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Abstract

Graham and Lehrer (1998) introduced a Temperley-Lieb category ÝTL whose objects are
the non-negative integers and the morphisms in Hom(n, m) are the link diagrams from n
to m nodes. The Temperley-Lieb algebra TLn is identified with Hom(n, n). The category
ÝTL is shown to be monoidal. We show that it is also a braided category by constructing
explicitly a commutor. A twist is also defined on ÝTL. We introduce a module category
Mod

ÝTL whose objects are functors from ÝTL to VectC and define on it a fusion bifunctor
extending the one introduced by Read and Saleur (2007). We use the natural morphisms
constructed for ÝTL to induce the structure of a ribbon category on Mod

ÝTL(β = −q−q−1),
when q is not a root of unity. We discuss how the braiding on ÝTL and integrability of
statistical models are related. The extension of these structures to the family of dilute
Temperley-Lieb algebras is also discussed.
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1 Introduction

The (original) family of the Temperley-Lieb algebras was cast into a categorical framework by
Graham and Lehrer [1] in 1998. A decade later Read and Saleur [2] introduced a product
−1× f −2 between two modules over two (maybe distinct) Temperley-Lieb algebras. Still later
this product was computed between several families of modules by Gainutdinov and Vasseur
[3], and Belletête [4]. Their recent results (obtained in 2012 and 2015 respectively) lead
to natural questions: how can one define the module category over Graham and Lehrer’s
category? Does the natural braiding that exists on Graham and Lehrer’s category (described
for example by Turaev [5]) extend to this module category? And how many of the defining
properties of tensor categories does the module category satisfy? The present paper answers
these questions.

Statistical models in two dimensions are defined by an evolution operator or a transfer
matrix acting on finite-dimensional vector spaces. The sizes of both the lattice and the vector
spaces are parameters of the formulation. The limit when these parameters go to infinity is
known in some cases (numerically or rigorously) to be a conformal field theory. For several
XXZ and loop models [6,7], the Hamiltonian is first defined as an element of a Temperley-Lieb
algebra TLn, or one of its generalizations, and the actual linear operator is obtained as the
representative of this element in some representations over the algebra. The fusion product
is an algebraic construction, actually a bifunctor, that associates to two modules M and N
over TLm and TLn respectively a module over TLm+n. As said above, for the Temperley-
Lieb algebra, such a fusion product −1 × f −2 was introduced by Read and Saleur [2] and
computed in many cases by Gainutdinov and Vasseur [3] and Belletête [4]. It is associative
and commutative, and the braiding gives the isomorphism between M× f N and N× f M.

There are reasons to believe that algebraic information obtained from the finite algebras,
either the Temperley-Lieb family, its dilute counterpart or any other one, is intimately related to
analogous structures of the CFTs and should help understand them. First there is compelling
evidence that, in the limit when the size of the lattice goes to infinity, the spectrum of the
Hamiltonian, properly scaled, reproduces characters of the Virasoro algebra. Second, in some
representations of the TL family, the Hamiltonian has Jordan blocks (of size 2 × 2) [7, 8],
indicating a possible link to logarithmic CFTs. Third, when restricted to TL-modules that are
known to give rise to the Virasoro modules appearing in minimal CFTs, the highly non-trivial
fusion product defined between TL modules does reproduce the simple fusion rules of these
minimal CFTs. Since the operator product expansion of CFTs leads to a fusion product between
modules over the Virasoro algebra whose many properties are captured into a tensor category,
it is natural to ask how many of these properties are shared by Read’s and Saleur’s fusion.

The (original) family of the Temperley-Lieb algebras was cast into a categorical framework
by Graham and Lehrer [1] while they were actually studying another family, the periodic (or
affine) Temperley-Lieb algebras. The construction brings together all algebras TLn(β), n ≥ 0,
in the same category ÝTL(β). Their formulation will be the starting point of 2 where the re-
quirements for a category to be monoidal and then braided will be fulfilled for the TL family.
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Even though the braiding on ÝTL(β) is already known, the twist presented in this section is
new to our knowledge.

Section 3 defines a module category Mod
ÝTL whose objects are functors from ÝTL to VectC.

The associator, commutor and twist defined on ÝTL are shown to induce similar natural trans-
formations on Mod

ÝTL. 4 then shows how the integrability of two-dimensional statistical mod-
els and the components of the commutor ηr,s defining the braiding are related. 5 extends the
results to the family of dilute Temperley-Lieb algebras dTLn. A short conclusion follows.

2 The Temperley-Lieb category

Graham and Lehrer [1] showed that the algebras TLn(β), n ≥ 0, can be studied as a whole
and given the structure of a category ÝTL. The goal of this section is to recall the definitions
of monoidal and braided categories and show that the Temperley-Lieb category ÝTL is braided.
Some of the data necessary to define a braided category are known for the TL family (see
for example [5]). However giving the details here fulfills several goals. It provides a peda-
gogical introduction to these structures with detailed proofs. It also establishes many of their
properties that will play a crucial role in Section 3.

2.1 ÝTL(β) as a monoidal category

The first step is to cast the family of algebras TLn, n ≥ 0, into a category and show that the
additional requirements of a monoidal category are easily fulfilled.

We take the convention that morphisms and functors acts on the left, so that (FG)(X )≡ F(G(X )).
The Temperley-Lieb category ÝTL is defined as follows. The objects of the category are the

non-negative integers:
ObÝTL= N0 = {0,1, 2, . . .}.

The sets of morphisms Hom(n, m) from n to m is empty if n and m do not have the same parity
and, if they do, are defined as the sets of formal C-linear combinations of (m, n)-diagrams. A
(m, n)-diagram α ∈ Hom(n, m) is composed of two vertical columns of m nodes on the left,
and n nodes on the right, linked pairwise by non-intersecting strings. For instance, here are a
pair of (4,2)-diagrams and one (2, 4)-diagram:

, , .

Note that the third diagram can be obtained from the first by reflection through a vertical
line midway between the two columns of nodes. We will call the result of this reflection the
transpose of the diagram. The identity morphism 1n ∈ Hom(n, n) is the (n, n)-diagram where
every point on the left is linked to the one at the same height on the right. (The identity
morphism 10 ∈ Hom(0,0) exists (by definition), but it represented graphically by an empty
space.) Compositions of morphisms are defined by linearly expanding the composition rules
for diagrams. For an (m, n)-diagram b and a (k, m)-diagram c, the composition c◦ b is a (k, n)-
diagram defined by first putting c on the left of b, identifying the m points on the neighboring
sites, joining the strings that meets there, and then removing these m nodes. If there is a string
no longer attached to any points, it is removed and replaced by a factor β ∈ C. Here is an
example of the composition of (4, 2)- and a (2,4)-diagrams:

 !

◦

 !

≡ ≡

3

https://scipost.org
https://scipost.org/SciPostPhys.5.4.041


SciPost Phys. 5, 041 (2018)

and of the same diagrams in the other order:
 !

◦

 !

≡ ≡ β ≡ β · 12 .

The associativity of the composition of diagrams is easily verified. The depiction of 10 by a
simple space is consistent with the depiction of the composition by concatenation of diagrams.
For example the following product of the (2,0)-diagram d and (0, 2)-diagram e

� �

◦
� �

≡

could equally be understood as d ◦ 10 ◦ e. Note finally that End(n) ≡ TLn(β) is the usual
Temperley-Lieb algebraTLn(β). The categoryÝTL can be easily enriched to become a monoidal
one.

A category C is said to be monoidal if it is equipped with the following structures [9–11]:

1. A bifunctor −⊗− : C×C −→ C, called the tensor product;

2. An object I ∈ Ob(C) called the identity;

3. Three natural isomorphisms1:

• α : (−1 ⊗−2)⊗−3 −→−1 ⊗ (−2 ⊗−3), called the associator.

• λ : I⊗− −→−, the left unitor.

• ρ : −⊗ I −→−, the right unitor.

Moreover these structures have to satisfy the triangle and the pentagon axioms. These axioms
require that the diagrams in Figures 1 and 2 commute for all A, B, C , D ∈ ObC. Finally, if the
associator, the left and right unitors are all identity isomorphisms, the category is said to be
strict.

A⊗ B

(A⊗ I)⊗ B A⊗ (I⊗ B)
αA,I,B

ρA⊗ 1B 1A⊗λB

Figure 1: The triangle diagram

((A⊗ B)⊗ C)⊗ D

(A⊗ (B ⊗ C))⊗ D (A⊗ B)⊗ (C ⊗ D)

A⊗ ((B ⊗ C)⊗ D) A⊗ (B ⊗ (C ⊗ D))

αA,B,C ⊗ 1D

αA,(B⊗C),D

αA⊗B,C ,D

αA,B,(C⊗D)
1A⊗αB,C ,D

Figure 2: The pentagon diagram

1We recall that a natural isomorphism µ : F → G between two functors F, G : C1 → C2 associates to
each A ∈ Ob(C1) an invertible morphism µA ∈ HomC2

(F(A), G(A)) such that µB ◦ F( f ) = G( f ) ◦ µA, for all
f ∈ HomC1

(A, B). The morphism µA is called the component of µ at A.
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Definition 1. Let C be the Temperley-Lieb category ÝTL. Define the bifunctor−⊗− in the following
way. For objects n, m ∈ ObÝTL, simply set 2 n⊗m ≡ n+m where “+" stands for the addition in
N0 and, thus, the identity object is I = 0 ∈ ObÝTL. For a (k, n)-diagram b and a (t, m)-diagram
c, the (k + t, n + m)-diagram b ⊗ c is obtained by simply drawing b on top of c. For example,
taking b, c as in the previous example gives

 !

⊗

 !

≡ ≡ .

This is then expanded bilinearly to all morphisms. The associator αm,n,k is the isomorphism
(m+ n) + k 7→ m+ (n+ k) and the unitors are 0+m 7→ m and m+ 0 7→ m respectively.

Since (N0,+) is a monoid, the axioms are trivially verified for the objects. It is easy to verify
that the axioms also hold for the morphisms and, thus, ÝTL is a strict monoidal category.

2.2 ÝTL(β) as a braided category

LetC be a monoidal category and let the opposite tensor product between two objects A, B ∈ ObC
be defined as A⊗op B ≡ B ⊗ A. The category C is braided if there is a natural isomorphism
η : −⊗−→ −⊗op − such that the two hexagon diagrams in Figures 3 and 4 commute for all
A, B, C ∈ ObC. When such a natural isomorphism exists, it is called a commutor. If, for all
A, B ∈ ObC, ηA,B ◦ηB,A = 1B⊗A, the category is said to be symmetric.

(A⊗ B)⊗ C

A⊗ (B ⊗ C) (B ⊗ C)⊗ A

B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C B ⊗ (A⊗ C)

αA,B,C

ηA,B⊗C

αB,C ,A

ηA,B ⊗ 1C

αB,A,C

1B ⊗ηA,C

Figure 3: The first hexagon diagram

In a strict braided category, the hexagon diagrams are equivalent to the two following
identities:

ηA,B⊗C =
�

1B ⊗ηA,C

�

◦
�

ηA,B ⊗ 1C

�

, (1)

ηB⊗C ,A =
�

ηB,A⊗ 1C

�

◦
�

1B ⊗ηC ,A

�

. (2)

To endow ÝTL with a braiding requires more work than to define its monoidal structure.
We start by outlining the strategy. Since ÝTL is strict, the hexagon diagrams are equivalent to

ηn,m+k =
�

1m ⊗ηn,k

�

◦
�

ηn,m ⊗ 1k

�

, (3)

2The category ÝTL is not additive. Indeed one of the requirements for additivity is the existence of direct sum
objects for any finite set of objects. The direct sum of two objects m, n ∈ ObÝTL would be given by an object
(m⊕n) ∈ ObÝTL together with maps m

qm−→ (m⊕n) and n
qn−→ (m⊕n) satisfying some universal property. However

if m and n are of different parity, one of the two sets Hom(m, (m⊕ n)) and Hom(n, (m⊕ n)) is empty and the basic
requirements for the existence of the direct sum cannot be met.
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A⊗ (B ⊗ C)

(A⊗ B)⊗ C C ⊗ (A⊗ B)

(C ⊗ A)⊗ B

A⊗ (C ⊗ B) (A⊗ C)⊗ B

α−1
A,B,C

ηA⊗B,C

α−1
C ,A,B

1A⊗ηB,C

α−1
A,C ,B

ηA,C ⊗ 1B

Figure 4: The second hexagon diagram

ηu+v,w =
�

ηu,w ⊗ 1v

�

◦
�

1u ⊗ηv,w

�

. (4)

It follows that, if we can find η1,1, the other ηn,m, n, m ≥ 1, will be uniquely defined by
these two conditions, provided that they are consistent, that is, if ηn,m satisfy the above two
conditions, then so does ηn+1,m ≡

�

ηn,m ⊗ 11

�

◦
�

1n ⊗η1,m

�

, for instance. Proposition 2.1 will
establish this consistency. We shall then build the ηn,m recursively. It will then remain to prove
that these ηm,n define natural isomorphisms. This will require several steps: Lemma 2.2 will
express the morphisms ηr,s in terms of η1,1 only and a short computation will express η1,1 in
terms of the generators ei of Temperley-Lieb algebras. Lemmas 2.3 to 2.5 show how the ηr,s
braid with the ei and some diagrams in Hom(n, 0) and Hom(0, n). Then Proposition 2.6 proves
that the ηr,s form together a commutor for the category ÝTL.

