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Abstract

We study 2+1 dimensional gauge theories with a Chern-Simons term and a fermion in the
adjoint representation. We apply general considerations of symmetries, anomalies, and
renormalization group flows to determine the possible phases of the theory as a func-
tion of the gauge group, the Chern-Simons level k, and the fermion mass. We propose
an inherently quantum mechanical phase of adjoint QCD with small enough k, where
the infrared is described by a certain Topological Quantum Field Theory (TQFT). For a
special choice of the mass, the theory has N = 1 supersymmetry. There this TQFT is
accompanied by a massless Majorana fermion – a Goldstino signaling spontaneous su-
persymmetry breaking. Our analysis leads us to conjecture a number of new infrared
fermion-fermion dualities involving SU , SO, and Sp gauge theories. It also leads us to
suggest a phase diagram of SO/Sp gauge theories with a fermion in the traceless sym-
metric/antisymmetric tensor representation of the gauge group.
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1 Introduction

Consider adjoint QCD in 2+1 dimensions, that is Yang-Mills theory with a Chern-Simons term
at level k and a Majorana fermion λ in the adjoint representation of the gauge group G. We
study the low energy dynamics of this theory as a function of the gauge group G, the Chern-
Simons level k and the mass Mλ of the fermion. We uncover a rich structure of phase diagrams
that suggest new fermion-fermion dualities and include phases that are inherently quantum
mechanical (in the sense that they are invisible semiclassically).

The infrared behaviour of the theory crucially depends on the level k of the Chern-Simons
term. We denote by Gk a Chern-Simons term with gauge group G and level k. We will be mostly
interested in the classical gauge groups G = SU(N), SO(N), Sp(N) and follow the conventions
of [1–5].1 The Lagrangian of adjoint QCD contains a Chern-Simons term with coefficient kbare
which must be properly quantized. Since the theory has a fermion, we henceforth consider
the theory on spin manifolds, which requires that kbare ∈ Z. The level k is related to kbare by

k = kbare −
h
2

(1.1)

with h the dual Coxeter number of G, e.g.2 The virtue of labeling the theory by k is that time-
reversal (or parity) acts by k → −k (alongside with reversing the sign of the fermion mass
Mλ→−Mλ). Without loss of generality we henceforth consider k ≥ 0. Note that adjoint QCD
for k = 0 and a vanishing mass (Mλ = 0) for the fermion is time-reversal invariant. This time-
reversal invariant theory therefore exists in SU(N) or SO(N) only for N even and in Sp(N)
only for N odd.

Adjoint QCD has two semiclassically accessible phases for all G and k. When the mass
of the fermion is much larger than the scale set by the Yang-Mills coupling (i.e. |Mλ| � g2)
the fermion can be integrated out at one-loop. This shifts the coefficient of the Chern-Simons
level [10–12]

k→ k+ sgn(Mλ)
h
2

. (1.2)

At low energies the Yang-Mills term becomes irrelevant and the infrared description is pure
Chern-Simons TQFT with gauge group G and level k + h/2 for large positive mass and level
k−h/2 for large negative mass. We denote these Chern-Simons theories by Gk+h/2 and Gk−h/2
respectively. Our goal is to fill in the rest of the phase diagram.

For a special value of the bare mass

Mλ = mSUSY ∼ −kg2 , (1.3)

adjoint QCD is N = 1 supersymmetric.3 At this point the fermion λ is the gaugino in the
N = 1 vector multiplet. Moving away from this supersymmetric point in the phase diagram
can be interpreted as turning on a soft supersymmetry-breaking mass mλ for the gaugino

Mλ = mSUSY +mλ . (1.4)

In the quantum theory these masses are corrected and the theory may end up being massless
even if the bare Lagrangian has a mass term. If h/2 is a half-integer so is k and if h/2 is an
integer so is k. In other words, we must take k = h

2mod1, which in our cases implies

1Our notation is Sp(1) = SU(2).
2Note that the dual Coxeter number of SO(3) is one, while that of SU(2) is two. Correspondingly, our notation

is SO(3)k = SU(2)2k/Z2. More generally, we label the TQFT by the corresponding Chern-Simons gauge group and
its level. A quotient as in this expression is interpreted from the 2d RCFT as an extension of the chiral algebra [6]
and from the 3d Chern-Simons theory as a quotient of the gauge group [7]. More abstractly, it can be interpreted
as gauging a one-form global symmetry of the TQFT [8, 9]. This quotient is referred to in the condensed matter
literature as “anyon condensation.”

3N = 1 supersymmetry in 2+1 dimensions entails 2 real supercharges.
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G SU(N) SO(N) Sp(N)
h N N − 2 N + 1

Table 1: Dual Coxeter number for classical groups.

G SU(N) SO(N) Sp(N)
k N

2 mod1 N
2 mod1 N+1

2 mod1

Table 2: Quantization of Chern-Simons levels in adjoint QCD.

Let us consider the infrared dynamics of the supersymmetric theory; i.e. set mλ = 0. For
large k all the propagating degrees of freedom have mass of order kg2� g2 and the semiclas-
sical analysis is again reliable. First, we integrate out the gauginos thus shifting the Chern-
Simons coefficient [13,14]

kIR = k−
h
2

. (1.5)

Second, the gauge fields are heavy and can be integrated out (except for some global modes)
leading at low energies to a topological Gk− h

2
theory. Witten argued that the large k infrared de-

scription Gk− h
2

remains valid in the entire domain of k where supersymmetry is unbroken [14],
that is for

k ≥
h
2

. (1.6)

Thus, the low energy description at the supersymmetric point is given by Gk− h
2

Chern-Simons

theory. This infrared theory coincides with the asymptotic phase at large negative mass.4

This suggests a natural scenario for the phase diagram of adjoint QCD for k ≥ h
2 depicted in

fig. 1. The system has two asymptotic phases with topological order Gk± h
2
. The supersymmetric

point mλ = 0 is in the Gk− h
2

phase. The two phases are separated by a transition at some
positive value of mλ. At that point we can think of the fermion as being effectively massless.
We do not actually know whether this transition is first order or second order. However, for
very large k we can think about the model perturbatively, starting from the CFT of dim(G)
free fermions. The anomalous dimensions of the G-invariant local operators are only weakly
corrected compared to the free model and the transition is second order. Therefore, it is
natural to expect that for eq. (1.6) the transition between the two topological theories Gk+h/2
and Gk−h/2 is second order.

Let us now turn to the interesting region k < h
2 . We know from our discussion above that

there are two asymptotic regions of large mass described by the TQFTs Gk±h/2. The infrared
dynamics for small mass mλ is strongly coupled and requires a more sophisticated analysis. We
will see that the physics at small mλ can lead to novelties in comparison to the phase diagram
for k ≥ h/2.

At the supersymmetric point mλ = 0 supersymmetry is expected to be spontaneously bro-
ken for k < h/2 [14]. This implies that at mλ = 0 there is a massless Majorana fermion (i.e. the
Goldstino particle). An interesting question is whether the infrared theory contains a TQFT in
addition to the Majorana Goldstino particle. We will see that general considerations including

4Note that for k = h
2 , kIR = 0 and hence the infrared theory is rather simple. For simply connected gauge groups

it is completely trivial. But for non-simply connected gauge groups, like SO(N)0, it has a zero-form magnetic
symmetry, which can be spontaneously broken, leading to several vacua in the infinite volume system.
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Figure 1: The phase diagram of Gk with an adjoint fermion for k ≥ h
2 . Note that the

physics at the supersymmetric point is smooth – there is no transition there. For k = h
2

the negative mass phase is trivial and there is a transition at some positive value of
mλ. Here, and in all our later figures, the vertical line denotes renormalization group
flow from the UV at the top of the diagram to the IR at the bottom of the diagram.
The solid diagonal line represents a flow to an IR fixed point. The physics across
this line is not smooth. The theory is supersymmetric along the dotted vertical line.
Unlike the solid line, here the physics is smooth as this line is crossed.

symmetries and ’t Hooft anomaly matching imply that this is indeed the case.5 We will also
identify the TQFT accompanying the Goldstino.

