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Abstract

Polonium is the only element to crystallise into a simple cubic structure under ambiant
conditions. Moreover, at high temperatures it undergoes a structural phase transition
into a less symmetric trigonal configuration. It has long been suspected that the strong
spin-orbit coupling in Polonium is involved in both peculiarities, but the precise mech-
anism by which it operates remains controversial. Here, we introduce a single micro-
scopic model capable of capturing the atomic structure of all chalcogen crystals: Sele-
nium, Tellurium, and Polonium. We show that the strong spin-orbit coupling in Polonium
suppresses the trigonal charge and orbital ordered state known to be the ground state
configuration of Selenium and Tellurium, and allows the simple cubic state to prevail
instead. We also confirm a recent suggestion based on ab initio calculations that a small
increase in the lattice constant may effectively decrease the role of spin-orbit coupling,
leading to a re-emergence of the trigonal orbital ordered state at high temperatures. We
conclude that Polonium is a unique element, in which spins, orbitals, electronic charges,
and lattice deformations all cooperate and collectively cause the emergence of the only
elemental crystal structure with the simplest possible, cubic, lattice.
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1 Introduction

Polonium is unique in the periodic table, being the only element to crystallise into a simple cu-
bic lattice structure under ambiant conditions. Besides it being remarkable that such a loosely
packed configuration is favoured in any material, this is also surprising given that Tellurium
(Te) and Selenium (Se), the two isoelectronic elements directly above Po in the periodic table,
adopt a trigonal spiral lattice structure [1] (Sulphur and Oxygen in the same column form
molecules rather than crystals, and will be ignored from here on). The trigonal arrangement
in Te and Se can be understood as arising from a Peierls instability of a hypothetical simple cu-
bic parent structure [2], in which the short bonds in three simultaneous charge density waves
connect in a pattern that spirals around the body diagonal of the cube (see inset in figure 1).

Looking more closely, the spiral structure in Se and Te is in fact a combined charge and
orbital ordered state, in which a spiral pattern of preferential occupation of different p-orbitals
necessarily accompanies the charge order [2]. Polonium however, is considerably heavier than
Se and Te, and relativistic effects may be expected to play a role in determining its ground
state. Heuristically, it is clear that the presence of strong spin-orbit coupling, eliminating or-
bitals as individual degrees of freedom, is at odds with the formation of orbital order. In fact,
ab initio calculations of the phonon dispersion in elemental chalcogens indicate that inclusion
of relativistic effects suppresses a softening of the phonons, and possibly a related structural
instability, which would otherwise be present [3–6]. The mechanism by which this is accom-
plished, as well as the identification of the dominant relativistic effect, being either a Darwin
term, mass-velocity term, or atomic spin-orbit interaction, is still an unsettled and contro-
versial issue [3–8]. In this paper, we construct a minimal microscopic model for elemental
chalcogens, in which the evolution of the lattice structure can be studied as a function of the
strength of spin-orbit coupling.

We show that at weak coupling, the simple cubic structure is unstable towards the forma-
tion of combined charge and orbital order, which results in the spiral trigonal lattice structure
observed in Se and Te. Upon raising the strength of the spin-orbit coupling, the instability
is suppressed, and the simple cubic structure observed in Po is realised instead. Moreover,
we show that taking into account thermal expansion of the lattice, the strutural instability is
suppressed at elevated temperatures. That is, using parameter values that are realistic for Po,
the phonon structure is softened to such an extent as to effectively weaken the role of spin-
orbit coupling at high temperatures. As a result, we find a transition between the two known
allotropes of Polonium, the simple cubic α−Po and the trigonal β−Po. We argue that this cor-
responds to the experimentally observed transition at approximatly 348K [7,9], and conclude
that like Se and Te, β−Po has a combined charge and orbital ordered structure (as indicated
in the phase diagram of figure 2). The unusual lowering of the crystal symmetry upon raising
temperature, and the peculiar phase diagram connecting the structure of Po to that of Se and
Te, are thus found to be due to the intricate interplay between spins, orbitals, charges, and
lattice deformations in the elemental chalcogens, where none of these degrees of freedom can
be neglected.

