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Abstract

We consider the full probability distribution for the transverse magnetization of a finite
subsystem in the transverse field Ising chain. We derive a determinant representation of
the corresponding characteristic function for general Gaussian states. We consider appli-
cations to the full counting statistics in the ground state, finite temperature equilibrium
states, non-equilibrium steady states and time evolution after global quantum quenches.
We derive an analytical expression for the time and subsystem size dependence of the
characteristic function at sufficiently late times after a quantum quench. This expression
features an interesting multiple light-cone structure.
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1 Introduction

The statistical nature of measurements of observables is a fundamental principle of quantum
mechanics. Measuring the same observable in identically prepared systems leads to different
measurement outcomes that are described by a probability distribution that depends on both
the state |Ψ〉 and on the observable O considered. The full probability distribution P(O, |Ψ〉)
encodes detailed information about quantum fluctuations in the system. It is of particular in-
terest in situations where the first few moments do not provide a good description of the dis-
tribution. Quantum mechanical probability distributions in the guise of Full Counting Statistics
(FCS) have been studied for some time in mesoscopic devices [1,2]. More recently it has be-
come possible to analyze them in systems of ultra-cold atomic gases [3–8]. This has broken
new ground in the sense that one is dealing with (strongly) interacting many-particle systems
and a variety of observables, typically defined on subsystems, can be accessed. This has moti-
vated a number of theoretical works of FCS in equilibrium states [9–20], and after quantum
quenches [7, 20–24]. A second motivation for studying FCS has been the observation that in
non-interacting fermionic systems with particle number conservation the FCS of particle num-
ber within a subsystem is directly related to the entanglement entropy [25–34] and provides
indirect information about the latter.

From a theoretical point of view calculating the FCS for a given observable on a sizeable
subsystem poses a formidable problem and as a result only very few exact results are available
even in simple equilibrium situations. Even less is known about FCS after quantum quenches.
This motivates reconsidering FCS in the transverse field Ising chain (TFIC). The TFIC is a key
paradigm for quantum phase transitions [35] and a simple, but non-trivial, many-body system
without particle number conservation and therefore provides an ideal playground for studying
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FCS both in and out of equilibrium. Indeed, thanks to the mapping of the TFIC to a model
of non-interacting spinless fermions with pairing term it is possible to analytically determine
ground state and thermal properties, see e.g. [35–37], as well as describe the non-equilibrium
dynamics of local observables [38–44] and of the reduced density matrix of a block of adjacent
sites [43, 45–47] after a global quantum quench. A summary of these developments is given
in the recent reviews Refs [48,49].

In this work we focus on the FCS of the simplest observable, the transverse magnetiza-
tion within a block of ` adjacent spins. In the ground state this problem has been previously
analyzed in Refs [9, 11] and generic Gaussian states have been considered as well [14]. We
note that the ground state FCS of the longitudinal magnetization at the critical point has been
determined in Ref. [10] and the ground state FCS of the subsystem energy was considered in
Ref. [18].

This manuscript is organised as follows. In section 2 we first introduce the TFIC and briefly
summarize the important steps for diagonalizing the Hamiltonian. We then define the FCS
and the associated generating functions considered in this work. In section 3 we provide a
novel derivation of an efficient determinant representation for the FCS in general Z2 invariant
Gaussian states. The result is equivalent to that of Ref. [14]. This result is applied in section 4
to the determination of the FCS in equilibrium states. In the ground state we recover the results
of Ref. [9]. Our results for the FCS in finite temperature equilibrium states are to the best of our
knowledge new. In section 5 we turn to the main point of interest: the time evolution of the
FCS after a global quantum quench. We consider the situation where the system is prepared in
a pure state at a finite finite energy density and then time evolved with a Hamiltonian H that
does not commute with the initial state density matrix, which leads to non-trivial dynamics.
We present explicit results for general “transverse field” quenches as well as evolution starting
in a classical Néel state. The main result of this work is presented in section 6: an analytic
expression for the time evolution of the FCS after a transverse field quench. In section 8 we
summarize our results and comment on a number of issues that deserve further investigation.

2 The model and the full counting statistics

2.1 Transverse Field Ising chain

In the following we consider the spin-1/2 transverse field Ising model on an infinite chain

H(h) =−
∞
∑

j=−∞

�

σx
j σ

x
j+1 + hσz

j

�

. (1)

The ground state phase diagram features ferromagnetic (h < 1) and paramagnetic (h > 1)
phases that are separated by a quantum critical point in the universality class of the two-
dimensional Ising model [35]. The order parameter that characterizes the transition is the
longitudinal magnetisation 〈GS|σx

j |GS〉. At finite temperature spontaneous breaking of the
Z2 symmetry of H(h) is forbidden and hence the order present in the ground state at h < 1
melts. In order for this paper to be self-contained we now briefly summarize the relevant steps
for diagonalizing the Hamiltonian (1). A more detailed discussion can be found in e.g. the
Appendix in [42]. The TFIC is mapped to a model of spinless fermions by a Jordan-Wigner
transformation

σz
j = 1− 2c†

j c j , σx
j =

j−1
∏

l=−∞
(1− 2c†

l cl )(c j + c†
j ) , (2)
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where c j are fermion operators obeying canonical anticommutation relations {c†
j , ck} = δ j,k.

Setting aside the issue of boundary conditions the Hamiltonian takes the form

H(h) =− J
∞
∑

j=−∞
(c†

j − c j)(c j+1 + c†
j+1)− Jh(c j c

†
j − c†

j c j ). (3)

This is diagonalized by a Bogoliubov transformation

c j =

∫ π

−π

dk
2π

e−ik j
�

cos(θk/2)αk + i sin(θk/2)α
†
−k

�

, (4)

where {αk,α†
p}= δp,k and the Bogoliuobov angle is

eiθk =
h− eik

p
1+ h2 − 2h cos k

. (5)

The Hamiltonian takes the form

H(h) =

∫ π

−π

dk
2π
ε(k)

�

α†
kαk −

1
2

�

, (6)

where the dispersion relation is given by

ε(k) =2J
Æ

1+ h2 − 2h cos(k). (7)

The ground state of H(h) is equal to the Bogoliubov vacuum state defined by

αk |0〉= 0. (8)

2.2 Full Counting Statistics and Generating Function

We are interested in the properties of the smooth and staggered components of the transverse
magnetization of a chain segment of length `. These are defined as

Sz
u(`) =

∑̀

j=1

σz
j , Sz

s (`) =
∑̀

j=1

(−1) jσz
j . (9)

Given a density matrix ρ that specifies the quantum mechanical state of our system, the prob-
ability distributions for the transverse subsystem magnetizations are given by

P(u,s)(m) = Tr
�

ρδ
�

m− Sz
u,s(`)

�

�

. (10)

In the following we will focus on the characteristic functions of these probability distributions,
defined as

P(u,s)(m) =

∫ ∞

−∞

dλ
2π

e−iλm χ(u,s)(λ,`) ,

χ(u,s)(λ,`) = Tr
�

ρ eiλSz
u,s
�

. (11)

By construction, the expansion of χ(u,s)(λ,`) around λ= 0 generates the moments of the asso-
ciated probability distribution. The following relations are readily inferred from the definition
of χ(u,s)(λ,`)

χ(u,s)(λ,`) =
�

χ(u,s)(−λ,`)
�∗

,

χ(u,s)(0,`) = 1 ,

χ(u,s)(λ+π,`) = (−1)`χ(u,s)(λ,`) . (12)
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These properties imply

P(u,s)(m) = 2
∑

r∈Z
P(u,s)

w (r)

¨

δ(m− 2r + `) if ` is odd

δ(m− 2r) if ` is even
(13)

where we have defined the weights

P(u,s)
w (r) =

∫ π/2

−π/2

dλ
2π

e−2iλrχ(u,s)(λ,`) . (14)

3 Generating Function for a general Gaussian state

In this section we show how to obtain the generating function (11) for a general Gaussian
state with a novel method that is however equivalent to the one used in [14].

Our starting point is the realization that (11) depends only on the reduced density matrix
of the block A of ` adjacent spins

χ(u,s)(λ,`) = Tr
�

ρ eiλSz
u,s(`)

�

= Tr
�

ρA eiλSz
u,s(`)

�

≡ eZ Tr
�

ρA eρ
(u,s)

�

, a = u, s, (15)

where we have introduced the auxiliary “density matrices”

eρ(u,s) ≡
1

eZ (u,s)
eiλSz

u,s(`), eZ (u,s) = Tr
�

eiλSz
u,s(`)

�

= (2cos(λ))` . (16)

Here the “partition function” eZ (a) ensures the normalisation Tr
�

eρ(a)
�

= 1. A fundamental
property that we will exploit in the following is that both ρA and eρ(a) are Gaussian operators
in the fermionic representation of our problem, cf. section 2.1. Hence they are univocally deter-
mined by the correlation matrices of the fundamental fermionic operators [50–52]. Moreover,
the trace of the product of Gaussian operators such as (15) can be expressed in terms of the
associated correlation matrices [53]. This is a very useful property, see e.g. Ref. [47] for a
related application, that forms the basis of our analysis.

