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Abstract

We study the Landau–Zener transitions generalized to multistate systems. Based on the
work by Sinitsyn et al. [Phys. Rev. Lett. 120, 190402 (2018)], we introduce the aux-
iliary Hamiltonians that are interpreted as the counterdiabatic terms. We find that the
counterdiabatic Hamiltonians satisfy the zero curvature condition. The general struc-
tures of the auxiliary Hamiltonians are studied in detail and the time-evolution operator
is evaluated by using a deformation of the integration contour and asymptotic forms of
the auxiliary Hamiltonians. For several spin models with transverse field, we calculate
the transition probability between the initial and final ground states and find that the
method is useful to study nonadiabatic regime.
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1 Introduction

The Landau–Zener (LZ) formula is an analytic solution for a dynamical two-level quantum
system [1, 2]. The system Hamiltonian has a linear-time dependence and the time evolution
of the state is exactly solvable. By examining together with some generalized results [3,4], we
now have a firm picture of nonadiabatic transitions between two instantaneous eigenstates in
two-level time-dependent Hamiltonians. This result has a great influence on various fields of
physics and we can find a vast amount of applications in literature.

Since the energy-level crossing occurs in general quantum systems, we expect that a similar
picture holds for multistate systems where the time-dependent Hamiltonian takes the form

Ĥ(t) = Ẑ + t X̂ , (1)

with arbitrary operators Ẑ and X̂ . Under this Hamiltonian with some minor conditions, the
transition probability from the ground state at t → −∞ to the highest state at t →∞ was
conjectured by Brundobler and Elser (BE) [5]. The following studies revealed that the formula
is indeed correct and some extensions are possible [6–12]. The formula can be interpreted as
a natural generalization of the original LZ formula.

The same type of the Hamiltonian is used in the method of quantum annealing [13–19].
It is a quantum-mechanical metaheuristic algorithm for solving combinatorial optimization
problems. To obtain the optimized solution, we treat Ising Hamiltonians with a transverse field
whose time dependence is linear in the standard protocol. Starting from the ground state of the
Hamiltonian at t = −∞ where the transverse-field term X̂ is dominant, we consider the time
evolution until the Ising term Ẑ becomes dominant at t = 0. Although the standard LZ protocol
considers the time evolution until t goes to infinity, we treat the same Schrödinger equation
and expect that the LZ picture is still applicable [20, 21]. The field is changed very slowly
and the adiabatic picture is applied except around the crossing point. Although this adiabatic
approximation gives a reasonable picture, the dynamical description is required to calculate
the transition probability, which will be useful to estimate the efficiency of the protocol.

In the optimization problem, we are basically interested in the probability that the system
remains in the ground state. Unfortunately, the BE formula cannot be applied to this situation.
As we discuss below, the description of the transition from the ground state to the highest state
requires few information about the system in contrast to describing the transitions to the other
states.

The standard form of the two-level LZ Hamiltonian is written as Ĥ(t) = J
2 σ̂

z+ γt
2 σ̂

x where
σ̂z and σ̂x are Pauli matrices. Then, it can be shown that the time-evolution operator from
t = −T to t = T is decomposed as

Û = ÛT Û0Û−T , (2)

at T →∞. Û±T are diagonal in σ̂x basis and are rapidly-oscillating as functions of T . We are
not interested in these phase contributions and the transition probabilities from eigenstates at
t = −T → −∞ to eigenstates at t = T →∞ are determined by Û0 only. Û0 is independent

2

https://scipost.org
https://scipost.org/SciPostPhys.5.3.029


SciPost Phys. 5, 029 (2018)

of T and is given by

Û0 =

� p
p −

p

1− p
p

1− p
p

p

�

, (3)

where

p = exp

�

−
πJ2

2γ

�

. (4)

p represents the transition probability from the lower state at t →−∞ to the higher state at
t →∞ (and vice versa). This is the LZ formula. This decomposition of the unitary operator
looks reasonable since the nonadiabatic transition only occurs around t = 0. The time domain
is decomposed into adiabatic domain |t| � J/γ, which is described by Û±T , and diabatic
domain |t|< J/γ, described by Û0. Then, to calculate the transition probability we may focus
only on Û0. This operator is independent of T and is analytically tractable. It is a fundamental
question whether such a decomposition is generally possible and how we can calculate the
transition probability between arbitrary states in the general LZ-type Hamiltonian.

Recently, an interesting approach was proposed in Ref. [22]. The Hamiltonian contains
several parameters and they are treated as dynamical variables. Using the introduced auxiliary
Hamiltonians, we can deform the one-dimensional path −T → T of the time evolution to
a multi-dimensional one in parameter space. The auxiliary Hamiltonian plays a role of the
generator for the corresponding parameter. Several solvable models were treated to construct
the auxiliary Hamiltonians and to demonstrate that the method is useful to describe the time
evolution [22–24].