2 Minimal microscopic model

The starting point for constructing a minimal microscopic model capable of describing the lat-
tice instabilities in the entire family of elemental chalcogens, is a simple cubic arrangement of
atoms. All chalcogens have four electrons in the outer shell of p-orbitals, so we will consider
a tight-binding model taking into account only px , py , and pz-orbitals on each site. For conve-
nience, we choose the quantisation axes for the orbitals to coincide with the lattice directions.
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Figure 1: The value of the bond density order parameter B, as a function of the
strength of spin orbit coupling λSOC, which is measured in units of the bandwidth t.
The points are self-consistent numerical solutions of the set of equations in Eq. (4),
while the solid line connecting them is a guide to the eye only. The unordered state at
highλSOC/t corresponds to the simple cubic lattice structure ofα−Po, as shown in the
right inset. In the ordered state, the planes perpendicular to the cube’s body diagonal
move closer together, by means of a contraction of the thick bonds shown in blue in
the left inset. The result is the spiral trigonal lattice structure known to be realised
in Se and Te. Because the structural transition is the result of three simultaneous
density wave instabilities, each occurring in chains of distinct orbitals, the trigonal
state necessarily is also an orbital ordered state. The least occupied orbitals in each
trigonal plane are highlighted in the left inset.

The strongest orbital overlaps then occur in one-dimensional chains of p-orbitals aligned in a
head-to-toe fashion along their long axis. In other words, the overlaps of for example neigh-
bouring px orbitals on the x-axis are much larger than those between neighbouring px orbitals
on the y or z axes, or between any two p orbitals of different type.

A minimal model for the bare electronic structure may thus be constructed by taking into
account a hopping integral t along chains in all three directions, but neglecting all other orbital
overlaps, and in particular any inter-chain hopping. Interactions between one-dimensional
chains in different directions can then be taken into account by including the Coulomb inter-
action V between electrons in different p-orbitals on the same site. The resulting model is
known to qualitatively capture the instability in the electronic structure which underlies the
formation of combined charge and orbital order in Se and Te [2]. The electronic Hamiltonian
for this minimal model can be written as the sum of tight binding and Coulomb terms:

ĤTB = t
∑

r,n,σ

ĉ†
r,n,σ ĉr+n,n,σ +H.c.

ĤCoul = V
∑

r,n,σ,σ′
ĉ†
r,n,σ ĉr,n,σ ĉ†

r,n+1,σ′ ĉr,n+1,σ′ , (1)

where ĉ†
r,n,σ creates an electron on position r, with spin σ, in a pn-orbital, with n ∈ {x , y, z}.

The lattice vectors an are written using the shorthand notation n. In our simulations, we use
the parameter values t = 2.0 eV and V = 39 meV.

We additionally allow atoms to be displaced by introducing phonons. Since the phonon
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Figure 2: Phase diagram for elemental chalcogens as a function of temperature and
strength of spin-orbit coupling. A. Schematic phase diagram. At low temperatures,
increasing the strength of spin orbit coupling leads to a suppression of the trigonal
instability, and hence a stabilisation of the simple cubic lattice. Polonium is expected
to fall just to the right of the transition point, and thus to have a simple cubic ground
state, while Selenium and Tellurium have low spin-orbit interaction, and thus a trig-
onal ground state structure. At fixed spin-orbit coupling, starting from the trigonal
phase, the melting point (schematically indicated by the red dashed line) is encoun-
tered before charge and orbital order is destroyed and the local structure becomes
cubic. Starting instead from the simple cubic phase, thermal expansion of the lattice
lowers the bare phonon energy and thus shifts the balance of competing interactions
in favour of the trigonal phase. B. The transition temperatures between cubic (lower
right) and trigonal (upper left) phases, found by self-consistently solving the mean
field equations. The error bars indicate the uncertainty in assigning the transition
point within the precision of our numerical routine, and the solid line is a guide to
the eye.

dispersion is approximately flat in the momentum-space region of interest, we employ an
Einstein mode of constant energy ~ω = 3.5 meV. There are two different ways in which elec-
trons couple to the phonons. On the one hand, atomic displacements alter the interatomic
distances, which affects the hopping of electrons between them. On the other hand, atomic
displacements also alter the local density of ions surrounding a particular site, which influences
the on-site potential energy of electrons. We take into account both the kinetic and potential
energy contributions of phonons:

Ĥkin
el-ph = g(1)

∑

r,n,σ

�

ûr,n − ûr+n,n

�

ĉ†
r,n,σ ĉr+n,n,σ +H.c.