In order to proceed we need to specify a convenient basis of operators. This is provided by
Majorana fermions related to the lattice spin operators by

a2l−1 =

�

∏

m<l

σz
m

�

σx
l , a2l =

�

∏

m<l

σz
m

�

σ
y
l , σz

l = ia2 ja2 j−1. (17)

The Majorana fermions satisfy the algebra

{a j , ak}= 2δ j,k . (18)

They are related to the Jordan-Wigner fermions (2) by a2l−1 = c†
l + cl and a2l = −i(c†

l − cl).
As we are dealing with Gaussian density matrices we can follow Refs. [50–52] and Wick’s

theorem to express ρA in terms of the subsystem correlation matrix Γ A
nm

Γ A
nm = Tr [ρ aman]−δnm , 1≤ m, n≤ 2`. (19)

As the Pauli matrices form a basis in the space of operators over C2 the reduced density matrix
of a subsystem A that consists of ` neighbouring spins at sites i = 1, . . . ,` can be expressed in
the form

ρA =
1
2`

∑

{α1...α`}

Tr
�

ρ σ
α1
1 . . .σα`

`

�

σ
α1
1 . . .σα`

`
, (20)
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where αi = 0, x , y, z. We now restrict our discussion tor density matrices that are invariant
under the Z2 transformation

Pσz
l P = σz

l , Pσx ,y
l P = −σx ,y

l . (21)

In this case the Jordan-Wigner strings cancel and the reduced density matrix (RDM) is mapped
to an operator expressed in terms of Majorana fermions acting on the same spatial domain

ρA =
1
2`

∑

{µ1...µ`=0,1}

Tr
�

ρ aµ1
1 . . . aµ2`

2`

�

aµ2`
2` . . . aµ1

1 . (22)

We note that the case where PρP 6= ρ can be dealt with by the method set out in Ref. [47].
The RDM (22) can be written in an explicit Gaussian form as

ρA =
1
Z

exp

�

1
4

∑

m,n

amWmnan

�

, (23)

where W is a skew symmetric 2`× 2` hermitian matrix. Using Wick’s theorem the matrix W
can be related to the correlation matrix (19)

tanh
W
2
= Γ A. (24)

The auxiliary density matrices eρ(u,s) (16) can be expressed in the Majorana basis in a com-
pletely analogous way. The corresponding 2`× 2` correlation matrices eΓ (u,s) are given by

eΓ
(u)
i j = Tr

�

eρ(u) a jai

�

=
1
eZ (u)

Tr

�

∏̀

k=1

(cosλ− i sinλa2ka2k−1)a jai

�

−δi j ,

eΓ
(s)
i j = Tr

�

eρ(s) a jai

�

=
1
eZ (s)

Tr

�

∏̀

k=1

�

cos (λ)− i(−1)k sin(λ) a2ka2k−1

�

a jai

�

−δi j . (25)

The only non-vanishing matrix elements are

eΓ
(u)
2 j,2 j−1 = −eΓ (u)2 j−1,2 j =

1
2cosλ

Tr
�

(cosλ− i sinλ a2 ja2 j−1)a2 j−1a2 j

�

= − tanλ ,

eΓ
(s)
2 j,2 j−1 = −eΓ (s)2 j−1,2 j =

1
2cosλ

Tr
�

(cosλ− i(−1) j sinλ a2 ja2 j−1)a2 j−1a2 j

�

= −(−1) j tanλ . (26)

This implies that eΓ (u,s) are block-diagonal, e.g.

eΓ (u) = i tanλ





σy 0 . . .
0 σy . . .

. . .



≡ i tan(λ)Σy , (27)

where σy is the 2× 2 Pauli matrix.
We are now in a position to write down a convenient determinant representation for the

generating functions χ(u,s)(λ,`). To do so we employ a relation derived in Ref. [53]: given
two Gaussian density matrices ρ1,2 with correlation matrices Γ1,2 the trace of their product is
given by

Tr [ρ1 ρ2] =

√

√

det
�

1+ Γ1Γ2
2

�

. (28)
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Applying this relation to our case we arrive at the following determinant representations

χ(a)(λ,`) =
1

(2 cosλ)`

√

√

√

det

�

1+ Γ A
eΓ (a)

2

�

, a = u, s , (29)

where Γ A and Γ (u,s) are given in (19) and (26), (27) respectively.

3.1 Simplification in special cases

Equation (29) has been derived for a general Z2-invariant Gaussian state with density matrix
ρ. If the state is also invariant under translations and reflections with respect to a site the
generating function χ(u)(λ,`) can be simplified further. Indeed, under these conditions, the
correlation matrix assumes a block Toeplitz form [45,51]

Γ A =











Π0 Π−1 . . . Π1−`

Π1 Π0
...

...
. . .

...
Π`−1 . . . . . . Π0











, Πl =

�

− fl gl
−g−l fl

�

, (30)

where

gl = Tr
�

a2na2n+2l−1

�

= −Tr
�

a2n−1a2n−2l

�

,

fl = Tr
�

a2na2n+2l

�

−δl0 . (31)

Taking advantage of the block diagonal form of the correlation matrix of the auxiliary density
matrix in (27) we can cast the generating function in the form

χ(u)(λ,`) = (2cosλ)`
√

√

det
�

1− tan(λ)Γ ′

2

�

, (32)

where Γ ′ is a block Toeplitz matrix

Γ ′ =











Π′0 Π′−1 . . . Π′1−`

Π′1 Π′0
...

...
. . .

...
Π′
`−1 . . . . . . Π′0











, Π′l =

�

gl fl
fl g−l

�

. (33)

3.2 Expressions for the first few cumulants

The determinant representation (29) of the generating function provides an efficient way for
determining the cumulants of the probability distribution, which is the main purpose of the
function itself. The cumulants are obtained in the usual way from the series expansions of
lnχ(u,s)(λ,`)

lnχ(u,s)(λ,`) =
∞
∑

n=1

C (u,s)
n

n!
(iλ)n. (34)

The first few terms of the series expansion are

lnχ(u)(λ,`) = ` ln(cosλ)−
1
2

∞
∑

n=1

(tanλ)n

n
Tr
�

(Γ̄ )n
�

= −`
λ2

2
−
λ

2
Tr
�

Γ̄
�

−
λ2

4
Tr
�

Γ̄ 2
�

−
λ3

6
(Tr
�

Γ̄ 3
�

+ Tr
�

Γ̄
�

) +O(λ4) , (35)
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where we have defined
Γ̄ = −iΓAΣy . (36)

The first three cumulants are

C1 =
i
2

Tr
�

Γ̄
�

, C2 = `+
Tr
�

Γ̄ 2
�

2
, C3 = −

i
2
(Tr
�

Γ̄ 3
�

+ Tr
�

Γ̄
�

)). (37)

Specifying to the case of density matricesρ that are invariant under translations and reflections
around a site we have

Tr
�

Γ̄
�

=`Tr
�

Π′0
�

= 2`g0, (38)

Tr
�

Γ̄ 2
�

=`Tr
�`−1
∑

j=0

(2(`− j)− `δ j0)Π
′
jΠ
′
− j

�

= 2`
`−1
∑

j=0

(2(`− j)− `δ j0)(g j g− j + f j f− j)

=2`
� `−1
∑

j=1

(2(`− j))(g j g− j + f j f− j) + `g
2
0

�

= 2Tr
�

F2 + G2
�

, (39)

Tr
�

Γ̄ 3
�

=2Tr
�

G3 + 3F2G
�

, (40)

where F and G are the `× ` Toeplitz matrices

G =











g0 g−1 . . . g1−`

g1 g0
...

...
. . .

...
g`−1 . . . . . . g0











, F =











f0 f−1 . . . f1−`

f1 f0
...

...
. . .

...
f`−1 . . . . . . f0











. (41)

For the first three cumulants we obtain

C1 = i`g0 , C2 = `+ Tr
�

F2 + G2
�

, C3 = −i(Tr
�

G3 + 3F2G
�

+ `g0) . (42)

It is straightforward to generalise these considerations to higher cumulants because Tr
�

Γ̄ n
�

can always be written as the sum of the traces of products of F and G.

4 Full counting statistics in equilibrium

In this section we analyze the generating function χ(u,s)(λ,`) obtained from (29) and the
associated probability distribution in equilibrium configurations. We first consider the ground
state FCS, which has been previously studied by Cherng and Demler in [9]. We then turn to
the FCS in finite temperature equilibrium states, which to the best of our knowledge has not
been considered in the literature.

