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Reconstructing the gluon
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Abstract

We reconstruct the gluon spectral function in Landau gauge QCD from numerical data
for the gluon propagator. The reconstruction relies on two novel ingredients: Firstly
we derive analytically the low frequency asymptotics of the spectral function. Secondly
we construct a functional basis from a careful consideration of the analytic properties
of the gluon propagator in Landau gauge. This allows us to reliably capture the non-
perturbative regime of the gluon spectrum. We also compare different reconstruction
methods and discuss the respective systematic errors.
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1 Introduction

Real-time correlation functions play a pivotal rôle for the theoretical understanding of heavy-
ion collisions and the hadron spectrum. Their direct numerical computation in the strongly
correlated regime of QCD is hampered by the fact that non-perturbative real-time methods are
still in their infancies. Even though impressive results have been obtained in models and even
in Yang-Mills theory, still more work is required on the way towards a full real-time approach
to QCD.

In turn, non-perturbative Euclidean first principles methods such as Euclidean functional
approaches and lattice simulations have been extensively used to obtain numerical results
for QCD correlation functions. When analytically continuing these to the real-time regime
or equivalently reconstructing their spectral function by means of solving an inverse integral
transformation, one encounters large systematic uncertainties as in the case of single particle
spectral functions [1–8] or the energy momentum tensor (EMT) [9–14], to name another
pertinent correlator. Typically, the uncertainty even grows larger at small frequency. This
is particularly harmful for the computation of transport coefficients which are related to the
vanishing frequency limit of correlation functions of the EMT.

This problem of a large systematic uncertainty at low frequencies can be partially circum-
vented by a diagrammatic representation of the correlation functions of the EMT in terms of
loops of real-time correlation functions of quarks and gluons, as discussed in [1, 4]. There
the spectral function of the EMT has been computed from the single-particle spectral func-
tion of the gluon. The gluon spectral function itself, in the above mentioned paper has been
reconstructed via a Bayesian spectral reconstruction method [15], which is a variant of the
Maximum Entropy Method (MEM) [16, 17]. This approach also extends to general real-time
computations of correlation functions on the basis of real-time single particle spectral functions
of quarks and gluons.

A further reduction of the systematic error comes from prior information about the prop-
erties of the single particle spectral functions used as input. Often, such prior information is
available for the high frequency asymptotics of the spectral function. This is the off-shell limit
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with the Minkowski four momentum p2→∞.
In the present work we argue that the low frequency asymptotics is determined by the

infrared (IR) limit in the Euclidean domain using only rather general assumptions. This leaves
us with a well-constrained spectral function, which allows for a qualitatively enhanced spec-
tral reconstruction. We apply this argument to the spectral reconstruction of the single particle
gluon spectral function. The results presented here provide the starting point for the compu-
tation of transport coefficients in the spirit of the work presented in [1, 4], as well as direct
real-time computation of thermodynamical properties and the QCD hadron spectrum.

This paper is organized as follows: In Section 2 we derive a general relation between
the low frequency behavior of bosonic spectral functions and the infrared (IR) behavior of the
corresponding Euclidean correlator. In Section 3 we summarize known properties of the gluon
spectral function, its normalization and its asymptotics in the ultraviolet regime (UV). Then
we turn to the low frequency behavior of the gluon spectral function in Section 4. Both the
analytic structure of the scaling scenario and several realizations of the decoupling scenario are
discussed. In Section 5, we reconstruct the gluon spectral function with a novel reconstruction
method from numerical data from [18]. We conclude in Section 6 and provide a comparison
of different reconstruction approaches in Appendix A.

2 Low frequency asymptotics of spectral functions

In general, a spectral function can be obtained from analytic continuation of its Euclidean
propagator or from the inverse integral transformation via the Källén–Lehmann spectral rep-
resentation. In this section we first introduce some basic definitions and then derive a novel
general relation, (6), between the low frequency behavior of the spectral function and the
infrared behavior of the Euclidean propagator. The relation is illustrated at a Breit-Wigner
example before it is applied to the gluon spectral function in Section 4.

Throughout this section we assume that the propagator admits the Källén–Lehmann spec-
tral representation

G(p0) =

∫ ∞

0

dλ
π

λρ(λ)
λ2 + p2

0

. (1)

The existence of a spectral representation has strong consequences for the analytic structure
of the corresponding propagator, i.e. all non-analyticities are constrained to the Re p0 = 0 line.
More details can be found in Appendix A. In (1) and in the following we have suppressed the
momentum-dependence p of the spectral function and the propagator. Note that all arguments
about p0 = 0 apply equally to p2 = 0 at vanishing temperature. In (1) the restriction to positive
frequencies in the integral follows from the antisymmetry of the spectral function

ρ(ω) = −ρ(−ω) . (2)

Equivalently, the spectral function can be obtained from the Euclidean propagator by means
of analytic continuation

ρ(ω) = 2 Im G(−i(ω+ i0+)) , (3)

i.e. from the discontinuity of the propagator. The low frequency behavior can directly be
derived from (1), which is done in the following. We take a derivative of the spectral repre-
sentation (1) with respect to the Euclidean frequency

∂p0
G(p0) = −

∫ ∞

−∞

dλ
π
λ p0

ρ(λ)
(λ2 + p2

0)2
. (4)
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We now take the limit p0 → 0 in (4) in order to access the low frequency behavior. With the
derivative of the Poisson kernel representation of the delta function

δ(x) = lim
ε→0

1
π

ε

ε2 + x2
, (5)

one obtains the simple relation

lim
p0→0+

∂p0
G(p0) = −

1
2

lim
ω→0+

∂ωρ(ω) . (6)

Equation (6) encodes the asymptotic behavior of the spectral function for small frequencies.
The low frequency behavior of spectral functions may also have an additional peculiarity at

finite temperature, the transport peak. In case it is present, or in general at finite temperature,
the limits of vanishing frequency ω→ 0 and momenta |p| → 0 do not commute anymore, for
a more careful discussion on this issue see e.g. [19]. Nevertheless, the analysis performed in
this section holds, as all equations are viewed at fixed a p.

As an example for the low frequency asymptotics we take a single pair of complex conju-
gated poles on the second Riemann sheet, i.e. a Breit-Wigner. The propagator is parametrized
by

G(BW)(p0) =
A

(p0 + Γ )2 +M2
, (7)

where A is a suitably chosen normalization, Γ is proportional to the width and M is the mass.
Expanding the derivative of (7) yields

∂p0
G(BW)(p0) = −

2AΓ
(M2 + Γ 2)2

+O (p0) . (8)

Using (6), we obtain the small frequency behavior of the spectral function

ρ(BW)(ω) =
4AΓω

(M2 + Γ 2)2
+O (ω2) , (9)

which is exactly the low frequency behavior of the full spectral function,

ρ(BW)(ω) =
4AΓω

4Γ 2ω2 + (M2 + Γ 2 −ω2)2
. (10)

We emphasize that this derivation is based on the assumption of sufficient smoothness
of the spectral function at low frequencies. A more careful derivation of (6), discussing the
assumptions and other subtleties, such as modified spectral representations, is provided in
Appendix A.

3 Known analytic properties of the gluon spectral function

Throughout this work we assume the existence of a spectral representation for the gluon
propagator. This entails that the Euclidean gluon propagator GA(p) with Euclidean momenta
p = (p0, ~p) can be written in terms of a gluon spectral function ρA(λ, ~p) as

GA(p0) =

∫ ∞

0

dλ
π

ρA(λ)
λ2 + p2

0

+
∑

j∈poles

R j

p2
0 +M2

j

, (11)
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analogously to (1), where M j ∈ C are the position of poles with Im M j 6= 0 and the R j the
corresponding residues. As there we have suppressed the spatial momentum dependence in
(11). In (11) we also allowed for additional poles for the sake of maximal generality. In most
cases these poles will be discarded.