Ĥpot
el-ph = g(2)

∑

r,n

�

ûr+n,n − ûr−n,n

�

ĉ†
r,n,σ ĉr,n,σ. (2)

Here ûr,n is the operator corresponding to the n-component of displacement for the atom
on position r. The relative strength of the two types of electron-phonon coupling g(1)

and g(2) determines whether a spiral trigonal structure consisting of site-centered or bond-
centered charge density waves is formed in Se and Te. For simplicity, we assume equal values
g(1) = g(2) = 0.04 eV for these couplings, resulting in a bond-centered spiral state consistent
with experimental observations.

The minimal model consisting of the terms considered so far gives rise to three sets of
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mutually parallel Fermi surface sheets. This situation is extremely well-nested, and, together
with the electron-phonon coupling, renders the simple cubic phase unstable towards the for-
mation of three simultaneous charge density waves, connected to the three sets of planes.
In fact, a single, common nesting vector Q = 2π/3a(1, 1,1) can be chosen such that every
point on a Fermi surface sheet is connected to a corresponding point on a parallel sheet. The
on-site Coulomb interaction provides a coupling between the density waves, resulting in an
overall spiral trigonal structure. Because each charge density wave resides in chains of a par-
ticular type of orbital, the trigonal structure is automatically orbital ordered as well as charge
ordered [2].

In Polonium, we expect relativistic effects to suppress the trigonal β-Po phase at low tem-
peratures, and instead stabilise the simple cubic α-Po allotrope. This is made possible in the
minimal model by including spin-orbit coupling:

ĤSOC = λSOC

∑

r,n,n′,σ,σ′
Mnn′σσ′ ĉ

†
r,n,σ ĉr,n′,σ′ , (3)

where λSOC is the overall strength of the spin-orbit coupling, while M contains the matrix
elements of the operator L̂ · Ŝ in the basis of states labelled by orbital index n and spin σ.

The full Hamiltonian, combining all terms from equations (1), (2), and (3), and taking
arbitrary but realistic values for all model parameters, can be solved numerically within the
mean field approximation. This is done by introducing mean field averages corresponding to
charge density, bond density, and displacement waves in each of the three lattice directions:

∑

σ

〈ĉ†
r,n,σ ĉr,n,σ〉= ρ0 + Acos (Q · r+ϕn)

∑

σ

〈ĉ†
r,n,σ ĉr+n,n,σ〉= σ0 + B cos (Q · (r+ n)/2+ϕn)

〈ûr,n〉= ũ sin (Q · r+ϕn) . (4)

Here, A is the mean-field amplitude for the on-site charge density variations, while B corre-
sponds to modulations of the bond densities. The atomic displacement field is given by ũ. The
wave vector Q is equal for all instabilities and is determined by the strongly nested Fermi sur-
face, but the phases ϕn differ between density waves in different lattice directions n. Taking
ϕn = n ·2π/3, the known spiral trigonal lattice structure of Te and Se is recovered for vanish-
ing spin-orbit coupling. This relation can be understood as an optimisation of the competition
between Coulomb and electron-phonon interactions [2], and is assumed to hold also for finite
values of the spin-orbit coupling.

The phonon part of the mean field Hamiltonian can be solved analytically using a Bogoli-
ubov transformation [10], which shows the atomic displacements in the presence of given
electronic order parameters A and B to be ũ = 2

p
3/~ω(2Bg(1) − Ag(2)). This expression

relates the displacement field ũ to the amplitudes of site-centered and bond-centered charge
modulations. Notice that the size of displacements is inversely proportional to the bare phonon
frequency. The fermionic part of the mean field Hamiltonian can be written in matrix form and
diagonalised numerically for any given value of ũ. Iterating this procedure eventually yields
self-consistent solutions for the displacement ũ and the density modulations A and B.

Without spin-orbit coupling and at zero temperature, the mean field ground state has a
non-zero expectation value for the displacements, and is hence in the spiral trigonal lattice
configuration. As the strength of spin-orbit coupling, λSOC, is increased, a critical point is en-
countered, beyond which no non-trivial self-consistent solutions exist, as shown in figure 1.
Intuitively, the disappearance of the trigonal state at large λSOC can be understood by realis-
ing that it corresponds to a state of combined charge and orbital order. The strong coupling
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between spin and orbitals destroys the independent orbital degree of freedom, and hence pre-
vents the onset of orbital order. As a result, the simple cubic lattice remains the ground state
configuration. Alternatively, the competition between spin orbit coupling and density wave
order may be phrased in terms of energetics. Large spin orbit coupling causes the Fermi sur-
face to deform and gaps to open up. This obstructs the formation of charge and orbital order,
which depends on having sufficiently nested Fermi surface available for a charge ordering gap
to lower the overall electronic energy.