A first guess for the phase diagram of adjoint QCD for k < h/2 is that there are two phases,
as in fig. 1, except that at the point mλ = 0 there is also a massless Goldstino reflecting the fact
that supersymmetry is spontaneously broken. In fact, we argue below that for G = SU(N),
SO(N), and Sp(N) this is the correct scenario, but only for a special value of k = h

2−1.6 This is
depicted in fig. 2.7 Note that the low energy theory around the point of the massless Goldstino
includes a decoupled TQFT G−1. There is a phase transition to the right of the supersymmetric
point mλ = 0, which we denote by a bullet point. We will not be able to determine whether
this transition is first or second order. We find that this phase transition admits an alternative
description in terms of another gauge theory coupled to a fermion in a representation of the
gauge group that depends on the choice of G. This suggests new fermion-fermion dualities
in nonsupersymmetric theories (see below). For other recent nonsupersymmetric dualities
see [2–4,15–25].

We are going to argue that the scenario in fig. 2 cannot be right for all lower values of
k, i.e. all k < h

2 − 1. To see that, consider the special case of k = 0. We know that for large
|mλ| we have the two asymptotic topological phases G± h

2
exchanged by the action of time-

reversal. (Time-reversal changes the sign of Mλ and indeed exchanges the two asymptotic
phases.) Also, since supersymmetry is spontaneously broken, we expect a massless Goldstino
at the supersymmetric point Mλ = mλ = 0. If the system has only the two topological phases
G±h/2, the supersymmetric point must be at the transition point. So one might be tempted
to consider a phase diagram with only two phases, one for mλ positive and the other for mλ

5With the exception of adjoint QCD with gauge group SO(N) and a Chern-Simons term at level k = h/2 − 1
where the infrared description is just a Goldstino.

6In our discussion below we will mostly exclude the case SO(4)0 = (SU(2)0×SU(2)0)/Z2, where supersymmetry
is broken with two massless Goldstinos, one for each SU(2) factor.

7We have not analyzed whether this picture is valid also for other gauge groups.
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Figure 2: The proposed phase diagram for G = SU(N), SO(N), and Sp(N) with
k = h

2 − 1. For low values of N the situations can be different. For example, for
SU(2)0 the transition point occurs at the supersymmetric point mλ = 0. And other
than the massless Goldstino there, the TQFT does not change because of the duality
SU(2)−1↔ SU(2)1 (as spin-TQFT). Below we will discuss another dual theory that
flows to the same transition. It is denoted in the figure as “Dual Theory.” The general
structure of the figure is as explained in the caption of fig. 1, except that here super-
symmetry is broken for mλ = 0 and we also suggest a dual theory of the transition
point.

negative. At the supersymmetric point the infrared theory must be time-reversal invariant.
This would be a consistent scenario if the two topological phases are level/rank dual to each
other, G h

2
←→ G− h

2
;8 that is if the topological phase G h

2
is time-reversal invariant.9 We could

then have a massless Goldstino at mλ = 0 together with the decoupled TQFT G h
2
. However,

this condition that G h
2

is dual to G− h
2

is not obeyed for generic G and thus invalidates this
simplistic scenario. Another possibility is that the theory at that supersymmetric point sponta-
neously breaks its time-reversal symmetry such that the transition at mλ = 0 is first order. This
possibility can be ruled out using the argument of [26]. Alternatively, the transition at that
point could be second order and that would mean that the low energy theory includes more
degrees of freedom. Such additional degrees of freedom would also need to match various
anomalies of the ultraviolet adjoint QCD theory. We cannot exclude this possibility. But we
will argue for another, more likely, and simpler option.

Let us now present our scenario for k < h
2 − 1: a new intermediate quantum mechanical

phase opens up between the two asymptotic phases. The details of the scenario are summa-
rized in fig. 2. This picture is motivated by the analysis of QCD3 in [5], where it was suggested
that for small fundamental quark masses the system can have a new purely quantum phase,
which cannot be understood semiclassically. It is also motivated by studying the effective field
theory on domain walls and interfaces along the lines of [27–30], as well as by the holo-
graphic realization [31, 32] of adjoint QCD for mλ = 0 from which the intermediate infrared
TQFT can be extracted by analyzing the effective low energy theory on branes wrapping a non-
contractible cycle threaded by flux. A detailed analysis of these domain walls and interfaces
will appear in [30].

General considerations imply that the TQFT in the intermediate, new phase cannot be

8We use the symbol A←→ B to denote that theories A and B are dual.
9This is true for G = SU(2) where SU(2)1 ←→ SU(2)−1, but this case has k = h

2 − 1 = 0 and here we discuss
k < h

2 − 1. See a comment in fig. 2.
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Figure 3: The proposed phase diagram for k < h
2 − 1. The system has three phases.

Two of them at large |mλ| are visible semiclassically and the middle phase at small
|mλ| is purely quantum. The supersymmetric point mλ = 0 is in the interior of this
middle phase. At that point there is a massless Goldstino. Even when the middle
phase is gapped it includes some TQFT, which we will determine. We will also present
two conjectured dual gauge theories, denoted by “Dual Theory A” and “Dual Theory
B” that describe the two transition points. Again, the general structure of this diagram
is as explained in the caption of fig. 1, except that here we have two transition points
and two dual theories.

SU(N)k Sp(N)k SO(2N)2k SO(2N)2k+1 SO(2N + 1)k
ZN Z2 Z2 1 1

Table 3: One-form global symmetry of adjoint QCD.

trivial. Adjoint QCD has a one-form global symmetry (see table 3) acting on its line opera-
tors [8,9]. This symmetry cannot act trivially in the infrared (i.e. it cannot be that all the lines
would be confined) because it has an ’t Hooft anomaly for generic k. Therefore, this symmetry
must also be realized in the infrared. But since a single Goldstino clearly does not match the
one-form global symmetry of adjoint QCD, this rules out the scenario with just a Goldstino.
This scenario can also be ruled out in the T -reversal-invariant cases k = 0. In these cases
adjoint QCD has a T -reversal anomaly, characterized by an integer modulo 16, which is often
denoted by ν [33–41]. (For early work on mixed T -gravitational anomalies, see e.g. [42].) The
massless Goldstino does not saturate that anomaly.10 Below we will discuss how the proposed
TQFT in the infrared does saturate that anomaly.

We suggest that adjoint QCD for k < h
2 − 1 has a new intermediate phase in between

the asymptotic phases described by Gk±h/2. The intermediate phase is another gapped phase
except at the supersymmetric point mλ = 0 where there is a massless Goldstino. The TQFT
describing the gapped phase differs from the asymptotic TQFTs Gk±h/2. Below we identify the
TQFT that governs the intermediate phase for G = SU(N), SO(N), Sp(N) gauge theory with

10We thank E. Witten for raising this point.
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a fermion in the adjoint representation11

U
�N

2 − k
�

N
2 +k,N for SU(N)k with k < N

2 − 1,

SO
�N−2

2 − k
�

N−2
2 +k for SO(N)k with k < N

2 − 2,

Sp
�N+1

2 − k
�

N+1
2 +k for Sp(N)k with k < N−1

2 .

(1.9)

Note that the intermediate TQFTs for SU(N) adjoint QCD coincide with the domain wall theo-
ries of 3+1 dimensional N = 1 SU(N) super-Yang-Mills in [27]. This will be important in [30].

The phase diagram has two phase transitions connecting the intermediate phase to the
asymptotic phases. We find that the phase transitions can be described by a different gauge
theory with a fermion in a representation of the gauge group that depends on the choice of G.
We denote these dual theories in fig. 3 by “Dual Theory A” and “Dual Theory B.” Specifically,
we propose the new fermion-fermion dualities:12

SU(N) and k < N
2 :

SU(N)k + adjoint λ←→ U
�

N
2
+ k

�

− 3
4 N+ k

2 ,−N
+ adjoint λ̃,

SU(N)k + adjoint λ←→ U
�

N
2
− k

�

3
4 N+ k

2 ,N
+ adjoint λ̂ . (1.10)

SO(N) and k < N−2
2 :

SO(N)k + adjoint λ←→ SO
�

N − 2
2
+ k

�

− 3N
4 +

k
2+

1
2

+ symmetric S̃ ,

SO(N)k + adjoint λ←→ SO
�

N − 2
2
− k

�

3N
4 +

k
2−

1
2

+ symmetric Ŝ . (1.11)

Sp(N) and k < N+1
2

Sp(N)k + adjoint λ←→ Sp
�

N + 1
2
+ k

�

− 3N
4 +

k
2−

1
4

+ antisymmetric Ã ,

Sp(N)k + adjoint λ←→ Sp
�

N + 1
2
− k

�

3N
4 +

k
2+

1
4

+ antisymmetric Â . (1.12)