The hexagon axioms fix the isomorphisms ηn,0 and η0,w. Indeed, when all integers are set
to 0, (3) gives η0,0 = (10 ⊗η0,0) ◦ (η0,0 ⊗ 10) and thus η0,0 = 10. Similarly the same equation
for ηn,0+1 leads to ηn,0 = 1n. Hence ηn,0 = η0,n = 1n for all n≥ 0.

Proposition 2.1. If the morphisms {ηi, j}0≤i≤r,0≤ j≤s satisfy equations (3) and (4) for all
0≤ n, u+ v ≤ r and 0≤ m+ k, w≤ s, then so do ηr+1,s and ηr,s+1 defined as

ηr+1,s ≡
�

ηr,s ⊗ 11

�

◦
�

1r ⊗η1,s

�

and ηr,1+s ≡
�

11 ⊗ηr,s

�

◦
�

ηr,1 ⊗ 1s

�

. (5)

Proof. We only give the proof for ηr+1,s and equation (4), as the other checks are similar.
Suppose that n+m= r + 1 with 0≤ n≤ r and 1≤ m≤ s. The steps are the following:

�

ηn,s ⊗ 1m

�

◦
�

1n ⊗ηm,s

� 1
=
�

ηn,s ⊗ 1m

�

◦
�

1n ⊗ηm−1,s ⊗ 11

�

◦
�

1n ⊗ 1m−1 ⊗η1,s

�

2
=
�

ηn,s ⊗ 1m−1 ⊗ 11

�

◦
�

1n ⊗ηm−1,s ⊗ 11

�

◦
�

1n+m−1=r ⊗η1,s

�

3
=
���

ηn,s ⊗ 1m−1

�

◦
�

1n ⊗ηm−1,s

��

⊗ 11

�

◦
�

1r ⊗η1,s

�

4
=
�

ηr,s ⊗ 11

�

◦
�

1r ⊗η1,s

�

5
= ηr+1,s.

Steps 1 and 4 are obtained by using the fact that ηm,s and ηr,s satisfy the hexagon identity
(4). Steps 2 and 3 use the property 1i ⊗ 1 j = 1i+ j of identity morphisms that holds for all
non-negative integers i, j. Finally step 5 is the proposed definition of ηr+1,s.

The next lemma solves the recursive expressions (5) in terms of the “elementary compo-
nent" η1,1 only.

6
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Lemma 2.2. The morphisms ηr,s, with r, s ≥ 1, satisfy equations (3) and (4) if and only if they
are given by

ηr,s =
s
∏

i=1

�

0
∏

j=r−1

t i+ j(r + s)
�

=
1
∏

i=r

�

s−1
∏

j=0

t i+ j(r + s)
�

, (6)

where t i(n) ≡ 1i−1 ⊗ η1,1 ⊗ 1n−i−1 ∈ Hom(n, n) and the factors in a product are listed starting
from the right, that is,

∏s
i=1 t i = ts ts−1 . . . t2 t1 and

∏1
i=s t i ≡ t1 t2 . . . ts−1 ts.

Proof. The proof of the first part is obtained by induction on r and s. Taking the induction first
on r, then on s gives the first expression, while doing the inductions in the reverse order yields
the second. The proof of the former is given as example. When r = s = 1, the first expression
is simply η1,1 and the statement is trivially true. Assume therefore that the result stands for
ηr,1. If ηr+1,1 satisfies equation (4), then in particular

ηr+1,1 =
�

ηr,1 ⊗ 11

�

◦
�

1r ⊗η1,1

�

︸ ︷︷ ︸

tr+1(r+2)

,

which is ηr+1,1 as given by the first expression in (6). Assume then that the result stands for
some r, s ≥ 1. Then (3) gives

ηr,s+1 =
�

1s ⊗ηr,1

�

◦
�

ηr,s ⊗ 11

�

=
�

0
∏

j=r−1

t j+s+1(r + s+ 1)
�

◦
s
∏

i=1

�

0
∏

j=r−1

t i+ j(r + s+ 1)
�

,

which is the expression for ηr,s+1 given in (6).
The converse can be obtained as follows. The first expression gives

(1m ⊗ηn,k) ◦ (ηn,m ⊗ 1k) =
�

k
∏

i=1

0
∏

j=n−1

t i+ j+m

�

◦
�

m
∏

i=1

0
∏

j=n−1

t i+ j

�

=
�

m+k
∏

i=m+1

0
∏

j=n−1

t i+ j

�

◦
�

m
∏

i=1

0
∏

j=n−1

t i+ j

�

=
�

m+k
∏

i=1

0
∏

j=n−1

t i+ j

�

= ηn,m+k

and, thus, satisfies (3). The second expression is shown similarly to satify (4). The proof that
the first expression satisfies (4) is harder and it is then easier, though tedious, to prove that
the two expressions are equal. It is done using the identity t i t j = t j t i for |i − j| > 1, that
follows from the definition of the t i(n). Here is an example. The two expressions for η2,3 are
(t3 t4)(t2 t3)(t1 t2) and (t3 t2 t1)(t4 t3 t2) and those for η2,2 are (t2 t3)(t1 t2) and (t2 t1)(t3 t2).
Assuming that the latter are equal, the former are shown to be equal by

(t3 t4)
�

(t2 t3)(t1 t2)
�

= (t3 t4)
�

(t2 t1)(t3 t2)
�

= (t3 t2 t1)(t4 t3 t2)

where the two expressions for η2,2 gives the first equatlity while the commutativity of t4 with
t2 and t1 gives the second. The argument can be extended into a proof by induction on the
sum r + s of the indices of ηr,s.

7
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The next step is to find an expression for η1,1. Since η1,1 : 1⊗ 1→ 1⊗ 1 is an element of
End(2)' TL2(β), which is two-dimensional, there existsα,γ ∈ C such thatη1,1 = α12+γe1(2),
where the notation

ei(n) = 1i−1⊗ ⊗1n−(i+1)

is used. It can be checked directly from this definition that the ei satisfy the Temperley-Lieb
defining relations:

ei(n)ei(n) = βei(n), ei(n)ei±1(n)ei(n) = ei(n), (7)

ei(n)e j(n) = e j(n)ei(n), if |i − j|> 1. (8)

In fact, it can be proved that the set {ei(n)}1≤i<n generates End(n) = TLn(β). Using these
relations, it can be seen that η1,1 is invertible provided that α 6= 0. Now, if the family of ηr,s is
to define a commutor then, in particular, it must verify

η1,2e2(3) = e1(3)η1,2 and η1,2(11 ⊗ z) = (z ⊗ 11)η1,0 (9)

where

z = ∈ Hom
ÝTL(0, 2) (10)

and η1,2 = (11⊗η1,1)◦(η1,1⊗11) = α213+αγ(e1(3)+e2(3))+γ2e2(3)e1(3). The first equation
of (9) will be satisfied if and only if α2 +βαγ+ γ2 = 0, while the second will be if and only if
αγ= 1. Solving these equations yields

α= ±q±1/2, γ= 1/α,

where q ∈ C× is such that β = −q − q−1 and the two ± signs are independent. There are
thus four solutions. Note that one of the ± is responsible for an overal sign on η1,1 while the
remaining one mirrors the invariance of β under q 7→ q−1. Without loss of generalities, we
shall concentrate on the following choice:

t i(n) = q1/2(1n + q−1ei(n)) and t i(n)
−1 = q−1/2(1n + qei(n)) (11)

and η1,1 : 1⊗ 1 → 1⊗ 1 is simply η1,1 = t1(2). These building blocks t i(n) of the ηr,s have
appeared numerous times in the literature. The identity (16) below was recognized by Chow
[12] as crucial to identify the center of braid groups. Much later Martin [13] used the t i (up
to a factor) to construct central elements of the Temperley-Lieb algebra.

It can also be useful to introduce diagrams representing t i(n) and t i(n)−1; we choose the
following

t1(2)≡ , t1(2)
−1 ≡ . (12)

The other t i(n) can be built from these by using the tensor product of morphisms. These
diagrams are concatenated using the same rules as for the other diagrams representing mor-
phisms in the category, so diagrams with isotopic strings are equivalent. Note however that
diagrams related through a Reidemeister move of type I are not necessarily equivalent; for
instance,

t1(2)e1 ≡ = −(q)−3/2e1 = −(q)−3/2 . (13)

The following lemmas will give the behaviour of these crossings under the Reidermeister moves
of the two other types.

It now remains to show that this choice does defines a braiding onÝTL, but doing so requires
a few lemmas. From now on, we shall omit the arguments specifying the Hom-space, unless

8
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they are needed to avoid confusion, and assume that these arguments are large enough for
the expressions to make sense. For example the next lemma proves that t i t i+1ei = ei+1ei . The
statement stands for t i(n)t i+1(n)ei(n) = ei+1(n)ei(n) for all i + 2 ≤ n as t i+1(n) and ei+1(n)
act non-trivially on nodes i+1 and i+2 of the elements of Hom(n, n). The next three lemmas
prepare the proof that the ηr,s ’s are natural isomorphisms and thus define a braiding on ÝTL.
The first is obtained by direct computation.

Lemma 2.3. The morphisms t i and ei satisfy

t i t i+1ei = ei+1ei = ei+1 t i t i+1, (14)

t i+1 t iei+1 = eiei+1 = ei t i+1 t i , (15)

t i t i+1 t i = t i+1 t i t i+1. (16)

In terms of diagrams, this lemma can be written

t1 t2e1 ≡ =
︸ ︷︷ ︸

=e2e1

= ≡ e2 t1 t2, (17)

t2 t1e2 ≡ =
︸ ︷︷ ︸

=e1e2

= = e1 t2 t1, (18)

t1 t2 t1 = = = t2 t1 t2. (19)

Combining these identities with the definition of the braiding ηn,m gives its diagrammatic
picture, for instance

η3,2 ≡ , η2,3 ≡

The next one is almost as easy.

Lemma 2.4. For all 1≤ i ≤ n− 1, 1≤ j ≤ m− 1,

ηn,mei = em+iηn,m and ηn,men+ j = e jηn,m. (20)

Thus, for all f ∈ End(n) and g ∈ End(m),

ηn,m( f ⊗ g) = (g ⊗ f )ηn,m. (21)

Proof. If 1≤ k ≤ i and thus k ≤ i < k+ n− 1, the preceding lemma and equation (8) give

tk tk+1 . . . tk+n−1ei = tk tk+1 . . . t i t i+1ei
︸ ︷︷ ︸

ei+1 t i t i+1

t i+2 . . . tk+n−1 = ei+1 tk tk+1 . . . tk+n−1.

It follows that

ηn,mei =
m
∏

k=1

(tk tk+1 . . . tk+n−1)ei

=
m
∏

k=2

(tk tk+1 . . . tk+n−1)

�

ei+1

1
∏

k=1

(tk tk+1 . . . tk+n−1)

�

=
m
∏

k=3

(tk tk+1 . . . tk+n−1)

�

ei+2

2
∏

k=1

(tk tk+1 . . . tk+n−1)

�

= . . .

= em+iηn,m.
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The second identity in (20) is proved similarly using the second expression of (6). Finally,
(21) follows from the fact that End(n)' TLn is generated by the ei .

Lemma 2.5. For positive integers p and n

ηn,2p(1n ⊗ z⊗p) = (z⊗p ⊗ 1n)ηn,0 and η0,n((z
t)⊗p ⊗ 1n) = (1n ⊗ (z t)⊗p)η2p,n (22)

where η0,n = ηn,0 = 1n, z is defined in equation (10), (z)t is its transpose, and
z⊗p ≡ z ⊗ z ⊗ . . .⊗ z

︸ ︷︷ ︸

p times

.

Proof. We prove the first identity only as both proofs are nearly identical. We proceed first by
induction on n and then on p. If p = n = 1, the equation is the second of the two equations
in (9) that were solved to construct the t i and obtain (11). Suppose therefore that the result
stands for p = 1 and some n≥ 1. The hexagon identity (4) gives

ηn+1,2(1n+1 ⊗ z) = (η1,2 ⊗ 1n)(11 ⊗ηn,2)(11 ⊗ 1n ⊗ z)

= (η1,2 ⊗ 1n)(11 ⊗ (ηn,2(1n ⊗ z)))

= (η1,2 ⊗ 1n)(11 ⊗ z ⊗ 1n)

= (η1,2(11 ⊗ z))⊗ 1n

= z ⊗ 1n+1.

