
1
π2

∞
∑

k,l=0
6= parity

(1− nN−k−1nN−l−1
c − nN+knN+l

c)
1

(k− l)2

−
2
π2

∞
∑

k,l=0
same parity

nN−k−1nN+l
c 1
(k+ l + 1)2

. (110)

We can then use Eq. (53) to evaluate the thermal averages of products of occupation numbers.
Introducing k− l = 2n− 1 in the first sum, k+ l = 2n− 2 in the second one, and making use
of Eq. (63) many cancellations occur, yielding a compact expression:

∆Varc(N+) = FQ(βħhω) =
2
π2

∞
∑

n=1

1
2n− 1

1
eβħhω(2n−1) − 1

(111)

involving a universal function FQ, as argued below in Section 5.5. This is our final result for
the variance in the quantum regime for the canonical ensemble. Remarkably, this formula for
fermions involves Bose-Einstein factors, like in the mean total energy [30] or its variance (87).
This observation has a simple origin: the system of fermions have particle-hole excitations of
bosonic nature. This well-known fact is as the heart of the bosonization technique for 1D
Fermi liquids (see [40] for a general reference and [23] for a discussion of bosonization in the
presence of a harmonic well).

From our result (111), we can extract the asymptotic behaviours of the temperature de-
pendent part of the variance:

∆Varc(N+)'















2
π2

e−TQ/T for T � TQ

T
4TQ

for T � TQ .
(112)

The low temperature behaviour can be simply associated with the existence of a gap ħhω in the
excitation spectrum.

5.2.2 Thermal regime

We now consider to the thermal regime, where the temperature is of the order of the Fermi
temperature T ∼ TF . We fix y = βNħhω = TF/T and let N →∞. In this case, we proceed as
in Subsection 4.2 where we analysed the potential energy. The study of the index is however
more simple thanks to the simplification mentioned in the beginning of Section 5, which makes
the second term in parenthesis in Eq. (93) vanish in the canonical ensemble. As a result, in this
case it is sufficient to replace the occupation numbers by the rescaled Fermi-Dirac distribution:
nk

c ' f y(k/N) +O (N−1) where f y is given by Eq. (84):

Varc(N+)'
N
4
−
∑

k 6=l

f y

�

k
N

�

f y

�

l
N

�

(Ak,l)
2 . (113)

Let us first rewrite the double sum as:

∑

k 6=l

f y

�

k
N

�

f y

�

l
N

�

(Ak,l)
2 = 2

∞
∑

k=0

k
∑

p=1

f y

�

k
N

�

f y

�

k− p
N

�

(Ak,k−p)
2 . (114)
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Since Ak,l is non zero only if k and l have different parity, see Eq. (168), the sum over p involves
only odd integers p = 2n− 1. Replacing the summation over k by an integral over x = k/N
gives:

∑

k 6=l

f y

�

k
N

�

f y

�

l
N

�

(Ak,l)
2 '

2N
π2

∫ ∞

0

∞
∑

n=1

f y(x)2

(2n− 1)2
dx =

N
4

∫ ∞

0

f y(x)
2dx . (115)

Using this result in Eq. (113), along with

N =
∞
∑

k=0

nk
c ' N

∫ ∞

0

f y(x)dx , (116)

yields

Varc(N+)'
N
4

∫ ∞

0

f y(x)(1− f y(x))dx =
1
4

Varg(N) , (117)

where Varg(N) is the variance of the total number of particles in the grand canonical ensemble,

where N
g

must be replaced by N . This non trivial relation between Varc(N+) and Varg(N) relies
on the specific properties of the matrix elements Ak,l , thus on the nature of the observableN+.
Using the expression of this variance from Appendix A, we obtain the final expression for the
variance of the index in this regime:

Varc(N+)' N FT

�

y =
TF

T

�

= N
1− e−y

4y
(118)

where the subleading T = 0 contribution has been omitted. This is our final result in the
thermal regime for the canonical ensemble. From this general expression of the variance, we
can extract its asymptotic behaviours as function of the temperature:

Varc(N+)' N ×















T
4TF

for T � TF ,

1
4

for T � TF ,

(119)

First note that the high temperature limit T � TF matches with the Maxwell-Boltzmann case,
Eq. (100), as it should. In addition, the low temperature limit in this thermal regime, T � TF ,
smoothly matches the high temperature limit from the quantum regime, T � TQ, Eq. (112).
This indicates that there is no intermediate regime of temperature between these two. The low
temperature result can be simply understood as the classical result, N/4, reduced by the factor
T/TF characteristic of a degenerate Fermi gas [30], as already mentioned for the potential
energy.

