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Abstract

Fixed points of scalar field theories with quartic interactions in d = 4−ε dimensions are
considered in full generality. For such theories it is known that there exists a scalar func-
tion A of the couplings through which the leading-order beta-function can be expressed
as a gradient. It is here proved that the fixed-point value of A is bounded from below by
a simple expression linear in the dimension of the vector order parameter, N . Saturation
of the bound requires a marginal deformation, and is shown to arise when fixed points
with the same global symmetry coincide in coupling space. Several general results about
scalar CFTs are discussed, and a review of known fixed points is given.
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1 Introduction

Renormalization group (RG) flows in scalar field theories have connections to innumerable
problems in physics. One is usually interested in properties of these flows and their fixed
points in physical dimension d = 3, and the classic approach to learn about such fixed points
is to analytically continue from d = 4 − ε dimensions [1]. In this paper we would like to
consider the general case of the Wilson–Fisher RG equation for N real scalar fields in d = 4−ε
dimensions with the general quartic self-interaction

1
4!λi jklφiφ jφkφl , (1)

with real symmetric tensor λi jkl . The one-loop beta-function has the well-known form1

βi jkl =
d
d t
λi jkl = −ελi jkl + B(λi jmnλmnkl + 2 permutations) , (2)

where B = 1/16π2 in the standard normalization. From now on we will rescale the coupling
so that B = 1 in the beta-function.

We will be studying the beta-function equation in the shown one-loop approximation. Ide-
ally we would like to get a global picture of fixed points and RG flows described by this equa-
tion. Not much is actually known about this problem in full generality. As we will review below,
a full classification of fixed points without any assumptions is available only for N = 1,2. The
problem of classifying fixed points can be seen as a difficult problem of real algebraic geometry.

In this paper our goal will be to review what is known about multiscalar fixed points, and
to offer a few new general results which may guide future work towards full classification.
Except for a few comments in section 6.3, we limit ourselves to the one-loop case as it is
already sufficiently nontrivial.

In section 2 we analyze how stability of the quartic potential changes under RG flows. We
show that fixed points have stable potential. We also show that while a stable potential may
become unstable under RG flow, the inverse never happens.

In section 3 we give a representative review of many known classes of fixed points. This
section also reviews a classic construction of fixed points with symmetries possessing one
quadratic and two quartic invariants.

1Here t = ln(µ/µ0), with µ the RG scale, is the RG time. In this paper we consider RG flows from UV to IR,
i.e. t is decreasing along the flow.
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In section 4 we recall that the multiscalar RG flow is a gradient flow and present the
corresponding height function, the A-function. Since the A-function decreases monotonically
under RG flows, it’s clearly of interest to know what is the minimal value it can take at a fixed
point. We prove such a general bound, which scales linearly in N , in section 5. We show by
examples that for almost all N , and in particular for all N ¾ 12, our bound is best possible.

In section 6 we study RG stability of fixed points. We review general results about unique-
ness of RG stable fixed points, and symmetry criteria for RG instability, following mostly the
work of L. Michel. We also discuss and resolve a paradox of spurious zero eigenvalues of
linearized RG equations.

Our main new result is the general bound on the A-function. We hope that this bound
as well as our review of other existing general results will stimulate further work on general
theory of multiscalar fixed points.

2 Stability of the potential

Physically, one is mostly interested in quartic couplings λi jkl such that the potential is stable,
which means that [2]

λ(φ)≡ λi jklφiφ jφkφl ¾ 0 for any real φi . (3)

We will call λ satisfying this condition “potential-stable" or simply “stable” (this should not be
confused with RG-stability of RG fixed points, to be discussed in section 6).2

The set C of stable tensors λi jkl forms a convex cone, which means that (a) if λ ∈ C, then
its rescaling sλ ∈ C for any s ¾ 0, and (b) if two tensors λ(1) and λ(2) are in C, then so are
their convex linear combinations:

sλ(1) + (1− s)λ(2) ∈ C for any 0¶ s ¶ 1 . (4)

We will refer to C as the stability cone.
We now wish to study RG trajectories which start in the complement of C, so we pick a

point λ0,i jkl in coupling space which is not in C. This means that there exists a real φ̄i such
that λ0(φ̄)< 0. Let us do an infinitesimal RG flow step to the IR,

λ0→ λ= λ0 +∆t β(λ0) , ∆t < 0 , (5)

and evaluate the quartic potential on the same field configuration, i.e. λ(φ̄). Using the form of
the beta-function, we find that λ(φ) evolves according to

d
d(−t)

λ(φ̄) = ελ(φ̄)− 3Vi jVi j ¶ ελ(φ̄) , (6)

where Vi j = λi jmnφ̄mφ̄n and we used the fact Vi jVi j ¾ 0. From the form of this equation
we see that if λ0(φ̄) < 0 then the right-hand side is always negative and so the potential
evaluated on the field configuration φ̄ gets more and more negative as the flow towards the
IR progresses [2]. This has two consequences. First, the RG flow remains in the complement

2Condition 3 for four-tensors may be seen as a generalization of the condition for a symmetric matrix to be
positive semidefinite. However it’s quite more subtle than for matrices. For example checking this condition for
a general four-tensor is NP-hard. Also, it’s not true that a stable four-tensor can be written as a positive linear
combination of elementary tensors yi y j yk yl for different y ∈ RN (even allowing for infinite combinations). See
[3,4].
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stability cone
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Figure 1: Graphical summary of the results of section 2.

of C if it starts there: RG flows cannot enter the stability cone. Second, there cannot be any
fixed point in the complement of C.3

Notice, however, that RG flows can exit the stability cone, as explicit examples show. A well
known example occurs in theory of the cubic anisotropy as discussed e.g. in [6, sec. 11.3]. Such
RG flows are known as “fluctuation driven first-order phase transitions".

Can there be fixed points on the boundary of the stability cone? Being on the boundary
means that there is a flat direction φ̄i in field space, λ(φ̄) = 0, while in all other directions the
potential is non-negative.

Let us introduce some terminology. The fixed point λ= 0 is called trivial or free. Two fixed
point tensors λ and λ̃ that can be transformed into one another by an O(N) transformation
(change of basis) of course describe physically equivalent fixed points. If we can split the fields,
perhaps after a change of basis, into two subsets so that only fields within each group interact
with each other, such a fixed point is called factorized. Finally, a fixed point which cannot be
factorized is called fully interacting.