4.1 Full counting statistics in the ground state

In the ground state the generating function is of the form (32), (33) with entries

fl =0, (43)

gl =− i

∫ π

−π

dk
2π

e−ikl eiθk , (44)
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where θk is the Bogoliubov angle (5). By rearranging rows and columns, Γ̄ can be brought to
a block diagonal form with `× ` matrices G and GT (41) on the diagonal and zero otherwise.
This allows us to express the generating function as

χ(u)(λ,`) =(2cosλ)`
√

√

det
�

1− tan(λ)G
2

�

det
�

1− tan(λ)GT

2

�

= det (cosλ− sin(λ)G) ,

(45)

This is precisely the result previously obtained by Cherng and Demler [9] by a different tech-
nique. They considered the generating function

χC D(λ,`) = 〈GS|eiλ
∑`

j=1

1−σz
j

2 |GS〉= eiλ`/2χ(u)(−λ/2,`) = det

�

1+ eiλ

2
+

1− eiλ

2
iG

�

. (46)

The Toeplitz determinant (45) can be analyzed by standard methods [9]. The symbol τ(eik)
of a block Toeplitz T` with elements (T`)ln = t l−n is defined through the equation

tn =

∫ 2π

0

dk
2π
τ(eik)e−ink. (47)

The symbol of the block Toeplitz matrix (45) is given by

τ(eik) = cosλ+ ieiθk sinλ. (48)

As long as the symbol has zero winding number a straightforward application of Szegő’s
Lemma gives, cf. Appendix A

lim
`→∞

lnχ(u)(λ,`)
`

=

∫ 2π

0

dk
2π

ln(cosλ+ ieiθk sinλ) . (49)

For h < 1 and λ > λc(h) the winding number of the symbol is 1 and the above result gets
modified accordingly [11]. For a detailed analysis we refer to Ref. [11]. The full counting
statistics for the transverse magnetization in the entire system was studied in [54] and the
result is identical to (49). Thus considering the subsystem instead of the entire system only
makes a difference for h< 1 and λ > λc(h), as discussed in [9].

We note that all cumulants can be obtained from (49) since they are defined by the expan-
sion close to λ= 0. Consequently, the first cumulants are given by

C1 =

∫ π

−π

dk
2π

eiθk ,

C2 =

∫ π

−π

dk
2π
(1− e2iθk),

C3 =

∫ π

−π

dk
2π

2(e3iθk − eiθk),

C4 =

∫ π

−π

dk
2π

2(−1+ 4e2iθk − 3e4iθk). (50)

The non-zero values of C3 and C4 show that the probability distribution is non-Gaussian.

9
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4.2 Full counting statistics at finite temperature

We now turn to the FCS in finite temperature equilibrium states, for which we are not aware
of any results in the literature. In this case, the correlation matrix has the same structure as
for the ground state, but now

fl = 0, (51)

gl = −i

∫ π

−π

dk
2π

e−ikl eiθk tanh(βεk/2) , (52)

where εk is the dispersion relation (7). Since fl = 0, the same simplifications as in the ground
state case apply and the generating function can be expressed as

χ(u)(λ,`) = det (cosλ− sin(λ)G) . (53)

In Fig. 1 we show P(u)w (m) for subsystem size ` = 20 and several different temperatures. We

(a) (b)

Figure 1: Probability distribution as a function of m for `= 20 and several tempera-
tures at (a) h= 0.5; (b) h= 2.

employ a log-linear plot in order to make the deviations of the probability distributions from a
Gaussian form (which would correspond to a parabolic form) more apparent. We can see from
Fig. 1 (a) that the temperature dependence for h< 1, corresponding to the ferromagnetically
ordered phase at zero temperature, is not very pronounced. In contrast we see a much stronger
temperature dependence in the paramagnetic phase, cf. Fig. 1 (b). At low temperatures the
probability distribution is as expected asymmetric as a result of the applied field and is seen
to display an even/odd structure. The latter disappears quickly as temperature is increased,
whereas the asymmetry remains until the temperature exceeds the scale set by the magnetic
field.

(a) (b)

Figure 2: Skewness as a function of ` for several values of β at (a) h = 0.5 and (b)
h= 2.
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(a) (b)

Figure 3: Excess kurtosis as a function of subsystem size ` for several temperatures
and (a) h= 0.5 and (b) h= 2.

In Figs 2 and 3 we show the skewness and excess kurtosis of the probability distribution as
a function of subsystem size ` for a range of temperatures. These are defined as the thermal
expectation values

¬

�

X
Æ

〈X 2〉β

�3
¶

β
,
¬

�

X
Æ

〈X 2〉β

�4
¶

β
− 3 , X = Sz

u(`)− 〈S
z
u(`)〉β . (54)

Both skewness and excess kurtosis are non-vanishing for finite β and `, which establishes that
the distribution is not Gaussian. A very peculiar feature is that at fixed ` skewness and excess
kurtosis are non-monotonic functions of the temperature. Furthermore, we observe that at
a fixed temperature they both tend to zero as the subsystem size ` is increased. This signals
that the corresponding probability distribution approaches a Gaussian. This is expected as for
large subsystem sizes the laws of thermodynamics apply and the probability distribution is
then approximately Gaussian with a standard deviation that scales as

p
`.

5 Full counting statistics after a quantum quench

We now turn to the time evolution of the characteristic function χ(u,s)(λ, t) after quantum
quenches. We consider two different classes of initial states:

• We initialize the system in the ground state of H(h0) and time evolve with H(h). Such
transverse field quenches have been studied in detail in the literature [40–47,55–65].

• We initialize the system in the Néel state |↑↓↑↓ . . . ↑↓〉, thus breaking translational sym-
metry by one site. This symmetry is restored at late times after the quench and it is an
interesting question how this is reflected in the probability distributions of observables.

5.1 Transverse field quench h0 −→ h

In this quench protocol both the Hamiltonian and the initial state are translationally invariant.
The characteristic function has the determinant representation (32), (33) with [45]

gl = −i

∫ π

−π

dk
2π

e−ikl eiθk (cos∆k − i sin∆k cos(2εk t)) (55)

fl =

∫ π

−π

dk
2π

e−ikl sin∆k sin(2εk t) , (56)
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where

eiθk =
h− eik

p
1+ h2 − 2h cos k

, cos∆k = 4
hh0 − (h+ h0) cos k+ 1

εh(k)εh0
(k)

. (57)

Using Szegő’s Lemma it is straightforward to obtain the large-` asymptotics in the initial (t = 0)
and stationary (t =∞) states. The t = 0 result corresponds to a ground state at field h0 and
has been discussed earlier.

5.1.1 Behaviour in the stationary state

The late time asymptotics of the generating function can be determined from Szegő’s Lemma.
For quenches into the paramagnetic phase h> 1 it takes the form

lim
t→∞

lnχ(u)(λ,`, t)
`

=

∫ 2π

0

dk
2π

ln
�

cosλ+ i sinλ cos∆keiθk
�

+O(1/`) , `� 1. (58)

The O(`−1) corrections also follow from Szegő’s Lemma. The real and imaginary parts of

(a) (b)

Figure 4: (a) Reχ(u)(λ,`,∞) and Imχ(u)(λ,`,∞) for a quench from h= 5 to h= 2
and subsystem size `= 100.

χ(u)(λ,`, t) (with O(`−1) corrections included) are shown for a transverse field quench from
h0 = 5 to h= 2 and subsystem size `= 100 in Fig. 4.

For quenches into the ferromagnetic phase and λ < λc(h0, h), Eq. (58) continues to hold.
However, for λ > λc(h0, h) the symbol exhibits non-zero winding number and the analysis
needs to be modified, cf. Appendix A. The probability distribution in the stationary state is
obtained by Fourier transforming χ(u)(λ,`, t). Examples for several transverse field quenches
are shown in Fig. 5. We again employ a logarithmic scale to make the deviations from a
Gaussian form more apparent. In Figs 6 we plot the skewness and the excess kurtosis of the
steady state probability distributions for a number of transverse field quenches. We observe
that in all cases both skewness and excess kurtosis tend to zero for large subsystem sizes.
This signals that the probability distributions approach Gaussians in the large-` limit. While
the steady states are non-thermal now, they still exhibit finite correlation lengths. Employing
the same arguments as for finite temperature ensembles then implies that the cumulants of
Sz

u(`) are proportional to ` in the large-` limit. This in turn suggests that skewness and excess
kurtosis should scale as `−1/2 and `−1 respectively, while the standard deviation scales as `1/2.
These expectations are in perfect agreement with our findings.

5.1.2 Scaling collapse

At finite times the FCS and the probability distribution can be computed efficiently from the
determinant representation (32). Importantly we observe that for sufficiently large values of
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Figure 5: Stationary state probability distribution P(u)w (m,∞) for a subsystem of size
`= 70 for several transverse field quenches.

(a) (b)

Figure 6: (a) Skewness and (b) Excess kurtosis of the steady state probability distri-
bution as functions of subsystem size ` for a number of transverse field quenches.