5.3 Grand canonical ensemble

In the previous section we derived expressions for Var(N+) in the canonical ensemble in both
quantum and thermal regimes. We now perform a similar computation in the grand canonical
ensemble. In this case, the chemical potential µ is fixed, while the number of fermions in the
trap fluctuates. In order to easily compare the results between the two ensembles, we will use
the mean number of particles N

g
as a parameter instead of the chemical potential. The two

are related by Eq. (41).
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The mean occupation numbers nk
g are given by the Fermi-Dirac distribution (40). Occu-

pations are uncorrelated between different energy levels. This allows to rewrite the general
expression (95) as

Varg(N+) =
N

g

4
+

1
4

Varg(N)−
∞
∑

k,l=0
k 6=l

nk
gnl

gA2
k,l , (120)

where the variance of the total number of particles Varg(N) is studied in Appendix A. As before,
we will first discuss the quantum regime and then the thermal one.

5.3.1 Quantum regime

Again, we fix β = 1/(kB T ) and let N
g→∞. As before, we focus on the difference

∆Varg(N+) = Varg(N+)|T − Varg(N+)|T=0 . (121)

Using Eq. (120), we can express this as

∆Varg(N+) =
1
4

Varg(N)−
∞
∑

k,l=0
k 6=l

nknl
gA2

k,l +
N−1
∑

k,l=0
k 6=l

A2
k,l . (122)

We evaluated the same double sums in section 5.2.1, using only relations (11) and (63) which
hold in both ensembles. Therefore, our previous derivation is still valid, and we have:

−
∞
∑

k,l=0
k 6=l

nknl
gA2

k,l +
N−1
∑

k,l=0
k 6=l

A2
k,l =∆Varc(N+) . (123)

We obtain the final expression for the variance of the particle number:

Varg(N+) = Varc(N+) +
1
4

Varg(N) = Var(N+)|T=0 + FQ(βħhω) +
1
4

Varg(N) (124)

where FQ(ξ) is given by Eq. (111). The variance in the grand canonical ensemble is thus
obtained from the canonical one by adding a term proportional to the variance of the total
number of particles. Using the limiting behaviours of Varg(N) given in Appendix A along with
Eq. (112), we can straightforwardly deduce the asymptotic behaviours:

∆Varg(N+)'















1
2

e−TQ/2T for T � TQ ,

T
2TQ

for T � TQ .
(125)

We again obtain an essential singularity at zero temperature, but different from the canonical
case (e−TQ/T vs e−TQ/2T ). This is due to the fact that in the grand-canonical case, the leading
contribution comes from the term proportional to the total number of particles Varg(N).

5.3.2 Thermal regime

We now fix y = N
g
βħhω and let N

g→∞. As in the quantum regime, the last term in Eq. (120)
was already computed in section 5.2.2, and is given by Eq. (115). Therefore, we straightfor-
wardly obtain:

Varg(N+) = Varc(N+) +
1
4

Varg(N)' N
g

FT

�

y =
TF

T

�

+
1
4

Varg(N) (126)
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where Varc(N+) is here given by Eq. (118) with N substituted by N
g
. In the r.h.s., we have

neglected the subleading T = 0 contribution, Eq. (5). In this regime, the variance Varg(N) can
be computed explicitly and is given by Eq. (151):

Varg(N)' N
g 1− e−y

y
= 4 N

g
FT (y) . (127)

Therefore, we can rewrite the index variance as

Varg(N+)' 2 N
g

FT (y) = 2 Varc(N+) . (128)

In this thermal regime, the index variance takes twice its canonical value in the grand canonical
case. We can thus straightforwardly obtain its asymptotic behaviours as a function of T :

Varg(N+)' N
g ×











T
2TF

for T � TF ,

1
2

for T � TF ,

(129)

Again, we check that the low temperature limit T � TF smoothly matches the limit T � TQ
in the quantum regime, Eq. (125). We also recover the Maxwell-Boltzmann limit, Eq. (104) in
the high temperature limit, as expected, whereas the quantum regime again shows the usual
reduction factor T/TF .

