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Abstract

Mn3X (X= Sn, Ge) are noncollinear antiferromagnets hosting a large anomalous Hall
effect (AHE). Weyl nodes in the electronic dispersions are believed to cause this AHE,
but their locus in the momentum space is yet to be pinned down. We present a detailed
study of the Hall conductivity tensor and magnetization in Mn3Sn crystals and find that
in the presence of a moderate magnetic field, spin texture sets the orientation of the
k-space Berry curvature with no detectable in-plane anisotropy due to the Z6 symmetry
of the underlying lattice. We quantify the energy cost of domain nucleation and show
that the multidomain regime is restricted to a narrow field window. Comparing the field
dependence of AHE and magnetization, we find that there is a distinct component in
the AHE which does not scale with magnetization when the domain walls are erected.
This so-called ‘topological’ Hall effect provides indirect evidence for a non-coplanar spin
components and real-space Berry curvature in domain walls.
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1 Introduction

The Mn3X (X=Sn, Ge) family of compounds crystallizing in the DO19 hexagonal close-packed
Bravais lattice are triangular antiferromagnets with a Néel temperature of around 400 K [1,2].
The recent observation of the anomalous Hall effect (AHE) in these systems [3–5] followed
theoretical predictions [6,7] of nonvanishing Berry curvature in a noncollinear yet planar an-
tiferromagnet. The discovery was followed by the detection of anomalous Nernst [8, 9] and
anomalous Righi-Leduc [9] effects, the thermoelectric and thermal counterparts of the AHE,
respectively. The latter observations confirmed that the zero-field transverse anomalous cur-
rents are due to the Fermi-surface quasiparticles, as argued by Haldane [10]. Several ab initio
calculations [8,11] have found an anomalous Hall conductivity (AHC) matching what exper-
iments find at low temperatures. However, the precise configuration of spins and the locus of
the Weyl nodes in the k-space generating the Berry curvature that cause these phenomena are
still subject to debate.

The Hall resistivity of Mn3Sn has a peculiar profile (see Fig. 1). Recognizably different from
the AHE signal resolved in ordinary ferromganets like body-centred cubic iron [9, 12, 13] or
cobalt [14], it is also quite distinct from the much-studied spiral helimagnet MnSi [15,16]. In
contrast to these cases, in Mn3Sn, ρi j presents a hysteretic jump dwarfing the slope caused by
the ordinary Hall resistivity. The hysteresis has a shape unlike the sigmoid commonly seen in
ferromagnets [17]. Finally, the asymmetry of this loop contrasts with the symmetric hysteresis
of the quantum AHE observed in magnetic two-dimensional topological insulators [18,19].

In this paper, we show that the peculiarity of this hysteresis loop resides in the existence of
a threshold field B0 for domain nucleation. Three distinct regimes can be identified. In regime
I, below B0, there is a single magnetic domain with an orientation set by the sample history and
not by the applied field. In regime II, above B0, multiple domains coexist, and, as the magnetic
field increases, the domain favored by it occupies a larger portion of the sample. At sufficiently
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higher fields (regime III), the sample becomes single domain again, and the domain orientation
is now entirely set by the magnetic field. Monitoring the electric field generated by a rotating
in-plane magnetic field in regime III, we find that the finite component of the AHC tensor is
set by the orientation of spins and not by the underlying lattice. This observation is backed by
theoretical calculations, which find that the single-ion anisotropy is vanishingly small and the
Fermi surface is not modified by rotation of spins. It also has implications for the ongoing effort
to pin down the source of the Berry curvature in the reciprocal space. The magnitudes of B0 and
the jump in magnetization can be used to quantify the energy cost of erecting domain walls.
Finally, we compare the field dependences of ρA

i j and magnetization and find that they start to
deviate from each other in the multidomain regime. Such an observation in other systems has
been commonly attributed to a ‘topological Hall effect’ (THE) due to the accumulation of the
Berry curvature in the real space [20], which can be caused by a nontrivial magnetic texture,
such as a skyrmion lattice in the phase A of MnSi [15]. We suggest that in the multidomain
regime, domain walls generate a real-space Berry curvature and an additional contribution on
top of the one caused by momentum-space Berry curvature. This would imply a non-coplanar
spin component for domain walls, which is yet to be observed by microscopic probes.