Both here and below when we discuss symmetric representations of SO(N) and antisymmetric
representations of Sp(N) we mean the irreducible symmetric-traceless and antisymmetric-
traceless representations. The dualities in the second line of eqs. (1.10) to (1.12) trivialize

11We follow the standard notation

U(M)P,Q =
SU(M)P × U(1)MQ

ZM
,

U(M)P ≡ U(M)P,P . (1.7)

U(M)P,Q is described by the Chern-Simons Lagrangian

P
4π

Tr(a ∧ da+
2
3

a ∧ a ∧ a) +
Q− P
4πM

(Tr a)∧ (d Tr a) , (1.8)

with a a U(M) gauge field. This expression makes it clear that it is well defined for integer P,Q with P =Q mod M
and that the theory is a spin TQFT when P + Q−P

M is odd (see e.g. [1,3]).
12As in other familiar examples, including most recently [5], the notion of this duality is valid only near the

transition point. We say that Gk + adjoint λ is dual to Theory A around one transition and it is dual to Theory B
around the other transition, but we do not say that Theory A is dual to Theory B.
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when k reaches the upper limit, i.e. when k = h/2− 1. It should also be pointed out that the
dualities in the second line of eqs. (1.10) to (1.12) can be viewed as “analytic continuation”
to negative k combined with orientation reversal of the dualities in the first line.

A way to understand fig. 3 is as follows. We start with large and negative mλ and find
Gk− h

2
. Then we use level/rank duality to express this theory as GA

kA
with some gauge group GA

and some level kA. The Dual Theory A has gauge group GA with some level and some matter
fields. Specifically, this theory can be found in eqs. (1.10) to (1.12). Then we move to the right
in fig. 3 and cross a phase transition. Here the matter fields in theory A change the sign of
their mass and kA changes to k̂A. We end up in the intermediate phase with the TQFT GA

k̂A
with

some level k̂A. In our examples, these are the TQFTs in eq. (1.13). We then repeat these steps
for large and positive mλ, where again we use level/rank duality and then a transition in Dual
Theory B to find the TQFT in the intermediate phase GB

k̂B
. Our proposal for the intermediate

phase and the dual theories eqs. (1.10) to (1.12) was motivated by requiring that the two
descriptions of the TQFT in the intermediate phase are dual to each other, i.e. GA

k̂A
←→ GB

k̂B
.

Below we will discuss this process in a lot of detail in our three examples SU(N), SO(N),
and Sp(N).

As with most dualities, these are merely conjectures. In fact, as we emphasized above,
our entire proposed phase diagram fig. 3 is conjectural. A common check of dualities is the
matching of their global symmetries and their ’t Hooft anomalies. A simple argument shows
that many of these tests are automatically satisfied in our proposal. We have just mentioned
that our scenario was designed such that the two descriptions of the intermediate phase are
dual to each other, GA

k̂A
←→ GB

k̂B
. Therefore, throughout our phase diagram we used either

level/rank duality or a phase transition in a weakly coupled theory. This guarantees that all
the symmetries that are preserved through this process and their ’t Hooft anomalies must
match. These include all the zero-form and the one-form global symmetries [8,9].

A notable exception to this statement is a symmetry that is violated in our process of chang-
ing mλ. Consider the special theories with k = 0. For mλ = 0 they are time-reversal invariant.
This symmetry is not present as we vary the mass and get to the intermediate phase and there-
fore there is no guarantee that it is present there. As a nontrivial check, for k = 0 the TQFT in
the intermediate phase eq. (1.13) is T -invariant

U
�

N
2

�

N
2 ,N
←→ U

�

N
2

�

− N
2 ,−N

,

SO
�

N − 2
2

�

N−2
2

←→ SO
�

N − 2
2

�

− N−2
2

, (1.13)

Sp
�

N + 1
2

�

N+1
2

←→ Sp
�

N + 1
2

�

− N+1
2

,

where we used results in [3,4,43].
These T -reversal-invariant cases also lead to additional consistency checks. As we men-

tioned above, it is known that T -reversal-invariant 2+1 dimensional spin theories are subject
to an anomaly, which is characterized by an integer ν modulo 16. This integer must match
between adjoint QCD and our proposed infrared theory, which includes the Goldstino and the
TQFTs eq. (1.13). In order to do that we will need the value of ν for these TQFTs [44–47]
(special cases had been found earlier)

ν
�

U(n)n,2n

�

= ±2 mod16 ,

ν (SO(n)n) = ±n mod16 , (1.14)

ν (Sp(n)n) = ±2n mod16 .
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So far we discussed the fermion-fermion dualities eqs. (1.11) and (1.12) in the range of
small k. It is natural to examine them also for larger k, which after redefining k, are written
for SO(N)k with k < N+2

2 as

SO(N)k + symmetric S←→ SO
�

N + 2
2
+ k

�

− 3N
4 +

k
2−

1
2

+ adjoint λ̃

SO(N)k + symmetric S ←→ SO
�

N + 2
2
− k

�

3N
4 +

k
2+

1
2

+ adjoint λ̂ . (1.15)

and for Sp(N)k with k < N−1
2 as

Sp(N)k + antisymmetric A←→ Sp
�

N − 1
2
+ k

�

− 3N
4 +

k
2+

1
4

+ adjoint λ̃ ,

Sp(N)k + antisymmetric A←→ Sp
�

N − 1
2
− k

�

3N
4 +

k
2−

1
4

+ adjoint λ̂ . (1.16)

The duality in the second line of eq. (1.15) trivializes for k = N/2. As above, the dualities in the
second line in eqs. (1.15) and (1.16) are obtained from the first line by “analytic continuation”
to negative k combined with orientation reversal.

Furthermore, these dualities motivate us to conjecture also the phase diagram of these
two theories. Therefore, we will also study the theories with gauge group SO (Sp) with a
fermion in the symmetric (antisymmetric) representation. We will find through our dualities
above that the infrared description also contains an intermediate quantum phase, given by the
Chern-Simons TQFTs

SO
�N+2

2 − k
�

N+2
2 +k for SO(N)k + S with k < N

2 ,

Sp
�N−1

2 − k
�

N−1
2 +k for Sp(N)k + A with k < N−1

2

(1.17)

in the deep infrared. An important distinction from the adjoint QCD theories is that now there
is no Majorana fermion in the infrared. (These theories do not become supersymmetric for
any value of the mass.) Nevertheless, the time-reversal anomaly ν modulo 16 of the k = 0
ultraviolet gauge theory beautifully matches the T -reversal anomaly of the intermediate TQFT
eq. (1.14)

SO
�

N + 2
2

�

N+2
2

←→ SO
�

N + 2
2

�

− N+2
2

,

Sp
�

N − 1
2

�

N−1
2

←→ Sp
�

N − 1
2

�

− N−1
2

. (1.18)

This corroborates our conjectures about the infrared phases of these theories and the dualities.
It is common to couple quantum field theories to various background fields. In our case

we can couple them to background gauge fields for the various global symmetries and to the
metric. Then, there can be tests of our picture involving the counterterms for these fields. The
counterterms for the background gauge fields of the dualities involving SO(N) gauge theories
will be presented in [48]. This will test our phase diagram and will allow us to derive similar
results for other gauge groups, e.g. Spin(N).

Another test of our proposal arises from the gravitational Chern-Simons counterterm13.
Starting in the ultraviolet theory we derive the two phases at large positive and large negative
mass at weak coupling. So the difference between the coefficients of this term in these two

13We thank F. Benini for raising this point.
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phases is easily computable. Then, we can use the change in this coefficient when we use
level/rank duality (using expressions in [3] for SU groups and in [4] for SO and Sp groups)
and the change when we go through the phase transitions to check that we find the same
answer in the middle phase regardless of whether we arrive to it from positive mass or negative
mass. When we perform this check we should make sure that in the theories with a massless
Goldstino this coefficient changes as we go through that point. Since this computation is
straightforward and tedious and since similar computations were done in [49,50], we will not
present it in detail here. We will simply state that this consistency check is satisfied in all the
cases we discuss here.

The plan of the paper is as follows. In section 2 we consider in detail SU(N) Chern-Simons
theory with an adjoint fermion and discuss some interesting special cases. In section 3 we
consider the analogous problem for SO(N) and Sp(N) adjoint QCD. In section 4 we discuss
the phase diagram of SO(N) theories with a fermion in the symmetric-traceless representation
and Sp(N) theories with a fermion in the antisymmetric-traceless representation.