The existence of a spectral representation of the gluon is implicitly underlying various
relations and properties used in covariant approaches to QCD. In the present context this is
most apparent -but by now means restricted to- for the pinch technique, see e.g. [20]. Further
works implicitly using gluon spectral representation can e.g. be found in [21,22].

While the low frequency properties discussed in the preceding section apply to any bosonic
spectral function, we now turn to the gluon spectral function as a specific example. Their
normalization and high frequency asymptotics are well-known properties of QCD, which we
briefly discuss next. They are exploited in the reconstruction of gluon spectral functions from
Euclidean data in Section 5.

The normalization of the gluon spectral function in Landau gauge follows from the Oehme-
Zimmermann superconvergence relation [23,24],

∫ ∞

0

dλ λρA(λ) = 0 , (12)

(12) entails that ρA(λ) has positive and negative values in contrast to spectral functions of
physical (asymptotic) states, e.g. hadronic spectral functions. Then, the total spectral weight
is finite and is typically normalized to one. Its conversation is related to unitarity. When re-
constructing the gluon spectral function, (12) serves as a highly non-trivial consistency check.
Alternatively one may simply enforce it within the reconstruction method as part of the prior
information.

Let us further consider the high frequency behavior of the spectral function. The asymptotic
off-shell propagator can be determined in perturbation theory for arbitrary p0 ∈ C [25]. In
pure glue theory the only scale is the dynamical QCD scale ΛQCD. Accordingly, its asymptotic
regimes are define with the limits of the dimensional momenta and frequencies,

p̂2 =
p2

Λ2
QCD

, ω̂=
ω

ΛQCD

. (13)

With the dimensionless momentum p̂ the dimensionless propagator ĜA = Λ2
QCD

GA reads

lim
p̂2→∞

Ĝ(UV)
A
(p) =

ZUV

p̂2 log(p̂2)γ
+ sub-leading , (14)

where ZUV is an overall dimensionless normalization and

γ=
13
22

, (15)

is the one-loop anomalous dimension of the gluon. Using (3) one can easily obtain the asymp-
totic behavior of the dimensionless spectral function ρ̂A = Λ2

A
ρA with

lim
ω→∞

Λ2
QCD
ρ(UV)

A
(ω) = −

ZUV

ω̂2 log(ω̂2)1+γ
+ sub-leading . (16)

One key aspect is the leading order negativity of the spectral function at high frequencies. As
a direct consequence, the gluon admits positivity violation in Landau gauge and cannot be an
asymptotic state of the theory. As a consequence, the spectral function cannot be interpreted
in the usual probabilistic sense anymore. Further details can be found in e.g. [25–27].
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Figure 1: Ghost loops in the gluon propagator DSE (left), [28] and FRG (right), [18].
Internal dashed (wiggly) lines represent fully dressed ghost (gluon) propagators.
Thin (thick) blobs depict undressed (dressed) vertices. The crossed circle in the FRG
diagram denotes the regulator insertion. The massless ghost propagator causes these
diagrams to yield logarithms as given in (26). The dressing of ghost-gluon vertex can-
not change this qualitative behavior since it is constant in the infrared, see Figure 2.

4 Low frequency properties of the gluon spectral function

In the present section we evaluate the novel frequency relation of (6) for the gluon spectral
function. We show that for the scaling solution in the Landau gauge, derived from the Kugo-
Ojima criterion [29], the low frequency asymptotics is negative. For the decoupling solution
found on the lattice and in various analytic approaches the situation is less clear. However, for
the expansion schemes used in the literature we also find negative spectral functions.

The derivation of (6) has been quite general and holds for a large class of operators. The
application of (6) only requires the knowledge of the asymptotic infrared (IR) behavior of the
theory at hand. Despite the tremendous progress in understanding the IR sector of Yang Mills
theory and QCD, we still lack a comprehensive picture. Various approaches have been put
forward to predict the analytic IR behavior of the Euclidean gluon propagator, which we use
to determine the small frequency behavior of the gluon spectral function in the following. In
general the Landau gauge gluon propagator ĜA = Λ2

QCD
GA in the deep IR can be parametrized

by

ĜA(p0) = ZIR x−1+2κ , (17)

with the scaling coefficient κ and an overall dimensionless IR normalization ZIR and

x = p̂2 + γG

�

m2
gap
+ zG p̂2 ln p̂2

�

, (18)

with zG > 0 . The remainder of this section concerns the structure of (17), additionally all
equations are understood in the deep IR limit, i.e. p̂2, |ω̂| � 1 .

The parameter γG ∈ [0, 1] is related to the Gribov ambiguity, together with an appropriate
definition of m2

gap
. The lower limit γG → 0 recovers the scaling solution, while the upper limit

γG → 1 can be considered as implementing the maximal breaking of global BRST symmetry.
In the following we call the set of solutions with γG > 0 decoupling. Despite their differences
in terms of scaling both solutions have in common that their p2-derivative diverges in the
infrared,

lim
p2→0

|∂p2 GA(p
2)| →∞ . (19)

For the scaling solution it follows with 0< κ < 1 and κ 6= 1/2. For the decoupling solution the
divergence originates in the logarithm ln p2. Moreover, from (6) it follows that it is precisely
the sign of the p2-derivative in (19) which determines the sign of the spectral function for low
frequencies,

sgn
h

lim
ω→0

ρA(ω)
i

= − sgn
�

lim
p2→0

∂p2 GA(p
2)
�

, (20)
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Figure 2: Typical diagrams that contribute to the ghost-gluon vertex DSE (left), [40]
and FRG (right), [18]. The presence of the gapped gluon propagator ensures that
the ghost-gluon vertex is constant in the infrared. It can be shown that this behavior
is present at every finite truncation level.

where we used that the sign of the spectral function and its derivative are identical at low
frequencies. This follows from the expansion of the spectral function around zero

ρA(ω) =ω∂ωρA(ω) (21)

for positive frequencies. In (21) the vanishing of the zeroth order, i.e. ρA(0) = 0, is one of
our basic assumptions, c.f. the discussion in Appendix A. Equation (20) entails that the back-
bending of the propagator leads to a negative spectral function at low frequencies. Note that
a backbending implies the existence of a gluon propagator maximum at a finite momentum
which indicates positivity violation, see e.g. [26].

Apart from the low frequency behavior we are also interested in the analytic structure
of the gluon propagator. The latter is relevant for an accurate determination of the quasi-
particle peak we expect at frequencies related to the physics scale ΛQCD: The analytic form
of (17) is exact for the scaling solution, see e.g. [30–38], and the discussion in Section 4.1.
For the decoupling solution (17) has to be seen as an ansatz. In particular, it is one that
is motivated from an Euclidean perspective and it may introduce ambiguities regarding the
analytic structure of the propagator in the complex plane. Different proposals for the analytic
structure of the gluon propagator have already been made in [39], one of which is compatible
with the scenario discussed here. We postpone the thorough discussion of the parametrization
to Section 4.2 and Section 4.3.

4.1 Scaling solution

The scaling solution is obtained by setting γG = 0 in (17). The asymptotic behavior of the
gluon propagator then reads

Ĝ(sca)
A
(p) = ZIR (p̂

2)−1+2κ . (22)

The scaling coefficient κ is constrained by 1/2 < κ < 1 and recent numerical calculations
suggest κ≈ 0.58 [18] in Yang-Mills theory.

Combining (6) and (22) we obtain the following low frequency asymptotics of the gluon
spectral function for the scaling solution

ρ̂(sca)
A
(ω) = −2 ZIR sgn(ω̂) (ω̂2)−1+2κ . (23)

Most notable is the negative sign, i.e. the spectral function is negative for small positive fre-
quencies. The functional similarity between (22) and (23) is not very surprising since the
scaling solution has a rather simple complex structure, a single branch cut at Re p0 = 0.