In this paper, we use the method of the auxiliary Hamiltonians to demonstrate the sep-
aration of the unitary operator as in Eq. (2). We also show that the auxiliary Hamiltonians
are closely related to the counterdiabatic terms discussed in the method of shortcuts to adia-
baticity (STA) [25–30]. By using the auxiliary Hamiltonians, we evaluate the time-evolution
operator for several spin models with transverse field to calculate the transition probabilities.
Our method is general and is applicable to the general Hamiltonian which is not necessar-
ily solvable. The previous studies treated solvable Hamiltonians and the physical meaning
of the auxiliary Hamiltonians was not clear [22–24]. The present work is useful not only to
clarify the physical meaning of the auxiliary Hamiltonians but also to calculate the transition
probabilities for general time-dependent systems.

The organization of this paper is as follows. In Sec. 2, we study the general structure of
time-dependent Hamiltonian. Combining the idea of Ref. [22] with the result from STA, we
find a general form of the auxiliary Hamiltonians. The method is applied to the LZ Hamilto-
nian. In Sec. 3, we demonstrate the decomposition of the time-evolution operator in Eq. (2).
Based on the general results, we numerically calculate the transition probability for several
spin models in Sec. 4. The final section 5 is devoted to discussions and conclusions.

2 Structure of time-dependent Hamiltonian

2.1 Auxiliary Hamiltonian for parameter generation

We consider a general time-dependent Hamiltonian Ĥ(t,ω) with a set of parameters
ω= (ω1,ω2, . . . ). The Schrödinger equation for the state |ψ(t,ω)〉 is written as

i
∂

∂ t
|ψ(t,ω)〉= Ĥ(t,ω)|ψ(t,ω)〉. (5)
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In Ref. [22], the derivative with respect to one of the parameters was considered to define the
auxiliary Hamiltonian as

i
∂

∂ω j
|ψ(t,ω)〉= Ĥ j(t,ω)|ψ(t,ω)〉. (6)

The auxiliary Hamiltonian Ĥ j(t,ω) plays the role of generator for the corresponding parameter
ω j . Ĥ and Ĥi satisfy the consistency conditions

i
∂ Ĥ j(t,ω)

∂ t
− i
∂ Ĥ(t,ω)
∂ω j

= [Ĥ(t,ω), Ĥ j(t,ω)], (7)

i
∂ Ĥk(t,ω)
∂ω j

− i
∂ Ĥ j(t,ω)

∂ωk
= [Ĥ j(t,ω), Ĥk(t,ω)]. (8)

The equations are interpreted as the zero curvature condition in noncommutative geometry.
It is generally a difficult task to find the auxiliary Hamiltonians for a given Ĥ(t,ω). In

the previous studies [22–24], the condition that the both sides of the above two equations are
respectively equal to zero was examined to treat several solvable models. To examine more
general cases, we show a relation between Ĥ and Ĥ j by using the method of STA.

A general time-dependent Hamiltonian is written as

Ĥ(t,ω) = Ĥ0(λ(t,ω)) +
∂ λ(t,ω)
∂ t

· ξ̂(λ(t,ω)), (9)

where λ(t,ω) = (λ1(t,ω),λ2(t,ω), . . . ) is a set of time-dependent parameters. Each term of
the Hamiltonian is given respectively by

Ĥ0(λ) =
∑

n

εn(λ)|n(λ)〉〈n(λ)|, (10)

ξ̂(λ) = i
∑

m 6=n

|m(λ)〉〈m(λ)|∂λn(λ)〉〈n(λ)|. (11)

εn(λ) is real and {|n(λ)〉} represents a set of orthonormal basis. The solution of the Schrödinger
equation is given by the adiabatic state of Ĥ0(λ):

|ψ(t,ω)〉=
∑

n

cne−iθn(t,ω)|n(λ(t,ω))〉, (12)

where cn is a constant determined from the initial condition at t = t0 and θn is represented by
the sum of dynamical phase and geometric phase:

θn(t,ω) =

∫ t

t0

dt ′ εn(λ(t
′,ω))− i

∫ λ(t,ω)

λ0

dλ · 〈n(λ)|∂λn(λ)〉. (13)

We assume that the initial parameter λ(t0,ω) = λ0 is independent of ω. This separation of
the Hamiltonian means that the state is written in terms of the eigenstates of the first term
and the second term prevents nonadiabatic transitions. Although it is nontrivial to find this
separation for a given total Hamiltonian, the separation is always possible in principle [31].
We also note that the form of λ(t,ω) cannot be obtained straightforwardly from the total
Hamiltonian since the total Hamiltonian is dependent not only on λ(t,ω) but also on the time
derivative of λ(t,ω).

When the state is evolved under this Hamiltonian, the average energy at each time is
determined by Ĥ0 and the state is changed by the counterdiabatic term ξ̂. This means that
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the Hamiltonian is separated according to its roles: energy and generator. ξ̂ j corresponds to
the generator for the parameter ω j , which implies a relation to the auxiliary Hamiltonian Ĥ j .
In fact, it is straightforward to show that the counterdiabatic terms satisfy the zero curvature
condition

i
∂ ξ̂k(λ)
∂ λ j

− i
∂ ξ̂ j(λ)

∂ λk
= [ξ̂ j(λ), ξ̂k(λ)]. (14)

This is obtained from the spectral representation in Eq. (11). We also obtain the form of Ĥi by
taking the derivative of Eq. (12) with respect to ω j as

Ĥ j(t,ω) = Ĥ j0(t,ω) +
∂ λ(t,ω)
∂ω j

· ξ̂(λ(t,ω)), (15)

where

Ĥ j0(t,ω) =
∑

n

∂

∂ω j

�

∫ t

t0

dt ′ εn(λ(t
′,ω))

�

|n(λ(t,ω))〉〈n(λ(t,ω))|. (16)

We note that the structure of the Hamiltonians is insensitive to the choice of εn and is mainly
determined by the counterdiabatic terms. The simplest choice is to set εn = 0. Then, the
auxiliary Hamiltonians are completely equivalent to the counterdiabatic terms.