We will now show that all fixed points on the boundary of the stability cone are either free,
or contain a free factor. This will imply that all fully interacting fixed points lie strictly inside
the stability cone: 3 is strictly positive for all nonzero φ; see Fig. 1.

Let λ be a fixed point on the boundary of the stability cone, and φ̄ be a flat direction.
Rotating fields we can assume that φ̄ = (1, 0,0, . . .) points in direction 1. Then, λ(φ̄) = 0
means that λ1111 = 0. We would like to show that all other couplings involving at least one
index 1 vanish, so that the φ1 subsector is completely free. To do this we use the fixed point
condition. Using that the beta-function for λ1111 vanishes, we obtain

0= β1111 = −ελ1111 + 3λ11mnλ11mn = 3λ11mnλ11mn , (7)

from where we conclude that all couplings λ11mn vanish. Now we use the beta-function equa-
tion for λ11 j j where j is an arbitrary index (no sum on j):

0= β11 j j = −ελ11 j j + (λ11mnλ j jmn + 2λ1 jmnλ1 jmn) = 2λ1 jmnλ1 jmn , (8)

where we used that all λ11mn were already proved to vanish. Therefore, λ1 jmn = 0 for any
j, m, n, which is what we need.

3 Review of known fixed points

In this section we will attempt a review of known fixed points. Naturally we will only mention
fully interacting fixed points, as defined in section 2. A fundamental characteristic of any fixed

3This second observation can also be shown directly from the beta-function equation, which implies
λ∗(φ) = 3ε B Vi j Vi j ¾ 0 for a fixed point λ∗ [5].
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point is its symmetry group G, which is defined as the maximal subgroup of O(N) that leaves
the tensor λi jkl invariant.

Notice that if G 6= O(N), then by applying an O(N) transformation not in G the tensor
λi jkl is transformed to a different tensor λ̃i jkl , which nevertheless describes the same physics.
Classifying fixed points means classifying solutions of the beta-function equation βi jkl = 0 up
to this equivalence relation. However, there is usually one choice of field basis where the fixed
point tensor λ takes a particular simple form.

The symmetry group of any fixed point is at least as large as Z2, which acts by simultane-
ous sign flips on all fields. Curiously, all known fixed points for N ¾ 2 have a strictly larger
symmetry group. It would be interesting to understand why it is so.

Open problem.4 Construct a fully interacting N ¾ 2 scalar one-loop fixed point in 4− ε
dimensions with real couplings and just Z2 symmetry, or prove that all such fixed points have
strictly larger symmetry.

An important characteristic of the symmetry group G are the numbers I2 and I4 of quadratic
and quartic invariants, Ai jφiφ j and Bi jklφiφ jφkφl , where Ai j and Bi jkl are linearly indepen-
dent symmetric two- and four-tensors invariant under G (to count them we choose and fix
a basis in field space). When G = O(N) there is just one quadratic, ~φ 2, and one quartic,
( ~φ 2)2, invariant, and the question is if there are more when the symmetry is reduced. The
number of quartic invariants is clearly important since the fixed point tensor λ will be a linear
combination of I4 independent invariant tensors.

While quadratic invariants do not enter directly into the analysis of RG equations, their
number is important for the physical interpretation of the fixed points. Terms quadratic in
fields are strongly relevant perturbations of the potential. G-noninvariant quadratic terms are
forbidden by symmetry, while all G-invariant quadratic terms have to be fine-tuned to zero
to reach the fixed point. Groups G for which ~φ 2 remains a single quadratic invariant are
particularly interesting, since fixed points with such symmetry would require less fine-tuning
to be realized in an experiment.5 A single quadratic invariant (I2 = 1) is equivalent to requiring
that the fundamental representation of O(N) remains irreducible under G.

Historically, most attention was dedicated to fixed points with I2 = 1. Notice, however,
that a full classification requires considering fixed points that do not necessarily satisfy this
condition.6 We will now give some prominent examples of families of fixed points (see Table
1), known to exist for infinitely many values of N . Some of them have a discrete and some a
continuous symmetry group. Our list is representative but far from complete; see e.g. [8, 9]
for more examples. We will then discuss what is known about classification.

Maximal symmetry G = O(N) is realized for the O(N) fixed point with quartic potential
given by λ( ~φ 2)2 . It exists for any N ¾ 1, and reduces for N = 1 to the Ising (also called
Wilson–Fisher) fixed point.

4A bottle of Dom Pérignon champagne will be awarded for a solution of this problem. Please contact the authors
for collecting the prize.

5Notice that some of the quartic perturbations may also be relevant, but those require additional analysis. See
section 6.

6Ref. [7, sec. 3] contains a remark which seems to suggest that fixed points with I2 > 1 can always be factorized
into a product of pairwise noninteracting fixed points with I2 = 1. This cannot be correct as the example of biconical
fixed point below shows. Fortunately this remark is quite tangential in [7] and does not affect the validity of the
main considerations.

7For m1 = m2 = m, this fixed point is a particular case of the MN fixed point with n = 2, and the symmetry is
enhanced to O(m)2 oZ2, reducing the number of quadratic invariants to 1.
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Table 1: Summary of examples of fully interacting fixed points given in text.

Name N G I4 I2

O(N) N ¾ 1 O(N) 1 1
cubic N ¾ 3 (Z2)N o SN 2 1
tetrahedral N ¾ 4 SN+1 ×Z2 2 1
bifundamental N = mn O(m)×O(n)/Z2 2 1

(m, n¾ 2, Rmn ¾ 0)
“MN" N = mn O(m)n o Sn 2 1

(m, n¾ 2, m 6= 4)
tetragonal N = 2n¾ 4 (D8)n o Sn 3 1
Michel N = r1 · · · rk Gr1...rk

k+ 1 1
biconical7 N = m1 +m2 O(m1)×O(m2) 3 2

3.1 Fixed points with I2 = 1, I4 = 2: general theory

We next consider fixed point symmetries which allow two quartic and one quadratic invariant.
There is a neat general theory of such fixed points, which we will now review. First of all they
satisfy the famous trace condition of [2]:

λii jk = ε zδ jk , (9)

where z is some (fixed-point dependent) constant. Indeed, the trace in the left-hand side is a
G-invariant two-tensor and since I2 = 1 it must be proportional to the tensor δ jk. It is then
natural to write λ as a sum of two terms:

λi jkl = ε
� 1

N+2z Ti jkl + di jkl

�

, Ti jkl = δi jδkl +δikδ jl +δilδ jk . (10)

As a consequence of (9), the tensor di jkl defined by this equation will be symmetric and trace-
less.