` and t there is scaling collapse

χ(u)(λ,`, t)≈ exp
�

` f (t/`)
�

, t,`� 1. (59)

The property (59) is an important ingredient in the analytic calculation of the FCS described in
section 6. Several examples of the scaling behaviour of the real part of the generating function
are shown in Figs 7, 8. The imaginary parts exhibit a similar scaling collapse.

(a) (b)

Figure 7: Re lnχ(u)(0.1,`, t)/` for several values of ` for a quench from (a) h = 0.2
to h = 0.8 and (b) h = 3 to h = 1.2. The data for different subsystem sizes are seen
to collapse at sufficiently late times.

For quenches towards the ferromagnetic regime the scaling collapse for general values of
λ can be significantly worse, and then really only emerges at rather large subsystem sizes `,
cf. Fig. 9. Like in the case of the stationary state discussed above, c.f. section 5.1.1, there ex-
ists a critical value λ̂c(h0, h) of the counting parameter such that for λ < λ̂c(h0, h) the scaling
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(a) (b)

Figure 8: Re lnχ(u)(0.1,`, t)/` for several values of ` for a quench from (a) h = 3 to
h = 0.2 and (b) h = 0 to h = 20. The data for different subsystem sizes are seen to
collapse at sufficiently late times.

Figure 9: Re lnχ(u)(1.4,`, t)/` for several values of ` for a quench from h = 0.2 to
h = 0.8. The data for different subsystem sizes are seen to collapse at sufficiently
late times only for very large subsystem sizes `.

collapse is excellent, while for λ > λ̂c(h0, h) no collapse is observed at the times and subsys-
tem sizes of interest here. For the cases we have considered λ̂c(h0, h) coincides with λc(h0, h),
which is the value of the counting parameter above which the symbol has non-zero winding
number. We note however, that in cases like the one shown in Fig. 9 the generating func-
tion itself is extremely small and will not give a significant contribution to the corresponding
probability distribution.

5.1.3 Time dependence of the probability distribution

There are basically four different kinds of transverse field quenches and we now consider them
in turn.

1. Quenches within the ferromagnetic phase. For such quenches the probability distribu-
tion remains very narrow and approximately Gaussian throughout, cf. Fig. 10. For the
parameters considered the average relaxes quickly towards its stationary value.

2. Quenches within the paramagnetic phase.

Here the initial probability distribution exhibits an even/odd structure. This can be
understood by doing perturbation theory around the large h0 limit, cf. Appendix B. After
the quench the mean of the probability distribution broadens and shifts towards smaller
values of m. The alternating structure is initially preserved but then gets smoothed out.
At late times P(u)w (m, t) is well described by a Gaussian.

3. Quenches from the paramagnetic to the ferromagnetic phase.
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(a) (b)

Figure 10: (a) Probability distribution P(u)w (m, t) at times t = 0,1.7, 3.3,5.0 after a
quench from h= 0.2 to h= 0.8 for subsystem size `= 70. (b) Probability distribution
P(u)w (m, t) for the same parameters.

(a) (b)

Figure 11: (a) Probability distribution P(u)w (m, t) at times t = 0,0.2, 1.2,10.0 after a
quench from h= 3 to h= 1.2 for subsystem size `= 70. (b) Probability distribution
P(u)w (m, t) for the same parameters.

(a) (b)

Figure 12: (a) Probability distribution P(u)w (m, t) at times t = 0, 0.2,0.7, 3.3,15.0
after a quench from h = 3 to h = 0.2 for subsystem size ` = 70. (b) Probability
distribution P(u)w (m, t) for the same parameters.

Here the probability distribution is initially peaked at a large value of m and displays
an even/odd structure. At later times it broadens and becomes smooth, while relaxing
towards its stationary profile in an strongly oscillatory manner.

4. Quenches from the ferromagnetic to the paramagnetic phase.

In this case the probability distribution shows very little variation in time and remains
narrow and approximately Gaussian throughout the evolution. It was pointed out in
Ref. [62] that the return amplitude exhibits a non-analyticity at some finite time t∗ after
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(a) (b)

Figure 13: (a) Probability distribution P(u)w (m, t) at times t = 0,2.5, 5.0 after a
quench from h = 0 to h = 10 for subsystem size ` = 70. (b) Probability distribu-
tion P(u)w (m, t) for the same parameters.

the quantum quench. This phenomenon was termed a “dynamical phase transition”.
Local operators are known to be insensitive to this phenomenon [41–43]. We have
investigated the behaviour of P(u)w (m, t) in the vicinity of t∗ but have not observed any
unusual effects. We conclude that the probability distribution for the smooth subsystem
magnetization in the transverse field direction is also insensitive to the “dynamical phase
transition”.

5.2 Quench from the Néel state

We now turn to the time evolution of P(u,s)
w (m, t)when the system is initialized in the Néel state

|ψ0〉 = |↑↓↑↓ . . . ↑↓〉. This explicitly breaks translational invariance by one site, but retains
invariance under translation by two sites. As a result the subsystem correlation matrix is now
a 4× 4 block-Toeplitz matrix

Γ A
Néel =













ΠNéel
0 ΠNéel

−1 . . . ΠNéel
1−`/2

ΠNéel
1 ΠNéel

0

...
...

. . .
...

ΠNéel
`/2−1 . . . . . . ΠNéel

0













, (60)

where we have assumed the subsystem size ` to be even and

ΠNéel
l =












a1a4l+1

�

−δ0l




a2a4l+1

� 


a3a4l+1

� 


a0a4l−3

�




a1a4l+2

� 


a2a4l+2

�

−δl0




a3a4l+2

� 


a0a4l−2

�




a1a4l+3

� 


a2a4l+3

� 


a3a4l+3

�

−δl0




a0a4l−1

�




a1a4l+4

� 


a2a4l+4

� 


a3a4l+4

� 


a0a4l

�

−δl0









=







− fl gl hl 0
−g−l fl 0 hl
−h−l 0 fl −gl

0 −h−l g−l − fl






−δl,01 . (61)
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Here the various two point functions are given by

fl −δl0 = i

∫ 2π

0

dk
2π

e−2i jk
�

eiθk cos
�

ε(k+π)t
�

sin
�

ε(k)t
�

. . .

· · · − e−iθk+π cos
�

ε(k)t
�

sin
�

ε(k+π)t
�

�

,

gl = i

∫ 2π

0

dk
2π

e−2i jk
�

cos
�

ε(k)t
�

cos
�

ε(k+π)t
�

. . .

· · ·+ ei(θk+θk+π) sin
�

ε(k)t
�

sin
�

ε(k+π)t
�

�

,

hl = i

∫ 2π

0

dk
2π

e−i(2 j−1)k
�

e−iθk cos
�

ε(k+π)t
�

sin
�

ε(k)t
�

. . .

· · · − eiθk+π cos
�

ε(k)t
�

sin
�

ε(k+π)t
�

�

. (62)

In the following we will determine the characteristic functions

χ(u)(λ,`, t) = 〈ψ0(t)|eiλSz
u(`)|ψ0(t)〉 , χ(s)(λ,`, t) = 〈ψ0(t)|eiλSz

s (`)|ψ0(t)〉 , (63)

where again we have defined

Sz
u(`) =

∑̀

j=1

σz
j , Sz

s (`) =
∑̀

j=1

(−1) jσz
j . (64)

According to our general discussion in section 3 they have determinant representations of the
form

χ(u)(λ,`, t) =
�

2cos(λ)
�`

√

√

√

det
�1+ Γ A

NéelΓ̃

2

�

,

χ(s)(λ,`, t) =
�

2cos(λ)
�`

√

√

√

det
�1+ Γ A

NéelΓ̃
π

2

�

, (65)

where Γ̃π2 j,2 j−1 = −Γ̃
π
2 j−1,2 j = − tan(λ)(−1) j and Γ̃2 j,2 j−1 = −Γ̃π2 j−1,2 j = − tan(λ) respectively.

