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Abstract

The distribution of Bethe roots, solution of the inhomogeneous Bethe equations, which
characterize the ground state of the periodic XXX Heisenberg spin-1

2 chain is investigated.
Numerical calculations show that, for this state, the new inhomogeneous term does not
contribute to the Baxter T-Q equation in the thermodynamic limit. Different families of
Bethe roots are identified and their large N behaviour are conjectured and validated.
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1 Introduction

The Bethe-Hulthén ansatz approach [1,2] has shown its interest by allowing on to investigate
the thermodynamic limit of spin chains [2, 4–9] and predict exact physical quantities. The
spectrum of the Hamiltonians of integrable spin chains follows from the one of the transfer

1

https://scipost.org
https://scipost.org/SciPostPhys.4.6.030
mailto:samuel.belliard@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.4.6.030&amp;domain=pdf&amp;date_stamp=2018-06-15
http://dx.doi.org/10.21468/SciPostPhys.4.6.030


SciPost Phys. 4, 030 (2018)

matrix t(λ), the generating function of conserved quantities of the model and can be char-
acterized by the Baxter T-Q equation [11] which, in the case of the periodic XXX Heisenberg
spin−1

2 chain with N spins is given by

t(λ)q̂(λ) =
�

λ+
i
2

�N

q̂(λ− i) +
�

λ−
i
2

�N

q̂(λ+ i), (1)

where q̂(λ) is the Q operator which commutes with the transfer matrix and whose eigenvalues
have the polynomial form

q(λ) =
M
∏

k=1

(λ−λk), (2)

with M ≤ N
2 .

The recent development of the Bethe ansatz for the models without U(1) symmetry, where
the usual Bethe-Hulthén ansatz approach fails, leads to the discovery of a new family of Baxter
T-Q equation [16], called inhomogeneous Baxter T-Q equation or modified Baxter T-Q equation.
This new family differs from the usual one in two ways: it involves a new term and the order
of the associated Q polynomial is fixed. The implementation of the Bethe ansatz changes and
the techniques to obtain this equation and the associated states lies at the intersection of many
different methods: Off diagonal Bethe ansatz [15], Modified algebraic Bethe ansatz [12, 24],
Separation of variables [20–22]. Moreover, it was observed in [15] that this inhomogeneous
Baxter T-Q equation can also characterize finite models with U(1) symmetry and, in the case
of the periodic XXX Heisenberg spin−1

2 chain with N spins, is given by 1

t(λ)Q̂(λ) = −
�

λ+
i
2

�N

Q̂(λ− i)−
�

λ−
i
2

�N

Q̂(λ+ i) + 4
�

λ2 +
1
4

�N

, (3)

where Q̂(λ) is the inhomogeneous Q operator whose eigenvalues have the polynomial form

Q(λ) =
N
∏

i=1

(λ− ui). (4)

It is worth mentioning that the existence of such an operatorial T-Q equation is a conjecture
contrary to its functional form.

The understanding of the thermodynamic limit for models with a spectrum characterized
by such modified Baxter T-Q equation is an important challenge. For models with a boundary
term, it was observed numerically in [15, 17–19] that the contribution to the ground state
energy for the inhomogeneous term decreases as N−1, where N is the length of the chain.

In this work, we investigate the evolution of the ground state’s Bethe roots as a function
of the chain length N and classify the types of roots which appear in the solution of the inho-
mogeneous Bethe equations. In order to perform the thermodynamic limit a key ingredient
is, indeed, knowledge of the structure of the Bethe equation’s solution. For example, the pe-
riodic XXX Heisenberg spin−1

2 chain, the antiferromagnetic ground state belongs to the class
of solution where q(λ) have only real roots [2–5] (while excited states can also have complex
roots that behave as strings [1]). Considering that the Hamiltonian of this model can be char-
acterized by both the homogeneous Baxter T-Q equation (1) and the inhomogeneous Baxter
T-Q equation (3), one can retrieve, using the well-know homogeneous case, the Bethe roots of

1A more general characterization depending on an arbitrary parameter can be constructed [16], here for nu-
merical convenience we fix it to its simplest form which also corresponds to the diagonal limit of the T-Q equation
for the twisted XXX Heisenberg spin− 1

2 chain in the parametrization of [24].
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the inhomogeneous Baxter Q polynomial, without directly solving the inhomogeneous Bethe
equations. Here, we will exclusively consider the distribution of Bethe roots which character-
izes the antiferromagnetic ground state.