We now impose that the coupling (10) satisfies the beta-function equation. Using the fact
that di jkl is symmetric and traceless, the beta-function equation reduces to

di jmndklmn + dikmnd jlmn + dilmnd jkmn = p Ti jkl + q di jkl , (11)

with coefficients p, q given by

p =
1

N + 2
z
�

1−
N + 8
N + 2

z
�

, q = 1−
12

N + 2
z . (12)

Notice that Eqs. (10), (11) and (12) followed from the trace condition only. This will be useful
in section 5.4.

Now we will use the assumption I4 = 2, i.e. that the space of invariant symmetric four-
tensors is two-dimensional. We take as its basis elements Ti jkl and another tensor d G , chosen
traceless without loss of generality.8 Then, the tensor d in (10) must be proportional to d G:
d = αd G . Notice that the tensor d = d G is bound to satisfy Eq. (11) with some p = pG ,
q = qG . Indeed, the left-hand side of (11) is a G-invariant symmetric four-tensor, so it must
be expressible as a linear combination of T and d G . Notice also that (11) implies

di jkl di jkl =
1
2 pN(N + 2) , (13)

8This additional tensor d G is called “primitive", because by assumption it cannot be reduced to products of
lower-rank invariant tensors.
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and so pG > 0 since we assume that d G is not identically vanishing.
The tensor d = αd G will then satisfy Eq. (11) with p = α2 pG , q = αqG . Substituting these

into (12) we see that in order to find the fixed point we must solve

α2 pG =
1

N + 2
z
�

1−
N + 8
N + 2

z
�

, αqG = 1−
12

N + 2
z , (14)

for α and z. Since pG ¾ 0 we find 0¶ z ¶ N+2
N+8 .

There are two solutions of (14), (α+, z+) and (α−, z−), with

α± =
1
qG

(N + 2)ρ ± 6
p
∆

144+ (N + 8)ρ
, z± =

(N + 2)(24+ ρ ∓
p
∆)

2
�

144+ (N + 8)ρ
� , (15)

where ρ = q2
G/pG ¾ 0 and

∆= ρ
�

ρ − 4(N − 4)
�

. (16)

Ifρ ¾ 4(N−4)we have a pair of fixed points with real couplings, which coincide forρ = 4(N−4).
If ρ < 4(N − 4), these fixed points have complex couplings and are discarded since here we
are interested in real fixed points.9 A related discussion about the presence of pairs of fixed
points has appeared in [2,9].10

Fixed points obtained using this construction are usually fully interacting, but sometimes
they factorize. This happens for one of the cubic symmetry fixed points, and for one of the MN
fixed points; see below.

3.2 Fixed points with I2 = 1, I4 = 2: examples

We will now consider several examples where the above general theory can be applied.
The cubic fixed point has G = (Z2)N o SN symmetry, called the cubic group [9, 12–14].

This is the symmetry group of the unit cube in N dimensions. The second quartic invariant
is
∑

iφ
4
i , in the frame in which G acts by permuting the fields, and by flipping their signs.

Forming the d G tensor for cubic symmetry and computing the ρ parameter we find

ρC =
9(N − 2)2

2(N − 1)
(N ¾ 3) . (17)

We see that ρC > 4(N −4) for all N ¾ 3, and so for any N ¾ 3 there are two fixed points with
this symmetry. One is fully interacting, while the other consists of N decoupled copies of the
Ising fixed point.

The tetrahedral fixed points have G = SN+1×Z2, the tetrahedral group [9,15]. Consider
vectors eαi , α= 1, . . . , N + 1 satisfying

∑

α

eαi = 0, eαi eβi = δ
αβ −

1
N + 1

, (18)

which are vertices of the perfect hypertetrahedron in RN . The SN+1 part of G is the symmetry
group of this hypertetrahedron, permuting the vertices, and Z2 acts by flipping the sign of
all fields. The second quartic invariant involves the tensor

∑

α eαi eαj eαk eαl . This is sometimes
referred to as the restricted Potts model. The ρ parameter for the tetrahedral symmetry equals

ρT =
9(N2 − 3N − 2)2

2(N − 2)(N − 1)(N + 1)
(N ¾ 3) . (19)

9Although in other contexts fixed points with complex couplings may be useful, see [10,11].
10More generally, Ref. [2] shows that given any fixed point λ∗ satisfying the trace condition, whatever its sym-

metry, there is another fixed point λ∗∗ which can be expressed as a linear combination of T and λ∗.
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In[130]:= nmax = 10; mmax = 100;
Show[RegionPlot[{m^2 + n^2 & 10 m n & 4 (m + n) + 52 ≥ 0 && m ≥ 2 && n ≥ 2}, {m, 0, mmax},

{n, 0, nmax}, PlotPoints / 100, BoundaryStyle / None, FrameLabel / {m, n},
FrameStyle / 15], Graphics[{Dashed, Line[{{0, 2}, {mmax, 2}}]}](;,

Graphics[{Dashed,Line[{{2,0},{2,nmax}}]}];),
ContourPlot[m^2 + n^2 & 10 m n & 4 (m + n) + 52, {m, 0, mmax}, {n, 0, nmax},
Contours / {0}, ContourStyle &> Dashed, ContourShading / None,
ImageSize / 800, FrameLabel / {m, n}, FrameStyle / 10],

Graphics[{PointSize[0.015], Point[{2, 2}]}]]

Out[130]=

Slava-plots.nb     3

Figure 2: The region of (m, n) space satisfying the conditions m ¾ n ¾ 2, Rmn ¾ 0
needed to have bifundamental fixed points with real couplings. It consists of the point
m= n= 2, and of the integer points in the gray region, described by Eq. (22). Notice
that the allowed region around point m = n = 2 is really a tiny triangle invisible on
this scale, but m= n= 2 is the only integer point within it.

We can check that ρT ¾ 4(N − 4) for all N ¾ 3, with a strict inequality for all N except for
N = 5 where it’s an equality. There are therefore two fixed points with this symmetry for
N ¾ 4, which coincide for N = 5. For N = 3 the tetrahedral group G is isomorphic to the cubic
group, and the tetrahedral fixed points coincide with the cubic ones (indeed ρC = ρT =

9
4 for

N = 3).
The bifundamental fixed points11 have G = O(m)×O(n)/Z2, where N = mn [8,9,16,17].