4.2 Decoupling Solution

In this section we discuss in detail the infrared behavior of the decoupling solution. In con-
tradistinction to the scaling solution where the analytic structure follows directly from scaling
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Figure 3: Ghost triangle (left) and ghost box (right) diagrams as they appear in the
three- and four-gluon vertex flow equations [18]. As is well known, these ghost loops
generate logarithmic divergences in the vertices. Similar diagrams contribute to the
respective vertex DSEs, see e.g. [41–45].

in the Euclidean regime, in the decoupling case this necessitates to monitor the infrared lead-
ing logarithms. While the leading logarithms are fully accessible, a complete analysis requires
to take into account the back-coupling of the quantum corrections in the functional equations.

To begin with, the leading behavior for the decoupling solution strictly speaking reads

Ĝ(dec)
A
(p0)∼

1
x

, (24)

with x given by (18) and ĜA = Λ2
QCD

GA. (24) is the leading term of (17) in an expansion
around p0 = 0. The log-term in (18) arises naturally from the momentum integration of
the ghost loop in the IR, see Figure 1. There we have depicted the ghost loop in both the
functional renormalization group (FRG) equation for the gluon propagator, see e.g. [18] for
more diagrammatic details, and the Dyson-Schwinger equations (DSE), see e.g. [26] for more
diagrammatic details. Both depend on the ghost propagator and the ghost-gluon vertex. In
the decoupling case the ghost propagator has a trivial infrared behavior proportional to 1/p2.

As a side remark we mention that the ghost propagator is not augmented with a leading
order logarithmic IR running, even though this would not change the present analysis. The
absence of a leading order logarithmic IR running in the ghost propagator can be shown along
a similar line of arguments as done here for the gluon propagator.

4.2.1 Sources for infrared logarithms

We now proceed with the discussion of the IR behavior of the gluon propagator. The ghost-
gluon vertex dressing tends towards a constant value with a small angular dependence for
small momenta, while the ghost propagator dressing also tends towards a constant. The low
momentum triviality of the ghost-gluon vertex is related to the non-renormalization theorem
for the ghost-gluon vertex in the Landau gauge. It also can be seen from Figure 2 which
features the gapped gluon propagator and hence is infrared suppressed. This property holds for
all mixed ghost-gluon correlations. For a very detailed and extensive discussion in the context
of a perturbative one-loop analysis of the Curci-Ferrari setup we refer to [46]. In summary the
ghost loop depicted in Figure 1 gives rise to a p2 ln p2 contribution with a negative prefactor
in the IR. This is reflected by zG > 0 in (18). The other diagrams contain the gapped gluon
propagator or non-classical vertices. Consequently these diagrams cannot contributed to the
logarithmic running at one-loop.

Beyond one-loop further contributions to the IR logarithm could originate from the loga-
rithmic running of the vertices. This scenario was behind the discussion of the Higgs phase for
large explicit gluon masses in [18]. These contributions would have the potential of switching
the sign of zG . Again such a running can only be triggered by ghost loops due to the gapping of
the gluon. Hence, from an iterative point of view, they first can only occur for purely gluonic
vertices triggered by the massless ghost loops contributing to these vertices. If created, they
can propagate to all correlation functions via diagrams with at least one purely gluonic vertex.
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For the propagator the three- and four-gluon vertices are relevant, for the respective diagrams
see Figure 3. Indeed these vertices feature logarithmic terms at one loop, see e.g. [18,41–45].

The mere occurrence of logarithmic terms in the vertices is not sufficient for triggering an
additional logarithmic running of the gluon propagator. Consider for example a logarithm of
the form ln(p2 + q2), where q is the loop momentum of a given diagram for the gluon propa-
gator GA(p). Then the loop integration effectively removes this logarithm as the gluon in the
diagram is gapped. Consequently only logarithmic terms of the form (pi)µ fi(p1, p2) ln p2 for
the three gluon vertex, and f (p1, p2, p3) ln p2 for the four-gluon vertex would trigger p2 ln p2-
terms in the propagator. Here p is one of the momenta p1, ..., pn with pn = −(p1 + · · ·+ pn−1)
in an n-gluon vertex.

Even though the presence of such terms would be of great interest for the effective detec-
tion of a possible Higgs phase [18], a complete analysis is beyond the scope of the present
work. Here we simply remark that the terms of the required form are singled out by the
infrared limit of one momentum p ∈ (p1, ..., pn) with

lim
p̂2→0

|∂p2Γ
(n)
gluonic(p1, ..., pn)| →∞ , (25)

for the three- and four gluon vertices, n= 3, 4, at fixed other momenta. For this limit one can
concentrate on the propagators attaching the ghost-gluon vertex with the momentum p. In the
above limit they only carry the loop momentum, but are multiplied by qµi

from the respective
ghost-gluon vertices. Hence they diverge as 1/q2. The derivative w.r.t. p2 triggers another
1/q2: Applied to th ghost propagator Gc that carries the external momentum p, we are led
to ∂p2 Gc(q + p)2 ∝ (1/q2)2 in the limit p→ 0. In summary this leaves us with a logarithmic
singularity due to d4q 1/q4. The other propagators in the diagrams still carry other external
momenta and do not add to the singularity.

In summary, the kinematic analysis above hints at the existence of the logarithmic terms
in the gluonic vertices that act as additional sources for the logarithmic running of the propa-
gator. Note however, that a decisive answer requires an analysis that also takes into account
the underlying gauge symmetry: first of all the Slavnov-Taylor identities (STIs) connect the
different diagrams in the functional equations for the gluon propagator. Second, the STIs also
restrict the vertex structures themselves and the prefactors of the logarithmic vertex correc-
tions may even vanish for fully dressed vertices. It goes without saying that even for being
indicative such an analysis requires at least a full two-loop analysis of the gluon propagator
in the presence of a mass gap. In this context we mention a very careful complete and illumi-
nating perturbative analysis at one-, two and three loops in [47–49] in QCD and [50, 51] in
Curci-Ferrari-type models, and also references therein.

Accordingly, the logarithms produced always depend on sums of combinations of external
momenta squared. This kinematic argument entails that vertex logarithms always depend on
loop momenta and hence do not contribute to zG . Note that this argument, upon iteration,
holds for fully non-perturbative resummations as done within functional methods. We empha-
size that evidently this proof necessitates both the logarithmic corrections of vertices as well as
the logarithmic corrections that originates from the massless propagators in the loop. Hence,
conclusive arguments should at best make systematic use of the full iterative structure of re-
summation schemes as done here, or exploit perturbation theory at two loop and beyond. The
latter ensures in most cases that the perturbative structure mimics of the iterative structure of
non-perturbative resummations.

4.2.2 Potential Higgs branch

For its relevance we come back to the Higgs-phase argument in [18], even though it is a bit
outside the line of arguments here. The existence and properties of such a Higgs phase are
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not only important for the Standard model but also for finite temperature QCD, where the
temporal gauge field plays the rôle of a Higgs field. In [18] the dynamics of such a Higgs field
was trivially mimicked by an explicit mass term of the gluon despite of its dynamical structure.
The present analysis makes it apparent why such an argument falls short. In the presence of
a Higgs mechanism one resorts to Rξ-gauges that leads to massive ghosts in the Higgs phase
with the ghost mass proportional to the expectation value of the Higgs. Within the present
setup this has been discussed in [52]. There it has been also shown that this mechanism has
an equivalent in the standard Landau gauge. In Landau gauge the Higgs-Kibble dinner is not
apparent. Still, the effect of the massless ghosts is more than balanced by that of the Goldstone
modes. In [52] it has been shown that this leads to a deconfining Polyakov loop potential in
the Higgs phase. In the present context it entails that the Goldstone contributions to the gluon
in Landau gauge are an additional source of the p2 ln p2 running of the gluon propagator, that
can turn the sign of zG: this simply follows from the similarity of the Higgs-gluon vertex to
that of the ghost-gluon vertex and a respective perturbative analysis. A more detailed analysis
is far beyond the scope of the present work and deferred to future work.