2.2 Landau–Zener Hamiltonian

In the following we focus on the Hamiltonian

Ĥ(t,ω) = J Ẑ + γt X̂ , (17)

where Ẑ and X̂ are arbitrary operators. We take one of the parameters γ to be positive without
loss of generality. We also assume that the spectrum of the operator X̂ is nondegenerate so
that we can apply the BE formula to this system [5]. When Ẑ and X̂ are chosen as two of the
Pauli operators, we obtain the standard LZ Hamiltonian. Here our motivation is to set Ẑ as an
Ising model and X̂ as the transverse field.

The Schrödinger equation is written as

i
p
γ

∂

∂ t
|ψ(t,ω)〉=

�

J t
p
γt

Ẑ +
p
γt X̂

�

|ψ(t,ω)〉. (18)

This equation clearly shows that the state is given by a function of
p
γt and J t. We set the

parameter λ as

λ(t,ω) =ωt = (
p
γt, J t). (19)

The Hamiltonian is decomposed as

Ĥ(t,ω) =
∂ λ(t,ω)
∂ t

· ξ̂(λ(t,ω)) =pγξ̂1(λ(t,ω)) + J ξ̂2(λ(t,ω)). (20)

ξ̂1 and ξ̂2 are related to each other as

ξ̂1(λ) = λ1X̂ +
λ2

λ1
Ẑ −

λ2

λ1
ξ̂2(λ). (21)
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We can write the Schrödinger equation as

i
∂ λ(t,ω)
∂ t

·
∂

∂ λ(t,ω)
|ψ(λ(t,ω))〉=

∂ λ(t,ω)
∂ t

· ξ̂(λ(t,ω))|ψ(λ(t,ω))〉. (22)

We extend this equation so that the equation holds for arbitrary choices of λ(t,ω). Then,
we obtain

i
∂

∂ λ
|ψ(λ)〉= ξ̂(λ)|ψ(λ)〉, (23)

and the zero curvature condition in Eq. (14). The explicit form of the zero curvature condition
with the relation (21) is

�

λ1
∂

∂ λ1
+λ2

∂

∂ λ2
+ 1

�

ξ̂2(λ) = Ẑ − i[λ2
1X̂ +λ2 Ẑ , ξ̂2(λ)]. (24)

We note that ξ̂ is not necessarily equal to the counterdiabatic term. Generally, ξ̂ includes
additional terms that commute with Ĥ0, just like the first term in Eq. (15). However, the
only important point in the following analysis is that ξ̂ satisfies the zero curvature condition.
Several other remarks are made below: (i). ξ̂1 and ξ̂2 cannot be directly obtained from the
original Hamiltonian. These new operators are required when we consider the deformation
of the path between initial and final Hamiltonians as we show in the following. (ii). Even if
Ĥ is real symmetric, ξ̂1,2, and Ĥ1,2, generally have complex elements. Previous studies only
treated the case where the auxiliary Hamiltonians are real symmetric [22–24]. (iii). The
auxiliary Hamiltonians in the present example are given by Ĥ j = tξ̂ j with j = 1 and 2. (iv).
Ĥ1 and Ĥ2 are not independent. We find this nontrivial property by using STA.

It is convenient to rewrite the differential equation (24) as a function of λ = λ1 and
g = λ2/λ1. We put

ξ̂2(λ) =
1
λ

e−iλ2 X̂/2ξ̂(λ, g)eiλ2 X̂/2. (25)

Then, we obtain

∂

∂ λ
ξ̂(λ, g) = Ẑ(λ)− i g[Ẑ(λ), ξ̂(λ, g)], (26)

where

Ẑ(λ) = eiλ2 X̂/2 Ẑe−iλ2 X̂/2. (27)

The differential equation is with respect to λ and not to g. This can be understood from the
Schrödinger equation in Eq. (18) where g appears as a time-independent parameter. We also
note that the unitary transformation represented by the exponential factor in Eq. (25) is ex-
pected from the original form of the Hamiltonian in Eq. (17). Applying the same unitary trans-
formation to the Schrödinger equation, we obtain the transformed Hamiltonian ˆ̃H = J Ẑ(pγt).

The equation can be formally expressed as

ξ̂(λ, g) = V̂ (λ, g)

�

∫ λ

0

dτ V̂ † (τ, g) Ẑ(τ)V̂ (τ, g)

�

V̂ † (λ, g) , (28)

with the use of the path-ordered unitary operator

V̂ (λ, g) = P exp

�

−i g

∫ λ

0

dτ Ẑ(τ)

�

. (29)
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Figure 1: The original path denoted by the dashed line is deformed to the bold line.
ω1 =

p
γ is kept constant.