We restrict to m ¾ n without loss of generality. To realize these fixed points, one writes φi as
a m× n matrix field Φab, which transforms as a bifundamental of O(m)× O(n). The second
quartic invariant is tr(ΦΦTΦΦT ). Since both O(m) and O(n) can realize the same overall sign
flip Φ→−Φ we need to mod out by a Z2.

Using results of [9] we find the ρ parameter

ρbif =

�

mn(m+ n) + 4mn− 10(m+ n)− 4
�2

3(m− 1)(m+ 2)(n− 1)(n+ 2)
= 4(N − 4) +

(mn+ 2)2 Rmn

3(m− 1)(m+ 2)(n− 1)(n+ 2)
,

(20)

where

Rmn = m2 + n2 − 10mn− 4(m+ n) + 52 . (21)

To have fixed points with real couplings we need to impose Rmn ¾ 0. Restricting to m¾ n, this
is satisfied by m= n= 2 and

2¶ n¶ 5m+ 2− 2
Æ

6(m+ 2)(m− 1) (m¾ 22), (22)

see Fig. 2. If Rmn > 0 there are two fixed points with real couplings (which are sometimes
referred to as the chiral and antichiral fixed points), which coincide if Rmn = 0.

The Diophantine equation Rmn = 0 has an infinite number of positive integer solutions
given by [18]

mi = 10mi−1 − ni−1 + 4 , ni = mi−1 , i = 1,2, . . . , (23)

m1 = 7 , n1 = 1 . (24)

11This is our proposed terminology. Sometimes they are called O(m)×O(n) fixed points.
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Since n> 1 the solution with smallest N is m= 73, n= 7, N = 511.
We finally consider the MN fixed points. They have G = O(m)noSn, where again N = mn

but in this case there is no symmetry between m and n [7,9,19–22]. In this case φi is decom-
posed as n¾ 2 vectors of size m, ~ϕr , r = 1, . . . , n, and the second quartic invariant is

∑

r( ~ϕ
2
r )

2.
The case m = 1 is equivalent to the cubic, and the case m = n = 2 to the bifundamental sym-
metry.12

Using again results of [9], the ρ parameter is given by

ρMN =

�

m(m+ 8)(n− 1) + (m− 4)(m+ 2)
�2

6m(m+ 2)(n− 1)
= 4(N − 4) +

(m− 4)2(mn+ 2)2

6m(m+ 2)(n− 1)
. (25)

General theory predicts that there are two real fixed points for m 6= 4, which coincide for
m= 4. However, only one of these fixed points is fully interacting, while the other is factorized,
consisting of n decoupled O(m) theories. For m= 4 only the factorized fixed point remains.

3.3 Further examples of fixed points

As an example of a fixed point with three quartic invariants and one quadratic invariant,
we mention the tetragonal fixed point [9, 19, 23, 24], [6, sec. 11.6], which exists for even
N = 2n¾ 4. The quartic potential includes the isotropic O(N) term, the cubic term

∑

iφ
4
i , and

the tetragonal anisotropy. The latter takes the formφ2
1φ

2
2+φ

2
3φ

2
4+. . .+φ2

N−1φ
2
N . Focussing on

the first pair of fields φ1,φ2, permuting them and flipping signs generates the eight-element
dihedral group D8. The full symmetry group of this fixed point is therefore (D8)n o Sn.

There exist fixed points with arbitrary large I4. An example is provided by the Michel fixed
point [7,9,25], which is a generalization of the MN fixed point. Consider N = r1 · · · rk where
ri > 1 are integers (not necessarily prime), and write φi as a tensor with k indices αi = 1 . . . ri ,
Φα1...αk

. The quartic term
∑

α1...αl

�

∑

αl+1...αk

Φ2
α1...αk

�2

(26)

breaks O(N) to O(m)n o Sn where n = r1 · · · rl and m = rl+1 · · · rk. The Michel fixed point
contains k + 1 such terms (0 ¶ l ¶ k) with nonzero couplings, so that the symmetry group
Gr1...rk

is the intersection.
Finally we mention the biconical fixed point, which provides an example with more than

one quadratic invariant. Let us split ~φ into two vectors ~φ1 and ~φ2 with m1 and m2 components,
m1 +m2 = N , and consider the symmetry group O(m1)×O(m2) acting on ~φ1 and ~φ2. There
are two quadratic invariants, ~φ 2

1 and ~φ 2
2 , and the quartic potential is a linear combination of

three invariants, ( ~φ 2
1 )

2, ( ~φ 2
2 )

2, and ~φ 2
1
~φ 2

2 [26–28].

3.4 Classification results

Full classification of fixed points is available only for N = 1 and N = 2. Namely, for N = 1 we
have only two fixed points, both with G = Z2: the free one at λ = 0 and the Wilson–Fisher
fixed point at λ= ε/3.

For N = 2 we have only one fully interacting fixed point: the O(2) one; see [9] for a
completely general proof.

For N = 3 there are three known fully interacting fixed points: O(3), cubic, and biconical.
The O(3) and cubic fixed points are the only ones assuming the “single quadratic invariant"
condition (or a more general “isotropy constraint” λiklmλ jklm∝ δi j [29]). The biconical fixed

12As a check, ρMN coincides with the cubic ρC for m= 1, n¾ 2, and with the bifundamental ρbif for m= n= 2.
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point has O(2)×Z2 symmetry [26–28].13 It would be nice to prove rigorously that there are
no further fixed points.

Under the assumption of a single quadratic invariant, an extensive analysis of fixed points
was performed in [30] for N = 4, and in [31–33] for N = 6. These works identified dozens of
fixed points, corresponding to various discrete subgroups of O(4) and O(6), respectively. They
offer a glimpse of the incredible complexity that a full classification of fixed points is bound to
entail.

4 The A-function

As we have seen in the previous section, there are many fixed points. Ideally we would like
to understand all fixed points and RG flows connecting them. There are currently only partial
results towards this goal.