The paper is organized as follows, in the section 2 we recall the Bethe equations, their
logarithmic form, and their relation to the homogeneous Baxter T-Q equation (1). The ground
state’s real Bethe roots are then calculated up to N = 300. In section 3 we reconstruct the Q
polynomial from the inhomogeneous Baxter T-Q equation (3) and the homogeneous solution
giving the transfer matrix in order to numerically find the solution of the inhomogeneous Bethe
equations characterizing the antiferromagnetic ground state of the model. Three different
families of Bethe roots are then identified and the large N behavior is discussed. Concluding
remarks are given in section 4.

2 Homogeneous ground state solution

The roots of the Q baxter polynomial q(λ) (2), {λ1 . . .λM} satisfy the Bethe equations
�

λk +
i
2

�N M
∏

j 6=k

�

λk −λ j − i
�

=
�

λk −
i
2

�N M
∏

j 6=k

�

λk −λ j + i
�

, (5)

with k ∈ {1, ..., M} and M = {0,1, ..., N/2} (we always consider N even). These equations
follow from the Baxter TQ equation (1) evaluated at the zeros of q(λ). The knowledge of
the Bethe roots {λ1 . . .λM} allows from equation (1) a direct numerical computation of the
eigenvalue t(λ) at any point λ. This formulation would lead to numerical difficulties in eval-
uating t(λ) in the immediate vicinity of a Bethe root, as we should divide by q(λ), a problem
which is explicitly avoided by the numerical approach used in the following. Instead of trying
to directly solve the Bethe equations in the form (5), it is much more stable for numerical
computation to use the logarithmic form

N ln

�

1− 2iλ j

1+ 2iλ j

�

= i
�

N +M + 1+ J j

�

π+
M
∑

k 6= j

�

ln

�

1− i
�

λ j −λk

�

1+ i
�

λ j −λk

�

��

, (6)

where J j is an integer which specifies the various possible logarithmic branches. For a size,
N = 4n, such that both N and M = N/2 are even, the ground state solution is found for the
values J j = 2( j − 1− N) with j = 1,2 . . . , N

2 .
A simple implementation of the Newton-Raphson method is then sufficient for equation

(6) to rapidly converge to the desired ground state solution starting from almost any ini-
tial approximation for the position of the Bethe roots. One can exploit the symmetry of the
ground state root distribution which come in pairs of ±λi , in order to reduce the size of the
system by half. Indeed, one can solve for only the positive roots: λ1 . . .λN/4 by rewriting
the N/4 first equations in terms of these variables having replaced the remaining ones by
{λN/4+1 . . .λN/2} = {−λ1 · · · − λN/4}. The resulting solutions are presented in Figure 1 and
uniquely define the corresponding q(λ) polynomial, i.e. the N/2 order polynomial with zeros
placed at each of these roots.

3 Inhomogeneous T-Q ground state solution

The roots of the Q baxter polynomial Q(λ) (4), {u1 . . . uN} satisfy the Bethe equations
�

uk −
i
2

�N N
∏

j 6=k

�

uk − u j + i
�

−
�

uk +
i
2

�N N
∏

j 6=k

�

uk − u j − i
�

= 4
�

u2
k +

1
4

�N

, (7)
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Figure 1: Position of the N/2 Bethe roots for the ground-state solution to the homogeneous
T-Q equation. System sizes range from N = 4 to N = 300 with N/2 even.

with k = {1, .., N}. These equations follow from the Baxter TQ equation (3) evaluated at the
zeros of Q(λ).

Having computed the homogeneous q polynomial through its N/2 zeros in the previous
section and therefore the corresponding t(λ) polynomial which stays the same in inhomoge-
neous case and the homogeneous one, we can retrieve the inhomogeneous Baxter Q operator
from the inhomogeneous T-Q equation (3) and find it roots without having to explicitly solve
the inhomogeneous Bethe equations (7). This greatly simplifies the calculation since, due to
the inhomogeneous term, they cannot be simply brought into logarithmic form so that their
explicit numerical solving is a much more arduous task than in the homogeneous case.