Assume then that the result stands for some p ≥ 1 and all n ≥ 1. The hexagon identity (3)
gives

ηn,2p+2(1n ⊗ z⊗p+1) = (12 ⊗ηn,2p)(ηn,2 ⊗ 12p)(1n ⊗ z ⊗ z⊗p)

= (12 ⊗ηn,2p)(ηn,2(1n ⊗ z)⊗ z⊗p)

= z ⊗ (ηn,2p(1n ⊗ z⊗p))

= z⊗p+1 ⊗ 1n

which ends the proof.

In terms of diagrams, this lemma simply states that the two points linked together on the
right side of the diagrams in equation (17) can be moved over the underlying links.

η3,2(z
t ⊗ 13) = = = (13 ⊗ z t).

With these three lemmas, we are now ready to prove the main result of this section.

Proposition 2.6. The category ÝTL is braided with a commutor having components

ηr,s =
s
∏

i=1

�

0
∏

j=r−1

t i+ j(r + s)
�

=
1
∏

i=r

�

s−1
∏

j=0

t i+ j(r + s)
�

(23)

and t i(n) = q1/2(1n + q−1ei(n)).

Proof. The categoryÝTLwill be braided if the componentsηr,s are natural isomorphisms satisfy-
ing the hexagon axioms. Lemma 2.2 has already showed that the proposed expressions for the
components ηr,s satisfy the hexagon axioms. Moreover, since t i(n) is invertible, so are the mor-
phisms ηr,s. There remains only the naturality condition to prove. It states the following: For
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all pairs (n, m) and (r, s) in ObÝTL×ÝTL and all pairs of morphisms (c, d) ∈ Hom(n, r)×Hom(m, s),
the following diagram commutes

n⊗m

m⊗ n

r ⊗ s

s⊗ r

c ⊗ d

d ⊗ c

ηn,m ηr,s

Since the Hom-spaces are spanned by diagrams and that the ηr,s are bilinear, it is sufficient to
prove that

(d ⊗ c)ηn,m = ηr,s(c ⊗ d) (24)

for any (r, n)-diagram c and (s, m)-diagram d.
Consider then c ∈ Hom

ÝTL(n, r) a diagram having k through lines, that is, precisely k nodes
on the left side of c are connected to k nodes on its right side. Any such diagram can be
expressed as

c = a(1k ⊗ z⊗
r−k

2 )(1k ⊗ (z t)⊗
n−k

2 )b, (25)

where a ∈ End r and b ∈ End n. The hexagon identities and lemma 2.5 give

ηr,s(1k ⊗ z⊗
r−k

2 ⊗ 1s) = (ηk,s ⊗ 1r−k)(1k ⊗ηr−k,s)(1k ⊗ z⊗
r−k

2 ⊗ 1s)

= (ηk,s ⊗ 1r−k)(1k ⊗ηr−k,s(z
⊗ r−k

2 ⊗ 1s))

= (ηk,s ⊗ 1r−k)(1k ⊗ 1s ⊗ z⊗
r−k

2 )

= (1s ⊗ 1k ⊗ z⊗
r−k

2 )ηk,s.

The same arguments also give

ηk,s(1k ⊗ (z t)⊗
n−k

2 ⊗ 1s) = (1s ⊗ 1k ⊗ (z t)⊗
n−k

2 )ηn,s.

Using lemma 2.4, it follows that

ηr,s(c ⊗ 1s) = ηr,s(a⊗ 1s)(1k ⊗ z⊗
r−k

2 ⊗ 1s)(1k ⊗ (z t)⊗
n−k

2 ⊗ 1s)(b⊗ 1s)

= (1s ⊗ a)ηr,s(1k ⊗ z⊗
r−k

2 ⊗ 1s)(1k ⊗ (z t)⊗
n−k

2 ⊗ 1s)(b⊗ 1s)

= (1s ⊗ a)(1s ⊗ 1k ⊗ z⊗
r−k

2 )ηk,s(1k ⊗ (z t)⊗
n−k

2 ⊗ 1s)(b⊗ 1s)

= (1s ⊗ a)(1s ⊗ 1k ⊗ z⊗
r−k

2 )(1s ⊗ 1k ⊗ (z t)⊗
n−k

2 )ηn,s(b⊗ 1s)

= (1s ⊗ c)ηn,s.

The same steps are used to prove that any diagram d ∈ Hom(m, s)with ` through lines satisfies
ηn,s(1n⊗d) = (d⊗1n)ηn,m. Then, for any (r, n)-diagram c and (s, m)-diagram d, these identities
give

ηr,s(c ⊗ d) = ηr,s(c ⊗ 1s)(1n ⊗ d) = (1s ⊗ c)ηn,s(1n ⊗ d)

= (1s ⊗ c)(d ⊗ 1n)ηn,m = (d ⊗ c)ηn,m

which closes the proof.

Note that with this braiding, ÝTL is not symmetric. In general, the element
ηn,m ◦ ηm,n ∈ End(n+m) is not even central. For instance, η1,2 = q · 13 + (e1 + e2) + q−1e2e1
and η2,1 = q · 13 + (e1 + e2) + q−1e1e2 and thus

η2,1 ◦η1,2e1 − e1η2,1 ◦η1,2 = q−2(q− q−1)(e1e2 − e2e1) 6= 0.

We shall come back to the morphism ηr,s ◦ηs,r in 3.3.
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2.3 The twist θ

The previous section established that the category ÝTL is braided. It has even more structure:
It has a twist.

A twist θ on a braided category C is a natural isomorphism of the identity functor whose
components{θA ∈ End(A), A∈ ObC} satisfy

θA⊗B = ηB,A ◦ηA,B(θA⊗ θB), for all A and B ∈ ObC. (26)

This section constructs such a natural isomorphism for the Temperley-Lieb category ÝTL. The
first step toward this goal is to solve a subset of these equations, namely those that have either
r or s equal to 1. The next lemma is a corollary of 2.3.

Lemma 2.7. The morphisms t i satisfy

t i t i+1 . . . tn−1 tn tn−1 . . . t i+1 t i = tn tn−1 . . . t i+1 t i t i+1 . . . tn−1 tn. (27)

Proof. 2.3 provides the cases t i t i+1 t i = t i+1 t i t i+1 for all i ≥ 1. Then, for a fixed i, induction
on n gives

t i t i+1 . . . tn−1 tn tn−1 . . . t i+1 t i = t i t i+1 . . . [tn−1 tn tn−1] . . . t i+1 t i

= t i t i+1 . . . [tn tn−1 tn] . . . t i+1 t i

= tn[t i t i+1 . . . tn−2 tn−1 tn−2 . . . t i+1 t i]tn

= tn tn−1 . . . t i+1 t i t i+1 . . . tn−1 tn.

The solution of (26) when either r or s is 1 is given by a family of central elements cn
whose main properties are proved in A. (To our knowledge, as an element of TLn, the element
cn appeared first in Martin’s book (see section 6.1 of [13]), but was actually defined much
earlier by Chow [12] to study braid groups.)

Lemma 2.8. The central elements cn = q3n/2(tn−1 . . . t2 t1)n = q3n/2(t1 t2 . . . tn−1)n, n ≥ 2,
together with c0 = 10 and c1 = q3/211 satisfy

cn+1 = η1,n ◦ηn,1(cn ⊗ c1) and cn+1 = ηn,1 ◦η1,n(c1 ⊗ cn), n≥ 0. (28)

Proof. Note first that the two equations are trivial for n= 0 and, for n= 1, they both give

η1,1 ◦η1,1(c1 ⊗ c1) = q3(η1,1)
2 = q3(η1,1)

2 = q3(t1)
2 = c2

as claimed. Suppose now that the ck, k ≤ n, all satisfy both equations. Then

q−3(n+1)/2η1,n ◦ηn,1(cn ⊗ c1) = (tn . . . t2 t1)(t1 t2 . . . tn)(tn−1 . . . t2 t1)
n

= (tn . . . t2 t1)[t1 t2 . . . tn−1 tn tn−1 . . . t2 t1](tn−1 . . . t2 t1)
n−1

= (tn . . . t2 t1)[(tn . . . t2 t1)(t2 t3 . . . tn−1 tn)](tn−1 . . . t2 t1)
n−1

= (tn . . . t2 t1)
2(t2 t3 . . . tn−1 tn)(tn−1 . . . t2 t1)

n−1

= · · ·= (tn . . . t2 t1)
n−1(tn−1 tn)(tn−1 . . . t2 t1)

2

= (tn . . . t2 t1)
n−1[tn−1 tn tn−1](tn−2 . . . t2 t1)(tn−1 . . . t2 t1)

1

= (tn . . . t2 t1)
n−1[tn tn−1 tn](tn−2 . . . t2 t1)(tn−1 . . . t2 t1)

1

= (tn . . . t2 t1)
n+1 = q−3(n+1)/2cn+1

12
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where the identity (27) was used repeatedly to transform the sequences of generators be-
tween square brackets. Since, by A.2 (d), the central element cn can be written both as
q3n/2(tn−1 . . . t2 t1)n and q3n/2(t1 t2 . . . tn−1)n, a similar argument using the latter form may
be used to show that the family {cn} also solves the second identity in (28).

The diagram representing cn is quite convoluted, but we nevertheless illustrate the first
identity in (28) for n= 3 and with the symbol ∼ meaning “equal up to a power of q":

c4 ∼ ∼ ∼ (η1,3η3,1)(c3 ⊗ c1).

(29)

The final identification of the twist {θn, n ∈ N0} requires yet another technical lemma.

Lemma 2.9. The commutor {ηr,s} satisfies

ηs+1,r−1(ηs,1 ⊗ 1r−1) = ηs,r(1s ⊗η1,r−1), (30)

ηr−1,s+1(1r−1 ⊗η1,s) = ηr,s(ηr−1,1 ⊗ 1s). (31)

for all r and s ∈ N0 such that all indices in these identities are non-negative.

Proof. The proof of the first identity proceeds as follows and uses the explicit form (23) of the
commutor:

ηs+1,r−1(ηs,1 ⊗ 1r−1) = (1r−1 ⊗ηs,1)ηs+1,r−1 by the naturality (24) of η

= (1r−1 ⊗ (t1 t2 . . . ts)) ·
1
∏

i=s+1

r−2
∏

j=0

t i+ j

= (tr tr+1 . . . tr+s−1)[(tr−1 . . . t2 t1)(tr . . . t3 t2) . . . (tr+s−2 . . . ts+1 ts)](tr+s−1 . . . ts+2 ts+1)

and then moving the leftmost tr , tr+1, . . . , and tr+s−1 to their rightmost possible positions
within the square brackets

= [(tr tr−1 . . . t2 t1)(tr+1 tr . . . t3 t2) . . . (tr+s−1 tr+s−2 . . . ts+1 ts)](tr+s−1 . . . ts+2 ts+1)

=
1
∏

i=s

r−1
∏

j=0

t i+ j · (1s ⊗η1,r−1) = ηs,r(1s ⊗η1,r−1).

The second identity is obtained from the first by the substitutions r − 1→ s, s+ 1→ r.

In terms of diagrams, the identity (30) (with s = r = 3) is

η4,2(η3,1 ⊗ 12) = = = η3,3(13 ⊗η1,2). (32)

This lemma simplifies considerably the proof of the existence of the twist.

Proposition 2.10. The morphisms in End(n) given by the multiplication by θn = cn, n ∈ N0,
define a natural isomorphism θ between the identity functor and itself, and is a twist for the
commutor η,.
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Proof. 3 The first step is to prove that the family {θn = cn, n ∈ N0} satisfy (26), which amounts
to establish

ηs+1,r−1 ◦ηr−1,s+1(θr−1 ⊗ θs+1) = ηs,rηr,s(θr ⊗ θs). (33)

Indeed 2.8 has proved η1,nηn,1(θn⊗θ1) = θn+1 and, starting from the latter, the above identity
proves recursively the identities (26) for all r and s such that n+1= r+ s. Note that equation
(28) holds also for the components θn = cn.

We first rewrite (θr−1 ⊗ θs+1) in terms of (θr ⊗ θs):

(θr−1 ⊗ θs+1) = (θr−1 ⊗ 1s+1)(1r−1 ⊗ θs+1)

= (θr−1 ⊗ 1s+1)(1r−1 ⊗ (ηs,1η1,s(θ1 ⊗ θs))), by (28),

= (θr−1 ⊗ 1s+1)(1r−1 ⊗ηs,1η1,s)(1r−1 ⊗ θ1 ⊗ θs)

= (1r−1 ⊗ηs,1η1,s)(θr−1 ⊗ θ1 ⊗ 1s)(1r ⊗ θs), because θ1 = 11,

= (1r−1 ⊗ηs,1η1,s)(η
−1
r−1,1η

−1
1,r−1θr ⊗ 1s)(1r ⊗ θs), again by (28),

= (1r−1 ⊗ηs,1η1,s)(η
−1
r−1,1η

−1
1,r−1 ⊗ 1s)(θr ⊗ θs).