It has been observed long ago by Wallace and Zia [34,35] that the one-loop beta-function
can be written as a gradient of an A-function:

βi jkl =
δ

δλi jkl
A , A= −1

2 ελi jklλi jkl +λi jklλklmnλmni j . (27)

We use the variational and not the usual derivative in (27) because couplings are real symmet-
ric rank-four tensors, so the components λi jkl are not all independent. Eq. (27) thus means
that the variation of A is expressible as

δA= βi jkl δλi jkl . (28)

This is the same convention as when varying with respect to the metric in general relativity.
Equivalently we can consider a bigger vector space of all real rank-four tensors, call it V4,

of which the vector space of symmetric couplings, V sym
4 , is a subspace. The A-function can be

formally considered as given by the same equation on the full V4. The variational derivative
in (27) can be computed as the usual partial derivative ∂

∂ λi jkl
applied to the so-extended A-

function.
It will also be helpful to write Eq. 27 in a form which refers to an independent set of

coordinates on V sym
4 . Let λI be such a set of coordinates and gI J be the restriction of the flat

metric on V4 to V sym
4 .14 Then 27 can be equivalently expressed as15

β I = g I J∂JA . (29)

Eq. (28) or its more covariant form (29) imply that the A-function decreases along the RG
flow (flowing towards the IR). Indeed we get (d/d t)A= β I∂IA= g I J∂IA∂JA¾ 0.

The existence of the A-function plays a fundamental role in the classification of RG fixed
points and of RG flows connecting them.

One useful consequence is as follows. Take an arbitrary RG trajectory. One possibility
is that the trajectory runs out to infinity. Consider the more interesting possibility that the
trajectory stays bounded for all times. From a general theorem about real-analytic gradient
flows due to Łojasiewicz [36–38], we can conclude:16

13We thank Matthijs Hogervorst for reminding us about the N = 3 biconical fixed point.
14For example we can choose as I ordered tuples i jkl. It’s easy to see that with this choice gI J = pIδI J where pI

is the number of non-identical permutations of the tuple I . E.g. p1111 = 1, p1112 = 4, etc.
15We will write λI and β I as required by the differential geometry conventions on contravariant and covariant

indices. However, we will keep lower indices in λi jkl and βi jkl . Hopefully this will not cause confusion.
16Analyticity of A is important. For example, one can construct a C∞ gradient flow with a trajectory whose limit

set is not a single point but a segment. For real-analytic A such pathologies are impossible.
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Fact. Any bounded RG trajectory necessarily goes to a fixed point.
Of particular interest is the value A∗ of A at the fixed point. Contracting the beta-function

equation βi jkl = 0 with λi jkl we have

ελ∗i jklλ∗i jkl = 3λ∗i jklλ∗klmnλ∗mni j , (30)

where λ∗i jkl stands for a fixed point coupling value. Using this in equation (27) for A we have

A∗ = −
1
6 ελ∗i jklλ∗i jkl , (31)

from where we see that A∗ is always negative. It is clearly interesting to know how negative A∗
can become. One of the main results of our paper will be to establish a general lower bound:

A∗ ¾ −
1
48 N ε3 . (32)

Such a bound was previously observed in [9] for a class of RG flows preserving a subgroup of
O(N). Here we will show that it is completely general. In particular, it holds independently
of any assumption about the symmetry and the number of quadratic and quartic invariants. It
applies both to fully interacting and factorized fixed points.

Equivalently, (32) says that all fixed points belong to a known compact region of coupling
space:

λ∗i jklλ∗i jkl ¶
1
8 Nε2 . (33)

Any search of new fixed points can therefore be restricted to this region.

5 A bound on A

In this section we will prove the bound (32) on the value of A, or the equivalent bound (33),
at any fixed point. We will omit the star subscript for fixed point values, something that will
hopefully not cause any confusions. Just in this section, it will be convenient to further rescale
the couplings λ → λ/ε. Before rescaling the fixed point coupling is O(ε), after rescaling it’s
O(1). The rescaled one-loop fixed point equation takes the form

λi jkl = λi jmnλmnkl + 2 permutations . (34)

We will show that any real symmetric four-tensor solving this equation satisfies the bound

S = λi jklλi jkl ¶ CN , CN =
1
8 N . (35)

This is equivalent to (33) after undoing the rescaling λ→ λ/ε.

5.1 Why a bound is expected to exist

First we present a simple argument which explains why a bound is expected to exist. We will
fix N and we will try to show that all components of λi jkl are bounded by some constant. Like
in an argument seen in section 2, the idea is to first consider components λiiii , then λiimn, and
finally the general case.

For components λiiii , considering for definiteness i = 1, the beta-function 34 implies

λ1111 = 3λ11mnλ11mn ¾ 3λ2
1111 . (36)
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From here we can conclude two things. First, since λ1111 ¾ 3λ2
1111, we must have17

0¶ λ1111 ¶
1
3 . (37)

Second, from the first equality in (36) and from (37) we have

λ11mnλ11mn =
1
3 λ1111 ¶

1
9 . (38)

In particular, for any m, n

|λ11mn|¶
1
3 . (39)

Finally let us bound components λi jkl where no two indices are equal. Take for definitenes
i = 1, j = 2, and impose the beta-function equation (34) for λ1122:

λ1122 = 2λ12mnλ12mn +λ11mnλ22mn . (40)

From here we have

2λ12mnλ12mn = λ1122 −λ11mnλ22mn . (41)

The first term in the right-hand side is bounded by (39), while the second term can be bounded
in absolute value using (38) and the Cauchy–Schwarz inequality:

|λ11mnλ22mn|¶ (λ11mnλ11mn)
1/2(λ22pqλ22pq)

1/2 ¶ 1
9 . (42)

Summing the obtained bounds for all components, we will get a bound of the form (35)
with some constant CN . This reasoning is rather crude and does not give an optimal constant,
in particular CN will grow quadratically with N because one will have to sum over all pairs i, j
with i 6= j. In the next section we will present the argument producing CN =

1
8 N .

5.2 The bound with CN =
1
8 N

We first introduce some notation. In this section the Einstein summation convention will be
applied to indices m, n, but all summation in indices i, j will be explicitly indicated.