4.3 Scenarios for analytic structures of the decoupling solution

Now we proceed with our main line of arguments. Even though sufficiently smooth, the non-
trivial angular dependence and the sub-leading momentum-dependence will still almost cer-
tainly modify the complex structure. Nonetheless (18) still provides a very good parametriza-
tion in the infrared. Accordingly, in contradistinction to the scaling solution it is not possible
for the decoupling solution to determine its analytic structure from the IR asymptotics. The
difference between parameterizations cannot be resolved in currently available Euclidean data
as the effects are sub-leading in the Euclidean IR domain. Nevertheless, the basic form and
generation of terms is well motivated and an investigation of the IR behavior is still sensible
for the case of the decoupling solutions. It allows us to classify two likely scenarios for the
analytic structure of the decoupling type gluon propagator:

4.3.1 Scenario I

We start with the parametrization given in (17) since it is the simplest one capturing the Eu-
clidean behavior. Keeping a finite γG in (17) this parametrization of the decoupling propagator
can be reduced to

Ĝ(dec)
A
(p) = Z̃IR

�

m̃2
gap
+ p̂2 ln p̂2

�−1
, (26)

after absorbing γg and zG by appropriate redefinitions of ZIR → Z̃IR and m2
gap
→ m̃2

gap
. The

parametrization (26) admits complex conjugated poles, which lead to a modification of the
simple spectral representation (1). Allowing for additional poles, we make use of the extended
spectral representation (11). This enables us to separate cut and pole contributions of (26), a
detailed description of the analytic structure can be found in Appendix B. Specializing (26) to
the contribution of the cut, i.e. the one contributing to ρ(dec)

A we obtain with (6)

ρ̂(dec)
A (ω) = −ẐIR sgn(ω̂)

2π
m̂4

gap

ω̂2 +O (ω̂4 ln ω̂) . (27)

Again, most notable is the negative sign in front of (27), leading to a negative spectral function
at low frequencies for the parametrization (26) of the decoupling solution.
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4.3.2 Scenario II

As already mentioned above, the form (26) is not unique, and cannot be fixed by presently
available data. Indeed, another admissible parametrization removes the additional poles in
(26). Then the propagator exhibits a single cut. We keep the same leading order expansion in
p0 = 0 , which renders all differences sub-leading in the Euclidean data in the IR. A possible
parametrization with these properties is given by

Ĝ(dec)(p) = Z̃IRm̃−2
gap

�

1+ m̃−2
gap

lnΓ(p̂2)
�

. (28)

Here, lnΓ is the logarithmic Γ function (not the logarithm of the Γ function). The logarithmic
Γ function has a branch cut for Re z = 0 and is analytic everywhere else. It is defined by

lnΓ(z) =
∞
∑

k=1

� z
k
− ln

�

1+
z
k

��

− γE z − ln(z) , (29)

with the Euler-Mascheroni constant γE. Both parameterizations lead to the same leading order
term in the propagator,

Ĝ(dec)(p) = Z̃IRm̃−2
gap

�

1− m̃−2
gap

p̂2 ln(p̂2)
�

+O (p̂4) . (30)

This implies the same low frequency behavior of the spectral function as in (27) and demon-
strates explicitly the remaining freedom in parameterizing the decoupling solution while pos-
sibly modifying the corresponding spectral function. It is important to note however that the
leading term in ∂p2 G is the one containing the logarithm, whose sign cannot be flipped and
from which the non-positivity of the small frequency spectrum arises. More details regarding
the propagator at zero can be found in Appendix A. We close this section with a word of cau-
tion: While a large class of parameterizations may yield the same spectral function, as it is the
case here, this is by no means guaranteed.

4.4 Realizations of decoupling solutions

In the following subsections several approaches or models that feature decoupling type solu-
tions are discussed. In most cases the gluon propagators results in the approaches are worked
out in specific expansion schemes that allow us assigning one the above scenarios described
in Section 4.3.1, Section 4.3.2 to it. Note that this does not necessarily entail the correct an-
alytic structure of the gluon propagator in the given approach but certainly that of the given
expansion order. Note also, that the systematics of generic expansion schemes in the analytic
functional approaches suggests the persistence of the analytic structure if resummed vertices
are taken into account. However, a detailed analysis is beyond the scope of the present work.

4.4.1 Lattice

Our discussion is based on the plethora of lattice results for decoupling gluon propagators at
vanishing and finite temperature [53–57,57–66], for recent analytic fits to high precision data
see, e.g., [67] and [68]. However, in our opinion the distinction between the different sce-
narios Section 4.3.1, Section 4.3.2 still requires a far higher precision. Accordingly, without
additional information it is not possible to differentiate between any of the possible param-
eterizations of the decoupling scenario. Therefore statements about the analytic structure of
the gluon propagator based on lattice data is currently not possible.

Several reconstructions based on lattice data have been performed in the past years. In
[3] a reconstruction was presented using simulations results from low temperature quenched
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Figure 4: Example of a gluon spectral function in the confined phase
T = 152 MeV < TC extracted from lattice QCD simulations by the tmft collabora-
tion including N f = 2 + 1 + 1 flavors of quarks. Note that while the higher lying
negative feature at around 1.75GeV is strongly pronounced, we also find indications
for a residual negative contribution at small frequencies. The overshoot into positive
values at higher frequencies originally thought of as a Bayesian artifact also emerges
in our reconstruction presented below. Error bars include both statistical and sys-
tematic errors, for details see [6].

lattice QCD. The authors deployed the Tikhonov regularization to extract the spectral function
and observed a negative contribution at low frequencies.

Finite temperature studies have also been carried out. A reconstruction including finite
temperature gluon propagators in quenched QCD based on a modified Maximum Entropy
Method (MEM) was presented in [1]. The results were mostly positive for small frequencies
by construction, due to the modified MEM approach for non-positive spectra. This method has
also been applied to decoupling FRG data, see Section 4.4.2, and the two reconstructions give
similar results.

Another reconstruction based on a Bayesian approach has been performed in [6] using
finite temperature lattice QCD data, featuring N f = 2 + 1 + 1 quark flavors. The general-
ized Bayesian Reconstruction (gBR) approach [5] deployed in that study revealed that in the
confined phase the gluon spectrum exhibits a small residual negative contribution at small fre-
quencies, see Figure 4. Any sign of this negative structure disappeared at higher temperatures,
however the systematic uncertainties in the study precluded a definite statement, whether that
was a genuine finite temperature effect. We see the finding of a negative low frequency part as
a strong indication that the Bayesian reconstruction method (gBR) in [6] recognizes the low
frequency relation derived in this work.

In summary, the discussion of the low frequency limit of the gluon spectral function and
of the analytic structure suggests to revisit the spectral reconstruction of the gluon spectral
function based on improved analytic models that incorporate the logarithmic corrections of
the gluon propagator. As the logarithmic terms might be difficult to extract directly even from
the high precision lattice data, it calls for a combined lattice-functional methods approach: the
logarithmic terms could be constrained by using combined propagator and vertices lattice data
and lattice consistent results from functional methods. In the latter the logarithmic infrared
terms can easily be extracted.
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4.4.2 DSE and FRG

Decoupling-type propagators have been computed in both DSE and in FRG calculations in good
agreement with the corresponding lattice results, see e.g. [28,69,70] and [18,28], respectively.
Within the DSEs a direct solution has been computed in the complex plane in [71], where a
single branch cut along the Re p0 = 0 axis was found. The spectral function found there stays
positive for very small frequencies. Hence the analytic structure has to violate implicitly our
smoothness condition, which is very interesting and requires a more detailed investigation.

As mentioned already in the previous Section 4.4.1, decoupling FRG data as well as lattice
data for the finite temperature gluon propagator have been used for a reconstruction of the
gluon spectral function for temperatures T ≥ 100 MeV in [1]. Both, the reconstruction of the
lattice data and that of the FRG data have been in very good agreement with each other.

Moreover, the results are in qualitative agreement with that of the direct DSE computation
of [71]: The finite temperature data show a thermal broadening. The MEM-type method
used in [1] run into accuracy problems for smaller temperatures. This is a typical sign of a
sharp peak in the spectral function. A low temperature extrapolation of the thermal spectral
functions gives rise to a sharper peak at T = 0, but no quantitative statement was possible
due to the missing small temperature accuracy. Note also, that the reconstruction method
used in [1] leads to a positive low frequency tail almost by construction. Apart from this
disagreement the results there are also in qualitative agreement with the reconstruction of the
scaling spectral function presented in Section 5.4 shown in Figure 6.