2 SU(N) Adjoint QCD Phase Diagrams

In this section we study the phase diagram of Yang-Mills theory with gauge group SU(N),
level k Chern-Simons term and a fermion λ in the adjoint representation. The two asymptotic
infrared phases that describe the domain of large fermion mass (for any value of k) are the
TQFTs SU(N)k+N/2 and SU(N)k−N/2. We discuss the infrared dynamics for k ≥ N/2 and
k < N/2 in turn.

2.1 Phase Diagram for k ≥ N/2

The phase diagram can be understood by combining the TQFTs SU(N)k±N/2 that can be reliably
studied at large mass with the expectations from the supersymmetric theory at mλ = 0. At
mλ = 0 the infrared theory is believed to consist simply of SU(N)k−N/2 all the way down to
k = N/2 [14].

A natural guess is that SU(N) adjoint QCD for k ≥ N/2 has only two phases, described
by SU(N)k±N/2. The supersymmetric theory with mλ = 0 is in the phase SU(N)k−N/2. This is
true also for k = N/2, where the supersymmetric theory is in the trivial phase SU(N)0 (and
hence has a unique ground state). There is a phase transition between these two phases at
some nonzero (positive) value of the supersymmetry-breaking mass mλ. The phase diagram
is depicted in fig. 4. We emphasize again that the phase transition is not coincident with the
supersymmetric point.

An interesting special case is G = SU(2)k with odd k. Here we we can gauge the Z2 one-
form symmetry and arrive at SO(3)k/2 = SU(2)k/Z2 with a single real fermion in the three-
dimensional (adjoint) representation. (The supersymmetric point of this theory played in an
important role in [14].) This theory was argued in [4,23,43] to be dual to an SO

� k+1
2

�

−3 gauge
theory coupled to a scalar in the vector representation at a Wilson-Fisher point. Following [43]
(see footnote 3 there) we identify the point where the duality is relevant with the transition
point in fig. 4, which differs from the supersymmetric point.

We can recover the SU(2)k theory by gauging the magnetic Z2 global symmetry in this
duality. This is done in detail in [48] with the conclusion that the SU(2)k theory coupled to a

fermion in the adjoint is dual to O
� k+1

2

�0

−3,−3 coupled to a scalar in the vector representation.
Here the superscript and the two subscripts label various topological terms in the gauge theory.
The first subscript is the Chern-Simons level of the continuous group. The superscript denotes
a coupling between the continuous group and the discrete Z2 (it was introduced in [51] and
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Figure 4: The phase diagram of SU(N)k with an adjoint fermion for k ≥ N/2. Note
that the physics at the supersymmetric point is smooth. For k = N/2 the negative
mass phase is trivial. In that case the transition is still to the right of the supersym-
metric point.

Figure 5: The phase diagram of SU(2)1 with an adjoint fermion. Note that the
physics at the supersymmetric point is smooth in this example, which corresponds
to k = N/2. We also present the dual description. Since O(1) ∼ Z2, the dual de-
scription of the transition is in terms of the gauged 2+1d Ising model with a certain
topological term in the Z2 gauge theory.

denoted there by ±). In this case it is 0, which means that this coupling is absent. And the
second subscript is a topological term in the Z2 sector. On a spin manifold such terms have a Z8
classification14 [53,54] (see also [55,56]) and the subscript−3 means that our term is the third

power of the generator of that Z8. See [48] for more details. The O
� k+1

2

�0

−3,−3 theory coupled
to a scalar in the vector representation has two weakly coupled gapped phases with TQFTs.
The TQFT of the phase where the scalar condenses is level/rank dual to an SU(2)k−1 TQFT,
while the TQFT in the phase where the scalar is massive is level/rank dual to an SU(2)k+1
TQFT [48].

Two special cases k = 1 and k = 3 are particularly simple. For k = 1 we have O(1) ∼ Z2,

14This Z8 classification of the anomaly is closely related to the standard anomaly in performing a chiral GSO
projection in two-dimensional theories. In this form this Z8 is crucial in the consistency of type II and heterotic
string theories [52]. We thank the referee for pointing this out to us.
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Figure 6: The phase diagram of SU(2)3 with an adjoint fermion. We also present a
bosonic dual description – a gauged version of the O(2) Wilson-Fisher point.

so the dual theory is a gauged version of the 2 + 1 dimensional Ising model [48]. This is
depicted in fig. 5. For k = 3 the dual theory is O(2)−3,−3 coupled to a scalar in the vector
representation [48]. This is a gauged version of the O(2) Wilson-Fisher model, where again,
the two subscripts denote the topological terms in the gauge field. (In this case the superscript
+ of the general case is superfluous.) This case is depicted in fig. 6.

2.2 Phase Diagram for k < N/2

Here we turn to the theory with low k. The TQFTs SU(N)k±N/2 still describe the asymptotic
large mass phases of the diagram. Since at mλ = 0 the theory is believed to break supersym-
metry spontaneously [14],this implies the presence of a Majorana Goldstino particle at the
supersymmetric point. Therefore the phase diagram of fig. 4 needs to be somewhat modi-
fied. We have already argued in the introduction that a possible, well-motivated, modification
of the phase diagram consists of introducing another phase transition so that the system has
generically three distinct phases. Two phases are visible semi-classically and are described by
Chern-Simons TQFTs and the third phase is a new quantum phase. The new phase cannot
consist just of a Goldstino as this would not match various symmetries and anomalies of ad-
joint QCD. These include the one-form ZN symmetry of adjoint QCD and its ’t Hooft anomaly
and the anomaly in the T -reversal symmetry of the k = 0 theory. We will discuss this latter
anomaly below. We will suggest that the infrared theory in the new phase contains a TQFT
(which we identify below) in addition to the Majorana Goldstino.

Recall that at large positive and negative mλ the theory is described in the infrared by
SU(N)k± N

2
Chern-Simons theory, respectively. Using level/rank duality it is useful to rewrite

these TQFTs as [3]

SU(N)k± N
2
←→ U

�

N
2
± k

�

∓N
=

SU
�N

2 ± k
�

∓N × U(1)∓N( N
2 ±k)

Z N
2 ±k

. (2.1)

The equivalence between the theories in crefLR is only as spin-TQFTs [3], but we can use it
since adjoint QCD requires a choice of spin structure due to the fermion in the adjoint repre-
sentation of SU(N).

We suggest that at small mλ the infrared is described by a different Chern-Simons TQFT
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Figure 7: The phase diagram of SU(N)k with an adjoint fermion and k < N/2−1 and
N > 2. In this theory there are two transitions where the infrared TQFT has to change
and in addition one point where the Goldstino becomes massless, in between the two
transitions. A fermionic dual for both of the nontrivial transitions is proposed.

(see fig. 7)

U
�

N
2
+ k

�

− N
2 +k,−N

, (2.2)

or, equivalently by level/rank duality [3]

U
�

N
2
− k

�

N
2 +k,N

. (2.3)

As we said, at the supersymmetric point mλ = 0, the infrared theory consists of a Goldstino
and a TQFT, which we now have identified with eq. (2.2).