Denote x i = λiiii . From (37) we know that x i ∈ [0, 1
3]. Denote also (vi)mn = λiimn, viewed

as matrices in m, n indices. Then the first equality in (36) can be written as

trvi
2 = 1

3 x i . (43)

The beta-function equation for the components λii j j ,

λii j j = 2λi jmnλi jmn +λiimnλ j jmn , (44)

can be written as

λi jmnλi jmn =
1
2

�

(vi) j j − tr(vivj)
�

. (45)

The quantity we need to bound takes the form (using (43) and (45))

S =
∑

i

λiimnλiimn +
∑

i 6= j

λi jmnλi jmn =
1
3

∑

i

x i +
1
2

∑

i 6= j

(vi) j j −
1
2

∑

i 6= j

tr(vivj) . (46)

17Using the notation of section 2 this can also be written as 0¶ λ(φ̄)¶ 1
3 for any unit-length φ̄ [2].
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Using further the identity

∑

i 6= j

tr(vivj) = tr
�∑

i

vi

�2
−
∑

i

trvi
2 = tr

�∑

i

vi

�2
− 1

3

∑

i

x i , (47)

we rewrite (46) as

S = 1
2

∑

i

x i +
1
2

∑

i 6= j

(vi) j j −
1
2 tr
�∑

i

vi

�2
. (48)

We estimate the last term in the right-hand side of (48) as follows:

tr
�∑

i

vi

�2
=
∑

j,k

�∑

i

(vi) jk
�2
¾
∑

j

�∑

i

(vi) j j

�2
=
∑

i

�∑

j

(vi) j j

�2
, (49)

where in the last equality we rename i↔ j and use (vi) j j = (v j)ii . We can also separate the
i = j term which is x i . Then (48) gives

S ¶ 1
2

∑

i

x i +
1
2

∑

i

�

∑

j: j 6=i

(vi) j j −
�

x i +
∑

j: j 6=i

(vi) j j

�2
�

= 1
2

∑

i

[(x i + yi)− (x i + yi)
2] , (50)

where we denote

yi =
∑

j: j 6=i

(vi) j j . (51)

Finally introducing zi = x i + yi = tr(vi), Eq. (50) takes the form

S ¶ 1
2

∑

i

(zi − zi
2) . (52)

Since max(z − z2) = 1
4 , attained at z = 1

2 , we finally obtain the claimed inequality:

S ¶ 1
8 N . (53)

The key idea in the above proof was to combine the second (positive) and the third (neg-
ative) terms in (48), which becomes possible after estimating the negative term as in (49).
If instead one were to neglect the negative term altogether, the resulting bound would have
CN = O(N2) as in the previous section, because the second positive term in (48) contains
O(N2) terms.

Remark. A simple modification of the above argument gives a bound on S for couplings
whose beta-function is not zero, which may be of some interest. Namely, we have

S = λi jklλi jkl ¶
1
8 N +B , B = 1

3

∑

i

βiiii +
1
2

∑

i 6= j

βii j j , (54)

where βi jkl = −λi jkl + (λi jmnλmnkl + 2 permutations) is the rescaled beta-function. In the
proof, Eqs. (43) and (45) get extra terms 1

3βiiii and 1
2βii j j in the right-hand side, which sum

up to B. The remaining estimates are unaffected.
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5.3 Improvements of the bound for N = 1, 2,3

The following small modification produces a slightly improved bound for N = 1,2, 3. Note
that in the above argument we treated the variables zi entering the final estimate (52) as
unconstrained, but in fact zi = x i + yi where x i ∈ [0, 1

3] while yi can be bounded as

|yi|¶
p

N − 1
�∑

j 6=i

(vi) j j
2
�1/2

=
p

N − 1
Ç

1
3 x i − x i

2 , (55)

where we have used the Cauchy–Schwarz inequality in the first step, and the second step
follows from (43). So in fact (50) implies a more nuanced bound:

S ¶ 1
2 NcN , (56)

where

cN = max
x∈[0, 1

3 ],y∈[0,
p

N−1( 1
3 x−x2)1/2]

(x + y − (x + y)2) . (57)

For N ¾ 4 the maximum is attained at z = x + y = 1
2 . We can e.g. take x = 1

4 , y = 1
4 , and this

satisfies the upper bound (55) on y , so cN =
1
4 , and we go back to the original case of bound

(53). On the other hand, for N = 1,2, 3 we have

zN = max
x∈[0, 1

3 ]
(x +

p
N − 1(1

3 x − x2)1/2)< 1
2 , (58)

and so

cN = zN − z 2
N <

1
4 , (59)

so that the new bound is stronger. We get

c1 =
2
9 , c2 ≈ 0.24047 , c3 ≈ 0.24801 , (60)

where for N = 2,3 extremization is carried out numerically.
The N = 1 result is trivial and consistent with S(Ising) = 1

9 . The N = 2 result is not partic-
ularly interesting because the fixed points are classified; see section 3.4. Just as a sanity check,
the two fixed points Ising+Ising and O(2) both satisfy the bound, with S(O(2)) = 6

25 = 0.24
coming close to saturating it.

For N = 3 the bound takes the form S ¶ 3
2c3 ≈ 0.372015 and is of some interest, since the

full classification has not yet been proven. Out of the known fixed points,
S(O(3)) = 45

121 ≈ 0.371901 comes closest to saturating the bound.

5.4 Saturation of the bound for N ¾ 4

In this section we will consider the case when the bound (53), or equivalently (32), is best
possible for N ¾ 4. Turning this around, we will try to understand if it is possible to find fixed
points that saturate (53).

Since the bound arose partly due to (49), to saturate it we need to saturate (49), which
happens if and only if the following sum of off-diagonal terms vanishes:

∑

i

(vi) jk =
∑

i

λii jk = 0 ( j 6= k) . (61)
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In addition, since zi = tr(vi), and maximization of zi − zi
2 happens for zi =

1
2 , to saturate the

bound we need

tr(vi) =
∑

j

λii j j =
1
2 (no sum over i) . (62)

Eqs. (61) and (62) can be summarized by saying that the bound will be saturated if and only
if the fixed-point tensor satisfies

∑

i

λii jk =
1
2 δ jk , (63)

a particular case with z = 1
2 of the trace condition (9). As explained in section 3.1, fixed points

satisfying the trace condition are described by Eq. (10) where di jkl is a traceless symmetric
tensor satisfying Eqs. (11), (12). Thus, fixed points saturating the bound are precisely solutions
of (10)-(12) with z = 1

2 . This is true in full generality, e.g. without assuming anything about
the symmetry of the considered fixed points. As a check, notice that these equations imply

λi jklλi jkl =
1
2 Nz(1− z) (64)

so that the bound is saturated if and only if z = 1
2 .

For N = 4, substituting z = 1
2 into (12) we get p = q = 0. The obvious solution is di jkl = 0.

Hence the O(4) fixed point saturates the bound [9]. It also follows from (13) that it’s the only
solution.