To avoid the divergence of ξ̂2(λ) for λ → 0, we require the condition ξ̂(0, g) = 0, which
determines the constant of integration. We can also write a form expanded in terms of g:

ξ̂(λ, g) =

∫ λ

0

dτ Ẑ(τ) +
∞
∑

k=1

(−i g)k
∫ λ

0

dτk

∫ τk

0

dτk−1 · · ·
∫ τ1

0

dτ0

×[Ẑ(τk), [Ẑ(τk−1), · · · , [Ẑ(τ1), Ẑ(τ0)]] · · · ]. (30)

3 Decomposition of the time-evolution operator

3.1 Path deformation

By introducing the auxiliary Hamiltonians, we can consider the path deformation of the time
evolution. The unitary time-evolution operator represented by the time-ordered products

Û = T exp

�

−i

∫ T

−T
dt Ĥ(t,ω)

�

, (31)

is equivalent to the path-ordered operator

Û = P exp

�

−i
∑

µ

∫

C

dωµ Ĥµ(t,ω)

�

, (32)

under the zero curvature condition in Eqs. (7) and (8). Here, we write ωµ = (t,ω1,ω2),
Ĥµ = (Ĥ, Ĥ1, Ĥ2), and C represents a path in (t,ω)-space. We fix the initial point
(t,ω) = (−T,

p
γ, J) and final point (T,

p
γ, J) and take the limit of T →∞.

The path C can be chosen arbitrarily. Here we take the path

(−T,
p
γ, J)→ (−T,

p
γ, 0)→ (T,

p
γ, 0)→ (T,

p
γ, J), (33)

where each segment represents the straight line, as we show in Fig. 1. The advantage of using
this path is that the time variable takes a large constant value at the first and last segments,
|t|= T , and the operator from the second segment gives a trivial contribution. We have

Û = P exp

�

−iT

∫ J

0

dω2 ξ̂2(
p
γT,ω2T )

�

exp

�

−i

∫ T

−T
dt γt X̂

�

×P exp

�

iT

∫ 0

J
dω2 ξ̂2(−

p
γT,−ω2T )

�

. (34)
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The second exponential factor comes from the second segment and gives the identity operator.
By using Eq. (25) and using the property ξ̂2(λ1,λ2) = ξ̂2(−λ1,λ2), we can write

Û = e−iγT2 X̂/2P exp

�

−i

∫ δ

−δ
dg ξ̂(

p
γT, g)

�

eiγT2 X̂/2, (35)

where δ = J/
p
γ. Then, we only need to know the asymptotic behavior of ξ̂(λ, g) at λ→∞.

3.2 Asymptotic form

As we can understand from Eq. (28), ξ̂ diverges linearly in λ at most. The linear divergence
is obtained when Ẑ has diagonal elements in X̂ basis. We also generally find that ξ̂ has a
logarithmic-divergent term.

We write Ẑ = Ẑ0 + Ẑ1 where Ẑ0 represents the diagonal part and Ẑ1 offdiagonal part. At
zeroth order in g, the diagonal part of ξ̂ is linear in λ. The jth element is given by

∫ λ

0

dτ (Ẑ(τ)) j j = λ(Ẑ0) j j . (36)

The logarithmic divergence comes from the diagonal part at the first order in g. The jth
element is given by

−i g

∫ λ

0

dτ1

∫ τ1

0

dτ0 [Ẑ1(τ1), Ẑ1(τ0)] j j

= 2g
∑

k(6= j)

∫ λ

0

dτ1

∫ τ1

0

dτ0 sin

�

(τ2
1 −τ

2
0)(X j − Xk)

2

�

(Ẑ1) jk(Ẑ1)k j

∼ 2g
∑

k(6= j)

(Ẑ1) jk(Ẑ1)k j

X j − Xk
lnλ, (37)

where X j represents the eigenvalue of X̂ . The estimation of the integral is given in Appendix A.
It should be noticed that these divergent terms are obtained from the dynamical phase

calculated in the adiabatic approximation [8]

φ j(T ) =

∫ T

dt ε j(t). (38)

The instantaneous energy ε j(t) is evaluated perturbatively and we obtain up to second order
in J as

ε j(t)∼ γtX j + J(Ẑ0) j j +
J2

γ

∑

k(6= j)

(Ẑ1) jk(Ẑ1)k j

(X j − Xk)t
. (39)

Then, we have

φ j(T )∼
γT2X j

2
+ J T (Ẑ0) j j +

J2

γ

∑

k(6= j)

(Ẑ1) jk(Ẑ1)k j

(X j − Xk)
ln T. (40)

The first term corresponds to the phase in Eq. (25), the second to Eq. (36), and the third to
Eq. (37). The key observation in Ref. [8] is that these are only divergent contributions to the
phase at T →∞. In Appendices A and B, we show that the same property holds for ξ̂. The
divergent terms in ξ̂ come from the diagonal part as we estimated above. In the following, we
show that they can be represented as a phase in the time-evolution operator and do not give
any contribution to the transition probabilities.
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3.3 Gauge transformation