In summary, as already mentioned at the end of Section 4.4.1, the situation calls for a
combined lattice-functional methods approach in order to minimize the systematic error of
the reconstruction.

4.4.3 Gribov-Zwanziger approach

The complex structure arising in the Gribov-Zwanziger approach has been discussed in [72]
at the example of a toy model with complex conjugated poles. The current state of the art
comparison with lattice data [68] resorts to a tree-level propagator with a perturbative RG
improvement that captures the ultraviolet running. It reads

GA(p
2) =

p2 +M2
1

p4 +M2
2 p2 +M4

3

�

ln
p2 +mg(p2)

Λ2
QCD

�γ

, (31)

with the one-loop anomalous dimension γ = 13/22 introduced in (15). The regularization
mass mg(p2) is finite in the IR for p2 → 0 and either decays or also stays finite in the UV
for p2 → ∞. (31) is sufficient to capture the high frequency behavior as well as the non-
perturbative gapping of the gluon. Its complex structure features the perturbative cut as well
as complex conjugated poles. The spectral function that follows from the propagator (31) is
subject to the infrared relation (6). Evidently, the sign of the spectral function depends on the
combination of parameters chosen in (31), for the best fits provided in [68] it is negative.

A one-loop analysis of the GZ approach reveals a logarithmic IR momentum scaling that
originates in the gauge-fixing contributions similar to the ghost contribution in the Landau
gauge. (31) lacks this logarithmic IR running that leads to the negative sign of the spectral
function for low frequencies. As it is not built in naturally in (31) it suggests to simply restrict
the range of allowed parameters by

lim
p2→0

∂p2 G(p2)> 0 , (32)

which mimics the divergent limit (19) insofar that it reproduces (20), and hence the correct
sign of the spectral function at low frequencies. Alternatively the propagator model (31) can
be amended by an cut. In either case this enhances the predictive power of the reconstruction.
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4.4.4 Curci-Ferrari model

The Curci-Ferrari model [73] is a massive version of Yang-Mills theory. As such it features
an additional relevant coupling, the gluon mass, and reduces to Yang-Mills theory in the -
appropriate- massless limit. In recent years, the model has seen revived interest in the context
of modeling the non-perturbative mass gap of QCD with a respective choice of the Curci-Ferrari
mass parameter. Then, a perturbative treatment of fluctuations may be possible. This reason-
ing has been introduced in [74–76]where QCD correlation functions have been modeled using
perturbation theory, for a recent work see [46]. In the present context this is particularly in-
teresting, as it also allows analytically accessing the kinematic arguments given in Section 4.2.

The one-loop contribution to the gluon propagator has been calculated and discussed in
[46, 74]. It features an asymptotic IR behavior of the form (26), its infrared properties and
the relation to positivity violation have been discussed extensively in [46]. We are led to a
negative low frequency spectral function of the form (27). Higher loop considerations may
change the global cut form as discussed in Section 4.2, but are not relevant for the question
of the low frequency behavior.

A very detailed analysis of the complex structure of the Curci-Ferrari model is also found
in [77–79]. In particular in [79] the gluon propagator in the CF-model is worked out at one
loop, leading to a low frequency spectral function with (27).

In summary, the detailed one loop analysis in [46,79] shows the low frequency properties
of the spectral function derived here, (6). Concerning the global complex structure a two-loop
analysis in the CF-framework with respect to its complex structure would be very interesting as
it features both one-loop dressed propagators and vertices. In this context we refer the reader
to [50, 51] where Curci-Ferrari-type models have been studied up to three loop. A respective
analysis should also provide valuable additional information for the reconstruction of Landau
gauge spectral function in general.

5 Extracting the spectral function from the Euclidean propagator

The aim of this section is to reconstruct the gluon spectral function from numerical data of
the gluon propagator obtained in the scaling scenario [18]. The final result for the spectral
functions is shown in the left panel of Figure 6. We would like to emphasize that it exhibits all
the analytic properties discussed above up to numerical uncertainties.

If used to compute the propagator via (1) it reproduces the original input with a precision
of ∼ 2%, as shown in the right panel of Figure 6.

To arrive at the spectral function we use a novel approach based on an explicitly constructed
set of basis functions that is carefully derived from the analytic properties of two-point cor-
relation functions, see Figure 5 for an illustration. First, we discuss the underlying analytic
structure. Next, we introduce the explicit form of the basis and finally describe how it is applied
to extract the gluon spectral function.

5.1 Analytic structure of the retarded propagator

The picture we have used in the preceding sections assumes a specific analytic structure for
the gluon propagator, i.e. that it contains a single branch cut at Re p0 = 0 (for more details
see Appendix A). Therefore, we have two analytic patches in the complex plane, the retarded
propagator for Re p0 > 0 and the advanced one for Re p0 < 0. They are related by the well-
known relation

G(ret)(−i(ω+ iε)) =
�

G(adv)(−i(ω− iε))
�∗

. (33)
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Figure 5: Schematic analytic structure of a retarded propagator. All non-analytic
structures are in the Re p0 < 0 half-plane, reflecting the analyticity constraints from
the existence of a spectral representation.

In the following we focus on the retarded propagator. However, all statements hold equiva-
lently for the advanced propagator due to (33).

The finite imaginary part in the retarded propagator at Re p0 = 0 signals a branch cut and
therefore a finite value of the spectral function, which is defined as the discontinuity of the
propagator, c.f. (3). Being a holomorphic function for Re p0 > 0, the retarded correlation
function can be analytically continued to the entire complex plane, where it is a meromorphic
function since the propagator must vanish sufficiently fast for p→∞.

Our reconstruction approach is based on an ansatz for the complex structure of the analyt-
ically continued retarded propagator. This has the advantage that (1) holds trivially and it is
possible to enforce (12) analytically. Furthermore, the branch cuts describing the IR and UV
asymptotics can be implemented explicitly and in a straightforward manner.

The ansatz is build up from poles and polynomials. This is possible since the most impor-
tant, i.e. physically relevant branch cuts, e.g. logarithms and square roots, can be constructed
from a series of poles. Of course, branch cuts can also be taken into account directly. If one is
only interested in the reconstruction of a spectral function itself, there is an additional freedom
to choose the branch cut of e.g. logarithms, as long as they are in the meromorphic half-plane
since it does not alter the result. Therefore a rather generic ansatz is the one depicted in
Figure 5, where all cuts are chosen to be on the Re p0 = 0 axis.

5.2 Reconstruction method

Our approach is based on the ability to explicitly select an appropriate basis. As a direct con-
sequence, prior knowledge about the spectral function, e.g. its asymptotics and its functional
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Figure 6: Top: Gluon spectral function. The solid blue line shows our best result. The
gray band around it indicates our estimate for the systematic error. Bottom: Gluon
propagator reconstructed from the spectral function shown in Figure 7 in comparison
to the original propagator.

form in general, can and should be included into the basis. In turn, analytic calculations can
serve as a guiding principle for choosing a suitable basis. Importantly, this does not fix the
method used to determine the coefficients of the basis. Note that the functional bases de-
ployed in most reconstruction procedures are chosen implicitly, such as e.g. in Bryan’s MEM.

One might naively expect that by selecting a basis a priori the ill-conditioned problem of
reconstructing the spectral function from Euclidean data becomes artificially regularized. In
general this is not the case, as the number of different structures can be chosen arbitrarily
large, as is also the case in most other reconstruction procedures. Our specific choice of basis
only ensures that the asymptotic and analytic properties discussed above are met.