3.1 Reduction of the inhomogeneous T-Q equation

Considering that for any λ, equation (3) couples exclusively the polynomial Q at three points
λ,λ ± i, it becomes simple to define a system of sparse linear equations. Indeed, through a
Lagrange polynomials representation, one can define any polynomial P(λ) of order N , in terms
of the values P(zi) it takes at a set of N + 1 arbitrary grid points {z1 . . . zN+1}. In the case at
hand (4), since the leading coefficient is know to be 1, only N points are necessary to define
exactly

Q(λ) = `(λ)

�

1+
N
∑

n=1

Q(zn)
`′(zn)

1
λ− zn

�

with `(λ)≡
N
∏

n=1

(λ− zn). (8)

Considering that the T-Q equation only couples Q(λ) and Q(λ± i), one can choose to use
a grid of points {z1 . . . zN}, which are separated by i allowing us to fully define Q(λ) in terms
of the N values Q(zi). These Q(zi) will simply be the solution to a set of (mostly) tridiagonal
linear equations. Indeed, on a grid such that zn+1 = zn + i , at every point except for z1 and
zN , equation (3) reads

t(zn)Q(zn) +
�

zn +
i
2

�N

Q(zn−1) +
�

zn −
i
2

�N

Q(zn+1) = 4
�

z2
n +

1
4

�N

, (9)

leading to a core set of N − 2 linear equations coupling only three of the variables Q(zn). The
two extreme points z1 and zN still lead to full equations with non-zero coefficients in front of
each variables {Q(z1), . . . ,Q(zN+1)} due to the presence of Q(z1− i) or Q(zN+1+ i)which, using
equation (8), could be expressed in terms of a full sum over the values {Q(z1), . . . ,Q(zN )}.
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When considering ground state solutions for even N/2 (N being an integer multiple of 4)
we know, from the previous section, that the t(λ) polynomial can be explicitely deduced from
the homogeneous Baxter T −Q equation with a q(λ) polynomial whose zeros are all real and
come in symmetric pairs: ±λi . This fact allows us to conclude that

t(z) = t(−z) = t∗(z∗) which implies Q(z) =Q(−z) = [Q(z∗)]∗ . (10)

It therefore leads to further simplifications to choose the (i-separated) grid points zn to lie on
the imaginary axis and to be symmetric around the real axis, namely: zn =

�

−N+1
2 + n

�

i for
n = 1, 2 . . . N . By doing so, one insures that Q(zi) ∈ R and that grid points come in pairs,
i.e. there exists zn = −zn′ allowing us to reduce the system of linear equations to only N/2
equations using variables Q(zi) which will take real values.

Additionally, it is easily shown that, for any N integer multiple of 4, a pair of Bethe roots
is always found at ± i

2 . Indeed looking at the specific equations obtained from (3) at ± i
2 , one

has:

t(i/2)Q(i/2) +Q(−i/2) = 0, t(−i/2)Q(−i/2) +Q(i/2) = 0. (11)

Considering as well that t(−i/2) = t(i/2) and Q(i/2) =Q(−i/2), we simply find:

[t(i/2) + 1]Q(i/2) = 0, (12)

and therefore to Q(i/2) =Q(−i/2) = 0 since equation (1) gives t(i/2) = q(−i/2)
q(i/2) = 1.

Having shown that Q(z) has a pair of roots at ± i
2 and that our choice of a purely imaginary

symmetric set of grid points allows us to reduce the expression for Q(z) by half, one can define:

Q(z) =
�

z −
i
2

��

z +
i
2

�

Q̃(z), (13)

where Q̃(z) is a symmetric polynomial (Q̃(z) = Q̃(−z)) of order N −2 with leading coefficient
1 which obeys the T − Q̃ equation:

t(λ)Q̃(λ) = −
�

λ+
i
2

�N−1�

λ−
3i
2

�

Q̃(λ− i)−
�

λ−
i
2

�N−1�

λ+
3i
2

�

Q̃(λ+ i)

+4
�

λ2 +
1
4

�N−1

. (14)