It is then sufficient to prove

ηs+1,r−1ηr−1,s+1(1r−1 ⊗ηs,1η1,s)(η
−1
r−1,1η

−1
1,r−1 ⊗ 1s) = ηs,rηr,s.

With the technical 2.9, this is now straightforward:

ηs+1,r−1ηr−1,s+1(1r−1 ⊗ηs,1η1,s)(η
−1
r−1,1η

−1
1,r−1 ⊗ 1s)

= ηs+1,r−1[ηr−1,s+1(1r−1 ⊗ηs,1)](1r−1 ⊗η1,s)(η
−1
r−1,1η

−1
1,r−1 ⊗ 1s)

= [ηs+1,r−1(ηs,1 ⊗ 1r−1)][ηr−1,s+1(1r−1 ⊗η1,s)(η
−1
r−1,1 ⊗ 1s)](η

−1
1,r−1 ⊗ 1s),

by the naturality (24) of η,

= ηs,r(1s ⊗η1,r−1)ηr,s(η
−1
1,r−1 ⊗ 1s), by (30) and (31),

= ηs,r(1s ⊗η1,r−1)(1s ⊗η−1
1,r−1)ηr,s, again by naturality,

= ηs,rηr,s,

which ends the proof of (26).
It remains to prove that θ defines a natural isomorphism of the identity functor, i.e. that

for all f ∈ Hom (m, n)
θn ◦ f = f ◦ θm. (34)

Let f ∈ Hom (m, n) be a diagram with k through lines. As before (see equation (25) of the
proof of proposition 2.6), such a diagram can be written as

a ◦ (1k ⊗ z⊗(n−k)/2) ◦ (1k ⊗ z̄⊗(m−k)/2) ◦ b, (35)

for some a ∈ End (n), b ∈ End (m). Since θn is central in End (n) by proposition A.2,

θn ◦ f
1
= a ◦ θn ◦ (1k ⊗ z⊗(n−k)/2) ◦ (1k ⊗ z̄⊗(m−k)/2) ◦ b
2
= a ◦ηn−k,kηk,n−k(θk ⊗ θn−kz⊗(n−k)/2) ◦ (1k ⊗ z̄⊗(m−k)/2) ◦ b
3
= a ◦ (1k ⊗ z⊗(n−k)/2) ◦ θk ◦ (1k ⊗ z̄⊗(m−k)/2) ◦ b
4
= a ◦ (1k ⊗ z⊗(n−k)/2) ◦ (1k ⊗ z̄⊗(m−k)/2)ηm−k,kηk,m−k(θk ⊗ θm−k) ◦ b
5
= f ◦ θm.

3The very last line of this proof rests on a basic property of standard modules Sn,k over TLn. The reader not
familiar with these might want to postpone the reading of the proof after the introduction of these modules in the
next section and the computation of γn,k in part (b) of proposition A.2.
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Steps 2 and 5 were obtained by using equation (26). Steps 3 and 4 rest on two observations.
(It is here that the factor q3n/2 plays an essential role!) First η is a natural transformation and
thus ηn−k,kηk,n−k(1k ⊗ θn−kz⊗(n−k)/2) = (1k ⊗ θn−kz⊗(n−k)/2)η0,kηk,0 = (1k ⊗ θn−kz⊗(n−k)/2).
Second proposition A.2 gives θn−kz⊗(n−k)/2 = z⊗(n−k)/2, since Hom (n, 0)' Sn,0 as left End (n)-
modules.

3 The category of modules over Temperley-Lieb algebras

3.1 Braiding modules

The representation theory of the family of TLn, n ∈ N0, was cast into a categorical framework
by Graham and Lehrer [1] as follows. Let F ∈ Funct(ÝTL,VectC) be a functor from the category
ÝTL to that of finite-dimensional vector spaces overC. Then each F(n), n ∈ N0, is a vector space
and each F(α), for α ∈ Hom(n, n)' TLn is a linear map F(n)→ F(n). Since F preserves com-
position, F(n) is naturally a TLn-module, but the functor F is somewhat richer than a choice of
a TLn-module for each n≥ 0. Indeed the functor F also gives linear maps F(γ) : F(n)→ F(m)
for all γ ∈ Hom(n, m) between modules over distinct algebras of the Temperley-Lieb family.
These linear maps must also preserve the composition of diagrams. We now give examples of
such functors taken from [1].

Let k ∈ N0. A functor Sk ∈ Funct(ÝTL,VectC) is defined as follows. If the parities of n and k
are distinct, then the vector space Sk(n) is set to 0. If their parities coincide, then Sk(n) is the
formal span of (n, k)-diagrams with exactly k through lines. If α ∈ Hom(n, m) with m, n and k
having the same parity, then Sk(α) : Sk(n)→ Sk(m) is the linear map defined by its action on
(n, k)-diagrams with k through lines. If γ ∈ Sk(n) is such diagram, then Sk(α)γ ∈ Hom(k, m) is
α◦γ if α◦γ has k through lines and 0 otherwise. For all other α ∈ Hom(m′, n′), that is with m′

or n′ not sharing the parity of k, the linear map Sk(α) is zero. It is straightforward to check that
Sk is a functor and that Sk(n) is the usual standard or cellular TLn-modules Sn,k. The functor
Sk just described is simply Sk(−) = Hom(k,−) ⊗TLk

Sk,k where Sk,k is the one-dimensional
standard TLk-module.

Any module M over TLm is the evaluation of a certain functor F at m, for example the
functor Hom(m,−) ⊗TLm

M, that will be denoted by either Fm,M or simply FM. (Recall that
Hom(m, m) = TLm and FM(m) = Hom(m, m) ⊗TLm

M ' M.) We shall use the letter

I ∈ Funct(ÝTL,VectC) for the functor I(−) = Hom
ÝTL(0,−) ⊗TL0

TL0 ' Hom
ÝTL(0,−). Recall

that TL0 ' C and Hom(0, 0) = C. The functor I is thus F0,TL0
.

Our first step is to define a category of modules associated to ÝTL compatible with Graham
and Lehrer’s framework. The examples given above, Fm,M and Fk,Sk,k

, should be objects of
this category, but slightly more general functors will be useful. Let m be a positive integer
and m = {m1, m2, . . . , ma}, where the mi ≥ 1, 1 ≤ i ≤ a, be a partition of m =

∑

i mi . For
each i, let Mi be a TLmi

-module. Clearly M = M1 ⊗CM2 ⊗C · · · ⊗CMa is a module over the

product TLm ≡ TLm1
⊗
ÝTLTLm2

⊗
ÝTL · · ·⊗ÝTLTLma

of the algebras TLmi
. The data (m,M) define

naturally a functor Fm,M ∈ Funct(ÝTL,VectC) (or simply FM) by

Fm,M(−) = Hom
ÝTL(m,−)⊗TLm

M (36)

= Hom
ÝTL(m,−)⊗TLm1

⊗
ÝTL
TLm2

⊗
ÝTL
···⊗

ÝTL
TLma

(M1 ⊗CM2 ⊗C · · · ⊗CMa),

with the action on morphisms f : n→ k given by

Fm,M( f )(α⊗TLm
x)≡ ( f ◦α)⊗TLm

x , (37)
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for α ∈ Hom(m, n) and x ∈M.
Note that, given a pair (m,M), the functor Fm,M is isomorphic to a functor Fm,M′ for a

certain TLm-module M′. Indeed

Fm,M(−) = Hom
ÝTL(m,−)⊗TLm

M' Hom
ÝTL(m,−)⊗TLm

(TLm ⊗TLm
M) = Fm,M↑(−)

where M ↑≡M′ is the induced module from TLm1
⊗
ÝTLTLm2

⊗
ÝTL · · ·⊗ÝTLTLma

to TLm. Despite
this observation, the definition (36) will show its usefulness below.

Definition 2. The category Mod
ÝTL has as objects the functors Fm,M for all partitions m and

choices of modules M (together with the functor I(−) = Hom(0,−) ⊗TL0
TL0) with their di-

rect sums (as functors), and as morphisms HomMod
ÝTL
(Fm,M,Fn,N) the natural transformations

Nat(Fm,M,Fn,N) between these functors.

Note that, since clearly Mod
ÝTL ⊂ Funct(ÝTL,VectC), the direct sums are defined in the

same way on both. In particular, Fn,N1⊕N2
' Fn,N1

⊕ Fn,N2
.

Here is a simple example of a natural transformation between FM and FN where both
M and N are TLm-modules with m = n. In this case both partitions m and n are simply
{m}. Let f : M → N be a morphism. Define φ f : FM → FN by the linear transformations
φ f (k) : FM(k)→ FN(k)

a⊗TLm
x 7−→ a⊗TLm

f x

if a ∈ Hom
ÝTL(m, k) and x ∈ M. Clearly this is well-defined:

f (a ⊗TLm
cx) = a ⊗TLm

f (cx) = ac ⊗TLm
f (x) = f (ac ⊗TLm

x) for any c ∈ TLm. The nat-
urality of φ f is easily checked. For b ∈ Hom(k, l)

FN(b) ◦φ f (k)(a⊗TLm
x) = FN(b)(a⊗TLm

f x)

= (ba)⊗TLm
f x

= φ f (l) ◦ FM(b)(a⊗TLm
x),

that is FN(b) ◦φ f (k) = φ f (l) ◦ FM(b) if b ∈ Hom(k, l). Other examples are given below.
Let M and N be a TLm- and a TLn-module, respectively. A fusion product M ×f N was

first defined by Read and Saleur [2] and later on computed systematically by Gainutdinov and
Vasseur [3] and Belletête [4]. To endow Mod

ÝTL with a braided structure,4 we extend their

definition to pairs (m,M) and (n,N) of partitions and choices of modules:

M×f N≡ TLm+n ⊗TLm⊗ÝTLTLn
(M⊗C N). (38)

The fusion M×f N is thus a left TLm+n-module. This (slightly more general) definition makes
the introduction of a bifunctor −1×f −2 on Mod

ÝTL straightforward:

Fm,M×f Fn,N(−) = Hom(m+ n,−)⊗TLm⊗ÝTLTLn
(M⊗C N) (39)

which can be rewritten as

' Hom(m+ n,−)⊗TLm+n
(TLm+n ⊗TLm⊗ÝTLTLn

(M⊗C N))

' Hom(m+ n,−)⊗TLm+n
(M×f N)

' Fm+n,M×f N
(−). (40)

4The concept of fusion category exists in the literature (see, for example [10]). Even though it describes cate-
gories equipped with a bifunctor −1 ⊗−2 (among other structures), the categories of modules under study here
are not fusion categories, as the latter contain only semisimple modules.
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The bifunctor’s action on morphism is defined in the obvious way, that is, for g : Fm,M→ Fu,U
a morphism, then the morphism g ×f Fn,N is defined through its components (removing the
overhead bars for simplicity)

(g ×f Fn,N)k : Hom(m+ n, k)⊗TLm⊗TLn
(M⊗C N)→ Hom(u+ n, k)⊗TLu⊗TLn

(U⊗C N)

α⊗TLm⊗TLn
(x ⊗C y)→

∑

z∈U

α ◦ (γz,x ⊗ÝTL 1n)⊗TLm⊗TLn
(z ⊗C y),

(41)

for all α ∈ Hom(m + n, k), x ∈ M, y ∈ N, and {γz,x}z∈U ⊂ Hom(u, m) is such that
gm(1m ⊗TLm

x) =
∑

z∈U γz,x ⊗TLu
z. The morphism Fm,M ×f h for h : Fn,N → Fu,U is then

defined in an analogous manner.
The functor I(−) = Hom(0,−) acts as the identity for this product:

I×f Fm,M(−) = Hom(0+m,−)⊗TL0⊗ÝTLTLm
(TL0 ⊗CM)

' Hom(m,−)⊗TLm
M, since TL0 ' C

= Fm,M(−)

and this isomorphism I×f Fm,M 7→ Fm,M defines a left unitor λ on Mod
ÝTL. A right one ρ is

defined similarly.
With the definition of the bifunctor ×f , more examples can be given of functorial mor-

phisms between objects of Mod
ÝTL. The following ones turn out to be natural isomorphisms.

Proposition 3.1. If β 6= 0, then F2,S2,0
' F0,TL0

.