3 Turning up the temperature

It is known experimentally that polonium undergoes an unusual structural phase transition
at about 348 K, where the low temperature simple cubic α−Po lattice structure is reduced in
symmetry and becomes the high temperature trigonal β−Po phase [9, 11, 12]. In order to
describe this effect in our minimal model, we include the effect of temperature in two places.
First, the mean field expectation values all become thermal expectation values, written for the
electronic part of the Hamiltonian in terms of Fermi-Dirac distributions. Secondly, and more
importantly, we take into account the fact that thermal expansion of the lattice will cause a
lowering of the bare phonon energy. Owing to the relative softness of the material, the change
in phonon energy in Po is significant, and cannot be neglected [6].

To describe the dependence of phonon energy on temperature, we first approximate the
thermal expansion to be linear, so that the lattice constant at temperature T can be written as
a(T ) = a0(1+α∆T ). Here a0 is the lattice constant at some reference temperature (∆T = 0),
and α is the linear thermal expansion coefficient, which we take to be the experimentally
determined value α = 23.5 × 10−6K−1, obtained at 298K [13]. Taking α to be fixed while
varying the temperature is seen to be a reasonable approximation in the region of interest by
comparing it to the volumetric thermal expansion in Po as obtained by first principle calcula-
tions [5]. Assuming the phonon energy to depend on the interatomic distance, the expansion
of the lattice will cause the bare phonon energies to soften, which we describe by the linear
dependence:

~ω= ~ω0 + γ(a(T )− a0)/a0, (5)

where ~ω0 is the energy of the bare phonon at the reference temperature where ∆T = 0
and a(T ) = a0. Fitting equation (5) to experimental data in order to establish the value of
γ is prevented by the fact that polonium’s strong radioactivity leads to a scarcity in relevant
experimental data. A rough estimate of γ ≈ −172 meV can nonetheless be obtained by fit-
ting equation (5) to ab initio studies of phonon energy versus lattice constant, reported in
reference [6].

The lattice expansion affects the fermionic part of the mean field calculations through the
inverse proportionality of the displacement ũ on the bare phonon energy. Looking for self
consistent solutions as a function of both temperature and spin-orbit coupling then leads to
the phase diagram shown in figure 2. At zero temperature, sufficiently large values of spin-
orbit coupling are seen to effectively prevent the simple cubic structure from distorting into a
trigonal phase. Raising the temperature lowers the bare phonon energy however, which makes
the simple cubic structure more unstable, and hence requires ever larger spin-orbit coupling to
prevent it from breaking down. As a result, for any fixed value of the spin-orbit coupling, the
lattice may undergo a charge ordering transition into the trigonal charge and orbital ordered
state, even if the low temperature phase was simple cubic. This effect is shown once more in
figure 3 in terms of the thermal evolution of the order parameter for fixed values of the spin-
orbit coupling. Notice that the predicted chirality of the combined charge and orbital ordered
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Figure 3: The value of the order parameter B as a function of temperature, at various
fixed values of the spin orbit coupling strength. At low temperature the lattice is
simple cubic and order is exponentially suppressed (as indicated by the exponential
fits to the data), while high temperatures favour the formation of combined charge
and orbital order within a trigonal lattice structure (as shown by the linear fits). The
transition into the ordered state, qualitatively indicated by the dotted lines, shifts to
progressively higher temperatures for increasing strength of the spin-orbit coupling.

phase can in principle be observed in x-ray diffraction of optical activity experiments, while
the orbital order itself should yield observable signatures in dedicated STM experiments.

The phase diagram of figure 2 agrees qualitatively with the evolution of lattice structures
throughout the family of elemental chalcogens. The spin-orbit coupling in elemental Se and Te
is weak enough to place them to the left of the zero-temperature transition point, as indicated
schematically by the dashed lines in figure 2. Notice that at extremely high temperatures,
the combined charge and orbital order in these crystals may be expected to be destroyed by
thermal fluctuations. There is no guarantee however that this will happen below the melting
temperature of the material. In fact, there are experimental indications that the short-range
coordination in molten elemental Te changes from trigonal to cubic just above its melting tem-
perature [14–16]. In contrast, polonium has strong spin-orbit coupling, placing it to the right
of the zero-temperature transition, where the thermal evolution going from zero to high tem-
peratures includes a transition from simple cubic to the less symmetric trigonal phase before
the melting point is reached. Although probably impractical, further experimental exploration
of the phase diagram of figure 2 could in principle be achieved by considering different iso-
topes of Po, in which the change in atomic mass affects the strength of the spin-orbit coupling.