Let us summarize our proposal. Consider SU(N) adjoint QCD with
k < N/2 − 1. At large positive mass the infrared theory is a Chern-Simons TQFT
SU(N)k+N/2 ←→ U

�N
2 + k

�

−N . As we decrease the mass we encounter a transition to
the TQFT U

�N
2 + k

�

− N
2 +k,−N ←→ U

�N
2 − k

�

N
2 +k,N . As we proceed along the mass axis the

Goldstino becomes massless at the supersymmetric point and then massive again. Finally, we
encounter the last transition to the SU(N)k−N/2←→ U

�N
2 − k

�

N ,N Chern-Simons TQFT.
Let us consider more carefully the first transition, namely, the transition between

SU(N)k+ N
2
←→ U

�N
2 + k

�

−N ,−N and U
�N

2 + k
�

− N
2 +k,−N . This can be nicely reproduced using

a dual fermionic theory

U
�

N
2
+ k

�

− 3
4 N+ k

2 ,−N
+ adjoint λ̃ , (2.4)

where λ̃ is the adjoint of SU
�N

2 + k
�

– there is no singlet. The fermion is denoted by λ̃ rather
than λ in order to distinguish it from the original fermion. Since there is no matter charged un-
der the U(1) factor, the phase diagram of this model is that of SU(N

2 +k)− 3
4 N+ k

2
with an adjoint

fermion, λ̃. Since in the range k < N/2 we have 2|34 N − k
2 |>

N
2 + k, we see, according to our

previous analysis (for k ≥ N/2 in the notations of the original theory), that there is one phase
transition in this theory and it describes the transition between the two phases we need. Simi-
larly, there is a dual fermionic theory for the transition between SU(N)k−N/2←→ U

�N
2 − k

�

N ,N
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Figure 8: The phase diagram of SU(N)k with an adjoint fermion and k = N/2−1 and
N > 2. In this theory there is one transition where the infrared TQFT has to change
and in addition one point where the Goldstino becomes massless. We propose a
fermionic dual for the nontrivial transition.

and U
�N

2 − k
�

N
2 +k,N , described by adjoint QCD with a fermion λ̂

U
�

N
2
− k

�

3
4 N+ k

2 ,N
+ adjoint λ̂ . (2.5)

We therefore arrive at two new fermion-fermion dualities

SU(N)k + adjoint λ←→ U
�

N
2
+ k

�

− 3
4 N+ k

2 ,−N
+ adjoint λ̃ , (2.6)

SU(N)k + adjoint λ←→ U
�

N
2
− k

�

3
4 N+ k

2 ,N
+ adjoint λ̂ , (2.7)

which are valid for k < N
2 , and describe the two transitions discussed above. As we said above,

the second duality follows from the first by “analytic continuation” to negative k combined with
orientation reversal.

We would like to clarify a possibly confusing point. SU(N)k adjoint QCD has an N = 1
supersymmetric point, which we have denoted by mλ = 0. Our dual descriptions eq. (2.6)
and eq. (2.7) are supposed to describe the phase transitions of SU(N)k adjoint QCD for
k < N/2 and away from the supersymmetric point mλ = 0. Yet, the dual theories consist
of U gauge groups with an adjoint fermion λ̃, λ̂, and if we added another massive singlet
fermion these theories would also have their own N = 1 supersymmetric point. There is no
relation between these supersymmetric points and those of the original SU(N)k adjoint QCD
theory. In our SO and Sp dualities in section 3 this point will become even more apparent, as
the dual theories do not have an N = 1 supersymmetric point in the first place. There is no
contradiction here because the dualities eq. (2.6) and eq. (2.7) describe transitions that are
away from the supersymmetric points mλ = 0.

An interesting special case occurs for k = N/2 − 1. In that case the asymptotic theories
at large positive mass and large negative mass are given, respectively, by U(N − 1)−N ,−N and
U(1)N (see fig. 8). The quantum phase is also given by eq. (2.3), i.e. U(1)N Chern-Simons
theory. Therefore, the Chern-Simons theory at small mλ is identical to one of the asymp-
totic TQFTs. The transition that is dual to eq. (2.6) remains nontrivial, while the dual the-
ory eq. (2.7) becomes U(1)N with no matter fields, and hence it is a trivial dual description.
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Figure 9: The phase diagram of SU(2)0 with an adjoint fermion. In this diagram
there are no necessary transitions other than the Goldstino becoming massless at
one point. This is due to the fact that all the following four TQFTs are dual:
SU(2)−1 ←→ SU(2)1 ←→ U(1)2 ←→ U(1)−2 . The phase diagram therefore is es-
pecially simple. It could be summarized by saying that there is a duality between
SU(2)0 with an adjoint fermion and a free Majorana fermion accompanied by a pure
U(1)2 TQFT.

There is a massless Goldstino somewhere in the part of the phase diagram that is described
by a U(1)N TQFT. In other words, the N = 1 theory with mλ = 0 flows to a U(1)N TQFT
accompanied by a massless Goldstino.

For N = 2, the theory with k = N/2 − 1 = 0 is time-reversal invariant at mλ = 0 and
the picture is further simplified since the asymptotic phase at large positive mλ is U(1)−2 (see
fig. 9). There is a massless Goldstino at mλ = 0 and the TQFT at mλ = 0 can be chosen to be
U(1)2 or U(1)−2, which are identical by level/rank duality. Therefore, we see that in SU(2)0
with an adjoint fermion there is a single second-order transition at mλ = 0. At the second order
transition point, the Goldstino becomes massless. Therefore, in this case one can summarize
the situation by the statement that there is a duality

SU(2)0 + adjoint λ←→ neutral ψ+ U(1)2 , (2.8)

with ψ a neutral Majorana fermion. This duality is reminiscent of the supersymmetric duality
[57].

The SU(2)0 adjoint QCD that we have just discussed is also a special member of the T -
invariant family of theories SU(N)0 adjoint QCD, which exhibit three phases for N > 2 (see
fig. 10). We will discuss these T -invariant theories below.

2.3 Symmetries and ’t Hooft Anomalies Matching

As with all dualities and proposed infrared behavior of strongly coupled theories, one has to
check that the symmetries of the dual theories and their anomalies match. As we said in the
introduction, most of this is guaranteed to work in our setup. We used a sequence of steps:
integration out of the fermion at large positive mass, level/rank duality, a transition described
by the weakly coupled theory eq. (2.6), level/rank duality, a transition described by the weakly
coupled theory eq. (2.7), and level/rank duality. This matched with the integration of the

15

https://scipost.org
https://scipost.org/SciPostPhys.5.1.007


Select SciPost Phys. 5, 007 (2018)

Figure 10: This is the time-reversal invariant theory with an adjoint fermion. The
N = 1 supersymmetric point coincides with the time-reversal invariant point. The
theory flows to a massless Goldstino and a U(N/2)N/2,N TQFT.

fermion at large negative mass. Every step here either involves a computation in a weakly
coupled theory, or level/rank duality, which is rigorously proven. This does not prove that our
proposed phase diagram is correct. But it does show that all the phases we described have the
same global symmetries and they have the same ’t Hooft anomalies.

There is an exception to this reasoning. For k = 0 (which is possible only for N even) our
system is T -reversal invariant for mλ = 0, but it is not invariant for nonzero mλ. Since our
argument for the global symmetry and its anomaly matching between the ultraviolet theory
and the infrared theory involved first making mλ nonzero, there is no guarantee that our
proposed infrared theory for k = mλ = 0 is T -reversal invariant. And even if it is invariant,
there is no guarantee that the ’t Hooft anomaly in this symmetry in the ultraviolet matches
that of the infrared.

Regardless of our specific proposal, the infrared behavior of the k = mλ = 0 theory ei-
ther has to be time-reversal preserving or the time-reversal symmetry must be spontaneously
broken. The latter is excluded by the Vafa-Witten theorem [26]. In our proposal (fig. 10)
the infrared theory consists of a massless Majorana fermion ψ and the U

�N
2

�

N
2 ,N TQFT. The

massless Majorana fermion is manifestly time-reversal invariant, while the fact that U
�N

2

�

N
2 ,N

is a time-reversal invariant TQFT follows from level/rank duality even though this is not a
manifest symmetry of the Lagrangian [4].

The matching of the ’t Hooft anomaly in the time-reversal symmetry at k = mλ = 0 is not
obvious. This time-reversal anomaly is related to the eta invariant in 3+1 dimensions and it
is an integer ν modulo 16. This anomaly in adjoint QCD is easily calculated using the N2 − 1
fermions. (At very short distances the gauge fields decouple and the theory is essentially a
theory of free fermions and free gauge fields. Therefore, only the fermions contribute to the
anomaly.) It is

νUV = (N
2 − 1)mod16=

�

1− 2(−1)N/2
�

mod16 (2.9)

(recall that N has to be even for k = 0).15 In general the value of νIR in our infrared theory
is not easy to compute, see for instance [39, 44, 45, 59, 60]. One contribution to it, due to

15Given a Majorana fermion, its contribution to ν can be ±1 depending on the action of T on that fermion.
Above we have assumed that T acts in the same way on all the N 2 − 1 Majorana fermions. However, one still
has to check that this prescription is gauge-independent since we may compose an SU(N) gauge transformation
with the action of T and change the way T acts on some of the Majorana fermions. Indeed, consider an SU(N)
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Figure 11: The phase diagram for SO(N)k gauge theory with an adjoint fermion
for k ≥ (N − 2)/2. The physics at the supersymmetric point is smooth. For
k = (N − 2)/2 the negative mass phase is trivial. In that case the transition is still to
the right of the supersymmetric point.

the Goldstino, is 1.16 The contribution of the TQFT U
�N

2

�

N
2 ,N was worked out in [44–46]

(see also references therein) and was found to be ±2. We suggest that in the present context
time-reversal in the infrared would act such that it is actually −2(−1)N/2. Therefore, we find
νIR = 1− 2(−1)N/2, as in the ultraviolet!