5.2.1 Behaviour in the stationary state

We first consider the probability distributions for a finite subsystem of even size ` in the late
time limit. As we will now show, the stationary state for the Néel quench is locally equivalent
to an infinite temperature state. To see this we first note that the energy of the Néel state is

〈ψ0|H(h)|ψ0〉= 0. (66)

It is easy to see using their explicit representation in terms of spins [49] that the expectation
values of all higher conservation laws also vanish

〈ψ0|I (n,±)|ψ0〉= 0. (67)

This in turn implies that the conserved Bogoliubov mode occupation numbers are given by

〈ψ0|α
†
kαk|ψ0〉=

1
2

. (68)
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These characterize an infinite temperature equilibrium state. We conclude that the system
will relax locally [49] to an infinite temperature steady state at late times after the quench.
Using this observation it is then straightforward to work out the probability distributions
P(u)(m, t = ∞) of Sz

u(`) =
∑`

j=1σ
z
j and P(s)(m,∞) of Sz

s (`) =
∑`

j=1(−1) jσz
j . As shown

in the introduction we have

P(u,s)(m, t =∞) = 2
∑

r∈Z
P(u,s)

w (r)

¨

δ(m− 2r + `) ` odd

δ(m− 2r) ` even
. (69)

As we are dealing with an infinite temperature state, we may calculate Pw(r) by using a grand
canonical ensemble and working in the simultaneous eigenbasis of the σz

j ’s. This reduces the
calculation of Pw(r) to the combinatorial problem of how many eigenstates there are for a
given eigenvalue of Sz

u(`) or Sz
s (`). This is easily solved in terms of the binomial distribution

P(u)w (m,∞) = P(s)w (m,∞) =
1
2`

�

`

`/2−m

�

∼

√

√ 2
`π

exp

�

−
2m2

`

�

. (70)

The result (70) for large ` is of course reproduced by applying Szegő’s Lemma for block Toeplitz
matrices to the determinant representations (65). This gives

lim
t→∞

lnχ(u)(λ,`, t)
`

=
1
2

ln
�

cos2(λ)
�

+O(1/`) = lim
t→∞

lnχ(s)(λ,`, t)
`

, `� 1. (71)

Fourier transforming gives the Gaussian form of P(u,s)
w (m,∞) in (70).

5.2.2 Time dependence

The time dependence of the probability distributions for both Sz
u(`) and Sz

s (`) can now be
determined numerically from the determinant representation (65). Results for two values of
the transverse field (h= 0.2 and h= 2) are shown in Figs 14, 15, 16 and 17.

The probability distribution of Sz
u(`) initially has a single peak at m = 0. At later times

this peak broadens and relaxes towards the Gaussian profile (70). When quenching to the
ferromagnetic phase, cf. Fig. 14, an additional feature emerges: an even/odd structure evolves
at short times after the quench.

(a) (b)

Figure 14: P(u)w (m, t) for a subsystem of size ` = 60 at times t = 0,1.4, 30.0 for a
system initialized in a Néel state and time evolved with H(h= 0.2). The dotted lines
are the asymptotic probability distributions given in (70).

The probability distribution of Sz
s (`) is useful for investigating the restoration of the trans-

lational symmetry. In the initial state P(s)w (m, t = 0) features a single peak at m = −`/2,
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(a) (b)

Figure 15: P(u)w (m, t) for a subsystem of size ` = 60 at times t = 0,1.4, 30.0 for a
system initialized in a Néel state and time evolved with H(h = 2). The dotted lines
are the asymptotic probability distributions given in (70).

(a) (b)

Figure 16: P(s)w (m, t) for a subsystem of size ` = 60 at times t = 0,1.4, 30.0 for a
system initialized in a Néel state and time evolved with H(h= 0.2). The dotted lines
are the asymptotic probability distributions given in (70).

(a) (b)

Figure 17: P(s)w (m, t) for a subsystem of size ` = 60 at times t = 0,1.4, 30.0 for a
system initialized in a Néel state and time evolved with H(h = 2). The dotted lines
are the asymptotic probability distributions given in (70).

which is a characteristic fingerprint of the classical Néel state (in z-direction). We first dis-
cuss quenches into the ferromagnetic phase. Here at short times after the quench P(s)w (m, t)
develops an even/odd structure and broadens significantly. The average of the probability
distribution oscillates strongly in time and decays very slowly to its stationary value, which
is a Gaussian distribution centred around m = 0. This shows that translational symmetry is
restored very slowly.

The behaviour for quenches into the paramagnetic phase is broadly similar. An even/odd
structure develops at early times, but is less pronounced that for quenches to the ferromagnetic
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phase. The average of P(s)w (m, t) again oscillates strongly around m = 0, but is seen to relax
much more quickly than for quenches to the ferromagnetic phase. Approximate translational
symmetry gets restored more rapidly.

6 Analytic results for the probability distribution

We now restrict our discussion to the particular case of transverse field quenches. As we have
seen above, in this case the characteristic functions χ(u)(λ,`, t) exhibit a scaling collapse at
late times, cf. (59). This suggests that it might be possible to obtain analytic results for the
late time asymptotics by a suitable generalization of the multi-dimensional stationary state
approximation method previously used to determine the asymptotics of the order parameter
two-point function [41] and the entanglement entropy [46]. As we will see, such a general-
ization is indeed possible, even though the case at hand is significantly more complicated.

Our starting point is the following expression

lnχ(u)(λ,`, t) = ` ln (cosλ) +
1
2

Tr
�

ln(1− tanλ Γ ′)
�

, (72)

which is derived from (32) by using the identity ln (det (A)) = Tr (ln (A)). The second term in
(72) can be expanded in a power series

1
2

Tr
�

ln(1− tanλ Γ ′)
�

=−
1
2

∞
∑

n=1

�

tan(λ)
�n

n
Tr
�

(Γ ′)n
�

. (73)

This then leads us to examine integer powers (Γ ′)n of the correlation matrix. Unlike in the case
of the order parameter two-point function analyzed in [42] odd powers do not vanish because
Γ ′ is not a real anti-symmetric matrix. The symbol t ′(k) corresponding to the correlation matrix
Γ ′ is defined by

�

Γ ′
�

ln =

∫ π

−π

dk
2π

ei(l−n)k t̂ ′(k) . (74)

Its explicit expression for a magnetic field quench from h0 to h is

t̂ ′(k) =

�

−ieiθk(cos∆k − i sin∆k cos(2εk t)) sin∆k sin(2εk t)
sin∆k sin(2εk t) −ie−iθk(cos∆k + i sin∆k cos(2εk t))

�

, (75)

where θk and ∆k have been previous defined in (57). Following Ref. [42] we can represent
the trace of powers of the correlation matrix as multiple integrals

Tr
�

(Γ ′)n
�

=
�

`

2

�n∫ π

−π

dk1 . . . dkn

(2π)n

∫ 1

−1

dξ1 . . . dξn C
�

~k
�

F
�

~k
�

exp

 

i`
n−1
∑

j=0

ξ j

2
(k j+1 − k j)

!

,

(76)
where we have defined k0 ≡ kn and

C(~k) =
n−1
∏

j=0

k j − k j−1

2sin
�

(k j − k j−1)/2
� , F(~k) = Tr

�n−1
∏

i=0

t̂ ′(ki)

�

. (77)

We now change variables

ζ0 = ξ1 , ζi = ξi+1 − ξi , i = 1, . . . , n− 1 . (78)
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The integration ranges in the ζ variables is determined by the constraints

−1≤
k−1
∑

j=0

ζ j ≤ 1 , k = 1, . . . , n. (79)

The integral over ζ0 can now be carried out as the integrand does not depend on it. This gives

Tr
�

(Γ ′)n
�

=
�

`

2

�n∫ π

−π

dk1 . . . dkn

(2π)n

∫ 1

−1

dζ1 . . . dζn−1 µ(~ζ) C
�

~k
�

F
�

~k
�

exp

 

−i`
n−1
∑

j=1

ζ j

2
(k j − k0)

!

,

(80)
where µ({ζ}) is the size of the range of ζ0 under the constraints (79)

µ(~ζ) =max



0, min
0≤ j≤n−1

 

1−
j
∑

k=1

ζk

!

+ min
0≤ j≤n−1

 

1+
j
∑

k=1

ζk

!



 . (81)

6.1 Multi-dimensional stationary phase approximation

For large values of ` the integrals can be carried out using a multi-dimensional stationary
phase approximation. As the symbol is independent of ζ j the stationarity conditions for the
ζ j ’s implies that the leading contribution to (80) derives from the region

k j ≈ k0 , j = 1, . . . , n− 1 . (82)

We may thus replace k j with k0 everywhere except in rapidly oscillating terms in the sym-
bol such as e2iε(k j)t . In [42] this procedure was referred to as localization rule. As in [41]
application of this rule gives

C(~k)≈ 1 . (83)

Obtaining a closed form expression for F(~k) is however much more involved than for the
order-parameter two point function studied in Ref. [42]. We conjecture that application of the
localization rule to F(~k) results in

F(~k)
�

�

�

loc
= 2

∑

A1,A2,A3

sign(A1 ∪ A2)(−i)n+S(A1,A2) (cos∆k0
)|A3|(sin∆k0

)|A1|+|A2| . . .