4 Conclusions

The unique simple cubic lattice structure of elemental α−Po at ambient conditions, as well as
its unusual symmetry-lowering structural transition towards β−Po at elevated temperatures,
can be qualitatively understood in terms of the minimal microscopic model presented here.
That the lattice structures and phase diagrams of the isoelectronic elements Se and Te can be
understood within the same model without any additional assumptions, firmly establishes the
fact that it captures the essential physics in the description of crystalline elemental chalcogens.
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The simple cubic ground state of polonium is found in this model to be of a deceptive sim-
plicity. The electronic structure consists of well-nested pieces of Fermi surface, which in the
presence of electron-phonon coupling inevitably lead to large peaks in the electronic suscep-
tibility and hence an incipient structural instability. The fact that three separate instabilities
loom in three distinct orbital sectors, coupled together by Coulomb interactions, yields a pre-
ferred trigonal configuration of the lattice, corresponding to a combined charge and orbital
ordered state. This novel type of order is in fact realised in Se and Te, which have spiral trig-
onal lattice structures at all temperatures. In polonium however, the additional presence of
strong spin-orbit coupling competes with the onset of charge and orbital order, which can be
understood either in terms of the orbital degree of freedom becoming obsolete, or in terms
of decreased nesting due to gaps opening up at the Fermi energy. The spin-orbit coupling
thus prevents the simple cubic lattice from becoming unstable. At elevated temperatures, the
balance is once again shifted in favour of the structural instability, by the softening of phonon
energies as the lattice expands. The result is a re-emergence of the spiral trigonal state, but now
at high temperatures, sitting above a more symmetric low-temperature simple cubic phase.

The elements Selenium, Tellurium, and Polonium, thus emerge as crystals in which an
intricate balance between all possible degrees of freedom, orbitals, charge, spin, and atomic
displacements, determines the structure of the atomic lattice. The fact that multiple degrees
of freedom cooperate and compete with each other profoundly affects the physics of these
deceptively simple materials, as can be clearly seen from the phase diagram across the family
of chalcogens. Spin-orbit coupling competes with the onset of a cooperative charge and orbital
ordered phase. This can be undone at high temperatures, but rather than thermal fluctuations
determining the evolution of the phase diagram along the temperature axis, it is the indirect
effect coming from the softening of phonons upon thermal expansion that shifts the balance
of power between competing ingredients. That such a complex interplay can nonetheless
be understood in terms of a simple minimal model, puts forward the family of chalcogens
as a textbook case for understanding the possible effects of competition, co-existence, and
cooperation among spin, charge, orbital, and lattice degrees of freedom.

Funding information J.v.W. acknowledges support from VIDI grant 680-47-528, financed
by the Netherlands Organisation for Scientific Research (NWO).

A Appendix: mean-field Hamiltonian

For completeness we present the mean-field Hamiltonian as obtained
from equations (1)-(4). A momentum space basis may be defined as
(px↑(k), px↓(k), py↑(k), . . . px↑(k + Q), px↓(k + Q), . . . px↑(k − Q), . . . ). Here, the first in-
dex runs over the three types of p-orbitals, the second is a spin index, and the momentum is
taken to lie within the reduced Brillouin zone. The Hamiltonian then has diagonal elements
equal to 2t(cos(k) − µ) for the first six elements, 2t(cos(k + Q) − µ) for the next six, and
2t(cos(k − Q) − µ) for the final ones. The Coulomb interaction appears as elements of the
form VA(e±iϕa + e±iϕb), connecting states with like orbitals and spins in different momentum
sectors. The indices a and b correspond to the two orbital orientations different from the
one of the states connected by this element. The electron-phonon coupling may be written
as −4e±iϕa[g(2)Asin(Q) − 2g(1)B sin(Q/2)][g(2) sin(Q) + g(1)(sin(k) − sin(k′))]/(~ω). This
term also connects states with like orbitals and spins, but different momenta. The index a
corresponds to the orbital index of the element under consideration, and the momenta k and
k′ are the momenta being connected. Finally, the spin orbit coupling acts within a momentum
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sector, and is of the form:

ĤSOC = λSOC
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