3 Phase Diagrams and Dualities for SO(N) and Sp(N)

In this section we study the phase diagram of adjoint QCD with SO and Sp gauge groups. We
often denote the gauge group by G when it makes no difference which of the two cases we are
discussing. We discuss the long distance behavior of these theories as a function of the mass
mλ of the fermion and of k. Our discussion will be along the lines of the general description
in the introduction and will be quite similar to the analysis of SU theories above.

For any value of k, the phase diagram has two semiclassically accessible phases where the
fermion is very massive. These are described by Chern-Simons theories Gk+h/2 and Gk−h/2
respectively, where h = N − 2 for SO(N) and h = N + 1 for Sp(N). These TQFTs describe
the asymptotics of the phase diagram. We now proceed to complete the phase diagram for
k ≥ h/2 and k < h/2.

gauge transformation g = diag(−1, ...,−1, 1, .., 1) with 2k entries of −1. Then there are two groups of Majorana
fermions: one of size 4k2 + (N − 2k)2 − 1 and one of size 4k(N − 2k). The orientation of the action of T on the
second group is the opposite of the orientation of the action on the first group. The anomaly is therefore

ν=
�

4k2 + (N − 2k)2 − 1− 4k(N − 2k)
�

mod16= (N 2 − 1)mod16 , (2.10)

where we used the fact that N is even. We see that our prescription for computing ν in the ultraviolet is unam-
biguous. For a related discussion see [41,58].

16The sign of the contribution of the Goldstino can be understood from the action of time-reversal on the su-
percurrent Tr(Fλ), which interpolates to the Goldstino in the deep infrared as Gα ∼ Tr(Fλ). This shows that the
correct sign in the infrared is +1. The same argument holds for the other gauge groups we discuss later.
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Figure 12: The phase diagram for Sp(N)k gauge theory with an adjoint fermion for
k ≥ (N+1)/2. The physics at the supersymmetric point is smooth. For k = (N+1)/2
the negative mass phase is trivial. In that case the transition is still to the right of the
supersymmetric point.

3.1 Phase Diagram for k ≥ h/2

At the supersymmetric point mλ = 0 the infrared description can be reliably obtained at large
k by integrating out λ and yields the Chern-Simons theory GkIR

based on the gauge group G
with level kIR = k − h/2. This infrared description has been argued in [14] to be applicable
beyond the large k regime all the way down to k = h/2. This leads to a rather simple phase
diagram. There are two asymptotic phases described by Gk−h/2 and Gk+h/2 separated by a
phase transition. The supersymmetric point is inside the phase described by Gk−h/2. The
physics at the supersymmetric point is completely regular and the phase transition occurs to
the right of the supersymmetric point in the phase diagram. For k = h/2 one phase is trivial,
labeled by G0 which meets the nontrivial phase Gh at a phase transition. The phase diagrams
for SO and Sp for k ≥ h/2 are summarized in fig. 11 and fig. 12.

3.2 Phase Diagram for k < h/2

The modification of this picture for k = h/2−1 is straightforward and is similar to SU(N) N
2 −1

in fig. 8. SO(N) N−2
2 −1 has a single phase transition separating SO(N)−1 (which is trivial) and

SO(N)N−3.17 And Sp(N) N+1
2 −1 has a single phase transition separating Sp(N)−1 and Sp(N)N .

Supersymmetry is spontaneously broken in this case [14] with a massless Goldstino point in
the G−1 phase. This is depicted in fig. 13 and fig. 14. We will return to this special case below.

As in our discussions above, this simple phase diagram needs to be modified for k < h
2 − 1

and we propose that for k < h/2−1 there are two phase transitions connecting the two asymp-
totic phases that are visible semiclassically to an intermediate, inherently quantum mechanical,
phase. The supersymmetric theory is in the intermediate phase.

Let us consider an SO(N) gauge theory with Chern-Simons level k < h/2 and
an adjoint fermion λ. The infrared Chern-Simons theory at large positive mass is
SO(N)k+ N−2

2
←→ SO

�N−2
2 + k

�

−N . As the mass is decreased we cross a phase transition and

17As we said above, our discussion will not apply to the special case with gauge group SO(4), where the low
energy theory includes two Goldstinos, one from each of the SU(2) sectors of the theory.
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Figure 13: The phase diagram of SO(N)k gauge theory with an adjoint fermion and
Chern-Simons level k = N

2 − 2. There is one transition that connects a nontrivial
TQFT and a trivial one. In addition at one point the Goldstino becomes massless. We
propose a fermionic dual for the nontrivial transition.

Figure 14: The phase diagram of Sp(N)k gauge theory with an adjoint fermion and
Chern-Simons level k = N−1

2 . There is one transition that connects two nontrivial
TQFTs. In addition at one point the Goldstino becomes massless. We propose a
fermionic dual for the nontrivial transition.

encounter an intermediate phase described by a distinct Chern-Simons theory

SO
�

N − 2
2
+ k

�

− N−2
2 +k

←→ SO
�

N − 2
2
− k

�

N−2
2 +k

. (3.1)

The supersymmetric point, where there is also a massless Goldstino occurs in this phase.
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Figure 15: The phase diagram for SO(N)k gauge theory with an adjoint fermion
for k < N/2− 2. There are two phase transitions between different infrared TQFTs.
There is also a massless Goldstino at the supersymmetric point. We propose a dual
fermionic description of the two transitions.

SO(N) Sp(N)
antisymmetric N − 2 N − 1

symmetric N + 2 N + 1

Table 4: T (R) for the symmetric and antisymmetric representations.

As we decrease the mass further we encounter another phase transition to the asymptotic
theory SO(N)k− N−2

2
←→ SO

�N−2
2 − k

�

N . The phase diagram is summarized in fig. 15.
The transition between the left and intermediate phase can be reproduced by an

SO
�N−2

2 − k
�

gauge theory with a Chern-Simons term at level 3N
4 +

k
2 −

1
2 and a Majorana

fermion Ŝ in the symmetric-traceless representation of the gauge group. Giving a mass to Ŝ
allows us to integrate it out and obtain the two infrared TQFTs neighbouring the transition.18

Likewise, the transition between the right and intermediate phase can be reproduced by
an SO

�N−2
2 + k

�

gauge theory with a Chern-Simons term at level −3N
4 +

k
2 +

1
2 and a fermion

S̃ in the symmetric-traceless representation of the gauge group.
This suggests the fermion-fermion dualities:

SO(N)k + adjoint λ←→ SO
�

N − 2
2
+ k

�

− 3N
4 +

k
2+

1
2

+ symmetric S̃ ,

SO(N)k + adjoint λ←→ SO
�

N − 2
2
− k

�

3N
4 +

k
2−

1
2

+ symmetric Ŝ . (3.3)

Here S̃ and Ŝ are symmetric-traceless representations. These dualities hold for k < N−2
2 . As

above, these two dualities are related by “analytic continuation” to negative k combined with
orientation reversal.

Further consistency checks involving the counter-terms for the background gauge fields are

18Integrating out a massive Majorana fermion ψ in a representation R of a gauge group G shifts the level of the
Chern-Simons term by

k→ k+ sgn(Mψ)
T (R)

2
, (3.2)

where T (R) is the index of G in the representation R (see table 4).
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massless 

Goldstinoino

Figure 16: The phase diagram for Sp(N)k gauge theory with an adjoint fermion
for k < (N−1)/2. There are two phase transitions between different infrared TQFTs.
There is also a massless Goldstino at the supersymmetric point. We propose a dual
fermionic description of the two transitions.

discussed in [48, 58]. This allows a determination of the low energy TQFT in other theories,
e.g. Spin(N)k with an adjoint fermion.