5.4 Relation between the canonical and the grand canonical variances

We stress here that the relation between the variances in the canonical and grand canonical
ensembles is completely general: compare (100) and (103) in the Maxwell-Boltzmann regime,
or see Eq. (124) in the quantum regime and Eq. (126) in the thermal regime. This relation
can be recovered by a simple heuristic argument: consider an extensive observable of the form
A =

∑N
i=1 ai . The average is also extensive, and we write it under the form A

g
= N

g
ac. We

write the variance Varg(A) = Varg(N a) and assume that a = A/N and N are independent. As
a result we get:

Varg(A) = (N
g
)2 Var(a) + (ac)2 Varg(N) = Varc(A) +

�

∂ A
c

∂ N

�2

Varg(N) . (130)

Although this argument is not quite precise, in the case of the energy E of the system, it gives

Varg(E) = Varc(E) +
�

∂ E
c

∂ N

�2

Varg(N) , (131)

which is a well-known relation in statistical mechanics [29, 30]. Applied to the case of N+,
Eq. (130) becomes:

Varg(N+) = Varc(N+) +
1
4

Varg(N) , (132)

which is clearly the relation obtained several times above (103,124,126).

5.5 Universality

All our discussion so far has focused on the example of the harmonic trap as in this case the
one body wave-functions are known, which makes the computations more explicit. Some of
our results can however be extended to any type of confining potential, assuming a single
minimum for simplicity.
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Let us first discuss the zero temperature result, Var(N+)|T=0, given by Eq. (5) for the
harmonic trap. A similar result has been obtained for a system of fermions confined in an
infinite square well. In this case, the variance of the number of particles in the right half part
of the trap can be found in Eq. (40) of Ref. [41]:

Var(N+)|
Box
T=0 '

1
2π2

ln N +
1+ γ+ 2 ln2

2π2
. (133)

The variations of N+ correspond to particles crossing the origin, thus Var(N+)|T=0 measures
the quantum fluctuations through the origin. The leading log-terms in (5) and (133) coincide,
and thus is a bulk property (which can be related to (30)). However, the subleading constants
are different. We thus conclude that they are sensitive to the precise form of the potential.
Therefore, we expect only the leading log-term to be universal.

At finite temperature, the fluctuations are controlled by the two scaling functions FQ and
FT , for the quantum and thermal regimes respectively. These functions are determined by the
occupation numbers nk

c,g, which depend on the spectrum {εn} and thus on the potential, and
the matrix elements Ak,l . These latter depend only on the values of the wave functions ψn
at the center of the trap, see Eq. (165). These can thus be derived by semiclassical methods,
such as the WKB approximation, for any kind of potential and exhibit universal properties. In
particular, one can show that the expression (168) of these matrix elements for large quantum
numbers is universal.

In the quantum regime, the derivation of Sections 5.2.1 and 5.3.1 is based on this univer-
sal expression of the matrix elements Ak,l and on two properties of the occupation numbers,
Eqs. (53) and (63). The first relation is universal, as discussed in Section 3. The second prop-
erty (63), which implies the symmetry of the occupation numbers around the Fermi level,
holds only for a linear spectrum. However, any regular spectrum {εn} can be linearised near
the Fermi level and thus (63) is also universal in the vicinity of the Fermi level. The tempera-
ture scale TQ is then defined from the gap at the Fermi level:

TQ =
εN − εN−1

kB
. (134)

Therefore, the derivation of Sections 5.2.1 and 5.3.1 can be extended to any confining poten-
tial, and the scaling function FQ is thus universal, and given by expression (13).