The separation of the phase can be done by the gauge transformation. We insert the identity
operator Î = e−iφ̂(λ,g)eiφ̂(λ,g) at each slice of the Trotter decomposition in Eq. (35). We assume
that φ̂ is diagonal in X̂ basis. Then, ξ̂ is replaced by the gauge-transformed operator

ˆ̃ξ(λ, g) = eiφ̂(λ,g)
�

ξ̂(λ, g)− ∂gφ̂(λ, g)
�

e−iφ̂(λ,g). (41)

Using the arbitrariness of φ̂, we can remove the divergent contribution from the diagonal part
of ξ̂ as

ˆ̃ξ0(λ, g) = ξ̂0(λ, g)− ∂gφ̂(λ, g), (42)

ˆ̃ξ1(λ, g) = e−iφ̂(λ,g)ξ̂1(λ, g)e−iφ̂(λ,g), (43)

where the subscript 0 denotes the diagonal part and 1 denotes the offdiagonal part. It is

possible to choose φ̂ such that the condition ˆ̃ξ0 = 0 is satisfied. The addition of phase in
ξ̂1 does not induce any additional divergence. Thus, we conclude that the time-evolution
operator is decomposed as

Û = e−i γT2

2 X̂−iφ̂(pγT,δ)Û0(δ)e
i γT2

2 X̂+iφ̂(pγT,−δ), (44)

Û0(δ) = P exp

�

−i

∫ δ

−δ
dg ˆ̃ξ(∞, g)

�

, (45)

as is expected in Eq. (2). To calculate transition probabilities between the eigenstates of X̂ ,
we may focus on Û0 which is only dependent on δ = J/

p
γ and contains no divergent contri-

butions.

4 Transition probability

It is still a difficult problem to find the explicit form of ξ̂ in general systems. Even if we can
find ξ̂, we have to manage the path-ordered integral in Eq. (45). Although these calculations
look a formidable task, the BE formula implies that the unitary operator is well-approximated
by ξ̂ at zeroth order in g:

Û0(δ)∼ exp

�

−2iδ

∫ ∞

0

dτ Ẑ1(τ)

�

. (46)

The formula treats the transition probability from the lowest state at t →−∞ to the highest
state at t → ∞ (and vice versa). Their states are represented by the same eigenstate of X̂
and are denoted by |0〉. The transition probability is evaluated by the second-order cumulant
expansion as

|〈0|Û0(δ)|0〉|2 ∼ exp

�

−4δ2

∫ ∞

0

dτ1

∫ ∞

0

dτ2 〈0|Ẑ1(τ2)Ẑ1(τ1)|0〉
�

= exp



−2πδ2
∑

k(6=0)

〈0|Ẑ1|k〉〈k|Ẑ1|0〉
X0 − Xk



 , (47)

where X0 represents the eigenvalue of X̂ for |0〉. This is exactly the BE formula [5]. We note
that the derivation of Eq. (47) is not rigorous since this equation is derived by applying small-δ
approximation. It is nontrivial that Eq. (47) holds for arbitrary values of δ.
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Figure 2: The BE formula in Eq. (47) (red solid line) and the zeroth-order approxi-
mation (×, blue) in Eq. (46) for Ĥ2−body in Eq. (48). We set N = 10.

Figure 3: Ground-state probability. Plotted are numerical calculation for Ĥ2−body

with Ẑ0 in Eq. (48) (�, purple), numerical calculation for Ĥ2−body,0 without Ẑ0 in
Eq. (52) (©, red), zeroth order approximation in Eq. (46) (×, blue), and estimation
by Eq. (53) (4, green). We set N = 10. (Inset) Logarithmic scale.

In most of the applications we are interested in the transition probability between the
ground states at t → −∞ and at t → ∞. Below, for several spin models, we study the

transition probabilities by using the truncation approximation of ˆ̃ξ(∞, g) keeping the lower-
order terms in g. The approximation is valid for nonadiabatic regime where J <

p
γ and can

be a complementary method of the adiabatic approximation.

4.1 Two-body interacting spin model

First, we study the two-body interacting Ising model with the transverse field:

Ĥ2−body(t,ω) =
J
N

Ŝ2
z + γtŜx . (48)

Ŝ = (Ŝx , Ŝy , Ŝz) represents the total spin of the spin-1/2 system Ŝ = 1
2

∑N
i=1 σ̂i where N repre-

sents the number of 1/2-spin. The Hamiltonian commutes with Ŝ2 and we consider the block
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with the quantum number

Ŝ2 =
N
2

�

N
2
+ 1

�

. (49)

The ground state and the highest state are contained in this block and the Hamiltonian is
represented by a (N + 1)× (N + 1) matrix. We start the time evolution from the ground state
of the initial Hamiltonian and examine the transition probabilities at large T . In this model,
the BE formula is evaluated as

|〈0|Û0(δ)|0〉|2 = exp

�

−
πδ2

8

�

1−
1
N

�

�

. (50)