. . . × cos
�

[n− 2q(A1)]θk0
−
π(|A1|+ |A2|)

2

�∏

i∈A1

sin(2ε(ki)t)
∏

j∈A2

cos(2ε(k j)t) .(84)

Here the sum is over all partitions of the set of integers {0,1, . . . , n− 1} into three sets A1, A2
and A3, where the number of elements in A1 is constrained to be even. The size of the set
B = {b1, b2, . . . } is denoted by |B| and we have defined

q(B) = modn

�

|B|
∑

i=1

(−1)i+1 bi

�

,

S(A1, A2) =

¨

2 if q(A1)≤
n
2 , mod2

�

|A1 ∪ A2|
�

= 1 and |A1|> 0,

0 else.
(85)

Finally, sign(A) is the sign of the permutation required to bring the (integer) elements of the
set A into ascending order. We have explicitly checked (84) for 1 ≤ n ≤ 15 but have not been
able to find a rigorous proof for it.
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We now use the identity (for even k)

k
∏

i=1

sin(x i)
k+m
∏

j=k+1

cos(x j) =
(−1)

k
2

2k+m

1
∑

i1=0

1
∑

i2=0

· · ·
1
∑

ik+m=0

exp
�

i
k+m
∑

j=1

(−1)i j x j + iπ
k
∑

j=1

i j

�

, (86)

to rewrite the time-dependent factors in (84). This gives

F(~k)
�

�

�

loc
=2

∑

A1,A2,A3

sign(A1 ∪ A2)
(−i)S(A1,A2)+n+|A1|

2|A1|+|A2|
(cos∆k0

)|A3|(sin∆k0
)|A1|+|A2| . . .

. . .× cos
�

[n− 2q(A1)]θk0
−
π(|A1|+ |A2|)

2

�

. . .

. . .×
1
∑

p1=0

· · ·
1
∑

p|A1 |+|A2 |=0

exp
�

2i t
|A1|+|A2|
∑

r=1

(−1)prε(k(A1∪A2)r ) + iπ
|A1|
∑

r=1

pr

�

, (87)

where (A)r is the r’th element of the set A and

(A1 ∪ A2)r =

¨

(A1)r if r ≤ |A1|,
(A2)r−|A1| if |A1|< r ≤ |A1|+ |A2|.

(88)

Application of the localization rule to (80) hence results in an expression of the form

Tr
�

(Γ ′)n
�

�

�

�

loc
= 2

�

`

2

�n ∑

A1,A2,A3

sign(A1 ∪ A2) . . .

. . . ×
(−i)S(A1,A2)+n+|A1|

2|A1|+|A2|
(cos∆k0

)|A3|(sin∆k0
)|A1|+|A2| . . .

. . . × cos
�

[n− 2q(A1)]θk0
−
π(|A1|+ |A2|)

2

�

. . .

. . . ×
1
∑

p1=0

· · ·
1
∑

p|A1 |+|A2 |=0

(−1)
∑|A1|

r=1 pr

∫ 1

−1

dζ1 . . . dζn−1 µ(~ζ) . . .

. . . ×
∫ π

−π

dk1 . . . dkn

(2π)n
exp

�

2i t
|A1|+|A2|
∑

r=1

(−1)prε(k(A1∪A2)r ) . . .

. . . −i`
n−1
∑

j=1

ζ j

2
(k j − k0)

�

. (89)

In the next step we carry out a multi-dimensional stationary phase approximation for the 2n−2
integrals over ζ1, . . . ,ζn−1 and k1, . . . , kn−1. We will assume that there is a single saddle point
and use

∫

d x1 . . . d xk p(x1, . . . , xk)e
i`q(x1,...,xk) ≈

�

2π
`

�k/2 p(x (0)1 , . . . , x (0)k )
p

|det (A) |
. . .

. . . × exp
�

i`q(x (0)1 , . . . , x (0)k ) +
iπσA

4

�

, (90)

where σA the signature of the matrix A (i.e. the difference between the numbers of positive
and negative eigenvalues), which is the Hessian of the function q evaluated at the saddle point

Ai j =
∂

∂ x i

∂

∂ x j

�

�

�

�

~x=~x (0)
q(x1, . . . , xk) . (91)
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In our case the saddle point conditions are

k(0)j = k0 , j = 1, . . . , n− 1 ,

ζ
(0)
j =

¨

γA1∪A2,k if j ∈ A1 ∪ A2 ,

0 else ,
(92)

where γA,k =
4t
` (−1)

p(A)−1
k ε′(k0) and (A1 ∪A2)−1 is the inverse of the index-function (A1 ∪A2) j

defined above. The Hessian A is a matrix of the form

A=
1
2

�

0 I
I M

�

, (93)

and hence we have det (A) = −41−n and σA = 0. The value of µ(~ζ) at the saddle point for a
given sequence {p1, p2, . . . , p|A1|+|A2|} is

µ(~ζ(0)) =max



0, min
0≤ j≤|B|

 

1−
j
∑

k=1

γB,k

!

+ min
0≤ j≤|B|

 

1+
j
∑

k=1

γB,k

!



 , (94)

where B = A1 ∪ A2 − {0}. The saddle point approximation thus gives

Tr
�

(Γ ′)n
�

≈ `
∑

A1,A2,A3

sign(A1 ∪ A2)
(−i)S(A1,A2)+n+|A1|

2|A1|+|A2|
(cos∆k0

)|A3|(sin∆k0
)|A1|+|A2| . . .

. . . × cos
�

[n− 2q(A1)]θk0
−
π(|A1|+ |A2|)

2

�

1
∑

p1=0

· · ·
1
∑

p|A1 |+|A2 |=0

(−1)
∑|A1|

r=1 pr . . .

. . . ×
∫ π

−π

dk0

2π
µ(~ζ(0)) exp

�

− 2i tε(k0)
|A1∪A2|
∑

r=1

(−1)pr
�

. (95)

The leading contribution to the final integral can then also be determined by a stationary phase
approximation. This shows that all terms with

∑|A1∪A2|
r=1 (−1)pr 6= 0 are suppressed at late times

by a factor of 1/
p

t. Conversely, the leading contribution to χ(u)(λ,`, t) at late times arises
from terms with

∑|A1∪A2|
r=1 (−1)pr = 0, which requires |A1|+ |A2| to be even.

6.1.1 Structure of µ(~ζ(0))

At this point it is useful to investigate the structure of µ(~ζ(0)) for a given term in the multiple
sum over p1, . . . , p|A1|+|A2| in more detail. For simplicity we focus on a particular example

|A1|= |A2|= 2 , {p(A1∪A2)−1
k
|k = 1, . . . , 4}= {0,1, 0,1}. (96)

In this case we have

µ(~ζ(0)) =max
�

0,min(1, 1−
4t
`
ε′(k0)) +min(1,1+

4t
`
ε′(k0))

�

=max
�

0,2−
4t
`

�

�ε′(k0)
�

�

�

= Θ(`− 2
�

�vk0

�

� t)
�

2− 4
t
�

�vk0

�

�

`

�

, (97)

where vk0
= ε′(k0) is the group velocity of Bogoliubov fermions at momentum k0 and Θ(x) is

the Heaviside step function. The step function in (97) is reminiscent of the light-cone struc-
ture found for two point correlation functions of local operators [66–69] and entanglement
entropies [45,70,71]. Repeating the above exercise for

|A1|= |A2|= m , {p(A1∪A2)−1
k
|k = 1, . . . , 2m}= {1,1, . . . , 1

︸ ︷︷ ︸

m

, 0, 0, . . . , 0} , (98)
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leads to the result

µ(~ζ(0)) = Θ(`− 2m
�

�vk0

�

� t)
�

2− 4m
t
�

�vk0

�

�

`

�

. (99)

All other cases can be worked out analogously and lead to Heaviside step functions
Θ(`− 2m

�

�vk0

�

� t) with m ∈ N0.

6.2 Result for χ(λ,`, t)

In order to obtain the logarithm of the characteristic function χ(λ,`, t) we now need to sum
over all contributions (95) with coefficients given in (73). This is a formidable task. It turns
out that the structure of Heaviside step functions discussed above provides a very useful way
of organizing the complicated summation required. The full result can be expressed in the
form

lnχ(u)(λ,`, t) ≈ ` ln(cosλ) +
`

2

∞
∑

n=0

∫ 2π

0

dk0

2π
Θ(`− 2n|vk|t) . . .

. . . ×
�

1−
2n|vk|t
`

� n+1
∑

m=0

cos
�

2mε(k0)t
�

fn,m(λ, k0) + C . (100)

Here C is a constant that is beyond the accuracy of the stationary phase approximation and
the functions fn,m(λ, k0, t) are given in terms of infinite series. Based on the first 15 terms in
these series we conjecture the following explicit expressions

f0,0(λ, k0) = 2 ln
�

1+ i cos∆k0
tanλeiθk0

�

,

f1,0(λ, k0) = ln

�

1−
sin2∆k0

tan2λ(cosθk0
+ i cos∆k0

tanλ)2

(sin2 θk0
+ (cosθk0

+ i cos∆k0
tanλ)2)2

�

,

f2,0(λ, k0) = ln

�

1+ . . .

. . .
sin4∆k0

tan4λ sin2 θk0
(cosθk0

+ i cos∆k0
tanλ)2

((sin2 θk0
+ (cosθk0

+ i cos∆k0
tanλ)2)2 − sin2∆k0

tan2λ(cosθk0
+ i cos∆k0

tanλ)2)2

�

.