In the thermal regime, controlled by the scale

TF =
εN + εN−1

2kB
, (135)

all the spectrum contributes to the variance Var(N+). Therefore, we do not expect the func-
tion FT to be universal. This can be shown explicitly from the relation (117) which states that
this scaling function is proportional to the variance of the total particle number in the grand
canonical ensemble: FT (TF/T ) = Varg(N)/4. We do not know this function explicitly, how-
ever we show in Appendix A that its limiting behaviours are only controlled by the exponent
governing the one body density of states ρ(ε)∝ εα−1:

FT

�

y =
TF

T

�

'
1
4







1 for T � TF ,

α
T
TF

for T � TF ,
(136)

which thus depends explicitly on α, i.e. is not universal.
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Figure 3: Variance of the index number N+, in the grand canonical ensemble for N
g
= 100 as

a function of temperature (we set ħh=ω= m= kB = 1). The points are obtained by averaging
over 105 realisations, while the solid line corresponds to our analytical result, Eq. (138).

5.6 Numerical simulations

We now compare our results with numerical simulations. Generating numerically realisations
of the positions of the fermions is quite difficult. But in the grand canonical ensemble, we can
use the fact that the positions of the fermions form a determinantal point process [11,33,42],
with kernel:

KT (x , x ′) =
∑

k

nk
gψk(x)ψk(x

′) , (137)

where ψk are the one-particle wave functions of the harmonic oscillator (64). We reproduce
in Appendix D an algorithm described in Refs. [43, 44] which allows to sample such point
processes. Therefore, we performed simulations only in the grand canonical case.

We generate realisations of the positions of fermions and compute the corresponding value
of N+ for each of them. From the set of data, we compute numerically Var(N+). We studied
the quantum regime, with N

g
= 100. We did not investigate the thermal regime because

the computational efforts increase with the temperature, as more energy levels contribute.
This makes it difficult to obtain enough statistics in the thermal regime where T = O (Ng

).
Our result in the grand canonical ensemble (124), combined with the previously known zero
temperature expression (5) read:

Varg(N+)'
1
4

Varg(N) + FQ(βħhω) +
1

2π2
ln N

g
+ c , (138)

where FQ(βħhω) is given by Eq. (111) and c is a constant, see Eq. (5). We used this expression
to compare the numerical data to our analytical result. They show an excellent agreement,
see Fig. 3.

6 Conclusion

In this paper, we have introduced a general method to study certain many body observables
of the form of sums of one body observables of the positions of fermions in a confining trap.
We have applied our method to the study of the number N+ of fermions on the positive axis,
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in the case of a harmonic well. We have obtained explicit expressions for the variance of
these observables, both in the quantum regime T ∼ TQ = ħhω/kB and the thermal regime
T ∼ TF = Nħhω/kB in terms of two scaling functions, one universal and the other not. We have
shown that these expressions smoothly match. We note that the fluctuations of linear statistics
were recently studied by Johansson and Lambert in the grand canonical ensemble [45]. They
considered the case where each of the fermions positions x i ’s are scaled like N−δ while the
temperature scales like T ∼ Nα. The results presented in this paper thus corresponds to δ = 0
(which in their terminology corresponds to “macroscopic scale”). In addition, here, we have
studied the crossover between the quantum regime (α = 0 in the notation of Ref. [45]) and
the thermal regime (α= 1).

We have emphasised the difference between the statistical ensemble by computing the
variance ofN+ both in the canonical and grand-canonical ensembles. This difference is due to
the fact that we have considered the fluctuations of a global observable, N+ =

∑

nΘ(xn). On
the other hand, local quantities, such as the two point density-density correlation functions,
are ensemble independent [11].

The computation of these fluctuations in the microcanonical ensemble is still an open ques-
tion. Indeed, our derivation made extensive use of relation (11) which no longer holds in the
microcanonical case. We have studied the first moments of the distribution of the observable
N+ at finite temperature. Computing the full distribution of N+ would be an interesting but
much more challenging question.

Acknowledgements

This research was supported by ANR grant ANR-17-CE30-0027-01 RaMaTraF. We acknowledge
stimulating discussions with Olivier Giraud. Note added in Proofs: We thank Kurt Schönham-
mer for bringing to our attention the recent Ref. [50] where relation (11, 53) was derived in
the fermionic case. This paper also reports Eq. 63, first obtained in [51].