We note that this Hamiltonian has diagonal elements of Ẑ in X̂ basis. In the present model,
the decomposition of Ẑ = Ẑ0 + Ẑ1 is written as

Ŝ2
z =

1
2

�

Ŝ2 − Ŝ2
x

�

+
1
2

�

Ŝ2
z − Ŝ2

y

�

. (51)

To examine the effect by the diagonal term, we also treat a modified Hamiltonian with the
diagonal part of Ẑ removed:

Ĥ2−body,0(t,ω) =
J

2N

�

Ŝ2
z − Ŝ2

y

�

+ γtŜx . (52)

We note that the BE formula in Eq. (50) is unchanged by this modification.
We use two kinds of approximation. The first one is to keep only the zeroth-order term in

Eq. (30). The time-evolution operator is approximated as Eq. (46). The second approximation
is to use some ansatz taking into account the higher-order corrections. We put

Û0(δ) = exp
�

−2iδ ˆ̃ξ0 + [ f (δ)Ŝ
2
+ + f ∗(δ)Ŝ2

−, [Ŝ2
+, Ŝ2

−]]
�

, (53)

where ˆ̃ξ0 represents the zeroth-order term as in Eq. (46) and Ŝ± = Ŝy± iŜz . The operator form
of the double-commutator term is taken from the second term of the expansion in Eq. (30)
with some modifications by the gauge transformation. Instead of taking into account the path-
ordered integral, we put

f (δ) = aδ3 + bδ5, (54)

and complex parameters a and b are determined by the method of least squares so that Eq. (53)
reproduces the BE formula. Then, using the determined parameters, we numerically calculate
the transition probability that the state remains in the ground state.

The zeroth-order approximation of the transition probability from the initial ground state
to the final highest state is plotted in Fig. 2. We see that the approximation gives a reasonable
description of the BE formula at small δ = J/

p
γ. We find a small deviation at large δ. In Fig. 3,

we plot the transition probability to the ground state. The numerical calculations are compared
with the results of the zeroth-order approximation and of the estimation by Eq. (53). We see
that the numerical result for Eq. (52) is well described by theoretical estimations. A large
deviation for Eq. (48) is considered to be the presence of the diagonal elements of Ẑ0. Since
the diagonal components do not contribute to the BE formula, it is impossible to estimate the
undetermined parameters in the present method. In any case, the theoretical analysis works
well in the nonadiabatic regime.
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Figure 4: The BE formula in Eq. (47) (red solid line) and the zeroth-order approxi-
mation (×, blue) for Ĥ3−body in Eq. (55). We set N = 10.

Figure 5: Ground-state probability for Ĥ3−body in Eq. (55) with N = 10. Legend is
the same as in Fig. 3. (Inset) Logarithmic scale.

4.2 Three-body interacting spin model

For comparison, we study the three-body interacting Hamiltonian

Ĥ3−body(t,ω) =
J

N2
Ŝ3

z + γtŜx . (55)

We note that Ẑ0 = 0 in this case. The BE formula is evaluated as

|〈0|Û0(δ)|0〉|2 = exp

�

−
πδ2

16N

�

11
2
−

9
N
+

4
N2

�

�

. (56)

This probability goes to unity at N →∞. Then, compared to the two-body case, the ground-
state probability takes a considerably smaller value. The comparison of the BE formula and
the zeroth-order approximation is shown in Fig. 4. The ground-state probability is plotted in
Fig. 5. We again find deviations at large δ, basically the same conclusion as the two-body case.
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Figure 6: Size dependence of the ground-state probability for Ĥ2−body and Ĥ2−body,0

(top) and for Ĥ3−body (bottom). We take δ = 2.0. Legend is the same as in Fig. 3.

4.3 Size dependence

The BE formula shows that the size dependence of the probability to the highest state is totally
different between the two- and three-body systems. We find that, at least for nonadiabatic
regime, the probability to the ground state has the scaling Prob ∼ exp(−Nc), as we show in
Fig. 6. This scaling is expected to be changed in the superadiabatic regime δ� 1 where the
static picture holds. In the adiabatic approximation, the transition probability is determined
by the energy gap between the ground state and the first-excited state [21]. The energy gap
behaves differently between the two- and three-body systems as their models have different
kinds of quantum phase transitions. In our numerical calculation, δ takes smaller values and
we find that the scaling is unchanged in the present systems. The same scaling holds for
probabilities to the other states except the highest state, which shows that the BE formula is
specific to the highest state and does not describe a typical behavior.

4.4 Probability distribution

Finally, we examine the transition-probability distribution among the energy levels. The nu-
merical results are shown in Fig. 7. For nonadiabatic regime δ ∼ 1, we find that, independently
of the models, the transitions to higher levels are dominant. For adiabatic regime δ� 1, the
behavior is dependent of the models as we expect from the BE formula. We also see that our
approximations work well in all the energy levels.