2 Three distinct regimes in the hysteresis loop

Fig. 1 shows the hysteretic loop of ρi j(B) at room temperature in a millimetric Mn3Sn single
crystal. When the magnetic field attains a magnitude as low as 0.2 T, ρi j locks into a finite
magnitude and does not show any further evolution except a tiny slope due to the ordinary
Hall effect. When the field is swept back to zero, ρi j(B) remains locked to its magnitude. Only
when the field, oriented along the opposite direction, attains a specific amplitude, which we
call B0, ρi j(B) begins to change steeply. Upon further increase, ρi j(B) saturates to a value
opposite in sign but identical in magnitude to its initial value. As seen in the figure, repeating
this procedure numerous times with different sweeping rates reproduces the same curve. This
is very different from the hysteretic magnetization profile seen in ferromagnets, which has a
“sigmoid” shape [17]. On the other hand, it is remarkably similar to the hysteretic loop of
magnetization resolved in a ferromagnetic liquid crystal [21]. In the former case, the shape
of the hysteretic loop is set by the displacement of domain walls and their pinning by defects.
The loop is smooth, and the passage between single-domain and multidomain regimes in its
two ends are symmetric [17].

The existence of a finite threshold field for domain nucleation implies that, below this field,
tolerating a magnetization opposite to the applied field is less costly in energy than erecting a
domain wall. At B0, the two costs become equal and domain reversal starts. Insensitivity to
the sweep rate suggests thermodynamic equilibrium during the entire loop. In other words,
the time scale of all detectable dynamic phenomena remain faster than our sweeping rates.
The boundary between regime I (single-domain) and regime II (multidomain) is sharp, but
the boundary between regime II and regime III (field-induced single domain) is fuzzy and, as
we will see below, hosts a specific component in ρi j(B) generated by inhomogeneous magne-
tization. In regime III, the signal smoothly saturates to its initial magnitude with an opposite
sign, indicating an inverted single-domain regime.

3 Angle-dependent Hall conductivity

Our angle-dependent study illustrates the difference between the three regimes. In this exper-
iment, electric current was applied along the z axis and the magnetic field rotated in the x y
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Figure 1: Hysteretic anomalous Hall effect in Mn3Sn: −ρA
z y as a function of mag-

netic field in Mn3Sn has a peculiar shape. Three different regimes can be identified.
When the field is lower than B0, marked by a vertical arrow, the spins keep their
configuration despite the magnetic field (regime I). When B > B0 (regime II), do-
mains conform to the orientation of the field are induced. At sufficiently high fields,
these new domains occupy the bulk of the sample, which becomes single-domain
again (regime III). The hysteretic loop is reproducible even when the sweeping rate
changes by a factor of 500.

plane. The electric field along different orientations was monitored using multiple electrodes.
In this way, we could determine the amplitude and the orientation of the total electric field
vector for an arbitrary orientation of magnetic field. We studied both a square sample (see
Appendix) and a triangular sample (see Fig. 2), whose shape excluded demagnetization arti-
facts. The results were similar. In regime I, that is below B0, the electric field was unaffected
by rotation. In regime II, strong hysteresis was observed in the angular dependence of the
signal. In regime III, each projection of the electric field along the three x and three y axes
was found to display almost perfect sinusoidals. Thus, in this regime, the spin texture is easily
rotated by a magnetic field. As seen in the bottom panels of Fig. 2, in both regime I and regime
III, this is when the system is single domain and the amplitude of the electric field is the same
irrespective of orientation.