A similar picture emerges for Sp(N)k with an adjoint fermion λ. There is a transition
between the large positive mass Sp(N)k+ N+1

2
←→ Sp

�N+1
2 + k

�

−N phase and an intermediate
phase described by

Sp
�

N + 1
2
+ k

�

− N+1
2 +k

←→ Sp
�

N + 1
2
− k

�

N+1
2 +k

. (3.4)

The supersymmetric theory flows to this intermediate TQFT with a massless Goldstino,
which becomes massive as we depart from the supersymmetric point in the phase dia-
gram. Decreasing the mass further leads to another phase transition to the asymptotic theory
Sp(N)k− N+1

2
←→ Sp

�N+1
2 − k

�

N . The phase diagram is summarized in fig. 16.
The transition between the left phase and the intermediate phase can be reproduced by

an Sp
�N+1

2 − k
�

gauge theory with a Chern-Simons term at level 3N
4 +

k
2 +

1
4 and a fermion

Â in the antisymmetric-traceless representation of the gauge group. Likewise, the transition
between the right phase and the intermediate phase can be reproduced by an Sp

�N+1
2 + k

�

gauge theory with a Chern-Simons term at level −3N
4 +

k
2 −

1
4 and a fermion Ã in the anti-

symmetric representation of the gauge group. Using the formula eq. (3.2) for the shift of the
Chern-Simons level induced by integrating out a massive fermion we reproduce the asymptotic
infrared Chern-Simons theories (see table 4).

This suggests the fermion-fermion dualities:

Sp(N)k + adjoint λ←→ Sp
�

N + 1
2
+ k

�

− 3N
4 +

k
2−

1
4

+ antisymmetric Ã ,

Sp(N)k + adjoint λ←→ Sp
�

N + 1
2
− k

�

3N
4 +

k
2+

1
4

+ antisymmetric Â . (3.5)

Here Ã and Â are antisymmetric-traceless representations. These dualities hold for k < N+1
2 .

Again, these two dualities are related.
We have already mentioned the case k = h/2− 1 at the beginning of this subsection. This

special case can be understood also as we move up from lower values of k. Here the infrared
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TQFTs that describe the left and intermediate phase become identical. This implies that for
k = h/2−1 there is a single transition between the TQFT at large positive mass governed by the
Chern-Simons theory Gh−1 and another TQFT that governs the rest of the phase diagram. For
SO(N)h/2−1 adjoint QCD both the left and the intermediate TQFTs become trivial spin-TQFTs
(see fig. 13), since SO(n)1 is a trivial spin-TQFT. Therefore, for SO(N)h/2−1 adjoint QCD the
infrared theory at the supersymmetric point is just a massless Goldstino, without an extra
topological sector. The transition admits a dual description given in the first line of eq. (3.3).

For the Sp(N) gauge theory both the left and the intermediate TQFTs become
Sp(1)N ←→ Sp(N)−1 (see fig. 14). Therefore, for Sp(N)h/2−1 adjoint QCD the infrared theory
at the supersymmetric point is a massless Goldstino with the Chern-Simons theory Sp(N)−1.
The transition admits a dual description given in the first line of eq. (3.5).

3.3 T -reversal symmetry

The adjoint QCD theories with gauge group SO(N)k and Sp(N)k with an adjoint fermion are
time-reversal invariant when k = 0 and mλ = 0. This is the supersymmetric point for k = 0.
This is possible for G = SO(N) only for even N and for G = Sp(N) only for odd N (see table
2). In our scenario the infrared theory consists of a Goldstino, which is time-reversal invari-
ant, and a nontrivial time-reversal invariant TQFT: SO

�N−2
2

�

N−2
2

and Sp
�N+1

2

�

N+1
2

respectively.

These TQFTs are time-reversal invariant by virtue of level/rank duality among spin-TQFTs [4]:
SO

�N−2
2

�

N−2
2
←→ SO

�N−2
2

�

− N−2
2

and Sp
�N+1

2

�

N+1
2
←→ Sp

�N+1
2

�

− N+1
2

. The fact that we find a

time-reversal invariant theory in the infrared is a nontrivial consistency check of our proposal.
We would like to analyze the T -reversal ’t Hooft anomaly in this theory. We start with

the Sp(N)0 adjoint QCD following the discussion of SU(N) in section 2. In the ultraviolet
the adjoint fermions contribute νUV = N(2N + 1)mod16 = (N + 2)mod16, where we used
the fact that N is odd. (As in footnote 14, it is possible to verify that this prescription for
computing ν is gauge invariant.) In the infrared the Goldstino contributes +1 (it is +1 rather
than -1 for the same reason as in section 2). The contribution of the TQFT Sp

�N+1
2

�

N+1
2

to

νIR follows from ν (Sp(n)n) = ±2nmod16 [47], generalizing ν(SU(2)1) = ±2mod16 [34] and
ν(Sp(2)2) = ±4mod16 [61]. With an appropriate sign choice for the infrared TQFT we have
νIR = (N + 2)mod16, as in the ultraviolet. This matching is a highly nontrivial test of our
phase diagram.

Next, we move to the T -reversal ’t Hooft anomaly in the SO(N)0 adjoint QCD the-
ory. It exists only for even N . Here we use ν(SO(n)n) = ±nmod16 [47], generalizing
ν(SO(2)2) = ±2mod16 and ν(SO(3)3) = ±3mod16 [59].

For N = 2mod4 we have νUV =
N(N−1)

2 mod16 =
�

−N
2 + 2

�

mod16, which matches the
infrared contribution with the sign choice −N−2

2 from the TQFT and +1 (as above) from the
Goldstino.

The situation for N = 0mod4 is more subtle. Here we claim that the naive time-
reversal symmetry T of the ultraviolet theory is not mapped to the naive time-reversal
symmetry of the infrared theory. Instead, the relevant symmetry in the ultraviolet, whose
anomaly we match is C T [58]; i.e. the product of the naive time-reversal symmetry
and charge conjugation C . The latter acts on the fermions by reversing the sign of the
fermions λ[1,i] → −λ[1,i] and not changing the sign of the other fermions. This leads to
νUV =

�

(N−1)(N−2)
2 − (N − 1)

�

mod16 =
�

−N
2 + 2

�

mod16. This matches νIR, which is the sum

of +1 from the Goldstino and −
�N−2

2

�

from the TQFT. Again, this is a nontrivial test of our
proposal. (One can verify, as in footnote 14, that for N = 2mod4 the anomaly of T is gauge
invariant and for N = 0mod4 the anomaly of C T is gauge invariant. For N = 2mod4 the
anomaly of C T is not gauge invariant and for N = 0mod4 the anomaly of T is not gauge
invariant. For a discussion of the implications of that see [41] and [58].)
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3.4 Consistency Checks for Low-Rank Theories

The isomorphism of SO and Sp Lie groups for low rank with other Lie groups can lead to further
consistency checks of our proposal for the infrared dynamics of these theories. The asymptotic
phases of theories related by a Lie group isomorphism are guaranteed to match, since these
can be obtained semiclassically. Thus, a further nontrivial check of the phase diagram can be
made only when there is an intermediate phase, i.e. for k < h/2− 1.

Our phase diagrams for Sp(N) gauge theories are applicable for all N . Here we could look
for tests based on Sp(1) ' SU(2) and Sp(2)/Z2 ' SO(5). However, in these cases there is no
intermediate phase and therefore there is no non-trivial test.

Our phase diagrams for SO(N) gauge theories are applicable for all N 6= 1, 2 and 4. For
N = 1 there is no gauge group and for N = 2 the adjoint fermion is free. For N = 4 the adjoint
representation is reducible and up to a Z2 quotient the theory factorizes to two copies of SU(2)
with an adjoint.

The group isomorphism SO(6) ' SU(4)/Z2 leads to a nontrivial consistency check only
for k = 0, where it has an intermediate phase. We first note that even though the Z4 one-
form global symmetry of SU(4)k has an ’t Hooft anomaly for k 6= 0mod4, its Z2 subgroup is
anomaly free since the spin of that line is half-integer. This implies that the quotient Chern-
Simons theory SU(4)k/Z2 can be defined for any k (on a spin manifold). The intermediate
phase of the SU(4)0 gauge theory is described by the TQFT (see fig. 10)

U(2)2,4 =
SU(2)2 × U(1)8

Z2
, (3.6)

while the TQFT describing the infrared dynamics in the intermediate phase of SO(6)0 is
SO(2)2 = U(1)2 (see fig. 15). The group isomorphism SO(6) ' SU(4)/Z2 requires gauging a
Z2 subgroup of the Z4 one-form global symmetry of U(2)2,4. This leads to

�

SU(2)2 × U(1)8
Z2

�

/Z2 '
SU(2)2

Z2
×

U(1)8
Z2

←→ U(1)2 , (3.7)

where we used the fact that the first factor SO(3)1 is a trivial spin-Chern-Simons theory and
the second factor is U(1)2. This matches the intermediate region of the SO(6)0 gauge theory.