5 Conclusion

In conclusion, we have studied the multiple LZ transitions by using the method of the auxiliary
Hamiltonians. We find that the auxiliary Hamiltonians introduced in Ref. [22] are equivalent
to the counterdiabatic terms in the method of STA and are directly related to the original
Hamiltonian. By specifying the time-dependent parameters, we derive the differential equa-
tions for the counterdiabatic Hamiltonians. Using the counterdiabatic Hamiltonians and the
deformation of the integration contour, we evaluated the time-evolution operator and calcu-
lated the transition probabilities. It is instructive to see that the general Hamiltonian contains
several counterdiabatic terms.

Even though the present study focused only on the LZ Hamiltonian, our method is general
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Figure 7: (Top) Transition-probability distributions for Ĥ2−body,0 with N = 20. The
energy level takes even value: 0,2, 4, . . . , 20. (Bottom) Distributions for Ĥ3−body with
N = 20. The energy level takes integer value: 0, 1,2, . . . , 20. Legend is the same as
in Fig. 3.

and is applicable to any Hamiltonians. The spectral representation of the counterdiabatic term
in Eq. (11) is not so useful for complicated systems and we can use the differential equation
such as Eq. (26) instead. To solve the equation, we can use some familiar methods such as
perturbative expansions as we demonstrated in the present work.

As for the problem of the LZ transitions, our method becomes a generalization of the BE
formula. The BE formula is applicable to a specific state only and it is hard to generalize the
formula for different states. We treat the time-evolution operator, which allows us to estimate
transition probabilities between arbitrary eigenstates. Although it is generally difficult to solve
the differential equation in our method, a simple approximation gives a reasonable descrip-
tion in the nonadiabatic regime, which becomes a complementary method of the adiabatic
approximation.

It is an interesting problem to apply the present method to more general systems. In the
present study, we treated the following conditions for simplicity: (i). nondegenerate eigen-
values of X̂ , and (ii). vanishing of diagonal elements of Ẑ in X̂ basis. We note the condition
(i) is satisfied for the standard transverse-field Ising models. Although the constraint (ii) does
not hold in general, this problem can be circumvented by changing the basis. We can also
apply our method to other dynamical systems with nonlinear time-dependent terms. Thus,
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our method is general enough and various applications can be found, which will be useful to
understand general dynamical systems.
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A Two-level system

We study the two-level system. By calculating the asymptotic form of ξ̂(λ, g) at λ→∞, we
demonstrate the decomposition of the time-evolution operator in Eq. (2).

In the two-dimensional case, we only have three independent operators except the identity
operator. They are represented by the Pauli operators:

X̂ =
1
2
σ̂x , Ŷ =

1
2
σ̂ y , Ẑ =

1
2
σ̂z . (57)

We can also put

ξ̂(λ, g) = α(λ, g)X̂ + β(λ, g)Ŷ + γ(λ, g)Ẑ , (58)

to write the differential equation (26) as

∂λα(λ, g) = −gβ(λ, g) cos
λ2

2
+ gγ(λ, g) sin

λ2

2
, (59)

∂λβ(λ, g) = sin
λ2

2
+ gα(λ, g) cos

λ2

2
, (60)

∂λγ(λ, g) = cos
λ2

2
− gα(λ, g) sin

λ2

2
. (61)

Using these equations, we can derive the differential equation for α as
�

1
λ2
∂ 3
λ −

1
λ3
∂ 2
λ + ∂λ +

g2

λ2
∂λ −

g2

λ3

�

α(λ, g) =
g
λ

. (62)

This is a linear nonhomogeneous differential equation and the solution is obtained by com-
bining the particular solution and the general solutions of the corresponding homogeneous
equation. We are only interested in the asymptotic form and the solution is basically expressed
in power series of 1/λ.

The particular solution is expanded in terms of g and we have

α(λ, g) = g
�

lnλ+
3

4λ4
+ · · ·

�

+ g3
�

1− 2 lnλ
4λ2

+ · · ·
�

+ · · · . (63)

The general solution of the homogeneous equation has nonoscillating terms and oscillating
ones:

αh(λ, g) = gc(g)

�

1−
g2

2λ2
+ · · ·

�

−
gh(g)
λ

cos

�

λ2

2
+

g2

2
lnλ+ θ (g)

�

+ · · · . (64)

15

https://scipost.org
https://scipost.org/SciPostPhys.5.3.029


SciPost Phys. 5, 029 (2018)

c(g), h(g), and θ (g) represent undetermined functions. Combining these results and neglect-
ing irrelevant terms, we obtain

α(λ, g)∼ g lnλ+ gc(g)−
gh(g)
λ

cos

�

λ2

2
+

g2

2
lnλ+ θ (g)

�

. (65)

Since the differential equation is in terms of λ, not of g, and only the asymptotic form is
obtained in the present analysis, c0(g), h(g), and θ (g) are left undetermined. As we can
understand from the differential equation, α(λ, g) is an odd function in g, which shows that
c0(g), h(g), and θ (g) are even functions of g. We also see that this result shows that Eq. (37)
holds in the two-level case. Since the integral in Eq. (37) is independent of the operator Ẑ ,
the equation holds in the general case as well.