4 Discussion

4.1 Single-ion anisotropy

The Hamiltonian relevant to this spin texture, formulated first by by Liu and Balents [22], con-
sists of terms with three distinct energy scales: the Heisenberg exchange, the Dzyaloshinskii-
Moriya (DM) interaction and the single-ion anisotropy. In the absence of the latter, U(1) degen-
eracy is preserved and any in-plane rotation of spins leaves the energy unchanged [22]. There-
fore, our experiment implies that this single-ion anisotropy is vanishingly small and what lifts
the U(1) degeneracy is the in-plane magnetic field. Therefore, instead of having six domains
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Figure 2: Angle-dependent Hall resistivity: a) The current was applied along the
z axis of a sample with a triangular cross section and the magnetic field was rotated
in the basal plane. Each pair of electrodes monitored the electric field along one
of the three equivalent x axes (b1) or the three y axes (c1). Angular variation of
the three Ex and the three Ey as a function of the angle between the magnetic field
and x axis are shown in (b2) and (c2). At low magnetic field (regime I), the total
electric field remains unchanged. At high magnetic field (regime III), the measured
electric field becomes sinusoidal (shown as a red line). In the intermediate field
range (regime II), the electric field is non-sinusoidal and strongly hysteretic. Panels
(b3) and (c3) show ρH = |E|/J , where |E| represents the magnitude of the total
electric field vector extracted from its projections. It is almost the same in regimes I
and III. The fluctuations in regime III set an upper bound to any in-plane anisotropy
undetectable by this experiment.
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(which would have been the case if the degeneracy was lifted by the single-ion anisotropy), we
have only two domains set by the orientation of the magnetic field. This is the first outcome
of our study. A field as small as 0.5 T easily sets the orientation of the spins by coupling to
the in-plane magnetization, which is 1.5×10−2µB/f.u. at 0.5 T. This corresponds to an energy
as small as 0.5 µeV/f.u. Such an upper boundary is in agreement with the angle-dependent
torque magnetometry data reported by Duan and co-workers who quantified the magnetic
crystalline anisotropy of the system [24](see section H in Appendix).

4.2 Momentum-space Berry curvature

A second consequence is about the in-plane anisotropy of the momentum-space Berry cur-
vature. Previous studies [3–5, 9] detected a finite AHC for two perpendicular orientations of
magnetic field. The magnitude of σA

yz(B‖x) and σA
xz(B‖y) was found to be close to each other

in both Mn3Ge [5] and in Mn3Sn [9]. Measuring numerous samples (see Appendix), we also
found that the anisotropy is small and below 0.15 (see Fig. 3a). An even smaller upper bound
(∼0.05) on any in-plane anisotropy is implied by our angle-dependent experiment. Our den-
sity functional theory calculations find a band structure (see the Appendix) and a Fermi surface
unchanged as the spins rotate (Figs. 3b-e), in agreement with the experimental observation
that finds unchanged σA

i j for any arbitrary orientation of magnetic field in the xy plane when
the current is along the z axis and the electric field is measured perpendicular to the magnetic
field.

A finiteσA
i j arises when the overall integration of Berry curvature, Ωk in the entire Brillouin

zone does not vanish:

σA
i j =
−e2

ħh

∑

n

∫

BZ

d3k
(2π)3

fn(k)Ω
k
n(k). (1)

The indexes indices i, j and k refer to the three perpendicular orientations, which are often
assimilated to the x , y and z axes of the crystal lattice. Theoretical calculations [8,11,26–28]
find Weyl nodes of opposite chirality in the vicinity of certain high-symmetry points in the
Brillouin zone of Mn3X materials. Because of the symmetry considerations, a finite σA

i j is
expected along certain orientations. Our result implies that this orientation is not locked to
the crystal axes. The magnitude of AHC does not depend on the angle between the spin lattice
and the underlying crystal. Given the geometry of the Fermi surface in the hexagonal plane
(see Fig. 3b,c), this may be accounted for by assuming that the k-space Berry curvature reside
at the vertices of the kz = 0 hexagonal cut of the Brillouin zone hosting a small circular Fermi
surface. A recent suggestion for the locus of the Weyl nodes [28] puts them close to these
vertices, which as one sees in Figs. 3c,d host small circular sections of the Fermi surface.

4.3 Energy cost of domain nucleation

We now turn our attention to domain nucleation at the onset of regime II. The hysteresis loop
of magnetization and Hall resistivity are shown in Figs. 4a,b. A threshold field B0 of almost
identical magnitude can be identified in both. Above this field, domains with a magnetization
corresponding to the orientation of the applied field nucleate in the single-domain matrix
that occupies the whole sample below B0. As the field is swept further, the minority domain
grows in size and ends up entirely replacing the former majority domain. The smooth and
reproducible functional form is reminiscent of the Langevin function. However, the AHE signal
increases faster than the magnetization (Fig. 4c).