If the number of structures permitted by the basis function is larger than those actually
encoded in the Euclidean correlator data, the problem remains ill-conditioned and Bayesian
inference needs to be carried out, assigning a prior probability to the individual basis param-
eters. The state-of-the-art implementation of Bayesian inference, which provides insight into
the full posterior probability distribution and not simply a maximum a posteriori estimate, rests
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on Hamiltonian Monte Carlo (HMC) techniques (for the industry standard see MC-STAN [80]).
On the other hand one may systematically reduce the number of allowed structures in

the basis ansatz until an ordinary χ2 fit becomes stable. If at the same time such a restricted
basis still allows the Euclidean data to be reasonably well reproduced the corresponding basis
parameters constitute a valid solution. This issue is discussed in a simple mock example in
Appendix C.

5.3 Construction of a gluon propagator basis

We now introduce the explicit functional form of the basis used in the subsequent reconstruc-
tion of the spectral function. It consists of the several modular, dimensionless building blocks.
We start with a set of generalized Breit-Wigner structures,

Ĝpole
Ans
(p0) =

Nps
∑

k=1

N (k)pp
∏

j=1

 

N̂k

(p̂0 + Γ̂k, j)2 + M̂2
k, j

!δk, j

. (34)

In addition, we introduce a polynomial-like structures

Ĝpoly
Ans
(p0) =

Npoly
∑

j=1

â j

�

p̂2
0

�

j
2 . (35)

To capture the asymptotic IR and UV behaviors, we introduce the following factor,

Ĝasy
Ans
(p0) = (p̂

2
0)
−1−2α

�

log

�

1+
p̂2

0

λ̂2

��−1−β

. (36)

The final ansatz is then given by the product of the three individual contributions (34),
(35) and (36):

GAns(p0) =K Ĝpole
Ans
(p0) Ĝ

poly
Ans
(p0) Ĝ

asy
Ans
(p0) , (37)

where K only carries the appropriate dimension. The coefficients are constraint such that
(1) holds analytically. The superconvergence (12) is not included analytically, however it is
realized with high accuracy, we get back to this in Section 5.4.

5.4 Gluon spectral function reconstruction and benchmarking

With the explicit form of the basis laid out above, we can continue to extract the gluon spectral
function from gluon propagator data obtained in the scaling scenario [18].

As a full HMC analysis of the gluon propagator data is beyond the scope of this paper.
Instead, we choose the simpler strategy of systematically reducing the number of possible
structures allowed by the ansatz. We arrive at a functional form, which permits us to reproduce
the Euclidean data of the scaling scenario within∼ 2% relative deviation, as shown in the right
panel of Figure 6. At the same time this restricted basis is simple enough that its parameters
can be fixed by a standard χ2 fit. Our best fit uses Nps = 1, N (1)

pp
= 6 and Npoly = 5 and leads to

our final result, the gluon spectral function shown in the left panel of Figure 6. The shape of
the result is stable against a small variation of N (1)

pp
and Npoly. Nevertheless, we find degenerate

solutions varying in their peak height, this is indicated by the grey band in the left panel of
Figure 6.

The red dots in the right panel of Figure 6 denote the numerically evaluated input data
from [18], while the dashed line represents the the Euclidean correlator corresponding to our
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Figure 7: Low (left) and high (right) frequency behavior of our result for the spectral
function shown in Figure 6. The dashed red lines show the asymptotic limits given
by (23) and (16).

reconstructed spectral function. The inset shows the relative error on a logarithmic scale where
deviations with positive sign are colored green, those with negative sign are colored red. While
the coefficients α and β in the asymptotic part of the basis functions are related to κ and γ
of the IR and UV asymptotics, respectively, we note that they do not need to match exactly,
since the former may be partially absorbed by some of the δk, j ’s. We list their values in Table 1
for completeness. The fit is heavily constraint, as we must enforce the complex structure as
well as the correct asymptotics. As a consequence a useful and reliable error estimation is not
possible.

Let us inspect the behavior of the reconstructed spectrum in more detail. From Figure 6
we infer that the fitted propagator, by construction, is able to reproduce the asymptotics of
the UV and the IR very well. This directly translates into the correct asymptotic behavior of
the spectral function in the IR and the UV, as shown in the left and right panel of Figure 7,
respectively. The asymptotics are closely reproduced either below ω ≈ 20 MeV and above
ω≈ 12GeV.

Note that the well pronounced negative trough above the main positive peak in Figure 6
does not connect directly to the negative asymptotics but instead the spectrum returns into
the positive once more before eventually becoming negative for good, i.e. approaching the
frequency axis from below asymptotically. This behavior is reminiscent to what has been found
in a previous lattice QCD study [6]. While the data there was not precise enough to capture
the asymptotic behavior reliably, indications for a similar positive bump structure above a deep
negative trough were found (see Figure 4).

Superconvergence (12) is not enforced analytically as it would unnecessarily complicate

Table 1: Parameters obtained in our best fit for the ansatz (37).

N̂1 α β λ̂

1.33678 -0.428714 -0.777213 1.75049
â1 â2 â3 â4 â5

0.454024 0.241017 3.10257 -1.30804 0.63701
Γ̂1,1 Γ̂1,2 Γ̂1,3 Γ̂1,4 Γ̂1,5 Γ̂1,6

0.100169 0.100141 2.36445 1.5564 1.22013 1.15102
M̂1,1 M̂1,2 M̂1,3 M̂1,4 M̂1,5 M̂1,6

0.849883 0.849902 2.52171 2.44035 3.6016 2.36723
δ1,1 δ1,2 δ1,3 δ1,4 δ1,5 δ1,6

1.61116 1.94095 -2.54586 1.89765 0.168592 0.296215

18

https://scipost.org
https://scipost.org/SciPostPhys.5.6.065


SciPost Phys. 5, 065 (2018)

Reconstruction
Input data

10-1 100 101 102

0

5

10

15

20

Time t [GeV-1]

Sc
hw
in
ge
r
fu
nc
tio
n
Δ
(t
)
[G
eV

-
1 ] Reconstruction

Input data

10-1 100 101 102

10-1

100

101

Time t [GeV-1]

Sc
hw
in
ge
r
fu
nc
tio
n
|Δ
(t
)|
[G
eV

-
1 ]

Figure 8: Schwinger function obtained from the reconstruction, blue line, and from
the Euclidean input, red dots, in a semi-log (left) and log-log (right) depiction. See
Figure 6 for the corresponding Euclidean propagators in momentum space.

our ansatz while being realized already very well on a numerical level as it is only violated by
the branch point of the perturbative cut

�∫ ∞

0

dη |ηρA(η)|
�−1�∫ ∞

0

dη ηρA(η)

�

≈ 10−4 . (38)

The height of the main positive and negative structure still show rather sizable uncertain-
ties, which is related to our fit having been applied only to a precision of ∼ 2%.

The Schwinger function

∆(t) = 2

∫ ∞

0

dp0 eip0 t G(p0) (39)

is potentially more sensible to differences in the peak height of the spectral function as it
corresponds to a Laplace transform of the spectral function, see e.g. [19]. The Schwinger
functions from the reconstruction and the input data are shown in Figure 8. The point of the
zero crossing between both result matches very well and the overall agreement is of the same
level as for the Euclidean propagator. We interpret this as further evidence for our successful
reconstruction of the gluon spectral function.

Performing a full Bayesian analysis, which allows for a robust reconstruction including
more analytic structures in the basis, we expect the uncertainties of the reconstruction to
reduce further. This is however postponed to future work.

6 Conclusion

We have discussed the reconstruction of the gluon spectral function in Landau gauge QCD
from numerical Euclidean data, as well as its analytic properties. In particular, we have put
forward a novel reconstruction approach, which possesses these analytic properties. It satisfies
the Oehme-Zimmermann superconvergence relation, has the correct low and high frequency
asymptotics, and reproduces the Euclidean gluon propagator data with ∼ 2 % accuracy. The
key to this successful reconstruction lies in two novel ingredients:

The first one is the use of the analytic low frequency asymptotics of the gluon spectral
function in the reconstruction. The latter is related to the IR asymptotics of the Euclidean
propagator through the novel general relation (6) that has been derived in Section 2. The
analytic knowledge of the spectral function forω→ 0 eliminates the typically large systematic
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uncertainty in reconstruction methods at low frequencies, and hence may significantly improve
the spectral reconstruction, independently of the used method.