Although the last term in Eq. (65) is negligible at the asymptotic limit, this term is impor-
tant to find β and γ. By using Eq. (59), we conclude that

β(λ, g)∼ −h(g) sin

�

g2

2
lnλ+ θ (g)

�

, (66)

γ(λ, g)∼ h(g) cos

�

g2

2
lnλ+ θ (g)

�

. (67)

These are even functions of g. As we mentioned in the main body of the present paper, the di-
vergence of ξ̂ is logarithmic in λ and is contained only in the diagonal part. The log term in the
trigonometric functions of the offdiagonal part can be removed by the gauge transformation
as we show below.

Now that we have obtained the asymptotic form of ξ̂, we make a gauge transformation
represented by

φ̂(λ, g) =

�

g2

2
lnλ+

∫

dg gc(g)

�

X̂ . (68)

Then, the gauge-transformed operator is given by

ˆ̃ξ(λ, g) = β̃(g)Ŷ + γ̂(g)Ẑ , (69)

where

β̃(g) = −h(g) sin

�

θ (g)−
∫

dg gc(g)

�

, (70)

γ̃(g) = h(g) cos

�

θ (g)−
∫

dg gc(g)

�

. (71)

This operator is independent ofλ, which means that the divergent contribution can be removed
by the gauge transformation. The time-evolution operator is decomposed as

Û = exp

�

−i

�

γT2

2
X̂ + φ̂(

p
γT,δ)

��

P exp

�

−i

∫ δ

−δ
dg

�

β̃(g)Ŷ + γ̃(g)Ẑ
�

�

×exp

�

i

�

γT2

2
X̂ + φ̂(

p
γT,−δ)

��

, (72)

where δ = J/
p
γ. Furthermore, the second line can be rewritten as

P exp

�

−i

∫ δ

−δ
dg

�

β̃(g)Ŷ + γ̃(g)Ẑ
�

�

= eiϕ(δ)X̂ e−i f (δ)Ẑe−iϕ(δ)X̂ . (73)
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This relation can be shown by using that β̃(g) and γ̃(g) are even functions of g. Now we have
the decomposition in Eq. (2), as it should be. It is not necessary to show this decomposition
in the present system because we know the exact solution. However, we see below that this
demonstration is useful to apply the method to general systems.

B General properties of the auxiliary Hamiltonians

In Appendix A, we showed that the logarithmic divergence appears only in the diagonal part
of ξ̂ at first order in g. We can show that this property holds in general systems. For simplicity,
here we only consider the case that the diagonal part of Ẑ is zero: Ẑ0 = 0.

The general form of the diagonal part of ξ̂ at first order in g is written in Eq. (37) and
has a logarithmic contribution. The divergence is suppressed in the offdiagonal part of the
same term because the integrand is more oscillating. We note that, to find this property, it is
required that the spectrum of X̂ is nondegenerate. The same consideration is applied to the
higher-order terms in g. At second order and third order, the diagonal part is respectively
written as

(−i g)2
∫ λ

0

dτ2

∫ τ2

0

dτ1

∫ τ1

0

dτ0 [Ẑ1(τ2), [Ẑ1(τ1), Ẑ1(τ0)]] j j

= (−i g)2
∑

k,`(6= j)

∫ λ

0

dτ2

∫ τ2

0

dτ1

∫ τ1

0

dτ0 e
i
2τ

2
2X jk+

i
2τ

2
1Xk`+

i
2τ

2
0X` j

×(Ẑ1) jk(Ẑ1)k`(Ẑ1)` j + · · · , (74)

(−i g)3
∫ λ

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1

∫ τ1

0

dτ0 [Ẑ1(τ3), [Ẑ1(τ2), [Ẑ1(τ1), Ẑ1(τ0)]]] j j

= (−i g)3
∑

k,`,m(6= j)

∫ λ

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1

∫ τ1

0

dτ0 e
i
2τ

2
3X jk+

i
2τ

2
2Xk`+

i
2τ

2
1X`m+

i
2τ

2
0Xmj

×(Ẑ1) jk(Ẑ1)k`(Ẑ1)`m(Ẑ1)mj + · · · , (75)

where X jk = X j − Xk. Each term is oscillating rapidly and the integration basically gives
a finite contribution. A possibly-divergent contribution arises for a specific choice of the
subscript indices so that some cancellation occurs in the phase. For example, by choosing
( j, k,`, m) = ( j, k, j, k) with j 6= k in Eq. (75), we have

(−i g)3
∑

k(6= j)

∫ λ

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1

∫ τ1

0

dτ0 e
i
2 (τ

2
3−τ

2
2)X jk+

i
2 (τ

2
1−τ

2
0)X jk

×(Ẑ1) jk(Ẑ1)k j(Ẑ1) jk(Ẑ1)k j + · · ·

= (−i g)3
∑

k(6= j)

∫ λ

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1

∫ τ1

0

dτ0 4i cos
�

(τ2
3 −τ

2
2)

X jk

2

�

× sin
�

(τ2
1 −τ

2
0)

X jk

2

�

((Ẑ1) jk(Ẑ1)k j)
2. (76)

The integral is the same as that appears in two-level systems. We have already shown that this
integral does not give any divergent contribution. We can generalize this consideration to the
higher-order terms. Thus, we conclude that, in general systems, the divergence appears only
in the diagonal part at first order in g.
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