The hysteresis loops were followed down to 50 K, below which the magnetic order is re-
placed with a spin-glass order [3]. In the whole temperature window, one could detect a finite
B0. Multiplying it by the jump in magnetization∆M , one quantifies the energy cost per volume
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Figure 3: In-plane isotropy: a) Temperature-dependence of the anomalous Hall
conductivity for two perpendicular orientations of the magnetic field in three dif-
ferent samples. The inset shows the in-plane anisotropy found in these fixed-angle
measurements and the experimental margin (in gray). b,c) Mn spins in two adjacent
planes (in blue and red) together with the calculated Fermi surface for each spin
configuration projected in the hexagonal (kx , ky , 0) plane of the Brillouin zone. The
Fermi surface does not visibly change with spin rotation. Note also the small circular
Fermi surface at the vertices. d) The calculated Fermi surface of Mn3Sn for θ = 0 in
three dimensions. Different colors show different Fermi surface sheets. e) Mn spins
oriented along an arbitrary orientation in three adjacent six-spin David stars, each
operating as a magnetic octupole [25].

of keeping the sample single domain. The temperature dependence of Ev = B0∆M is shown in
Fig. 4d. According to the classical theory of nucleation, the first droplet of minority domains
emerges when the volume energy saved by the emergence of this domain compensates the en-
ergy cost of building a domain wall ES , which is unknown. On the other hand, the amplitude
of the interaction between neighboring spins 〈J〉 allows us to estimate a lower boundary to
the thickness of the domain walls by using t = ( 〈J〉B0∆M )

1/3. Given that 〈J〉 ∼ 5 meV, which is
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Figure 4: Magnetization, AHE and THE: a) Hysteretic loops of magnetization at
different temperatures. b) Hysteretic loops of ρyz at different temperatures. c) Tem-
perature dependence of B0∆M , which represents the energy cost of staying single
domain. d) Comparison of the magnetization, with its high-field slope subtracted,
and anomalous Hall resistivity. The threshold field B0 is identical but, at all tem-
peratures, the magnetization shows a slower variation towards saturation at the end
of the hysteresis loop. e)‘Topological’ Hall effect resolved by subtracting normalized
magnetization times a constant from the Hall resistivity at different temperatures.
At the boundary of regimes II and III, a sizeable component of the AHE is due to
inhomogeneous magnetization with an out-of-plane component.

the order of magnitude of the Heisenberg coupling between spins [22] and the value of the
Néel temperature, one finds t ≥ 100 nm at room temperature. This is in agreement with what
was suggested by Liu and Balents [22] by invoking the stationary solution of a sine-Gordon
equation.

4.4 Real-space Berry curvature in the presence of domain walls

In regime II, where the system is multi-domain, such thick domain walls can be a source
of Berry curvature in the real space distinct from the one provided in the momentum space
by Weyl nodes. Such a distinction between components of AHE was first demonstrated in
the case of MnSi. Below its Curie temperature, this helimagnet hosts a large AHE that is
almost proportional to its magnetization across a wide temperature range [16] and is caused
almost totally by momentum-space Berry curvature. In its A phase and in the presence of a
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skyrmion lattice, an additional component to the AHE has been identified [15] and attributed
to the real-space Berry curvature, which represents an effective magnetic field caused by the
spatial variation of the magnetization [20, 29, 30]. In MnSi, this specific component of the
AHE caused by the real-space Berry curvature [15] is an order of magnitude smaller than the
total anomalous signal.

Comparing the field dependence of ρA
i j(B) and M(B), we observe that they do not evolve

identically in regime II (See Fig. 4d). One plausible interpretation is that in the presence
of domain walls, there is a distinct component of the AHE, which is not set by the magni-
tude of the global magnetization but is intimately linked to the presence of inhomogeneous
magnetization caused by thick domain walls. In several other systems [31,32], this has been
attributed to a ‘topological Hall effect’ at the boundaries of a hysteresis loop. Fig. 4e shows
ρTHE(B) = ρA

i j(B)− C(M(B)− Bχ)), where χ is the high-field susceptibility (the slope of the
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variation of the local spin angle. This loss of inversion center provides an opportu-
nity for the Dzyaloshinskii-Moriya interaction to generate an out-of-plane spin com-
ponent, which is not shown in the present image. b) Anomalous Hall resistivity along
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width. c) The anisotropy of Bs, a field scale quantifying this width (see Appendix),
as a function of the sample dimension ratio in a number of samples. The red solid
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magnetization outside the hysteresis loop) and C is a constant. As one can see in the figure,
ρTHE is finite in a narrow field window in regime II. We tentatively attribute this to the presence
of thick domain walls, which introduce smoothly-changing magnetization that can produce a
finite real-space Berry curvature [20].