The second novel ingredient in our approach originates in the careful analysis of the ana-
lytic structure of two-point correlation functions, and is described in Section 5. This analysis
leads to an ansatz for the propagator in the complex plane that takes into account the generic
pole and cut structure. The parameters of our quite general ansatz can then be determined
from Euclidean data.

In our opinion these two novel ingredients will improve the accuracy of spectral recon-
structions in general, and should be incorporated into existing Bayesian and non-Bayesian
frameworks. This is briefly discussed in Appendix C.

We currently extent the present analysis to the finite temperature Euclidean data from [81],
and the QCD correlation functions from [82]. This allows for an improved determination of
transport coefficients following up on [1,4] as well as an access to hadronic observables.
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A Details of the derivation of (6)

Our analysis that lead to the derivation of (6) in Section 2 is based on the existence of a
spectral representation (1). The inverse relation (3) together with the existence of a spectral
representation (1), that holds for the entire complex plane, has strong implications on the
analytic structure of the propagator on the left hand side. As a consequence the holomorphicity
of the associated retarded and advanced propagators in their respective domain of definition,
c.f. Section 5.1, follows directly from Cauchy’s theorem. As we define our spectral function as
the cut in the propagator along the Re p0 axis, i.e. (3), the spectral representation is sufficient
as condition. Having established analyticity in one half-plane, (6) holds already by means of
the Cauchy-Riemann equations, where the additional factor two comes from (3).

In general neither the Minkowski propagator nor the spectral function is a function in the
classical sense, but a tempered distribution. Nevertheless, the arguments about the analytic
properties hold, see e.g. [83, 84]. Another prerequisite mentioned in the main text is the
smoothness of the spectral function at zero. In the absence of truly distributional contribu-
tion to the integral for small p0 in (1), the spectral function must go to zero sufficiently fast,
otherwise the propagator obtains at least a log-divergence in p0. On the other hand, if such
contributions would be present this argument might not hold. A detailed discussion about the
issue of these contributions regarding the gluon and their relation to functional methods can
be found in [85, 86]. Mathematically rigorous statements in the context of axiomatic QFT’s
about this issues and the relation to our derivation are beyond the scope of this work.
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B Poles of decoupling scenario I

More details about the poles of (26) are collected here We drop the normalization ZIR and
additional notation to keep things simple

Ĝ(dec)(p) =
�

m̂2
gap
+ p̂2 ln p̂2

�−1
. (40)

Using the Lambert W-Function, with the usual index notation for the different branches, the
roots can be expressed as

z(r)0,± = ±
Æ

ψ0 , (41)

z(r)−1,± = ±
Æ

ψ−1 , (42)

with

ψk = eWk(−m̂2
gap) . (43)

There are now three different cases for the additional poles

m̂2
gap
< 1/e

First order poles, located pairwise on the Euclidean axis (Im(z(r)k,±) = 0).

m̂2
gap
= 1/e

Two second order poles at p = ±1/
p

e

m̂2
gap
> 1/e

Complex first order poles which are linked by complex conjugation (as required by
Lorentz invariance)

z(r)0,± =
�

z(r)−1,±

�∗
. (44)

Introducing the additional function

χk = 1+ lnψk , (45)

the residues can be computed in a straight forward manner

Res[Ĝ(dec), z(r)k,±] = (2χkz(r)k,±)
−1 (46)

for k = −1,0. The additional term in (11) can then conveniently be written as

pole term=
∑

k∈={−1,0}

1

χk

�

p̂2 − eWk(−m̂2
gap)
� . (47)

C Other reconstruction approaches

In this appendix we discuss two reconstruction strategies, the Bayesian Reconstruction us-
ing a quadratic prior (Tikhonov) and the Schlessinger point method, which we had explored
previous to developing the method presented in this paper. The reason that a new approach
became necessary for the reconstruction of the gluon spectral function lies in the individual
shortcomings of the above mentioned methods.

Our goal is to reconstruct a spectral function, which, as discussed in the main part of this
paper, should exhibit the following properties:
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Figure 9: (top) Representative example of a Bayesian reconstruction of the gluon
spectral function based on FRG Euclidean data in the scaling scenario. One hundred
data points with a relative error of 10−2 were supplied, as well as a default model
(gray solid), which produces the correct asymptotics of the correlator. We find that
while the asymptotics are correctly recovered in the final result (solid violet) even-
tually, the agreement emerges far later than in our new method. In addition we find
that the non-perturbative region at around ω ∼ 1GeV is contaminated by strong
ringing artifacts (bottom) Comparison between the reconstructed Euclidean correla-
tor (green) and the input data (violet).

1. Normalization, as required by Oehme-Zimmermann superconvergence (12)

2. Correct low frequency asymptotics, c.f. Section 4

3. Correct high frequency asymptotics, c.f. Section 3

4. Respect the Källén–Lehmann spectral representation (1)

5. Antisymmetric around ω= 0, c.f. (2)

6. A smooth function without drastic oscillations

A successful reconstruction based on Euclidean data should fulfill these requirement. We ob-
served that neither the gBR method nor the Schlessinger point method was able to meet all
the requirements in a satisfactory manner.

The underlying reason for these difficulties is related to the fact that both methods indi-
rectly or directly choose a set of basis functions not adapted to the problem at hand.

C.0.1 Bayesian reconstruction

The Bayesian reconstruction usually selects a set of basis functions simply by introducing a
numerical integration scheme to represent the discretized spectral function. This choice of
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basis is naturally unaware of the analytic structure of the correlator and thus of the functional
form admissible for the spectral function. In particular this basis does not prevent highly
oscillatory and thus unphysical structures to manifest themselves in the end result. In the
spirit of the Bayesian approach the prior probability then needs to be constructed such that
these oscillatory solutions are suppressed. The quadratic prior, we have found is not efficient
in doing so and thus unphysical ringing may persists in the end result. Similar ringing also
manifests itself in case of the generalized BR method.

We have performed reconstructions based on the Euclidean data in the scaling scenario,
using different default models, which were endowed with the correct asymptotic form. One
example is shown in Figure 9, where the green solid line denotes the default model and the
solid violet line corresponds to the Bayesian end result. One hundred data points with a
relative error of 10−2 were used. Due to the asymptotics supplied in the default model, as well
as the fact that the Bayesian method uses the Källén–Lehmann representation to translate the
spectrum into a Euclidean correlator, items (2-5) from our list are fulfilled here. Item (1) is not
fulfilled since the ratio between the area under the curve and the area under the absolute value
of the spectrum is around 0.8. The most striking drawback of this reconstruction however is
the strong oscillatory behavior found, which renders an interpretation of the non-perturbative
region at intermediate frequencies at best difficult. Note that with currently available lattice
QCD data such a strong oscillatory behavior was not observed when investigating the gluon
spectrum.

It will be interesting future work to include the prior information on the analytic structure
of the gluon propagator into the prior probability of these Bayesian approaches.

C.0.2 Backus-Gilbert reconstruction

The Backus-Gilbert approach to spectral function reconstruction operates [87, 88] with an
implicit set of basis functions, which are characterized by the resolution function ∆(ω−ω′).
Also in this case the basis is not aware of the analytic structure admissible for the correlator
under investigation. The naive Backus-Gilbert method in addition requires a regularization
prescription, for which we here choose the Tickhonov approach with regulator parameter λ
[89].

No explicit default model enters the BG approach, i.e. the prior information needed to
give meaning to the ill-conditioned inverse problem enters through the definition of the opti-
mization functions of which the BG spectrum is an extrema. This functional is designed such
that it selects a solution for which the resolution function ∆(ω−ω′) is most sharply peaked.