The polynomial Q̃(z) can be written, in a Lagrange form, only in terms of the grid points in
the upper complex plane as:

Q̃(z) = ˜̀(z)
N/2−1
∑

n=1

Q̃
�2n+1

2 i
�

˜̀′
�2n+1

2 i
�

�

1

z −
�2n+1

2

�

i
−

1

z +
�2n+1

2

�

i

�

,

with ˜̀(z) =
`(z)

(z − i/2)(z + i/2)
=

N/2−1
∏

n=1

�

z −
�

2n+ 1
2

�

i
��

z +
�

2n+ 1
2

�

i
�

, (15)

where we used the antisymmetry relation: ˜̀′
�2n+1

2 i
�

= −˜̀′
�

−2n+1
2 i

�

.
In the end, the different values {Q̃ (3i/2) , Q̃ (5i/2) , Q̃ (7i/2) . . . Q̃ ((N − 1)i/2)} needed to

reconstruct the polynomial Q̃(z) (and therefore Q(z)) are found as the solution to the linear
system of equations:

t(3i/2)Q̃(3i/2) + 3Q̃(5i/2) + 2N+1 = 0

t(ki + i/2)Q̃(ki + i/2) + (k+ 1)N−1(k− 1)Q̃((k− 1)i + i/2)

+(k+ 2)(k)N−1Q̃((k+ 1)i + i/2) = −4(k(k+ 1))N−1 ∀ k = 2, 3 . . . N/2− 2

t(0)2NQ̃(0)− 6Q̃(i)− 24−N = 0. (16)
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Figure 2: Inhomogeneous Bethe roots for N=4 to N=300.

The last equation, completing the system, is simply obtained from (14) evaluated at λ = 0.
It is the only one of these equations which involves every Q̃ (zi) when explicitly written in
terms of {Q̃ (3i/2) . . . Q̃ ((N − 1)i/2)} using the Lagrange basis representation (15) of Q̃(0)
and Q̃(i). While the resulting linear system requires more than machine precision to be solved
numerically even for modest chain lengths N , its sparsity allows one to go to higher precision
calculations in what remains a reasonable computation time, even on a standard personal
computer.

Having then found the set of {Q̃ (3i/2) , Q̃ (5i/2) , Q̃ (7i/2) . . . Q̃ ((N − 1)i/2)}, one can use
any standard solver, at high precision, to find the roots of the resulting Q̃ polynomial, by simply
numerically finding the points at which equation (15) equals 0.

3.2 Numerical solution and roots families

The general structure of the ground state solution obtained numerically, see figure 2, is three-
fold. First, it systematically contains a series of N/2 real roots. Secondly, there is a string
of purely imaginary roots and finally a series of roots with both non-zero real and imaginary
parts which create four symmetric arcs which emerge from both ends of the imaginary string.

The general result is best visualised when plotting each of these substructures individually,
and therefore, the real-valued roots are first plotted in figure 3.

Beyond the realization that the number of such real roots is indeed systematically the same
as the number of roots in the homogeneous case, namely N/2, one easily infers from the plot,
that, in the large N limit, this set of real roots will correspond exactly to the homogeneous
solution. It will therefore become dense in the thermodynamic limit.

In figure 4 we exclusively plot the purely imaginary roots as well as the number of such
roots in figure 5 for system sizes N which are integer multiples of four.

As can be seen from large enough system sizes, these imaginary roots tend to arrange into
of perfect symmetric string of i-separated Bethe roots. The only visible deviations from this
ideal string structure appear at the very top and bottom ends of the string.

Within the studied range, the number NI of such imaginary roots stays bounded by
N
8 ≤ NI ≤

N
8 +

9
2 . The upper bound corresponds exactly to NI for N = 44, N = 76, N = 108

and N = 140, while the lower bound does so for N = 256 and N = 288. While this does not

6
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Figure 3: Positive real Bethe roots solution to the inhomogeneous T-Q equation (black dots)
and positive Bethe roots solution of the homogeneous T-Q equation (gray circles).
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31 i/2
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39 i/2
41 i/2

Imaginary Bethe roots

Figure 4: Imaginary Bethe roots for system sizes N=4 to N=300.

allow one to conjecture that these bound hold true for arbitrary system sizes, it seems safe to
conjecture that, as system size grows, the length of this imaginary string will also keep grow-
ing. Indeed, although when going from N to N + 4, it is possible to see NI go down (by 2)
therefore giving a shorter string, comparing any N to the corresponding N +8 it is found that
NI is never reduced.