Proceeding to N ¾ 5, section 3.1 also provided a way to construct examples of fixed points
satisfying (10)-(12) using symmetry groups with I2 = 1, I4 = 2. We would like to see when
these examples saturate the bound. From (14), we conclude that

z = 1
2 ⇔ ρ = 4(N − 4) . (65)

Recall that by the general theory we have two real fixed points with G-symmetry ifρ ¾ 4(N−4),
which coincide for ρ = 4(N − 4). We thus see that the bound is saturated for groups with
I2 = 1, I4 = 2 if and only if the two G-symmetric fixed points coincide. This equivalence is
not an accident: it turns out that fixed points saturating our bound for N 6= 4, no matter
their symmetry, necessarily have a marginal perturbation. The proof of this fact is postponed
to Appendix A. For now let us go over the examples from section 3.2 and recall when the
coincidence happens.

We see that the cubic fixed points never saturate the bound. The tetrahedral fixed point
saturates the bound if and only if N = 5. The bifundamental fixed point saturates the bound
for m, n solving the Diophantine equation Rmn = 0. There are infinitely many solutions given
in Eq. (24), the first one being N = 511 = 73 · 7. The MN fixed point can only saturate the
bound for m = 4, when it factorizes into O(4) fixed points, so that we don’t get new fully
interacting examples.

It would be interesting to look for more examples. We notice in this respect that a large
number of N = 6 fixed points satisfying (63) has been reported in [33]. The RG-stable fixed
points found there have z = 6

11 in our notation, and so they do not saturate the bound, although
they come the closest, among the fixed points reported there, to doing so.

To summarize, our analysis implies that the bound S ¶ 1
8 N is best possible for N = 4, 5, and

for an infinite sequence of N ¾ 511 obtained via (24). If one allows factorized fixed points, the
bound can also be trivially saturated putting together decoupled copies of O(4) and tetrahedral
N = 5 fixed points, i.e. for all N which can be represented as a linear combination 4m+ 5n
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with nonnegative integers m, n. This covers all integers N ¾ 4 except N = 6,7, 11.18 For
these values of N , Eqs. (10)-(12) with z = 1

2 can perhaps be investigated by brute force using
computational algorithms of real algebraic geometry, although we have not attempted this.

6 RG stability

In this section we will present some general results about RG stability of fixed points, mostly
relying on the work of L. Michel.

Let us remind the reader of some standard terminology. We call a fixed point RG-stable if all
quartic deformations around it are marginal or irrelevant. This can be asserted by linearizing
the beta-function equations,

dλI

d t
= β I(λ) , (66)

around the fixed point λ∗. RG stability means that the matrix Γ I
J = ∂Jβ

I has all eigenvalues
γ¾ 0 (we will see momentarily that all eigenvalues are real).

We will only study RG stability for the one-loop beta-function. Some deformations that are
marginal at one loop may become relevant or irrelevant at higher loop order. This phenomenon
is beyond the scope of our paper (see however section 6.3 for some related comments).

RG stability should not be confused with potential stability discussed in section 2, where
we showed that all fixed points have stable potential.

Clearly the trivial fixed point λ = 0 is RG-unstable. Below we only examine nontrivial
fixed points.

The A-function helps enormously to analyze RG-stability. Using Eq. (29) we get

∂Jβ
I = g IK MKJ , MKJ = ∂K∂JA , (67)

so the eigenvalue problem Γ I
J cJ = γ c I for a generally nonsymmetric matrix Γ is equivalent to

the generalized symmetric eigenvalue problem

MI J cJ = γ gI J cJ (68)

for the Hessian matrix MI J of A at the fixed point. This has two consequences. First, all
eigenvalues γ are real. Second, a fixed point is RG-stable if and only if the Hessian evaluated
at that fixed point is positive semidefinite.

It will be interesting to inject an element of symmetry into the discussion of RG-stability.
Let H be a subgroup of O(N) and consider the set of all quartic couplings ΛH which are H-
invariant. The set ΛH is a linear subspace of all coupling tensors, and it is preserved by RG
evolution.

Suppose λ∗ ∈ ΛH is a fixed point. Notice that the symmetry group of λ∗ is at least as large
as H but may be strictly larger. It is interesting19 to consider RG-stability of λ∗ with respect
to perturbations belonging to ΛH , which we will call RG-stability within ΛH . By the same
argument as above, this property holds if and only if A restricted toΛH has positive semidefinite
Hessian at λ∗. The unrestricted RG stability corresponds to H = {1}, ΛH = {all couplings}.

18For general natural numbers a1, a2 with gcd(a1, a2) = 1, the largest integer N for which there is no represen-
tation N = m1a1 + m2a2 with nonnegative integer m1, m2 is called the Frobenius number g(a1, a2) of a1, a2. A
theorem of Sylvester says that g(a1, a2) = (a1 − 1)(a2 − 1)− 1 [39]. In particular we have g(4,5) = 11. Smaller
numbers can be checked by hand.

19This is also physically important since the set of allowed perturbations of the microscopic Hamiltonian is often
restricted by symmetry.
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6.1 Uniqueness of RG-stable fixed point

Theorem. (Michel [5]) Suppose λ1,λ2 ∈ ΛH are two nontrivial nonidentical fixed points.
Consider the value of the A-function at them: A(λ1), A(λ2). Then

• if A(λ1) 6= A(λ2), then the fixed point with larger A(λ) is RG-unstable within ΛH (while
the other one may or may not be RG stable),

• if A(λ1) = A(λ2), then both fixed points are RG-unstable within ΛH .

As a consequence, there is at most one fixed point RG-stable within ΛH .20

Remark. “Nonidentical" in the statement of the theorem means simply that λ1 and λ2 are
unequal tensors. Nonidentical fixed points may be physically equivalent if they are related by
an O(N) transformation. The theorem still applies in this case. This remark will be important
in the next section.

Proof. We give a pedagogical version of the original proof in [5]; another presentation
can be found in [40], but it does not cover the case A(λ1) = A(λ2), which is important for
applications in section 6.2.

The main idea is to consider the restriction of A to the two-plane within ΛH spanned by λ1
and λ2. The Hessian of restricted A is evaluated by explicit computation, and the statements
of the theorem follow.