However, a finite THE is expected to arise only if −→n · ( ∂
−→n
∂ x ×

∂−→n
∂ y ) is finite [33]. Here,

−→n =
−→
M /M) is the unit vector along the orientation of magnetization [15]. If the magnetiza-

tion were restricted to the plane, ∂
−→n
∂ x ×

∂−→n
∂ y would point out of the plane and the its dot product

with −→n would be zero. Therefore, our interpretation implies the existence of a non-coplanar
component in the magnetization of the domain walls. We recall that −→n · ( ∂

−→n
∂ x ×

∂−→n
∂ y ) has been

defined as skyrmionic number, which can be finite even in the absence of a skyrmion lattice.
Our conjecture is backed by another observation. Assuming a coplanar structure, the spin
configuration in the wall between two domains of opposite orientations cannot preserve the
inversion symmetry (See Fig. 5a). Now, in the presence of the Dzyaloshinskii-Moriya interac-
tion and in the absence of the inversion center, skyrmion physics is expected to emerge [34].
A very recent study of magneto-optical Kerr effect [35] confirmed that multiple domains are
restricted to a narrow field window. But the internal structure of domain walls could not be
resolved. Therefore, there is no direct evidence for a finite skyrmionic number in the domain
walls.

We found yet another manifestation of nontrivial domain walls by detecting a correlation
between the width of the hysteresis loop and sample dimensions. As seen in Fig. 5b, reducing
the size of a single crystal does not modify the magnitude of B0. On the other hand, it does af-
fect the range of regime II in a remarkably intriguing way. The field-induced minority domain
ends up eliminating the initial majority domain with a given rate Bs (see Appendix). Accord-
ing to the experiment, the Bs anisotropy is equal to the anisotropy of the sample dimensions
parallel and perpendicular to the magnetic field (See Fig. 5c). In other words, the boundary
between minority and majority domains evolves faster with increasing magnetic field along its
orientation. Exploring the origin of this phenomenon and its possible connection with a bulk-
edge dichotomy would be a subject matter for further theoretical and experimental studies.

5 Conclusion

Let us summarize the picture of the AHE in Mn3X coming out of this study. Save for a narrow
field window, the system remains single-domain with a spatially homogeneous magnetization.
Weyl nodes in the momentum-space are believed to be responsible for the entire AHE signal
in this single-domain case. There is no trace of hexagonal symmetry of the underlying lattice
in the anomalous Hall conductivity, indicating that it is entirely set by the orientation of the
spin texture. We identify a narrow field window with multiple magnetic domains and there-
fore inhomogeneous magnetization. In this narrow window, there is a distinct contribution
to the AHE which does not scale with magnetization. We suggest an interpretation for this
observation by arguing that the domain walls, by possessing a non-coplanar spin component,
could generate a real-space Berry curvature, which leads to an additional component of the
measured AHE on top of the one produced in the momentum space. This latter conjecture
shall motivate future microscopic studies of the domain walls using high-resolution magnetic
imagery techniques, such as nanomagnetometery based on single nitrogen-vacancy defect in
diamond [36].
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A The growth and characterization of samples

Mn3Sn single crystals were grown by the vertical Bridgman technique. For the polycrystalline
samples growth, the raw materials (99.999% Mn,99.999%Sn ) were weighed and mixed inside
an Ar globe box with the molar ratio of 3.3:1, and then they were put in an alumina crucible
which was in a quartz ampule. The growth temperature was controlled at the bottom of the
sealed vacuummed ampule. The materials were heated up to 1100 ◦C, remained there for 2
hour to ensure homogeneity of the melting mixture, and was cooled down slowly to 900 ◦C.
The sample was annealed at 850 ◦C for 20 hours and then quenched to room temperature. For
the single crystal samples growth, the polycrystalline ingot was ground and put in an alumina
crucible which was in a quartz tube.Then the sealed vacuumed quartz tube was hung in a
vertical Bridgman furnace. In order to get better single crystal, the single crystal sample growth
was repeated three times with different rates of growth. The first growth rate is 2 mm/h and
the last two growth rate is 1 mm/h. The growth temperature is 1050 ◦C and the growth length
is 80 mm. Both the polycrystalline and single-crystalline samples were pulverized to powder
for XRD measurement which confirmed the structure of Mn3Sn. The single crystals were then
cut into desired dimensions by a wire saw. The dimensions of some measured samples have
been listed in the following tables.