The last subset of roots for which both real and imaginary parts take non-zero values form
the arc-like structures and are explicitly shown in figure 6 for the upper right complex plane.

Higher values of N always lead to arcs whose both end points are further from the real
axis, so that, in the figure, they naturally appear as ordered by chain length N. Contrarily to
the real roots which densify as N becomes large, the roots on these arcs actually get further
apart from one another as the system size gets larger. Consequently, one cannot expect, in
the thermodynamic limit N →∞ to be in a position to define a continuous root density to
properly describe these structures.

7

https://scipost.org
https://scipost.org/SciPostPhys.4.6.030


SciPost Phys. 4, 030 (2018)

50 100 150 200 250 300
N

10

20

30

40

Number of imaginary roots

Figure 5: Number of imaginary Bethe roots and the bounds N
8 and N
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9
2

0 10 20 30 40
Re0
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Complex Bethe roots

N=300

N=12

N=200

N=100

Figure 6: Complex Bethe roots in the upper right complex plane. Each arc (dashed lines)
corresponds to a given N, ranging from N = 12 (lowest point) to N = 300 (highest arc).
Three symmetric arcs also exist in the three other quadrants of the complex plane.

Nonetheless, these numerical results support strongly the conjecture that, as N → ∞,
these complex roots will all be such that their norm is also going to infinity.

The conjectures made from these finite size results can now be explicitly verified to give
the correct solution to the inhomogeneous T-Q equation in the thermodynamic limit N →∞.
Indeed, we have this threefold structure for which:

1- N/2 real Bethe roots ur
a will tend to the solution of the homogeneous problem.

2- NI imaginary Bethe roots ui
a that will form an infinitely long string of i-separated roots,

with NI going to infinity.

3- The remaining N/2− NI roots uc
a form discrete points on an arc infinitely far from the

dense distribution of real roots |uc
a|>> |u

r
b|.

Under these assumptions, the Q polynomial can be decomposed in three parts

Q(λ) = qR(λ)qI(λ)qC(λ) (17)

8
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with

qR(λ) =
N/2
∏

a=1

(λ− ur
a), qI(λ) =

NI
∏

a=1

(λ− ui
a), qC(λ) =

N/2−NI
∏

a=1

(λ− uc
a) (18)

which allows one to rewrite the inhomogeneous T-Q equation (3) as

t(λ)qR(λ) = −
�

λ+
i
2

�N

qR(λ− i)
qI(λ− i)qC(λ− i)

qI(λ)qC(λ)
(19)

−
�

λ−
i
2

�N

qR(λ+ i)
qI(λ+ i)qC(λ+ i)

qI(λ)qC(λ)
+ 4

�

λ2 + 1
4

�N

qI(λ)qC(λ)
. (20)

The roots belonging to the complex arcs are such that |uc
b| →∞ when N →∞ and therefore,

in the same limit we have

qC(λ± i)
qC(λ)

→ 1. (21)

For arbitrary values of λ such that |λ| << |uc
a| for every a = 1, 2 . . . N/2 − NI , the inho-

mogeneous term becomes negligible compared to the three other ones and therefore, in this
whole small |λ| region:

�

λ2 + 1
4

�N

qI(λ)qC(λ)
→ 0. (22)

On the other hand, the contribution from the string of imaginary roots can be simplified
when NI goes to infinity. Indeed for the pure i-separated string, we have

λI
b = −iNI/2+ (b− 1) i (23)

and thus

qI(λ− i) =
NI
∏

b=1

(λ− i −λI
b) =

NI
∏

b=1

(λ+ iNI/2− (b− 2) i) = qI(λ)
λ− iNI/2+ i
λ+ iNI/2+ i

(24)

qI(λ+ i) =
NI
∏

b=1

(λ+ i −λI
b) =

NI
∏

b=1

(λ+ iNI/2− b i) = qI(λ)
λ+ iNI/2− i
λ− iNI/2− i

(25)