Proof. Let ϕ : F2,S2,0
→ F0,TL0

be defined by

ϕ(k) :F2,S2,0
(k)' F0,TL0

(k)

f ⊗TL2
7→ f ◦ ⊗C (1/β),

where f ∈ Hom
ÝTL(2, k). Then, if a ∈ Hom(k, l):

ϕ(l)(a ◦ f ⊗TL2
) = a ◦ f ◦ ⊗C (1/β) = a ◦ (ϕ(k)( f ⊗TL2

)),

that is, ϕ is a morphism or, in other words ϕ ∈ Nat(F2,S2,0
,F0,TL0

) Clearly ϕ has an inverse
defined by ϕ−1(k)( f ⊗C c) = c( f ◦ )⊗TL2

for c ∈ C= TL0 and f ∈ Hom(0, k), and ϕ−1 is

also a natural transformation. Thus ϕ is a natural isomorphism.

Corollary 3.2. Let β 6= 0 and Fm,M ∈ Ob(Mod
ÝTL). Then Fm,M ' Fm+2,M×f S2,0

. In particular

Fk,Sk,k
' Fk+2n,Sk+2n,k

, for all k, n≥ 0. (42)

Proof. By equation (40),

Fm+2,M×f S2,0
' Fm,M ×f F2,S2,0

' Fm,M ×f F0,TL0
' Fm,M ×f I' Fm,M.

The isomorphism (42) follows from the identity Sk+2i,k ×f S2,0 ' Sk+2(i+1),k that holds when
β 6= 0 (see Prop. A.1 of [4]).

The set of natural transformations from the functor Fn,TLn
, where TLn is seen here as

the left regular module, to the functor Fm,M can be made explicit. Indeed, by definition of
Fn,TLn

(−) = Hom(n,−)⊗TLn
TLn ' Hom(n,−). Thus

Nat(Fn,TLn
,Fm,M)' Nat(Hom(n,−),Fm,M)' Fm,M(n), as vector spaces,
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where the last isomorphism follows from Yoneda’s lemma. In particular

HomMod
ÝTL
(F0,C,Fm,M) = Nat(F0,C,Fm,M)' Fm,M(0)' Sm,0 ⊗TLm

M,

again as vector spaces.
The definition (36) of objects in Mod

ÝTL allows for an easy definition of an associator, also
noted α, on Mod

ÝTL. Let Fl,L, Fm,M and Fn,N be three objects in Mod
ÝTL. Then

Fl,L×f (Fm,M×f Fn,N) = Hom(l +m+ n,−)⊗TLl⊗ÝTLTLm+n
(L⊗C (TLm+n ⊗TLm⊗ÝTLTLn

(M⊗C N)))

' Hom(l +m+ n,−)⊗TLl⊗ÝTLTLm+n
[(TLl ⊗ÝTL TLm+n)⊗TLl⊗ÝTLTLm⊗ÝTLTLn

(L⊗C (M⊗C N))]

' Hom(l +m+ n,−)⊗TLl⊗ÝTLTLm⊗ÝTLTLn
(L⊗C (M⊗C N)).

Similarly

(Fl,L×f Fm,M)×f Fn,N ' Hom(l +m+ n,−)⊗TLl⊗ÝTLTLm⊗ÝTLTLn
((L⊗CM)⊗C N).

Let k ∈ N0, f ∈ Hom(l+m+n, k) and x ∈ L, y ∈M, z ∈ N. Then the associator α(l,L),(m,M),(n,N)
must act as

f ⊗TLl⊗ÝTLTLm⊗ÝTLTLn
((x ⊗C y)⊗C z) 7−→ f ⊗TLl⊗ÝTLTLm⊗ÝTLTLn

(x ⊗C (y ⊗C z)).

The verification of the triangle and pentagon axioms for these unitors λ,ρ and associator α
then mimics that for the usual tensor product of vector spaces.

A lighter notation will be used from now on. The tensor signs ⊗C and ⊗TLm⊗ÝTLTLn
will

be replaced by ⊗ and ⊗m,n respectively and the functor Fm,M by FM. Furthermore, when

appearing in indices, we shall write only M instead of FM. The braiding η of ÝTL(β) induces
one on Mod

ÝTL as follows:
ηM,N : FM×f FN→ FN×f FM (43)

(ηM,N)k(a⊗m,n (x ⊗ y)) = a ◦ηn,m ⊗n,m (y ⊗ x), (44)

for all x ∈ M, y ∈ N, a ∈ Hom(n+m, k), k ∈ÝTL, and extended linearly in the natural way.
The components of η are well-defined natural morphisms in Mod

ÝTL. Suppose indeed that
c ∈ TLm, d ∈ TLn, b ∈ Hom(k, s). Then

(ηM,N)s(ba⊗m,n (cx ⊗ d y)) = baηn,m ⊗n,m (d y ⊗ cx)

= baηn,m(d ⊗ÝTL c)⊗n,m (y ⊗ x)

= ba(c ⊗
ÝTL d)ηn,m ⊗n,m (y ⊗ x)

= b(ηM,N)k(a(c ⊗ÝTL d)⊗m,n (x ⊗ y)).

It is straightforward (but tedious) to show that η, is natural in both entries. (An example of
such verification is done below for the twist θ.) The check of the hexagonal axiom is the last
step. Again any element of ((FL×f FM)×f FN)(k) is a linear combination of terms of the form

b⊗l,m,n ((x ⊗ y)⊗ z) where b ∈ Hom(l +m+ n, k) for some k, and x ∈ L, y ∈M, z ∈ N. Then
the upper part of the hexagon gives (we dropped the k index to lighten the notation)

αM,N,L◦ηL,M×f N
◦αL,M,N(b⊗l,m,n ((x ⊗ y)⊗ z))

= αM,N,L ◦ηL,M×f N
(b⊗l,m,n (x ⊗ (y ⊗ z)))

= αM,N,L(bηm+n,l ⊗m,n,l ((y ⊗ z)⊗ x))

= bηm+n,l ⊗m,n,l (y ⊗ (z ⊗ x))
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and the lower one

(1M ⊗ηL,N)◦αM,L,N ◦ (ηL,M ⊗ 1N)(b⊗l,m,n ((x ⊗ y)⊗ z))

= (1M ⊗ηL,N) ◦αM,L,N(b(ηm,l ⊗ 1n)⊗m,l,n ((y ⊗ x)⊗ z)

= (1M ⊗ηL,N)(b(ηm,l ⊗ 1n)⊗m,l,n (y ⊗ (x ⊗ z)))

= b(ηm,l ⊗ 1n)(1m ⊗ηn,l)⊗m,n,l (y ⊗ (z ⊗ x))

= bηm+n,l ⊗m,n,l (y ⊗ (z ⊗ x)), by (1).

Since the two expressions coincide, the family of commutors ηM,N, for

(m,M), (n,N) ∈ ObMod
ÝTL, satisfies the first hexagon axiom. The proof of the second is similar

and the above discussion establishes the braided structure of Mod
ÝTL.

Proposition 3.3. The category Mod
ÝTL together with the bifunctor×f , the identity I, the associator

α, the unitors λ,ρ and the braiding η is a braided category.

3.2 Rigidity and Mod
ÝTL

The representation theory of rational conformal field theories offers examples of modular cate-
gories. These categories satisfy even more structural constraints than the braided tensor ones.
This section identifies conditions under which the braided tensor categories Mod

ÝTL can be
endowed with some of these additional structures.

A braided category is rigid if, for every object F in the category, there correpond two others,
its right and left duals F∗ and ∗F, and morphisms

eF : F∗ ⊗ F −→ I ιF : I −→ F ⊗ F∗, (45)

e′F : F ⊗∗ F −→ I ι′F : I −→∗ F ⊗ F, (46)

such that the compositions

F
ιF⊗idF
−−−−→ F ⊗ F∗ ⊗ F

idF ⊗eF
−−−−→ F (47)

!F∗
idF∗ ⊗ιF
−−−−→ F∗ ⊗ F ⊗ F∗

eF⊗idF∗
−−−−→ F∗ (48)

are the identity morphism, on F and F∗, respectively. If such morphisms exists, they are unique
up to isomorphism. Similar axioms hold for e′F and ι′F . The rigidity axiom insures, in CFT, that
any primary field φ has a right partner φ∗ and a left one ∗φ such that the correlation functions
〈(φ∗)φ〉 and 〈φ(∗φ)〉 are non-zero. Often the left and right partners coincide. Actually in
all rigid braided category, the two duals are always isomorphic, since once can show that
(ιF)′ ≡ η−1

F,F∗ ◦ ιF : 1→ F∗ ⊗ F, and (eF)′ ≡ eF ◦ηF,F∗ : 1→ F ⊗ F∗, also satisfy the axioms for
the right dual.

Note that the category ÝTL is rigid, with n∗ ≡ ∗n ≡ n for all objects n ∈ÝTL, and duality
morphisms

ῑm =

...

...

m

m

∈ Hom
ÝTL(0,2m), ēm =

...

...

m

m

∈ Hom
ÝTL(2m, 0) . (49)

It is then straightforward to verify that (1m⊗ÝTL ēm)◦(ῑm⊗ÝTL1m) = (ēm⊗ÝTL1m)◦(1m⊗ÝTLῑm) = 1m.
The rigidity axiom is fulfilled for Mod

ÝTL when the algebras TLn(β) are semisimple for all
n, that is when q is not a root of unity (recall that β = −q − q−1). For these values of β , the
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cellular modules Sn,k, 0 ≤ k ≤ n with k = n mod 2, form a complete set of non-isomorphic
irreducible modules of TLn. All other (finite) modules of TLn are direct sums of these. Their
fusion product is known [3,4].

Proposition 3.4. If q is not a root of unity, then

Fm ×f Fn '
m+n
⊕

′

j=|m−n|
F j , with Fm ≡ Fm,Sm,m

and where ⊕′ stands for a direct sum with a step equal to 2.

This simple fusion rule leads to the following result.

Corollary 3.5. If q is not a root of unity, then

Fm ×f Fm '
2m
⊕

′

j=0

F j and Nat(F0,Fm ×f Fn)' Nat(Fm ×f Fn,F0)' δm,nC

as vector spaces.

In other words Fm ×f Fn has a direct summand isomorphic to I = F0 if and only if m = n.
The left and right duals of Fm can thus be chosen to coincide with Fm. With this observation,
the construction of the four functorial morphisms eF , ιF , e′F and ι′F is straightforward. We detail
that of eF and ιF . To define ιm, note first that

ēm =
...

is the only (0,2m)-diagram whose tensor product with

. . . ⊗ . . .

is non-zero. Thus define the components ιm(k) : I(k) −→ (Fm ×f F
∗
m)(k) of the morphism

ιFm
≡ ιm to be

f ⊗C 1 7−→ α f
... ⊗m,m

�

. . . ⊗ . . .
�

where f ∈ Hom(0, k) and α ∈ C a constant to be fixed. A quick check shows that this is a
morphism. (This morphism ιm exists even for q a root of unity.) Note that the definition of ιm
uses ēm ∈ Hom(2m, 0) and, as will be seen below, that of em uses ῑm ∈ Hom(0,2m), a fact that
could be confusing.

The definition of em : Fm×f Fm→ I requires the primitive idempotent wjm ∈ TLm, known as
the Wenzl-Jones projector. It is the unique non-zero element of TLm such that wjm ·wjm = wjm
and wjm · ei = ei · wjm = 0, 1 ≤ i < m [16]. Thus C · wjm ' Sm,m as a left module. Such
idempotents wjm exist for all m if and only if q is not a root of unity. Moreover

wjm · . . . = . . .

in Sm,m. The components em(k) : (Fm ×f Fm)(k)→ I(k) of em are linear maps defined by

g ⊗m,m

�

wjm · . . . ⊗wjm · . . .
�

7−→ α′g ◦ (wjm ⊗ÝTL wjm)
... ⊗ 1
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for g ∈ Hom(2m, k) some α′ ∈ C. The two constants α and α′ are tied by the rigidity axioms
(47) and (48). For example (47) gives for f ∈ Hom(m, k)

(idm⊗ÝTLem)(ιm ⊗ÝTL idm)( f ⊗0,m (1⊗ . . . ))

= α(idm⊗ÝTLem)
�

f ◦
. . .

...
�

⊗m,m,m

�

. . . ⊗ . . . ⊗ . . .
�

= αα′
�

f ◦
. . .

. . .... wjm ·

wjm ·

...
⊗m . . .

�

= αα′
�

f ◦wjm ⊗m . . .
�

= αα′
�

f ⊗m . . .
�

and (idm⊗ÝTLem) ◦ (ιm ⊗ÝTL idm) is the identity if and only if αα′ = 1. The second axiom (48)
does not add any constraints and, if α and α′ are chosen to be 1, e and ι satisfy all the axioms.
The constructions and verifications of this section and the previous one prove the following
result.

Proposition 3.6. If q is not root of unity, the category Mod
ÝTL together with the bifunctor ×f , the

identity I, the associator α, the unitors λ,ρ, the braiding η and the morphisms e, ι, e′ and ι′, is
rigid.