A Variance of the total particle number in the grand canonical en-
semble for any confining potential

As discussed in Section 3, in the grand-canonical ensemble the mean occupation numbers nk
g

are given by the Fermi-Dirac distribution, Eq. (40). In addition, occupations are uncorrelated:
nknl

g = nk
gnl

g. This allows to easily evaluate the first moments of the fluctuating total number
of particles N =

∑

k nk:

N
g
=
∑

k

nk
g =

∑

k

1
eβ(εk−µ) + 1

. (139)

This first relation links the mean number of particles N
g

to the chemical potential µ. The
variance reads:

Varg(N) =
∑

k

Varg(nk) +
∑

k 6=l

Covg(nk, nl)
︸ ︷︷ ︸

=0

=
∑

k

nk
g(1− nk

g) . (140)

Therefore, we obtain:

Varg(N) =
∑

k

1
eβ(εk−µ) + 1

�

1−
1

eβ(εk−µ) + 1

�

. (141)

26

https://scipost.org
https://scipost.org/SciPostPhys.4.3.014


SciPost Phys. 4, 014 (2018)

We can use these expressions to study the limiting behaviours of this variance for any confining
potential of the form V (x)∝ |x |p. The spectrum can be determined from a WKB approxima-
tion

∫ x t

−x t

Æ

2m(εn − V (x)) =
�

n+
1
2

�

πħh , (142)

where x t is the turning point V (x t) = εn. This condition gives the scaling

εn ∼ n1/α , α=
1
2
+

1
p

. (143)

We can check that α= 1 for the harmonic potential while α= 1/2 corresponds to the infinite
square well. In the continuum limit, this spectrum gives a density of states of the form

ρ(ε) = A
εα−1

δα
, (144)

where δ is an energy scale and A is a dimensionless parameter. For a trap containing on average
N

g
particles, the Fermi energy is given by εF = (αN

g
/A)1/αδ. Therefore, we define the Fermi

temperature as

TF =
εF

kB
=

�

αN
g

A

�1/α
δ

kB
. (145)

The temperature scale TQ can be defined from the gap at the Fermi level (134), which gives

TQ =
1

kBρ(εF )
=

1

αN
g TF . (146)

In the quantum regime, the spectrum can be linearised near the Fermi level:

εN
g
+n ' εF + n kB TQ . (147)

The variance Varg(N) is thus universal in this regime. In the low temperature limit T � TQ,
Eq. (139) imposes that the chemical potential is fixed to the middle of the gap µ' εF+kB TQ/2.
Using this value in Eq. (141), we can study the low temperature limit of the variance of N .
The leading contribution comes from the two levels εN

g−1 and εN
g which are the closest to the

chemical potential µ. This gives

Varg(N)' 2 e−TQ/2T , T � TQ . (148)

In the thermal regime T ∼ TF , the sums can be replaced by integrals over the energy ε.
Eq. (139) becomes:

N
g
=
∑

k

nk
g '

∫ ∞

0

ρ(ε) dε
eβ(ε−µ) + 1

= −
A

(βδ)α
Γ (α) Liα(−eβµ) , (149)

where we recall the function Liα(z) =
∑∞

k=1 zk/kα. This last relation is more conveniently
expressed in terms of dimensionless variables:

−y−α Γ (α+ 1) Liα(−eyµ̃) = 1 , y =
TF

T
and µ̃=

µ

εF
. (150)

This relation fixes the rescaled chemical potential µ̃ in terms of the rescaled inverse tempera-
ture y . A similar computation for the variance (141) gives:

Varg(N) =
1
β

∂ N
g

∂ µ
= −N

g
y−α Γ (α+ 1)Liα−1(−eyµ̃) . (151)
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Figure 4: Variance of the total number N of fermions in the grand canonical ensemble, as
a function of the temperature T . Left: quantum regime T ∼ TQ obtained from (141). This
function is universal. Right: thermal regime T ∼ TF , given by Eq. (151) for different types of
confinment: α= 1 (harmonic), α= 1/2 (infinite well) and α= 3/2.