It follows that, for a string length NI →∞, one has:

qI(λ± i)
qI(λ)

→−1. (26)

Combining those two limits of qI and qC for N →∞ we finally fall back (for small |λ|),
on the homogeneous Baxter T-Q equation:

t(λ)qR(λ) =
�

λ+
i
2

�N

qR(λ− i) +
�

λ−
i
2

�N

qR(λ+ i). (27)

Since a polynomial equation which is verified for a whole sector (small |λ|) is, by extension,
verified everywhere, the remaining roots ur

a are then indeed the solution of the homogeneous
T-Q equation. The large N limit conjectures made above therefore provide, in the thermody-
namic limit, the solution to the inhomogeneous problem. Therefore, for the ground state, the
inhomogeneous term does not contribute to the Baxter T-Q equation in the thermodynamic
limit.
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4 Conclusion

In this paper we investigated the distribution of the Bethe roots which are solution to the
inhomogeneous Bethe equation and characterise the antiferromagnetic ground state of the
Heisenberg XXX spin-1

2 chain. We observe that for this state, under some simple conjectures
about the behavior of the Bethe roots as function of N , the inhomogeneous Baxter T-Q equation
reduces to the homogeneous one. This results from two facts: firstly a large set of complex
roots go to infinity as N →∞ while secondly an infinite discrete purely imaginary string of
roots changes the sign in front of the two first terms of the inhomogeneous Baxter T-Q equation.

As already mentioned, the inhomogeneous Baxter T-Q equation (3) is not the unique
parametrization (see footnote p 2). In the general case we have an arbitrary parameter α
and the inhomogeneous Baxter T-Q equation reads

t(λ)Q(λ) = α
�

λ+
i
2

�N

Q(λ− i) +α−1
�

λ−
i
2

�N

Q(λ+ i) + (2−α−α−1)
�

λ2 +
1
4

�N

. (28)

In this case, it is much more complex to solve numerically for large N due to the additional
parameter and the asymmetric form of the equation. However, one could still expect a similar
threefold structure to emerge, now characterized by:

qI(λ± i)
qI(λ)

→ α±1.

We can also extend this hypothesis to the case of the XXX spin chain with an arbitrary twist
(as considered in [24]). In that case one also has both homogeneous and inhomogeneous TQ
equations. Namely:

t(λ)q(λ) = κ1

�

λ+
i
2

�N

q(λ− i) + κ2

�

λ−
i
2

�N

q(λ+ i), (29)

where the two parameters κi satisfy κ1 + κ2 = κ+ κ̃, κ1κ2 = κκ̃−κ+κ−, and

t(λ)Q(λ) = (κ̃−ρ)
�

λ+
i
2

�N

Q(λ− i) + (κ−ρ)
�

λ−
i
2

�N

Q(λ+ i) + 2ρ
�

λ2 +
1
4

�N

, (30)

with ρ2−ρ(κ+ κ̃)+κ+κ− = 0. In that case one could still expect a similar threefold structure
to emerge, now characterised by:

qI(λ− i)
qI(λ)

→
κ1

κ̃−ρ
,

qI(λ+ i)
qI(λ)

→
κ2

κ−ρ
,

where we also have κ1
κ̃−ρ =

κ−ρ
κ2

.
It would be of strong interest to extend this numerical analysis to excited states of the pe-

riodic Heisenberg XXX spin-1
2 chain as well as for models where the U(1) symmetry is broken

(as the Heisenberg XXX spin-1
2 chain with boundaries). In the later case, the trick to use the

homogeneous solutions would fail and one should therefore try to solve directly the inhomo-
geneous Baxter equation or use an explicit diagonalisation of the transfer matrix to retrieve
the roots of the Baxter Q polynomial.

Having identified the Bethe roots distribution for the inhomogeneous Baxter TQ equation,
we should be in a position to consider possible analytical results along the lines of Yang and
Yang’s works, and many others (see for recent development [23]). This question should be
discussed elsewhere.

One of the important questions would be to see if it is possible or not to find a model (or a
specific state) where the inhomogeneous term can contribute to the Baxter T-Q equation in the
thermodynamic limit. Actually, the limited number of cases considered so far in the literature
have all shown that it is not the case.
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