A ribbon category is a rigid category endowed with a functorial isomorphism θ and a dual
isomorphism θ ∗ satisfying (θF)∗ = θF∗ and ∗(θF) = θ∗F. The isomorphism θ is called a twist.
The duals are defined by the composition (omitting associators and unitors)

(θF)
∗ : F∗

idF∗ ⊗ιF
−−−−→ F∗ ⊗ F⊗ F∗

idF∗ ⊗θF⊗idF∗
−−−−−−−−→ F∗ ⊗ F⊗ F∗

eF⊗idF∗
−−−−→ F∗,

and similarly for the left duals. The natural isomorphism θ for Mod
ÝTL will first be constructed

and then the compatibility between duals checked.
The twist on ÝTL induces a twist on Mod

ÝTL as follows. For c ∈ Hom(m, k) and x ∈ M,
define θFM

(k) = θM(k) by

c ⊗m x 7−→ θM(k)(c ⊗m x) = cθm ⊗m x . (50)

Since the elements θm ∈ TLm are central, θM(k) is well-defined. Since its (unique) eigenvalue
on an indecomposable module is never zero, θM(k) is also invertible. The next step is to prove
that it is a natural transformation of the identity functor of Mod

ÝTL; to see this, one must prove
that for all functors FN,FM ∈ Mod

ÝTL, and all natural transformation
µ : FN → FM ∈ HomMod

ÝTL
, the components of (µ ◦ θN) and (θM ◦ µ) must be equal on all

objects k ∈ÝTL. Let a ⊗
ÝTL x be some element of FN(k), so a ∈ Hom(n, k), x ∈ N, and write

µk(a⊗ÝTL x) ≡
∑

i bi ⊗ÝTL yi , where the sum is over some finite set, the bi are in TLm and the

yi in M. One then verifies that

(µ ◦ θN)k(a⊗ÝTL x) = µk(a ◦ θn ⊗ÝTL x)

= µk(θk ◦ a⊗
ÝTL x), by (34)

= θkµk(a⊗ÝTL x) = θk

∑

i

bi ⊗ yi

=
∑

i

biθm ⊗ÝTL yi , again by (34)

= (θM ◦µ)k(a⊗ÝTL x),
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where we used the fact that θ is a natural transformation on ÝTL and µ is natural on Mod
ÝTL.

Since (µ ◦ θN)k and (θM ◦ µ) are both linear, it follows that they must be equal on FN(k).
Finally, let a ∈ Hom(m+ n, k) and x ∈M and y ∈ N such that a⊗m,n (x ⊗ y) ∈ FM×f N

. Then

θM×f N
(a⊗m,n (x ⊗ y)) = aθm+n ⊗m,n (x ⊗ y)

= (a ◦ηn,m ◦ηm,n ◦ (θm ⊗ÝTL θn))⊗m,n (x ⊗ y), since θ is a twist on ÝTL

= (a ◦ (θm ⊗ÝTL θn) ◦ηn,m ◦ηm,n)⊗m,n (x ⊗ y), by 2.4

= ηN,M(a ◦ (θm ⊗ÝTL θn) ◦ηn,m ⊗n,m (y ⊗ x))

= ηN,M ◦ηM,N(a ◦ (θm ⊗ÝTL θn)⊗m,n (x ⊗ y))

= ηN,M ◦ηM,N ◦ (θM ⊗ÝTL θN)(a⊗m,n (x ⊗ y)),

and the twist θ on Mod
ÝTL verifies the axiom (26).

It simply remains to verify that the twist is compatible with the duals; we show that it is
compatible with right duals, as the proof for the left ones is very similar. First note that for all
1≤ i ≤ m,

t i ῑm = t2m−i ῑm, ēm t i = ēm t2m−i ,

where ῑm, ēm are the duality morphisms from ÝTL, introduced in equation (49). It therefore
follows that

(θm ⊗ÝTL 1m)ιm = (1m ⊗ÝTL θm)ιm and em(θm ⊗ÝTL 1m) = em(1m ⊗ÝTL θm)

where em and ιm are now the components of eF and ιF . Using this observation with the
definition of the twist and duals in Mod

ÝTL, one quickly sees that for all F ∈Mod
ÝTL

(θF ⊗ 1)ιF = (1⊗ θF)ιF and eF(θF ⊗ 1) = eF(1⊗ θF).

The right dual of θF is thus

(θF)
∗ = (eF ⊗ idF) ◦ [(idF ⊗θF ⊗ idF) ◦ (idF ⊗ιF)]
= [(eF ⊗ idF) ◦ (idF ⊗ idF ⊗θF)] ◦ (idF ⊗ιF)
= (idI⊗θF) ◦ [(eF ⊗ idF) ◦ (idF ⊗ιF)]
= (idI⊗θF) = θF

where we have used the fact that F∗ ≡ F and, to get the last line, that Mod
ÝTL is rigid. The

twist θ in Mod
ÝTL is thus compatible with its duals.

These checks on θ holds for any q. However, for a category to be a ribbon category, it needs
to be rigid and thus, for Mod

ÝTL, q may not be a root of unity.

Proposition 3.7. If q is not root of unity, the data (Mod
ÝTL,×f , I,α,λ,ρ,η, e, ι, e′, ι′,θ) define a

ribbon category.

Note that we also proved that the twist in ÝTL is also compatible with its duals, so ÝTL (with
the appropriate data) is also a ribbon category.

The categories appearing naturally in minimal conformal field theories are the modular
tensor categories. Beside being ribbon categories, the modular ones require among other
things that all objects can be written as a finite direct sum of simple objects and that the
number of (isomorphic classes of) simple objects be finite. (An object A in an abelian category
C is simple if any injective morphism B → A is either 0 or an isomorphism.) When q is not
a root of unity, the simple objects are the standard modules Sn,k, n ∈ N0, and 0 ≤ k ≤ n
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with n = k mod 2. Corollary 3.2 shows that Fn,Sn,n
, n ∈ N0, are all simple objects and non-

isomorphic. However their number is infinite and the ribbon category Mod
ÝTL cannot be a

modular one.
The category Mod

ÝTL cannot be rigid when q is a root of unity. Indeed rigidity would imply
the exactness of the bifunctor ×f which it is not when q is a root of unity [4]. But it turns out
that ×f is closed when restricted to projective modules, even when q is a root of unity. It is thus

natural to consider the full subcategory Modproj
ÝTL

with objects restricted to projective modules
(or, more precisely, functors of the form Fn,P where P is projective TLn-module). The fusion
coefficients are more intricate than those of Corollary 3.5. (See Proposition 4.1.1 of [3] or
Section 4.1 and the quick computational tool 5.4 of [4].) However the Corollary’s key feature,
the one that allows for the introduction of morphisms eF, e′F, ιF and ι′F, still holds:

Nat(F0,Fm ×f Fn)' Nat(Fm ×f Fn,F0)' δm,nC

as vector spaces, when q is a root of unity such that the smallest positive integer ` such that
q2` = 1 is larger than 2. Here Fn stands now for Fn,Pn,n

. The morphisms (45) and (46)
thus exist. We have checked on a few cases that the rigidity conditions (47) hold for proper
choices of the e’s and ι’s. The full subcategory Modproj

ÝTL
has an unexpected feature however:

it is not any more an abelian category, a characteristic that is usually assumed in the study of
fusion. Recall that, in an abelian category, every morphism has a kernel and a cokernel in the
category. But, when a projective module Pn,k has three or four composition factors, there are
morphisms Pn,k → Pn,k whose kernels and cokernels are not projective and thus absent from

the subcategory Modproj
ÝTL

.

3.3 The monodromy ηN,M ◦ηM,N

Since the commutor η is a natural isomorphism, the composition ηFN,FM
◦ηFM,FN

is a natural
isomorphism of FM×f N

onto itself. In conformal field theories the eigenvalues of this isomor-

phism are related to the monodromy of correlation functions of primary fields. We shall refer
to this map as the monodromy as in the study of modular tensor categories. Because of the ax-
iom (26), the monodromy is completely determined by the twist (see Proposition 3.8 below).
But the definition of the twist (50) shows that the definition of θFm,M

(k) depends only on m
and not on the component k. Moreover every TLm-module M is the component m of a functor
in Ob(Mod

ÝTL). We thus restrict our study of the monodromy to the fusion of the TLm- and
TLn-modules M and N.

The nature of the monodromy is easy to describe in the semisimple case, i.e. when q is not
a root of unity. However the morphism may have a nilpotent part when q is a root of unity,
as will be seen below. In the following we use fairly standard notations, writing In,k,Sn,k and
Pn,k for the irreducible, standard and projective modules over TLn. The standard Sn,k was
described at the beginning of 3.1, the irreducible In,k is its irreducible quotient and Pn,k the
projective cover of In,k. (See [4,14], and also [1] where Sn,k is denoted by Wk(n).)

The twist θ defines isomorphisms of modules over the Temperley-Lieb algebras. Indeed
they are defined through the invertible central elements θn of TLn and thus define isomor-
phisms of modules by left multiplication. The defining property (26) of the twist θ gives a
rather explicit expression for the monodromy. We choose to state this (obvious) fact in a
proposition to underline its crucial character and ease further references.

Proposition 3.8. The monodromy ηN,M ◦ηM,N is expressed in terms of the twist as

ηN,M ◦ηM,N = θM×f N(θM ⊗ θN)
−1. (51)
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When q is generic (not a root of unity), then the algebras TLn are semisimple for all n
and the standard modules Sn,k, with 0 ≤ k ≤ n and k ≡ n mod 2, provide a complete list of
non-isomorphic irreducible modules. Their fusion was given in terms of the associated functor
in Proposition 3.4. Here is a simpler statement in terms of the modules themselves.

Proposition 3.9 ( [3, 4]). Let n1, n2 ≥ 1 and k1, k2 such that 0 ≤ ki ≤ ni and ki ≡ ni mod 2.
Then

Sn1,k1
×f Sn2,k2

'
k1+k2
⊕

′

k=|k1−k2|
Sn1+n2,k

when q is not a root of unity. Again ⊕′ indicates a direct sum whose index step is two.

3.8 then gives a complete characterization of the monodromy of standard modules in this
generic case.

Proposition 3.10. The monodromyηSn2,k2
,Sn1,k1

◦ηSn1,k1
,Sn2,k2

acts on the direct summand Sn1+n2,k

of Sn1,k1
×f Sn2,k2

as the identity times

µk1,k2,k = qk(k/2+1)−k1(k1/2+1)−k2(k2/2+1) (52)

when q is not a root of unity.

Proof. The central elements cn = θn act as multiples of the identity on the irreducible Sn,k by
Schur’s lemma. The eigenvalues γn,k of cn on the standard modules Sn,k are obtained in A.2.
Thus

(θn1
⊗ θn2

)−1
�

�

Sn1,k1
×f Sn2,k2

=
1

γn1,k1
γn2,k2

· id .

The restriction of the monodromy to the direct summand
Sn1+n2,k of the fusion is then γn1+n2,k/(γn1,k1

γn2,k2
). A direct computation leads to the desired

expression.

It is worthwhile to note that the multiple of the identity is independent of n1 and n2 whose
only role here is to fix the parities of k1 and k2.

When q is a root of unity, the monodromy ηN,M ◦ηM,N is still given by 3.8, but it might not
be a multiple of the identity. Indeed the action of the central elements cn on TLn-modules is
in general not such a multiple. The A.3 and the paragraph leading to it show that such a non-
trivial action, i.e. a non-diagonalisable action, might occur only on projective modules with
three or four composition factors. Let Pn.k be such a projective module. Then Hom(Pn,k,Pn,k)
is two-dimensional. Beside the identity id, there is a map sending the head of Pn,k to its socle,
both being isomorphic to In,k. Let f be this map, that is, a map such that im f is the socle of
Pn,k. This map is nilpotent: f 2 = 0. We now give two examples of such non-trivial action of
the monodromy.

One of the simplest cases occurs when q2` = 1 for ` = 3. Then, even though the standard
modules S2,2 and S1,1 are irreducible, their fusion S2,2 ×f S1,1 is not. Using the expressions
computed in [3, 4], one finds S2,2 ×f S1,1 ' P3,3 where P3,3 is an indecomposable projective
module. This projective is three-dimensional, has three one-dimensional composition factors:
I3,1 once and I3,3 twice. The latter composition factors are isomorphic to the socle and head of
the module. Hence, even though θ2 and θ1 act as multiples of the identity on S2,2 and S1,1, the
morphism defined by c3 is not diagonalisable on P3,3. In fact a direct computation shows that
the monodromy in this case is ηS1,1,S2,2

◦ ηS2,2,S1,1
= e4πi/3 · id+ν f if q is chosen to be e2πi/3.

Here ν is a non-zero constant (that depends on the basis) and f is the map described above.
Note that the (unique) eigenvalue of the monodromy is still correctly predicted by (52), as it
should be: µ2,1,3 = q2 = e4πi/3.
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Our second example is more intricate: we shall study the monodromy on the product
TL2 ×f TL2 for q generic and q =

p
−1. If q is generic, then TL2 ' S2,0 ⊕ S2,2. The linearity

of the fusion together with 3.9 gives

TL2 ×f TL2 ' TL4 ' S4,0 ⊕ S4,0 ⊕ S4,2 ⊕ S4,2 ⊕ S4,2 ⊕ S4,4.