Note that in order to carry out the BG reconstruction the so called response kernels need
to be computed [89]. Here in case of the gluon spectrum these correspond to integrals over
the Källén–Lehmann without the spectrum multiplied. As these functions are not well defined,
we instead choose to reconstruct the function ρ(ω)ω with the corresponding response Kernel

R(p0) =

∫ ∞

0

dω
π

1

ω2 + p2
0

, (48)

which is finite. The spectrum is the obtained from dividing outω from the raw reconstruction.
A series of results for the BG spectral reconstruction based on one-hundred ideal Euclidean

input data points is shown in the top panel of Figure 10 for several different values of λ. We
find that a main peak close to ω= 1 GeV is consistently found and in addition the reconstruc-
tions show a negative trough close to the origin and above the main peak. However it is also
clear from the top panel that close to the origin ringing artifacts again impede the physics
interpretation of the result.

The BG solution by construction is not required to reproduce the input data, which then
also leads to significant deviations as shown in the center panel of Figure 10. Thus, we find
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Figure 10: (top) Series of Backus-Gilbert reconstructed spectral functions us-
ing the Tickhonov regularization prescription for different regulator parameter
λ= [0.05..2]. Note that the reconstruction identifies the presence of both the nega-
tive trough close to the origin and the one above the main peak at aroundω> 1GeV.
Ringing at small frequencies is not cured by simply increasing the value of λ. The
best choice λ = 0.5 is given in dark violet, while the other values are denoted by
light gray curves. (center) Euclidean data of the reconstructed spectra compared to
the original input (red). The result corresponding to λ = 0.5 (dark violet) works
relatively well above p0 > 1 GeV but misses the position of the main peak structure
and exhibits too weak of a backbending. (bottom) Resolution function ∆(ω −ω′)
for the best choice λ= 0.5 plotted for completeness.
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Figure 11: Reconstruction of the gluon propagator via Padé, the difference between
the two spectral functions is described in the main text. The left panel shows the
spectral functions while the right panel shows the input data, the Padé interpolant
and the reconstructions obtained from the spectral functions.

that the BG approach in case of the gluon spectral function is challenged to meet, in particular,
criteria (1-4) that we require for a successful reconstruction.

C.0.3 Padé-type approaches

Padé approaches, e.g. Schlessinger’s point method, obtain the spectral function from analyt-
ically continuing an interpolating or fitted rational function. The nomenclature Padé is used
here in a loose sense, referring to all approaches based on matching a rational function of
arbitrary degree to Euclidean data. Usually, (3) is used in order to obtain the spectral func-
tion. It has the advantage of being easy to apply and gives reasonable results for the position
of the lowest lying resonances, see e.g. [90]. Padé approaches describe the analytic structure
of the analytically continued retarded propagator in terms of poles and is therefore naturally
contained in our approach outlined in Section 5.

However, it does not respect the holomorphicity of the retarded propagator in the given
half-plane, c.f. Figure 5 and the corresponding discussion, by design. While Padé approaches
will still converge for infinite precision and infinitely many data points, violations of the holo-
morphicity at finite precision might be severe and make an unambiguous reconstruction im-
possible. As the spectral function obtained from (3) does not respect (1) anymore, if the
holomorphicity of the right half-plane is violated, the obtained spectral function will fail to re-
produce the Euclidean propagator. The violation might be acceptable if the violation is small,
suitably defined via the reconstruction. But is most certainly not, if a pole dominantly con-
tributing in (1) is missing. A more realistic spectral function can then still be obtained by
suitably modifying (3), but there is no consistent, unambiguous way of doing so.

This discussion is especially relevant when turning to the reconstruction of the gluon, since
here the dominant pole violates the holomorphicity of the retarded propagator. We employed
two choices for the reconstruction, "Padé with disc 2", where we keep (3) with a flipped sign
to account for the dominant pole being in the wrong half-plane, and "Padé with disc 1", but
evaluated it at an argument with a finite real part slightly larger than the position of the pole.
The corresponding spectral functions are shown in the left panel of Figure 11. Both meth-
ods get the roughly a similar shape which is also loosely compatibly with our main result
Figure 6. However, "Padé with disc 2" fails to reproduce the general shape in the reconstruc-
tion and "Padé with disc 1" gets a significantly too small propagator, but describes the shape
correctly. Additionally several other requirements listed above are not fulfilled. While some
requirements might be fixed by manipulating poles in the Padé interpolant, any systematic
way of doing so will lead to an approach very similar to the one described in the main text in
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Section 5.

C.1 Mock reconstruction benchmark

In this section we demonstrate with the simple example of a two Breit-Wigner spectral function
how incorporating our novel approach into a Bayesian framework allows to straight forwardly
improve the spectral reconstruction. As mock spectral function we take the parametrization
of (10) with a direct sum of two Breit-Wigner peaks

ρmock(ω) = ρ
(BW)
1
(ω) +ρ(BW)

2
(ω) , (49)

and the following values for peak positions and widths

Parameter A M Γ

Peak 1 0.35 1.0 0.25
Peak 2 0.65 3.0 0.25

From this spectrum we evaluate 60 equidistantly spaced Euclidean correlator data points
in the imaginary frequency interval between 0− 45 GeV, which are subsequently salted with
Gaussian noise with a strength leading to 10−3 relative errors.

In the absence of any prior knowledge about the analytic structure (i.e. the two poles)
contained in our example data we may choose to deploy a standard Bayesian method, such
as the BR method [91], which only enforces positive definiteness and smoothness. As shown
in Figure 12 as green solid line, with the provided quality of the Euclidean data, this method
manages to correctly identify the number of peak present but only achieves an accuracy of the
peak positions of around 75− 80%.

Now we can proceed to deploy our novel ansatz for the functional basis in (37). Three dif-
ferent cases are possible. Depending on the number Nps of pole structures chosen in the basis,
we may either have less structure, exactly the same amount of pole structures, or irrelevant
additional structure present compared to what is actually encoded in the Euclidean data.

In the first case, where only one pole is contained in the basis, fitting its parameters is a
well posed problem and can be carried out using both a naive χ2 fit or a full Bayesian analysis,
where each parameter is endowed with an additional prior probability. In Figure 12 we have
carried out a full Bayesian estimation of the posterior for the parameters in the single pole
basis (purple dashed line) using the Hamiltonian Monte Carlo framework implemented by the
MC-STAN [80, 92] library. The used prior only enforces the finiteness of the peak position.
As expected this too strongly restricted basis yields a reconstruction, which cannot correctly
account for the pole structure and instead positions one peak in between the actual two peaks
present.

Increasing the number of available poles in the basis to two, we have the same number of
structures in our basis, as we have in our data. This case is still well-posed and again admits a
solution both via χ2 fit and a full Bayesian analysis. Since we are using a parametrization that
can exactly match our input data it is not surprising that now the end result from the HMC
analysis lies spot on the mock spectrum (orange dashed curve). Note that for the χ2 fit the
result is slightly worse and only reproduces the mock spectrum with around 5% deviation.

Please note that as soon as two or more poles are present in the basis an ordering prescrip-
tion must be enforced, otherwise the posterior distribution degenerates by means of a simple
reparameterization.

The more interesting case, relevant in practice concerns allowing more structure in the
basis than encoded in the Euclidean data, which we here tests with a three pole basis ansatz. In
view of the χ2 fit this problem is now ill-conditioned and indeed carrying out a naive fit shows
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Figure 12: Reconstruction benchmark with a double Breit-Wigner peak.

that the obtained parameters become unstable. Here the HMC approach plays out its strength,
maintaining stability even if the problem becomes ill-conditioned. Indeed the position and
width of the lowest two pole structures is again recovered excellently (red dashed curve),
while the posterior of the position of the third peak shows that it is highly unconstrained and
thus irrelevant. The pole ordering naturally achieves that any excess pole structure beyond
what is encoded in the data is simply pushed to infinity, not contributing to the end result.

We find that incorporating our novel basis may significantly improve the reconstruction
result compared to those methods, which do not make any assumptions on the analytic struc-
ture of the underlying data. The example used here of course is simplistic but captures a main
aspect, a multi pole structure, encountered also in more realistic cases.
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