B Computational details

Electronic structure calculations were performed within the generalized gradient approxima-
tion (GGA) of Perdew, Burke and Ernzerhof [37] using the general full-potential linearized
augmented planewave method as implemented in the ELK software package [38]. Muffin-tin
radii of 2.4 and 2.6 a.u. were used for Mn and Ir, respectively. The spin-orbit coupling was
treated using a second-variational scheme. A 14× 14× 14 k-point grid was used to perform
the Brillouin zone integration, and the planewave cutoff was set by RKmax = 8, where Kmax
is the planewave cutoff and R is the smallest muffin-tin radius used in the calculations (i.e.
2.4 a.u.). The energy convergence criterion was set to 0.045 meV/Mn. Experimental lattice
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parameters a = 5.665 and c = 4.531 Å and the Mn positional parameter x = 0.8388 were
used in all our calculations [39,40].

C The temperature-dependence of magnetization and Hall resis-
tivity

We measured the temperature-dependence of magnetization and Hall resistivity using a Quan-
tum Design PPMS and VSM. In the main text, we showed the magnetization data for the field
along the x axis for a selected set of temperatures. Fig. S1 shows the complete set of data
along both x and y axes at different temperatures. In all cases, we can extract the ’topolog-
ical’ Hall effect (THE) also for a field along the y axis as in the Fig. S2. The results for the
two orientations are similar. We also measured the magnetization for a field along the z axis
at 300 K, as shown in Fig. S3. Our data are similar to the previous report [3]. Fig. S3 shows
the Hall resistivity and magnetization for three axis at 300 K.

D Angle-dependent Hall resistivity in a sample with a square cross
section

We also measured the angle-dependent Hall resistivity in a sample with a square cross section,
in addition to the sample with a triangular cross section discussed in the main text. As shown
in Fig. S4, two pairs of electrodes perpendicular to each other monitored the electric field
along the x (Ex) and y axes Ey). The magnetic field was rotated in the basal plane while
the current was applied along its z axis. The total Hall resistance can be deduced from the
two electric fields: ρH =

q

E2
x + E2

y/Jz . The results were similar to the case of a sample with
a triangle cross section. The three regimes can be clearly distinguished. In regime I, with a
field lower than B0, the rotation of the magnetic field does not affect the electric field: the
sample remains single domain. In regime II, sweeping the angle in the basal plane back and
forth produces a strong hysteresis of the Hall resistivity. In regime III, both Ex and Ey show
sinusoidal variation and no hysteresis, indicating the spin texture of the system can be rotated
easily as the magnetic field. The slight variation detected in ρH puts an upper limit on any
in-plane anisotropy.

E Amplitude of anomalous Hall effect in different samples

We have measured several samples to check the repeatability of our results, which are sum-
marized in Tables S1 and S2 for 300 and 50 K, respectively. Restrictions caused by samples
dimensions are the reason some measurements were not performed. As seen in the table, the
magnitude of σA

yz(B‖x) and σA
xz(B‖y) were very close. Fig. S5 shows the temperature de-

pendence of resistivity and anomalous Hall resistivity in various samples. Fig. S6 displays the
temperature of anomalous Hall conductivity data for fields along the x and y axes compared
to previous reports [3,9].
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Figure S1: The magnetization and Hall resistivity with the magnetic field along x
(left column) and y (right column) axes at different temperatures.
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Figure S2: a) Comparison between the magnetization (with its high-field slope sub-
tracted) and anomalous Hall resistivity for the magnetic field is along the y axis.
These are similar to the case with the field along the x axis showed in the main text.
The threshold field B0 is identical, but the magnetization shows a slower variation
at the end of the hysteresis loop. b) The topological Hall effect resolved by subtract-
ing normalized magnetization times a constant from the Hall resistivity at different
temperatures for a field along the y axis.

F The extraction of Bs

We fitted the data between 0 to -200 mT for a positive to negative field sweep and 0 to 200
mT for negative to positive field sweep with an equation ρi j = ρ0(1−0.5e−Bs/B) to extract B+s
and B−s respectively. Bs is the average of B+s and B−s . The Fig. S7 shows the procedure of the
extraction of Bs in sample # 13-2 at 300 K. Bs for other samples were obtained by repeating
this procedure.