Since q is generic, the monodromy ηTL2,TL2
◦ηTL2,TL2

is diagonalisable with eigenvalues given
by 3.10. The eigenvalues on the two copies isomorphic to S4,0 are q−8 and 1, on the three S4,2
they are q−4, 1 and 1, and on S4,4 it is q4. (Note that ηTL2,TL2

◦ηTL2,TL2
does not take the same

eigenvalues on isomorphic copies of the standard modules in TL4, since the multiple µk1,k2,k

depends also on the modules begin fused.) If q =
p
−1 and thus β = 0, then TL2 ' P2,2 and

the fusion is then
TL2 ×f TL2 ' P2,2 ×f P2,2 ' P4,2 ⊕P4,2 ⊕P4,4.

At this value of q, the isomorphism ηTL2,TL2
◦ ηTL2,TL2

is even more complicated because
none of the three isomorphisms in θTL4

(θTL2
⊗ θTL2

)−1 is a multiple of the identity on the
modules they act upon. Still it has a unique eigenvalue as µ2,2,0 = µ2,2,2 = µ2,2,4 = 1. While
ηTL2,TL2

◦ ηTL2,TL2
is non-diagonalisable, it is possible to find two subspaces A and B, both

isomorphic to P4,2 that allows for an easy description of the morphism. Let C be the other
summand P4,4. Then δ = ηTL2,TL2

◦ ηTL2,TL2
can be broken down into its action on each

summand as




δA,A
δA,B
δA,C



 : A −→ TL4,





δB,A
δB,B
δB,C



 : B −→ TL4,





δC,A
δC,B
δC,C



 : C −→ TL4.

They are

δA,A = id+σ f , δA,B = idA,B, δA,C = 0,

δB,A = 0, δB,B = id+ν f , δB,C = 0,

δC,A = 0, δC,B = 0, δC,C = id+ρ f ,

where σ,ν,ρ are non-zero constants and idA,B stands for the isomorphism between A and B.
From these maps, it is straighforward to compute the Jordan form of η. Its non-trivial Jordan
blocks are 2 blocks 3× 3 and 2 blocks 2× 2.

The root q =
p
−1 is somewhat special in the representation theory of the algebra TLn: It

is the only value for which the semisimplicity of TLn varies with the parity of n. (For all other
roots q2` = 1 with `≥ 3, the algebra TLn(β = −q−q−1), n≥ `, is never semisimple.) Although
the example above was given at this particular value q =

p
−1, it seems to be representative

of what happens at other values of q.

4 Braiding and integrability

One of the most profound uses of Temperley-Lieb algebras in physics is in the study of solvable
models, like the XXZ Hamiltonians or loop models on two-dimensional lattices. The goal of
the present section is to tie braiding and integrability in some of these statistical models. The
former will appear through the elementary brainding η1,1 (or t i(n)) that was used in 2.6 to
write all other components ηr,s of the braiding natural isomorphism. The latter will also be
cast in terms of a fundamental “face operator" that must satisfy three identities. The physical
object, that is, the Hamiltonian or the transfer matrix, is then defined in terms of several copies
of this face operator.
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In the literature on statistical models, the face operator X i(q, u) is also an element of one
of the algebras TLn(β). It depends on several parameters: The spectral parameter λ, tied to
β by β = −q− q−1 and q = eiλ, and the anisotropy parameter u that measures the ratio of the
interaction constants along two linearly independent vectors spanning the lattice. As for the
t i , the X i is usually a linear combination of TLn generators and it is represented graphically
by

u i
i+1

Since all faces will be evaluated at the same value of the parameter q (or λ), this parameter
is often omitted. In terms of the face X i(q, u), the transfer matrix Dn(λ, u) ∈ Hom(n, n) on n
sites is constructed out of 2n tiles organized in diagonal lines. For example the case n = 3 is
depicted as follows:

D3(λ, u) =
u

u

u

u

u

u
.

In the notation of the previous section, it is thus

Dn(λ, u) = (1n ⊗ z t) ◦
�

n
∏

i=1

X i(q, u)
1
∏

i=n

X i(q, u)
�

◦ (1n ⊗ z) ∈ Hom(n, n). (53)

Its physical properties are revealed through its spectrum in some representations. It was rec-
ognized by Behrend, Pearce and O’Brien [17] that some algebraic conditions on the face oper-
ator X i(q, u) ensure that the transfer matrix, constructed from it, will have the properties that
Dn(λ, u) ◦ Dn(λ, v) − Dn(λ, v) ◦ Dn(λ, u) = 0 in TLn. This means that, in any representation
φ : TLn → gl(V) with V some vector space, the matrices φ(Dn(λ, u)) and φ(Dn(λ, v)) will
commute for all values u and v. The modes φ(Dn(λ, u)) in any expansion with respect to u
(Taylor’s expansion, Fourier’s, ...) will commute, that is, they will be integrals of motions.
Thus the integrability of the models based on such a transfer matrix Dn follows from these
algebraic conditions. Here they are.

Proposition 4.1 (section 3.4 of [17]). If X i(q, u) verifies the following three conditions, then
Dn(λ, u) ◦ Dn(λ, v) = Dn(λ, v) ◦ Dn(λ, u), for all u, v ∈ C:

(Yang-Baxter equation) X i(q, u)X i+1(q, v)X i(q, v/u) = X i+1(q, v/u)X i(q, v)X i+1(q, u), (54)

(inversion relation) X i(q, u)X i(q, u−1) = ρ(q, u) id, (55)

(boundary Yang-Baxter) X i(q, u)X i+1(q, v) ◦ (z ⊗ z)

= X i(q, u)X i−1(q, v) ◦ (z ⊗ z) (56)

for some non-identically zero function ρ(q, u).

These conditions are found in the literature drawn as follows:

(Yang-Baxter equation) v/u
v

u =
u

v

v/u

(inversion relation) 1/uu = ρ(q, u) id

(boundary Yang-Baxter) u

v
= u

v
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It is not too difficult to construct such a face operator X i out of the elementary braiding
element η1,1 = t i . As an intermediary step, consider

yi(u) = u−1 t i − ut−1
i .

Both products yi(u)yi+1(v)yi(w) and yi+1(w)yi(v)yi+1(u) contain eight terms, each cubic in
the generators t i , t i+1 and their inverses. The identity (16) gives rise to the six following ones:

t i t i+1 t i =t i+1 t i t i+1 , t i+1 t i t
−1
i+1=t−1

i t i+1 t i , t i t i+1 t−1
i = t−1

i+1 t i t i+1 ,

t i+1 t−1
i t−1

i+1 = t−1
i t−1

i+1 t i , t i t
−1
i+1 t−1

i =t−1
i+1 t−1

i t i+1 , t−1
i t−1

i+1 t−1
i =t−1

i+1 t−1
i t−1

i+1 .

Thanks to these identities, all sixteen terms of the difference of triple products of the yi cancel
pairwise, but four:

yi(u)yi+1(v)yi(w)− yi+1(w)yi(v)yi+1(u) (57)

= uv−1w(t−1
i t i+1 t−1

i − t−1
i+1 t i t

−1
i+1) − u−1vw−1(t i t

−1
i+1 t i − t i+1 t−1

i t i+1).

Moreover it is easily verified that

(t−1
i t i+1 t−1

i − t−1
i+1 t i t

−1
i+1) = q(t i t

−1
i+1 t i − t i+1 t−1

i t i+1). (58)

So the difference (57) will be zero if quv−1w = u−1vw−1. This is easily achieved with the
following definition of the x i .

Proposition 4.2. Let n≥ 2. The x i(q, u) defined by

x i(q, u) =
p

q
u

t i −
u
p

q
t−1
i , for i < n, (59)

satisfy the three conditions (54)–(56) with ρ(q, u) = ((q2 + q−2)− (u2 + u−2)).

Proof. With the new weights u 7→ u′ = u/
p

q, the relation qu′v′−1w′ = u′−1v′w′−1 with
w′ = v′/u′ is true and the Yang-Baxter is verified. The other two equations are obtained
by expanding the x i .

The solution x i of the three conditions in 4.1 is well-known. For example, Section 3 of [7]
is devoted to this solution and its relationship with the Temperley-Lieb algebra. (Note that
their λ and our q is related by q = eiλ and their u and ours is also related by an exponential.
Their β is q + q−1 while ours is −q − q−1. Finally they consider a larger class of boundary
conditions that those above.) However the above discussion shows how the braiding of the
Temperley-Lieb category ÝTL and integrability of statistical models are intimately related.

5 The dilute category ÞdTL

The dilute Temperley-Lieb algebras dTLn(β) are a family of algebras defined through diagrams
similar to those appearing in the original algebras TLn(β). This family can be cast into a
category ÞdTL similar to the category ÝTL introduced in 2.2. This new category can also be
given a braided structure. This section introduces this structure and discusses the relationship
between the braiding on ÞdTL and the integrability of dilute statistical models.

We start by giving the definition of the category ÞdTL, while recalling the definitions of the
algebras dTLn themselves. (See [18] for further details on the dilute family.) The objects of
the dilute Temperley-Lieb category ÞdTL are the non-negative integers. The morphisms between
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two integers n and m are defined as linear combinations of dilute (n, m)-diagrams. These
dilute diagrams are defined in the same way as the (n, m)-diagrams appearing in ÝTL except
that nodes on either sides of the diagrams are now allowed to be free of strings; a node without
a string is called a vacancy. For example, the following are all acceptable dilute diagrams:

, and .

The first two are elements of Hom(2, 4) and the last of Hom(4,5). Composition of morphisms
is defined by extending bilinearly the following composition rule. For b and c dilute (m, n)-
and (k, m)-diagrams, the composition b ◦ c is a dilute (k, n)-diagram defined by first drawing
b on the left of c, identifying the points on the m neighbouring sites, joining the strings that
meets there, and then removing the points on this side. If a string is closed in this process, it is
removed and the diagram obtained is multiplied by β = −q − q−1 ∈ C. If a string is attached
to only one of its extremities (because it was joined to a vacancy during the composition), the
result b ◦ c is the zero morphism5. Here are few examples of these compositions. In the first
b ∈ Hom(4, 5), c ∈ Hom(2, 4) and b ◦ c ∈ Hom(2,5).

◦ = and ◦ = = 0

For a stricly positive integer n, the algebra dTLn(β) is identified to the set Hom(n, n) with the
product being the composition just defined.

Endowing this category with a monoidal structure is a straigthforward generalisation of
the one on ÝTL. Again define n ⊗ m ≡ n + m. For morphisms, if a and b are dilute (n, m)-
and (r, s)-diagrams, define their tensor product a⊗ b as the (n+ r, m+ s)-diagram obtained by
simply putting a on top of b, as in ÝTL, and extend this bilinearly to all morphisms. With the
associator and the unitors as identities, this tensor product makes ÞdTL into a strict monoidal
category.

The commutor for ÞdTL is obtained similarly to that ofÝTL. We only outline the computation
of η1,1. The space End2 is spanned by the following 9 diagrams:

and the elementary commutor η1,1 is a linear combination of these nine diagrams. A line
in any diagram will mean the sum of two diagrams, the first with a straight line between the
two nodes, the second with nothing between these nodes that are then vacancies. The identity
11 ∈ Hom(1, 1) is thus such a dashed line and the identity in End2

12 =

is the sum of the first four of the nine diagrams above. Four of the coefficients of η1,1 are easily
set to zero by the following requirements:

η1,1 = η1,1 η1,1 = η1,1

5Note that the case of a string ending at a vacancy can also be resolved by simply removing it and replacing its
two ends by vacancies. This then yields a different structure, the planar rook algebras (see, for example, [19]).
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and

η1,1 = η1,1 η1,1 = η1,1 .

The commutor η1,1 is thus found to be a sum of the remaining five diagrams:

η1,1 = a1 + a2 + a3 + a4 + a5 .

As in 2.2, we define t i(n) ≡ 1i−1 ⊗ η1,1 ⊗ 1n−i−1 ∈ Hom(n, n) and write η1,2 = t2 t1 and
η2,1 = t1 t2. The conditions are then

η1,2(a⊗ b) = (b⊗ a)η1,2 and η2,1(b⊗ a) = (a⊗ b)η2,1

for all a ∈ dTL1 and b ∈ dTL2. Choosing a as 11 and b as one of the following ones

gives the algebraic equations

a2
1 + a1a5β + a2

5 = 0 and a2
2 = a2

3 = a2
4 = a1a5.