(101)

In principle one could determine further terms fn,0 but their contribution turns out to be neg-
ligible for all cases we have considered. The contributions fn,m>0(λ, k0, t) are more difficult
to simplify. While the term f0,1 can still be obtained without further approximations, in or-
der to obtain closed form expressions for m > 1 we have resorted to an expansion in powers
of sin(∆k0

). This is expected to give very accurate results for small quenches, which are de-
fined as producing a small density of elementary excitations through the quench [41,42]. The
leading terms are then conjectured to be of the form

f0,1 = −i tan∆k0
ln

�

1+ ieiθk0 cos∆k0
tanλ

1+ ie−iθk0 cos∆k0
tanλ

�

,

f1,1 = tan∆k0

 

i ln

�

1+ ieiθk0 cos∆k0
tanλ

1+ ie−iθk0 cos∆k0
tanλ

�

−
4 cos∆k0

tanλ sinθk0

sin2 θk0
+
�

cosθk0
+ i cos∆k0

tanλ
�2

!

. . .

. . . +O(sin3(∆k0
)). (102)
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As we will see below, the contributions described by (101) and (102) are sufficient to obtain
an extremely accurate description of χ(u)(λ,`, t). The constant C can be fixed by comparing
the t →∞ limit of (100) to the result obtained previously for the behaviour in the stationary
state. For later convenience we define two approximations as

lnχ(u)a (λ,`, t) = ` ln(cosλ) . . .

. . . +
`

2

2
∑

n=0

∫ 2π

0

dk0

2π
Θ(`− 2n|vk|t)

�

1−
2n|vk|t
`

�

. . .

. . . ×
a
∑

m=0

cos
�

2mε(k0)t
�

fn,m(λ, k0) + C , (103)

where a = 1,2 and where we set f2,1 = 0. The structure of the integrand in our result (100) is
reminiscent of that found in connected two-point correlation functions [41] and entanglement
entropies [46]. In the latter quantities it gives rise to a “light-cone” behaviour in developing
connected correlations and the spreading of entanglement respectively. In contrast to these
cases the expression (100) involves an infinite number of “light-cone structures” with veloci-
ties that are integer multiples of the maximum group velocity. Since the generating function
involves complicated sums over multi-point correlation functions on the interval [1,`] this is
not in contradiction with the celebrated Lieb-Robinson bound [73]. The light-cone structure
in connected two-point correlators and entanglement entropies can be understood in terms
of simple semi-classical quasi-particle pictures [45,66]. It would be interesting to develop an
analogous understanding for the novel structure observed in the generating function, but this
is beyond the scope of the present paper.

7 Accuracy of the asymptotic result

Our analytic result (100), (101), (102) gives the leading contributions in the space-time scaling
limit [42] `, t → ∞, `/t fixed. An important question is how good this asymptotic result
describes the behaviour of χ(u)(λ,`, t) at small and intermediate times and subsystem sizes.
In order to answer this question we now turn to a comparison between our analytical results
(103) and a direct numerical evaluation of the determinant representation (32), (33). The
numerical errors in the latter are negligible.

7.1 Small-λ regime

A representative comparison between the analytical results χ(u)1,2(λ,`, t) for small values of λ

and numerics is shown in Fig 18 and 19. We see that χ(u)1 (λ,`, t) reproduces the numerics
very well at late times after the quench. In contrast, the oscillatory behaviour at short times is
clearly not captured. The improved approximation χ(u)2 (λ,`, t) (103) is seen to be in excellent
agreement with the numerics.

By construction the oscillatory part of the analytic result is most accurate over the en-
tire range of the “counting parameter” λ when sin∆k0

is small, i.e. for small quenches. For
quenches where sin∆k0

is no longer small we still find excellent agreement between the ana-
lytic and numerical results as long as tan(λ) is small. This can be understood by noting that
for such values of λ the infinite sum in (73) is dominated by the first few terms, i.e. small
values of n. On the other hand, higher orders of sin∆k0

only emerge for larger values of n.
Therefore the leading order result in sin∆k0

already provides a very good approximation in the
small-tan(λ) regime even when sin∆k0

is not small. This observation is of significant practical

25

https://scipost.org
https://scipost.org/SciPostPhys.4.6.043


SciPost Phys. 4, 043 (2018)

(a) (b)

Figure 18: Real and imaginary parts of the leading approximation
χ
(u)
1 (λ = 0.1,` = 200, t) for a transverse field quench quench from h = 0 to

h= 0.8. The analytic approximation gives a good description only at late times.

(a) (b)

Figure 19: Real and imaginary parts of χ(u)2 (λ= 0.1,`= 200, t) for a transverse field
quench quench from h= 0 to h= 0.8. The analytical expression (red dashed line) is
seen to be in excellent agreement with the numerical results, which have negligible
errors on the scale of the figure.

(a) (b)

Figure 20: (a) Real and (b) imaginary parts of χ(u)(λ,` = 50, t) as functions of λ
and t for a transverse field quench from h = 5 to h = 1.5. We observe that the
characteristic function is small unless λ is small. The behaviour for quenches within
the ferromagnetic phase and quenches between the phases is similar.

importance: As shown in Fig. 20 in a particular example |Reχ(u)(λ,`, t)| and |Imχ(u)(λ,`, t)|
are largest in the vicinity of λ= 0 (except at short times). This implies that the corresponding
probability distribution, which is the object we are ultimately interested in, will be dominated
by the small-λ regime. As a consequence (100), (101), (102) provide a good approximation
for the calculation of P(u)w (m) for all quenches.
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7.2 Large-λ regime

In the large-λ regime we have to distinguish between the cases where the symbol in the sta-
tionary state has zero or non-zero winding number, c.f. section 5.1.1. The first case covers
quenches to the paramagnetic phase. Here we find that our analytic result is again in good
agreement with numerics. The second scenario applies to quenches to the ferromagnetic phase
and λ > λc(h0, h). We have shown in section 5.1.2 that there is no good scaling collapse in
this regime of counting parameters for the moderate subsystem sizes and times of interest
here. It should therefore not come as a surprise that the asymptotic result does not provide
a good approximation in this regime. Presumably (100), (101), (102) no longer hold in this
regime because the analytic continuation of the power series expansion of the logarithm (73)
becomes non-trivial in this case. In practice the failure of the analytic approach to give a good
account of the generating function in this parameter regime is irrelevant as χ(u)(λ,`, t) itself is
extremely small and makes a negligible contribution to the probability distribution. As shown
in Fig. 21, the main contribution to the latter, which after all is our object of interest, arises
from the small-λ regime of the generating function, which is well approximated by our analytic
expressions.

(a) (b)

Figure 21: Real (a) and imaginary (b) parts of χ(u)(λ,`= 50, t) for a quench within
the ferromagnetic phase from h0 = 0.2 to h= 0.8. The dominant contribution to the
probability distribution arises from the small-λ regime.

7.3 Relative errors

In order to provide a more quantitative discussion of the quality of the approximate results
(103) we consider the relative errors

r1,2(λ,`, t) =

�

�

�

�

�

1−
ln
�

χ
(u)
1,2(λ,`, t)

�

ln
�

χ
(u)
num(λ,`, t)

�

�

�

�

�

�

, (104)

where χ(u)1,2/num(λ,`, t) are respectively the analytic approximations (103) and the result of the
numerical computation of the determinant representation (32), (33). In Fig. 22 we plot the
time dependence of the relative errors for a quench from h0 = 5 to h = 1.5 for a subsystem
of size ` = 200 and two values of the counting parameter λ. The maximal value of sin(∆k0

)
within the domain of integration approximately 0.54, which means that higher orders in f1,1
can be important. As we have argued above, this will be the case if tan(λ) is not small. In
Fig. 22 (a) λ= 0.1 is taken to be small, and the quality of both approximations χ(u)1,2(λ,`, t) is
seen to be excellent. In Fig. 22 (b) the counting parameter λ = 1.4 is taken to be large. This
leads to a significantly larger error, which is however still fairly small and also decays in time.
We see that the analytic results provide a good approximation for all values of λ.
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(a) (b)

Figure 22: (a) Relative errors r1,2(λ = 0.1,` = 200, t) for a quench within the para-
magentic phase from h0 = 5 to h= 1.5. (b) same for r1,2(λ= 1.4,`= 200, t).

(a) (b)

Figure 23: (a) Relative errors r1,2(λ= 0.1,`= 200, t) for a quench within the ferro-
magnetic phase from h0 = 0 to h= 0.8. (b) same for r1,2(λ= 1.4,`= 200, t).