These two relations (150) and (151) allow to plot this variance for different confining poten-
tials, corresponding to different values of α, see Fig. 4, right. In the high-temperature limit,
the variance reaches the classical limit

Varg(N)' N
g

, T � TF . (152)

The other limiting case is:

Varg(N)' αN
g T

TF
=

T
TQ

, TQ� T � TF , (153)

which shows once again the reduction factor T/TF , as usual in the degenerate Fermi gas [30].
See Fig. 4 for plots of this variance Varg(N) in both the quantum and thermal regimes, for
different confining potentials. In the case of the harmonic trap (α= 1), Eqs. (150,151) reduce
to the simple expression

Varg(N) =
1− e−y

y
, y =

TF

T
. (154)

B Saddle point estimate

Let us consider integrals of the form:

I(N) =

∫

C
dz g(z) e−Nφ(z) , (155)

where C is any contour in the complex plane, g and φ are any given smooth functions. We
want to estimate this integral in the limit of large N by using a saddle point method. The
saddle point z? is given by

φ′(z?) = 0 . (156)
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Let us make the change of variable z = z? + t/
p

N and deform the contour C such that t is
real. We can expand φ and g near z?:

φ(z) = φ(z?) +
t2

2N
φ′′(z?) +

t3

6N3/2
φ(3)(z?) +

t4

24N2
φ(4) +O (N−5/2) , (157)

g(z) = g(z?) +
t
p

N
g ′(z?) +

t2

2N
g ′′(z?) +O (N−3/2) . (158)

Using these expansions, the integral I(N) becomes:

I(N) =
e−Nφ(z?)
p

N

∫

R
dt e−t2φ′′(z?)/2

×
�

1−
t3

6
p

N
φ(3)(z?)−

t4

24N
φ(4)(z?) +

t6

72N
(φ(3)(z?))

2 +O (N−3/2)

�

×
�

g(z?) +
t
p

N
g ′(z?) +

t2

2N
g ′′(z?) +O (N−3/2)

�

. (159)

Computing the Gaussian integrals yields:

I(N) = e−Nφ(z?)

√

√ 2π
Nφ(2)(z?)

�

g(z?) +
1
N

�

g(2)(z?)
2φ(2)(z?)

−
g(z?)φ(4)(z?)
8(φ(2)(z?))2

+
5g(z?)(φ(3)(z?))2

24(φ(2)(z?))3
−

g ′(z?)φ(3)(z?)
2(φ(2)(z?))2

�

+O (N−2)

�

. (160)

We used this expression in section 3.2.2 to obtain the O (N−1) corrections to the covariance
nknl

c − nk
cnl

c.

C Matrix elements

In this section we compute the coefficients Ak,l associated to the index variance, Eq. (91),
which are obtained from the quantum average. Since the index N+ is a linear statistics (10)
for h(x) = h(x)2 = Θ(x), we can straightforwardly obtain the “diagonal terms”

Bk = Ak,k =

∫ ∞

0

ψk(x)
2dx =

1
2

. (161)

The “off-diagonal” coefficients are given by:

Ak,l =

∫ ∞

0

ψk(x)ψl(x)dx . (162)

This integral can be computed analytically. Indeed, let us compute the derivative of
ψk(x)ψ′l(x)−ψ

′
k(x)ψl(x):

d
dx

�

ψk(x)ψ
′
l(x)−ψ

′
k(x)ψl(x)

�

=ψk(x)ψ
′′
l (x)−ψ

′′
k (x)ψl(x) (163)

since the other terms cancel out. Using now that ψk is solution of the Schrödinger equation
− ħh

2

2mψ
′′
k + Vψk = εkψk, we get:

d
dx

�

ψk(x)ψ
′
l(x)−ψ

′
k(x)ψl(x)

�

=
2m

ħh2 (εk − εl)ψk(x)ψl(x) . (164)
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This relation allows us to directly compute the integral

Ak,l =

∫ ∞

0

ψk(x)ψl(x) dx = −
ħh2

m
1

εk − εl

�

ψk(0)ψ
′
l(0)−ψ

′
k(0)ψl(0)