Finally the conditions η1,1(a⊗ b) = (b⊗ a)η1,0 = b⊗ a and η1,1(b⊗ a) = (a⊗ b)η0,1 = a⊗ b
with a ∈ dTL1 and b ∈ Hom(0,1) give a2 = a3 = a4 = 1. The first equation above becomes
a2

1 + β + a−1
1 = 0 whose solutions are a1 = ±q±

1
2 , the two ± being independent. We shall

choose both upper signs. This determines completely η1,1 and it is possible to check that all
other conditions on η1,1, η1,2 = t2 t1 and η2,1 = t1 t2 are satisfied.

Proposition 5.1. The category ÞdTL is braided for a commutor with components ηr,s given by
(23), t i(n)≡ 1i−1 ⊗η1,1 ⊗ 1n−i−1 and η1,1 and η−1

1,1 now given by

η1,1 = q
1
2 +q−

1
2 + + + (60)

and

η−1
1,1 = q−

1
2 + q

1
2 + + + (61)

It follows that a disjoint module category Mod
ßdTL

can be defined along the lines introduced
in 3.1 and that it is also braided.

In the case of the original Temperley-Lieb algebras, the construction of x i(q, u) satisfying
the three conditions (54)–(56) rested on the identities (16) and (58). These can be shown to
be satisfied by the t i defined with η1,1 in (60). The elementary braiding (60) thus leads again
to the following non-trivial solution of the Yang-Baxter equation (54):

x i(q, u) =
p

q
u

t i −
u
p

q
t−1
i , for i < n,

where η1,1 is now given by (60) and the x i are understood as elements of Hom(n, n). Does
this solution also satisfy the two other conditions (55) and (56)? For the latter, one has first
to decide what is to replace the “boundary terms" (z⊗ z). A direct calculation shows that (56)
is satisfied by the dilute x i for only three boundary conditions, namely

, and .
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Finally the dilute x i does not satisfy the inversion relation (55):

x i(q, u)x i(q, u−1) = ((q+ q−1)− (u2 + u−2))12 + (q
2 − q− q−1 + q−2) .

While this non-trivial solution only partially satisfies (54)–(56), there is another one that solves
the three conditions. It uses Boltzmann weights discovered by Izergin and Korepin [20], and
Nienhuis [21]. It is

x̂ i(q, u) = u−2 · y+ + u−1 ·w+ + z + u ·w− + u2 · y−, (62)

where

y± =
−q±

3
4

(q
1
2 − q−

1
2 )(q

3
4 − q−

3
4 )

�

−q±
1
2 −q∓

1
2 + + +

�

,

w± =
±1

(q
3
4 − q−

3
4 )

�

q±
3
4
�

+
�

−
�

+
�

�

,

z =
1

(q
1
4 − q−

1
4 )(q

3
4 − q−

3
4 )

�

�

q− 1+ q−1
�

−
�

+
�

+
�

q
1
2 − 1+ q−

1
2
�

�

+
��

.

Like x i , this x̂ i solves the Yang-Baxter equation. But it also satisfies the inversion relation
(with a new function ρ̂) and the boundary Yang-Baxter equation with particular boundary
conditions [22, 23]. Notice that, up to a global factor, the y± are the commutors η±1

1,1 that

would have been obtained if a1 would have been chosen as−q
1
2 . The other three terms w+, w−

and z are however completely different. It is not clear whether the integrable model it defines
is related to a braiding for a different bifunctor −⊗′ −.

6 Conclusion

The main results of this article lie in Sections 2 and 3. In Section 2, the category ÝTL was given
the structure of a braided category. Even though several of the functors and natural morphisms
were already known, casting them in ÝTL pursues Graham and Lehrer’s goal of understanding
the family of Temperley-Lieb algebras as a whole. This goal highlights properties of the family
that are shared by all TLn, independently of n. It is also very natural physically speaking as
the continuum limit of the lattice models defined using the TL family is often their raison
d’être. Section 3 introduced the category Mod

ÝTL of modules over ÝTL and used the functors

and natural morphisms of ÝTL to induce the structure of a ribbon category on Mod
ÝTL when q

is generic. The tools developed showed how non-trivial can the monodromy be, even for the
finite associative TL algebras.

Section 3 also explained that rigidity cannot be implemented straightforwardly on Mod
ÝTL

when q is a root of unity. The subcategory Modproj
ÝTL

of projective modules might satisfy the
axioms (47) and (48), but it fails to be abelian. Another possibility would be to consider the
subcategory of irreducible modules In,k with k on the left of the first critical line. Theorem
6.11 of [4] shows that ×f is closed on this subset of modules. But a more central question is
what are “approriate" weaker forms of rigidity for Mod

ÝTL at q a root of unity.
The question also arises of the existence of a commutor for other family of algebras and its

eventual link to integrable models defined using them. 5 showed that the “elementary braiding
η1,1” does not reproduce the transfer matrix defining dilute loop models. Is it possible to
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understand better the link between this η1,1 and the integrability of the dilute models? There
are other algebras physically relevant in statistical physics, for example the one-boundary TL
family (also known as the blob algebra [24]) and the affine (periodic) TL family. It is not
known whether one can define a fusion product between their modules or even make a braided
category out of their link diagrams.

A The central element cn

We gather in this appendix the properties of the central element cn ∈ TLn together with their
proofs. Some of these results are to be found in [13].

The two elements of TLn

ρn = t1 t2 . . . tn−1 and λn = tn−1 . . . t2 t1,

are invertible since each of the t i is. Define e0 and en as

en = ρnen−1ρ
−1
n and e0 = λne1λ

−1
n .

Then the following properties hold.

Lemma A.1. The action by conjugation of ρn and λn on elements of TLn amounts to right and
left cyclic translations:

ρneiρ
−1
n = ei+1, 1≤ i ≤ n− 1, λneiλ

−1
n = ei−1, 1≤ i ≤ n− 1,

ρnenρ
−1
n = e1, λne0λ

−1
n = en−1,

en−1enen−1 = en−1, e0e1e0 = e0,

enen−1en = en, e1e0e1 = e1,

e2
n = βen, e2

0 = βe0.

Proof. The first relations follow from 2.3. The repeated use of the same identity (15) proves
the second:

ρnenρ
−1
n = ρ

2
nen−1ρ

−2
n = (t1 t2 . . . tn−1)(t1 t2 . . . tn−1)en−1(t

−1
n−1 . . . t−1

2 t−1
1 )(t

−1
n−1 . . . t−1

2 t−1
1 )

= (t1 t2 . . . tn−2)(t1 t2 . . . tn−3)(tn−1 tn−2)en−1(t
−1
n−2 t−1

n−1)(t
−1
n−3 . . . t−1

2 t−1
1 )(t

−1
n−2 . . . t−1

2 t−1
1 )

= (t1 t2 . . . tn−2)(t1 t2 . . . tn−3)en−2(tn−1 tn−2 t−1
n−2 t−1

n−1)(t
−1
n−3 . . . t−1

2 t−1
1 )(t

−1
n−2 . . . t−1

2 t−1
1 )

= (t1 t2 . . . tn−2)(t1 t2 . . . tn−3)en−2(t
−1
n−3 . . . t−1

2 t−1
1 )(t

−1
n−2 . . . t−1

2 t−1
1 )

= · · ·= (t1 t2)(t1)e2(t
−1
1 )(t

−1
2 t−1

1 ) = t1e1 t−1
1 = e1.

The cubic relations are straightforward. For example

enen−1en = ρnen−1(ρ
−1
n en−1ρn)en−1ρ

−1
n = ρnen−1en−2en−1ρ

−1
n = ρnen−1ρ

−1
n = en.

Finally the square of en is obtained by e2
n = (ρnen−1ρ

−1
n )

2 = ρn(βen−1)ρ−1
n = βen.

The definition and properties of the elements cn ∈ TLn that are used in the study of the
twist θ are contained in the next Proposition. The statement refers to the standard modules
Sn,k, 0 ≤ k ≤ n with k ≡ n mod 2, over TLn. These were defined in 3.1. Again a basis for Sn,k
can be chosen to be the (n, k)-diagrams in Hom(k, n) with k through lines. (More information
on these modules can be found in [13–15,25]).
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Proposition A.2. The elements cn
def
= q3n/2ρn

n and dn
def
= q3n/2λn

n ∈ TLn satisfy the following
properties:

(a) cn and dn are invertible central elements of TLn;

(b) cn and dn act on the standard modules Sn,k as γn,k = q
1
2 k(k+2) times the identiy;

(c) if q is not a root of unity, then the powers {1n, cn, cn
2, . . . , cn

bn/2c} of cn form a basis of the
center of TLn;

(d) cn = dn.

The factor q3n/2 is the definition of cn and dn will be useful in the identification of the compo-
nent θn of the natural isomorphism θ with cn.

Proof. Statement (a) follows from the invertibility of the t i ’s and the cyclic property proved in
the previous Lemma. For (b), note that cn and dn being central, they define endomorphisms of
the standard modules Sn,k by left multiplication. Since Hom(Sn,k,Sn,k)' C, these morphisms
must be multiples of the identity. Let γn,k be the multiple for the morphism defined by cn.
Then, on Sn,k, (q−3n/2γn,k)dimSn,k = det(q−3n/2cn) = (detρn)n. But all the t i are conjugate and
detρn = det(t1 t2 . . . tn−1) = (det t1)n−1. Thus

(q−3n/2γn,k)
dimSn,k = (det t1)

n(n−1).

To compute the determinant of t1, choose a basis where (n, k)-diagrams with an arc be-
tween position 1 and 2 appear first. There are dimSn−2,k such diagrams and e1 acts on them
as β times the identity. Moreover, on any other (n, k)-diagrams, e1 acts either as zero or gives
a diagram with an arc between 1 and 2. Therefore e1 takes the form

e1 =

�

β I ?
0 0

�

in this basis. (Here I is the identity matrix of size dimSn−2,k × dimSn−2,k.) The matrix repre-
senting t1 is thus

q
1
2

�

(1+ q−1β)I ?
0 I ′

�

and (
det t1 = q

1
2 dimSn,k(−q−2)dimSn−2,k .

The dimension of the standard module Sn,k is
� n
(n−k)/2

�

−
� n
(n−k)/2−1

�

and a direct computation
shows that n(n− 1)dimSn−2,k =

1
4(n− k)(n+ k+ 2)dimSn,k which gives

γn,k =ω× q
1
2 k(k+2)

where ω is a root of unity such that ωdimSn,k = 1. The central element cn is a Laurent poly-
nomial in q. (There are n(n− 1) factors t i = q

1
2 (1n + q−1ei) in cn = (t1 t2 . . . tn−1)n and their

factors q
1
2 are thus in even numbers.) The eigenvalue γn,k will thus be continuous, except

maybe at q = 0 or∞. The root ω must thus be constant. At q = 1, the Temperley-Lieb alge-
bra TLn(β = 2) is known to be a quotient of the group algebra of the symmetric group Sn and
the elements t i are then the transposition (i, i + 1). Thus ρn is the permutation (1,2, . . . , n)
and the central element cn is the identity permutation. Hence γn,k = 1 at q = 1 and the only
possible choice for ω is 1.
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If q is not a root a unity, then TLn(β = −q − q−1) is semisimple and is known to have
bn/2c + 1 inequivalent irreducible modules. By Wedderburn’s theorem the algebra then de-
composes into two-sided ideals, one for each inequivalent irreducible, and each ideal is iso-
morphic to the algebra of d × d-matrices, if the corresponding irreducible is of dimension d.
The dimension of the center of TLn at such a q is thus bn/2c+ 1. Moreover the eigenvalues
γn,k, 0 ≤ k ≤ n with k ≡ n mod 2, computed in (b) are distinct when q is not a root of unity.
Therefore the minimal polynomial of cn in the (faithful) regular representation has degree
bn/2c+ 1 and the powers {1n, cn, cn

2, . . . , cn
bn/2c} are linearly independent. They must form a

basis of the center of TLn.
The computation of the determinant of dn follows the same line than that of cn. Since cn

and dn contain the same number of generators t i , their eigenvalues on the standard modules
thus coincide. When q is not a root of unity, these eigenvalues completely determine the linear
decomposition in the basis obtained in (c) and dn and cn must be equal. By continuity, they
must also be equal at roots of unity.

When q is a root of unity, the algebra TLn(β = −q − q−1) is in general not semisimple. A
list of its indecomposable modules is known ( [15], see also [25]) and the only indecompos-
able modules M whose endomorphism groups Hom(M,M) are larger than C are the projective
modules Pn,k that have three or four composition factors. Statement (b), above, can be ex-
tended to all others.

Corollary A.3. Let M be a module over TLn such that Hom(M,M)' C and let In,k be one of its
composition factors.6 Then cn acts on M as γn,k · id.

If M is an indecomposable projective such that Hom(M,M) ' C2, then cn will still have
a single eigenvalue on M, but it might not be a multiple of the identity. Such possibility will
occur in the examples of the monodromy ηN,M ◦ηM,N given in 3.3.
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