G Comparison with MnSi

The prototype spiral helimagnet MnSi has a non-trivial magnetic texture: a skyrmion lattice
in its so-called A phase. Table S3 compares the physical properties of Mn3Sn and MnSi. SA

H is
defined as σA

H/M. For MnSi, a large AHE emerges below its Curie temperature and is almost
proportional to its magnetization across a wide temperature window. The amplitude of the
AHE in Mn3Sn and MnSi are comparable . On the other hand, magnetization of MnSi is
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Figure S3: The magnetization and Hall resistivity for three high-symmetry axes at
300 K.

50 times larger. Therefore, the magnitude of SH (the ratio of AHC to magnetization [16])
is exceptionally large in Mn3Sn as highlighted previously [3]. Remarkably, when Mn3Sn is
multidomain, a large fraction of irs AHC is caused by real-space Berry curvature. As seen in
the table, this is in sharp contrast with MnSi.

H The amplitude of in-plane anisotropy

As discussed in the main text, we did not detect sixfold oscillations in the angle dependence
of of σA

i j . Duan and co-workers [24] found a combination sixfold and twofold oscillations
in torque magnetometry of of Mn3Sn. They found that the angular dependence of magnetic
torque τ can be described by τ = K2 sin2θ + τ = K6 sin6θ . At 270 K, they found K2 = 2760
ergs/cm3 and K6 = −2210 ergs/cm3. These numbers yield a single-ion anisotropy of the order
of 0.2 µeV per Mn, in agreement with the upper boundary set by our experiment.

We also tried to calculate the in-plane magnetic anisotropy by computing the total energy
as a function of the uniform spin angle rotation but did not manage to converge the total
energy lower than 45 µeV per Mn with our available computing resources.
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Figure S4: a) and b) The setup for measuring angle-dependent Hall resistivity in a
sample with a quadrate cross-section. The current was applied along the z axis and
the magnetic field was rotated in the basal plane. Two pairs of electrodes monitored
the electric field along the x and y axes. c) Angular variation of Ex and d) Ey as a
function of the angle between the magnetic field and the x axis. At low magnetic
field (regime I), the total electric field remains unchanged. At high magnetic field
(regime III), for both orientations, the measured electric field presents almost sinu-
soidal variation with almost no hysteresis. In the intermediate field range (regime II),
the angular variation is strongly hysteretic. (e) The total Hall resistivity as a function
of the angle.
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Table S1: Anisotropy of the anomalous Hall effect in different samples at 300 K.

Samples
lx ly lz −ρxz ρyz ρx x ,y y ρzz σxz −σyz - σxz

σyzmm mm mm µΩcm µΩcm µΩcm µΩcm S/cm S/cm
#5 0.5 0.6 2 2.5 2.62 232.5 46.5 48.7 0.955
#6 0.42 0.38 1.7 2.99 53.7
#10 2.05 2.5 1.75 3.05 2.92 54.8 52.5 1.044

#10-2 2.05 1.15 1.75 3.25 3.38 58.4 60.7 0.962
#10-8 0.5 0.2 1.75 240.6
#12 0.22 1.31 0.53 229.0
#14 0.6 2.5 0.14 231.2

Average 2.93 2.98 230.1 236.55 53.23 53.9 0.987

Table S2: Anisotropy of the anomalous Hall effect in different samples at 50 K.

Samples
lx ly lz −ρxz ρyz ρx x ,y y ρzz σxz −σyz - σxz

σyzmm mm mm µΩcm µΩcm µΩcm µΩcm S/cm S/cm
#5 0.5 0.6 2 2.12 2.42 87.1 203.2 231.9 0.876
#6 0.42 0.38 1.7 2.95 271.0
#10 2.05 2.5 1.75 2.69 2.49 247.1 228.8 1.08

#10-2 2.05 1.15 1.75 2.85 2.85 261.8 261.8 1
#10-8 0.5 0.2 1.75 90.8
#12 0.22 1.31 0.53 118.2
#14 0.6 2.5 0.14 119.8

Average 2.55 2.68 119 88.95 237.4 248.4 0.985
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Figure S7: An example of the extraction of Bs in the sample # 13-2 at 300 K

Table S3: A comparison of magnetization and AHE in Mn3Sn (at 50K) with MnSi (at
28 K).

σA
H σT HE

H M SH σT HE
H
σA

HS/cm S/cm A/cm V−1

MnSi 56 [15] 1.8 [15] 293.8 [16] 0.19 0.032
Mn3Sn 232 113.7 10.75 21.6 0.49
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