We now turn to a parameter regime, in which our analytic results no longer provide a
uniformly good approximation for all values of the counting parameter λ. Fig. 23 shows
results for a quench from h0 = 0.2 to h= 0.8. The maximal value of sin∆k0

in the integration
range is now 0.71 so that higher orders in f1,1 can again be important. For small values of
λ the relative errors of both analytical approximations are small and decreasing in time. On
the other hand χ(u)1,2(λ,`, t) cease to provide accurate approximations for large values of λ
with λ > λc(h0, h) as can be seen in Fig. 23 (b). However, we want to stress once more that
χ(u)(λ, 200, t) itself is extremely small in this parameter regime and makes only a negligible
contribution to the probability distribution.

7.4 Probability distributions

An asymptotic expansion for the probability distribution P(u)w (m, t) can be obtained by Fourier
transforming the generating function, cf. Eq. (14). As expected on the basis of the discussion
above, we find that the analytic result becomes very accurate at sufficiently late times for
all quenches. At intermediate and short times we still find excellent agreement between the
analytical and numerical results for quenches originating the ferromagnetic, see e.g. Fig. 24
(a). For quenches from the paramagnetic phase the analytic result is an excellent agreement
with numerics at short and intermediate times as long as the quench is “small”. In practice
this covers all quenches within the paramagnetic phase as long as h is not very close to 1. For
other quenches the corrections to the f1,1 term in (102) will become significant at short and
intermediate times.
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(a) (b)

Figure 24: Comparison of the asymptotic expression for P(u)w (m, t) obtained from
eqns (100), (101), (102) (solid lines) to numerics (symbols) for transverse field
quenches with (a) h0 = 0.2 and h = 0.8 and (b) h0 = 5 and h = 2. The agree-
ment is seen to be excellent.

8 Conclusions

We have analyzed the full counting statistics of the transverse and staggered magnetization of
a subsystem in the thermodynamic limit of the transverse field Ising chain. We derived a con-
venient determinant representation for the corresponding generating functions χ(u,s)(λ,`, t).
We first considered the FCS in equilibrium states and showed that the probability distributions
are always non-Gaussian except in the limit of infinite subsystem size at finite temperature.
We determined the temperature and field dependence of the generating function as well as
the first few cumulants. We then moved on to the main focus of our work, the calculation
of the FCS after quantum quenches. We considered two quench protocols: transverse field
quenches and evolution starting from a classical Néel state. We first determined the FCS in
the stationary states reached at late times. The probability distributions are again non Gaus-
sian, except in the limit of infinite subsystem size. We analyzed the time evolution of the
probability distributions P(u,s)(m, t) for a variety of quenches by numerically evaluating the
exact determinant representation for the generating function (the numerical errors incurred
are negligible). For transverse field quenches originating in the paramagnetic phase P(u,s)(m, t)
showed interesting smoothing and broadening behaviour in time. In contrast, P(u,s)(m, t) dis-
played a simpler behaviour for quenches originating in the ferromagnetic phase. In the case
of a Néel quench P(s)(m, t) encoded detailed information on the restoration of translational
invariance. The numerical approach provided us with evidence for the existence of a scal-
ing regime for the generating function in which we observed data collapse according to the
scaling form (59). This is turn allowed us to proceed with the derivation of the main result
of our work: the analytic expression (100) for the FCS after transverse field quenches in the
space-time scaling limit t,`→∞, t/` fixed. This was achieved by a substantial generalization
of the multi-dimensional stationary phase approximation method of Refs [42, 46]. We per-
formed a careful comparison of our analytic results to numerics (that has negligible errors)
and found excellent agreement on the level of the probability distributions for all cases con-
sidered. We observed that the expression for the generating function exhibits an interesting
multiple light-cone structure that has no analog in either correlation functions of local observ-
ables [41] or in the entanglement entropy [46]. An interesting open question is whether this
structure can be understood in terms of the kind of semiclassical quasi-particle picture that
has been successfully employed to explain the main features observed in the dynamics of both
entanglement [45] and correlations [66].

Our work provides the first analytic results for FCS after quantum quenches and hopefully
will pave the way for further studies. Here we have focussed on the FCS for the transverse
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magnetisation. It would be very interesting to determine the FCS for the longitudinal mag-
netisation, which is the order parameter characterising the Ising quantum phase transition. A
more straightforward but interesting extension would be to study certain observables in free
fermion models with long-range hopping and/or pairing [72, 74, 75]. Similarly, the proba-
bility distribution of the (smooth) subsystem magnetisation in the spin-1/2 Heisenberg XXZ
chain should be calculable both at finite temperatures [76] and in the stationary states after
certain quantum quenches [77–85]. For quantum quenches in the regime where bosonization
provides a good approximation [86] the full time evolution of the probability distribution for
certain observables can be obtained in a straightforward way. Finally, the case of integrable
chains of higher spin could be studied both in equilibrium [87,88] and after a quench [84,89].
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A Asymptotics of block Toeplitz matrices

Let T` be a general block Toeplitz matrix with elements (T`)ln = t l−n. The symbol τ(eik) of T`
is defined by

tn ≡
∫ 2π

0

dk
2π
τ(eik)e−ink. (105)

In cases where the symbol has winding number zero, the large-` asymptotics of the determi-
nant of T` is (under certain conditions) given by [90]

ln det (T`) = `

∫ 2π

0

dk
2π

lndet
�

τ(eik)
�

+ det
�

T (τ−1)T (τ)
�

+ o(1). (106)

Here T (τ) denotes an infinite Toeplitz matrix with symbol τ. In the case where the block-size
is 1, this reduces to the Szegő limit theorem

ln det (T`) = `

∫ 2π

0

dk
2π

lnτ(eik) +
∑

q≥1

q (lnτ)q(lnτ)−q + o(1), (107)

where

(lnτ)q =

∫ 2π

0

dk
2π

lnτ(eik)e−ikq . (108)

The large ` asymptotics of Toeplitz determinants in cases where the symbol τ has winding
number ±1 is given by [42,91]

lndet (T`) = `

∫ 2π

0

dk
2π

ln a(eik) +
∑

q≥1

q (ln a)q(ln a)−q + ln

∫ 2π

0

dk
2π

e−i`k a−(eik)
a+(eik)

+ o(1) ,

(109)

where

a(eik)≡ −e∓ikτ(eik) = exp

 

∞
∑

j=1

(ln a)± je
±i jk

!

. (110)
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B Perturbation theory around the h→∞ limit

We have seen that the probability distributions P(u,s)(m, t) exhibit an even/odd structure in m
for short times after quenches starting in the paramagnetic phase. In this appendix we show
that this structure can be understood in perturbation theory around the h → ∞ limit. For
simplicity we consider the probability distribution P(u)(m) in the ground state at h� 1. In the
limit h→∞ the ground state is the saturated ferromagnetic state along the transverse field
direction

|0〉(0) = | ↑ . . . ↑〉 . (111)

Hence
(0)〈0|eiλSz

u(`)|0〉(0) = eiλ` . (112)

The corresponding probability distribution is a delta function at m = −`/2. The other eigen-
states of

∑

j σ
z
j are denoted by |n〉(0). The leading correction to the generating function arises

at second order in perturbation theory in H1 =
∑

jσ
x
j σ

x
j+1. The relevant corrections to the

ground state are

|0〉(2) = |0〉(0) +
∑

n6=0

|n〉(0)
(0)〈n|H1|0〉(0)

E(0)0 − E(0)n

−
1
2
|0〉(0)

∑

n 6=0

�

�
(0)〈n|H1|0〉(0)

�

�

2

(E(0)n − E(0)0 )2
+ . . . (113)

Substituting this into the expression for the generating function gives

(2)〈0|eiλSz
u(`)|0〉(2) = eiλ`



1−
∑

n 6=0

�

�
(0)〈n|H1|0〉(0)

�

�

2

(E(0)n − E(0)0 )2



 . . .

. . . +
∑

n6=0

(0)〈n|eiλSz
u(`)|n〉(0)

�

�

�

�

(0)〈n|H1|0〉(0)

E(0)0 − E(0)n

�

�

�

�

2

. (114)

In order for (0)〈n|H1|0〉(0) to be non-zero the product state |n〉(0) must have precisely two
overturned spins. Let us denote their positions by j and j + 1. For `≥ 2 we then have

(0)〈n|eiλSz
u(`)|n〉(0) =











eiλ(`−4) if 1≤ j < `

eiλ(`−2) if j = 0 or `

eiλ` else.

(115)

This gives

(2)〈0|eiλSz
u(`)|0〉(2) = eiλ`

�

1−
`+ 1
16h2

�

+
2

16h2
eiλ(`−2) +

`− 1
16h2

eiλ(`−4) . (116)

The corresponding probability distribution is

P(u)(m)

�

�

�

�

PT

=
�

1−
`+ 1
16h2

�

δ(m− `/2) +
2

16h2
δ(m+ 1− `/2) +

`− 1
16h2

δ(m+ 2− `/2). (117)

This is seen to exhibit an even/odd effect as the corrections for m= `/2 mod 2 are proportional
to the subsystem size.
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