�

. (165)

Using the expression of the wave functions, Eq. (64) and properties of the Hermite polynomi-
als [46], we obtain that Ak,l is zero if k and l have the same parity, and

A2m,2n+1 =
(−2)n+m+1Γ (m+ 1

2)Γ (n+
3
2)

π
p

2π
p

(2n+ 1)!(2m)!(2m− 2n− 1)
. (166)

Since we only need the square of these coefficients, we can simplify this expression using
properties of the Γ function:

(A2m,2n+1)
2 =
Γ (m+ 1

2)Γ (n+
3
2)

π2n!m!
1

(2m− 2n− 1)2
. (167)

We are interested in the limit in which the number N of fermions is large. We expect the
variance of N+ to be dominated by the fluctuations near the Fermi level. Therefore, it is
enough to estimate the coefficients Ak,l for k and l of order N . Therefore, for k = N t and
l = k+ p, we get:

(AN t,N t+p)
2 '







0 if p is even,

1
p2π2

if p is odd.
(168)

Note that these are the leading contributions to the coefficients Ak,l : they also receive O (N−1)
corrections. In addition, we have only considered the case where k, l = O (N)with k−l = O (1).
It is clear from the final expression of Ak,l (168) that the case k−l = O (N) gives only subleading
corrections.

D Numerical simulations of determinantal point processes

A determinantal point process is a random point process {xn} which is entirely characterised
by a kernel K(x , y). All n-points correlations functions can be expressed as n×n determinants
involving the kernel K , see Eq. (25). We consider such a process with a kernel

K(x , y) =
∞
∑

k=0

λkψ
∗
k(x)ψk(y) , (169)

where 0¶ λk ¶ 1 and
∫ ∞

−∞
ψ∗k(x)ψl(x)dx = δk,l . (170)

A general method to generate numerically realisations of this process was introduced in
Ref. [43]. We reproduce here a similar algorithm described in [44]. This algorithm was also
used in the physics literature, see e.g. Refs. [47, 48]. It relies on the following theorem: in-
troduce a set of Bernoulli random variables nk = 0 or 1, with mean value nk = λk. Then, the
determinantal point process with kernel

K̃(x , y) =
∞
∑

k=0

nkψ
∗
k(x)ψk(y) (171)
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has the same statistics as the original process with kernel (169). In terms of fermions, this
means that picking a realisation of the positions of the particles in the grand canonical ensem-
ble is equivalent to first picking a quantum state {nk} from the Gibbs measure (6) and then
generating a realisation of the positions from that quantum state. Using this property, one can
generate realisations of the determinantal point process using the following procedure:

1. Generate the index M of the highest occupied level, using that

Proba(M = m) = λm

∏

i>m

(1−λi) . (172)

2. Generate the occupation numbers for k < M , from the measure

Proba(nk = 1) = λk . (173)

Set nM = 1 and np = 0 for p > M . Note that this realisation will contain N =
∑

k nk
points. Denote also {kn}n=1,...,N the indices of the occupied levels (nki

= 1) and
~v(x) = (ψk1

(x), . . . ,ψkN
(x))T .

3. Pick the first point X1 from the distribution

p1(x) =
1
N

N
∑

p=1

�

�

�ψkp
(x)
�

�

�

2
=
||~v(x)||2

N
, (174)

and introduce ~e1 = ~v(X1)/||~v(X1)||.

4. Knowing the positions {X1, . . . , Xn} of the first n points and the set of unit vectors
(~e1, . . . ,~en) generate the position Xn+1 of the next point from the distribution

pn+1(x) =
1

N − n

 

||~v(x)||2 −
n
∑

j=1

�

�~e j
∗ · ~v(x)

�

�

2

!

. (175)

Construct ~en+1 = ~wn+1/||~wn+1||, where

wn+1 = ~v(Xn+1)−
n
∑

j=1

(~e j
∗ · ~v(Xn+1)) ~e j . (176)

This procedure gives a realisation (X1, . . . , XN ) of the determinantal point process with ker-
nel (169). Generating the points from the rather complex distributions pn(x) can be done
using rejection sampling [49].
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