4 Phase Diagrams and Dualities for SO(N) with Fermions in the
Symmetric Tensor and Sp(N) with Fermions in the Antisymmet-
ric Tensor

In this section we analyze the phase diagram of SO(N)k with fermions in the symmetric-
traceless tensor representation and of Sp(N)k with fermions in the antisymmetric-traceless
tensor representation.19 We denote a symmetric-traceless fermion of SO by S and by A an
antisymmetric-traceless fermion of Sp. These theories have already appeared in our pro-
posed dual description of the transitions of SO/Sp adjoint QCD for k < h/2 (see eqs. (1.11)
and (1.12)).20 The analysis of this section provides further consistency checks on the previ-
ously discussed dualities and gives rise to new ones.

The phase diagrams for these theories resemble those of adjoint QCD. For large positive
and negative mass and any value of k there are the two semiclassical phases described by
Chern-Simons theory Gk+T (R)/2 and Gk−T (R)/2 respectively.

19We recall that the adjoint of SO/Sp is the rank-two antisymmetric/symmetric representation.
20Note that k in this expression and in the previous sections is the level of the theory with adjoint fermions.

In most of this section we label by k the level of the fermionic dual of that theory. We hope that this change in
notation will not cause confusion.
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Figure 17: The phase diagram of SO(N)k gauge theory with a fermion in a symmetric-
traceless tensor for k < N/2. There are two phase transitions between different
infrared TQFTs. We propose a dual fermionic description of the two transitions.

We propose that for k ≥ T (R)/2 there are two asymptotic phases Gk+T (R)/2 and Gk−T (R)/2
connected via a transition. Intuitively, it is at the point where the ultraviolet fermion becomes
massless. While this statement can be reliably established for k � 1, we suggest that this
conclusion can be continued all the way down to k = T (R)/2, where the theory is strongly
coupled (for k = T (R)/2 the negative mass phase is trivial). This scenario passes a nontrivial
consistency check as these theories were proposed to provide a dual description of the tran-
sitions of adjoint QCD for k < h/2. Our dualities require that the dual theories in eq. (1.11)
and eq. (1.12) have only two phases when k < h/2. (Again, k here is that of the gauge theory
with adjoint fermions.) And indeed it is simple to verify that this is the case if SO(N)k with
a fermion in a symmetric-traceless tensor S and Sp(N)k with a fermion in an antisymmetric-
traceless tensor A have two phases for k ≥ T (R)/2.

We now consider the phase diagram for k < T (R)/2. In SO(N)k with a fermion S with
k < T (R)/2−1= N/2 there is an intermediate phase, which is not visible semiclassically (see
fig. 17).21 This new phase is described by the nontrivial intermediate TQFT

SO
�

N + 2
2
+ k

�

− N+2
2 +k

←→ SO
�

N + 2
2
− k

�

N+2
2 +k

. (4.1)

The transitions from the semiclassical phases to this quantum phase admit dual fermionic
descriptions

SO(N)k + symmetric S←→ SO
�

N + 2
2
+ k

�

− 3N
4 +

k
2−

1
2

+ adjoint λ̃ ,

SO(N)k + symmetric S ←→ SO
�

N + 2
2
− k

�

3N
4 +

k
2+

1
2

+ adjoint λ̂ . (4.2)

Again, these two dualities are related.
In the theory with k = T (R)/2− 1 = N/2 the negative mass phase and the intermediate

phase are trivial and there is a single nontrivial transition (see fig. 18) with a dual description

21 For N = 2 the theory is U(1)0 with a fermion of charge two. Here the Z2 magnetic symmetry is enhanced to a
global U(1) symmetry and the intermediate phase shrinks to a point – the infrared behavior of the massless theory
includes a free Dirac fermion and a U(1)2 TQFT [58]. What follows holds for N = 2 if we add to the Lagrangian
a charge-two monopole operator. This breaks the U(1) global symmetry down to Z2, which coincides with the
magnetic symmetry for all other values of N .
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Figure 18: The phase diagram of SO(N)k gauge theory with a fermion in a symmetric-
traceless tensor for k = N

2 . There is one transition that connects a nontrivial TQFT
and a trivial one. We propose a fermionic dual for the nontrivial transition.

Figure 19: The phase diagram of Sp(N)k gauge theory with a fermion in an
antisymmetric-traceless tensor for k < N−1

2 . There are two phase transitions be-
tween different infrared TQFTs. We propose a dual fermionic description of the two
transitions.

given by the first line of eq. (4.2). (It is easy to verify that for this range of k the theories on the
right hand side of eq. (4.2) are in the regime where they have only one transition according
to the previous section. Hence, these dualities make sense.)

In Sp(N)k with a fermion A and k < T (R)/2 = (N − 1)/2 there is an intermediate phase,
which is not visible semiclassically. This new phase is described by the nontrivial intermediate
TQFT

Sp
�

N − 1
2
+ k

�

− N−1
2 +k

←→ Sp
�

N − 1
2
− k

�

N−1
2 +k

. (4.3)

The phase diagram for Sp(N)k for k < (N − 1)/2 has two transitions, which admit dual
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fermionic descriptions (see fig. 19). This suggests the fermion/fermion dualities

Sp(N)k + antisymmetric A←→ Sp
�

N − 1
2
+ k

�

− 3N
4 +

k
2+

1
4

+ adjoint λ̃ ,

Sp(N)k + antisymmetric A←→ Sp
�

N − 1
2
− k

�

3N
4 +

k
2−

1
4

+ adjoint λ̂ . (4.4)

And again, they are related.
The ultraviolet gauge theories with k = 0 at the point where the fermion is massless are

time-reversal invariant, and the infrared TQFTs for k = 0 are SO
�N+2

2

�

N+2
2

and Sp
�N−1

2

�

N−1
2

,
which are indeed time-reversal invariant.

We would like to analyze now the time-reversal ’t Hooft anomaly in these theories. We start
with Sp(N)0 with an antisymmetric-traceless fermion A. This theory exists only for odd N . In
the ultraviolet the fermions contribute νUV = (N(2N − 1)− 1)mod16 = (−N + 1)mod16. In
the infrared we have the TQFT Sp

�N−1
2

�

N−1
2

. Using ν (Sp(n)n) = ±2nmod16 we find, with an

appropriate choice of sign, that the anomaly of the infrared theory is νIR = (−N + 1)mod16,
as in the ultraviolet.

Next, we move to the time-reversal ’t Hooft anomaly in SO(N)0 with a symmetric-traceless
fermion S, which exists only for even N . For N = 2mod4, the anomaly in the ultraviolet is
νUV =

�

N(N+1)
2 − 1

�

mod16=
�N

2 + 1
�

mod16. In the infrared we have the TQFT SO
�N+2

2

�

N+2
2

.

Using ν(SO(n)n) = ±nmod16 we find, with an appropriate choice of sign, that the anomaly
of the infrared theory is νIR =

�N
2 + 1

�

mod16, as in the ultraviolet.
As already noted in discussing adjoint QCD, the symmetry, whose anomalies should

be matched for SO(N)0 with N = 0mod4 is C T rather than T [58]. (In particu-
lar, in all the cases the symmetry that we discuss has an unambiguous, gauge invariant,
anomaly.) For a symmetric-traceless fermion S the C T ’t Hooft anomaly in the ultraviolet
is νUV =

�

N(N−1)
2 − (N − 1)

�

mod16 =
�N+2

2

�

mod16. Using ν(SO(n)n) = ±nmod16 and that

the infrared TQFT is SO
�N+2

2

�

N+2
2

we find, with an appropriate choice of sign, that the anomaly

of the infrared theory is νIR =
�N+2

2

�

mod16, as in the ultraviolet.
It is noteworthy that unlike the theories with an adjoint fermion, here the anomalies match

without an added massless Majorana fermion. This is satisfying because the theories discussed
in this section are not supersymmetric.

We consider the matching of the T and C T ’t Hooft anomalies in these SO and Sp theories
as nontrivial checks of our scenarios.
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