To avoid getting lost in indices, let us denote for any symmetric four-tensors u, v, w,

(u, v) = ui jkl vi jkl , (69)

(u, v, w) = ui jkl vklmnwmni j . (70)

Notice that (u, v) and (u, v, w) do not depend on the order of the arguments. Contracting the
beta-function equations expressing the fact that λ1,λ2 are fixed points, we get the following
auxiliary results:

(λi ,λi ,λi) =
1
3ε(λi ,λi) , i = 1, 2 , (71a)

(λ1,λ1,λ2) = (λ2,λ2,λ1) =
1
3ε(λ1,λ2) . (71b)

The first of these equations is (30), and the second one is a simple generalization.
In the above notation

A(λ) = −1
2ε (λ,λ) + (λ,λ,λ) . (72)

Using (71a), we recover (31)

A(λi) = −
1
6ε (λi ,λi) , i = 1,2 . (73)

We will assume without loss of generality that (λ2,λ2) ¾ (λ1,λ1) and will show that λ1 is
unstable.

We are interested in A restricted to the two-plane spanned by λ1 and λ2, parametrized as

A(λ1 + sλ1 + tλ2) . (74)

This is a cubic polynomial in s, t and using (71) we could evaluate all coefficients. For our
purposes of extracting the Hessian, we just evaluate the part quadratic in s, t, which comes
out equal to

1
2ε (λ1,λ1)s

2 + ε (λ1,λ2)st + ε
�

(λ1,λ2)−
1
2(λ2,λ2)

�

t2 , (75)

20We stress that, as almost all results in this paper, this theorem is valid at one loop. Extra RG stable fixed points
may appear in higher orders of the ε-expansion, or when this expansion is extrapolated to ε = 1. See [40] for a
discussion.
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Figure 3: If the orbit O(N) · λ∗ has any other intersections with ΛH apart from λ∗,
as in this figure, the fixed point λ∗ cannot be RG-stable within ΛH .

corresponding to the Hessian matrix

M = ε

�

a1 b
b 2b− a2

�

, ai = (λi ,λi), b = (λ1,λ2) . (76)

We would like to show that this Hessian is not positive semidefinite. Since the matrix element
a1 > 0, one of the eigenvalues is positive and we need to show that the second is negative,
which will be the case if and and only if the determinant is negative. We have

det M/ε2 = 2ba1 − a1a2 − b2 = −(a1 − b)2 − a1(a2 − a1) . (77)

If a2 > a1, this is negative.21 If a2 = a1, this is negative unless b = a1, however the latter
is impossible, since (λ1,λ1) = (λ2,λ2) = (λ1,λ2) implies (λ1 − λ2,λ1 − λ2) = 0 and we are
assuming λ1 6= λ2. So in all cases det M is negative. This completes the proof that λ1 is
unstable.

6.2 Criteria for RG instability

To apply Michel’s theorem, we need to have two fixed points. But suppose we are given only
one fixed point λ∗ ∈ ΛH . We can still sometimes use the theorem to conclude that λ∗ is
unstable, using an idea of [41]. Consider the orbit of λ∗ under the action of O(N), denoted
O(N) ·λ∗.

Fact 1. If this orbit intersects ΛH at some other point besides λ∗, then the fixed point λ∗ is
RG-unstable within ΛH .

Proof. (see Fig. 3) Let λ∗∗ 6= λ∗ be another intersection. Since λ∗∗ is obtained from λ∗ by
an O(N) transformation, they have the same A-function: A(λ∗) = A(λ∗∗). By Michel’s theorem,
λ∗ is then RG-unstable. Of course the two fixed points are completely physically equivalent.
However, λ∗ and λ∗∗ are two different tensors, and so Michel’s theorem is applicable. QED

We thus have a sufficient condition for an RG fixed point to be unstable. As we will see
now, applicability of this condition depends just on H and on the symmetry group of λ∗ which
we denote G∗. Notice that H ⊂ G∗ ⊂ O(N), but that G∗ may be strictly larger than H. Suppose
we have

λ∗∗ = g0 ·λ∗ ∈ ΛH , λ∗∗ 6= λ∗ , (78)

where g0· denotes the group action of an element g0 ∈ O(N) on the tensor. The condition
λ∗∗ 6= λ∗ is equivalent to g0 /∈ G∗. On the other hand the condition λ∗∗ ∈ ΛH is equivalent to

h · (g0 ·λ∗) = g0 ·λ∗ for any h ∈ H (79)

21In this case the quadratic part (75) is negative along the line t = −s, moving from λ1 in the direction of λ2 [5].
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or equivalently, multiplying both sides by g−1
0 ,

(g−1
0 hg0) ·λ∗ = λ∗ for any h ∈ H . (80)

The latter condition can be expressed as

g−1
0 H g0 ⊂ G∗ . (81)

We thus have an equivalent formulation of Fact 1:
Fact 2. Let H ⊂ G∗ be two subgroups of O(N). Suppose there exists an O(N) element

g0, such that g0 /∈ G∗ and g−1
0 H g0 ⊂ G∗. Then any fixed point λ∗ ∈ ΛH with symmetry G∗ is

RG-unstable within ΛH .
Consider now some simpler but strictly weaker conditions. Recall that the normalizer of

any subgroup H of O(N) is defined as

N(H) = {g : g−1H g ⊂ H} . (82)

The normalizer is itself a subgroup of O(N). Clearly N(H) ⊃ H but it may be strictly larger.
Then we have
Fact 3. Suppose that H ⊂ G∗, and that the normalizer N(H) is strictly larger than G∗. Then

any fixed point λ∗ ∈ ΛH with symmetry G∗ is RG-unstable within ΛH .
Proof. This is strictly weaker than Fact 2. Take g0 /∈ G, g0 ∈ N(H). The latter implies by

definition g−1
0 H g0 ⊂ H (and thus ⊂ G∗).

Specializing Fact 3 to H = G∗ we get:
Fact 4. [41] Suppose that the normalizer N(G∗) is strictly larger than G∗. Then any fixed

point λ∗ with symmetry G∗ is RG-unstable within ΛG∗ (and thus within ΛH for any H ⊂ G∗).
These criteria have many applications, some of which have been explored in [41, 42].

Here we will consider only one application. Consider unrestricted RG stability: H = {1},
ΛH = {all couplings}. By Fact 1, a fixed point λ∗ may be unrestricted RG stable only if its
entire O(N) orbit consists of just one point, which means that λ∗ is O(N) invariant. [We can
also see this from Fact 3 since N(H) = O(N).]

Of course there is only one nontrivial fixed point with O(N) symmetry—the O(N) fixed
point. It is known to be one-loop stable for N = 2, 3,4,22 while for N > 4 it is unstable as it
flows e.g. to the cubic fixed point for these N . So one consequence is that for N > 4 there are
no unrestricted RG-stable fixed points.

6.3 Zero RG eigenvalues: divergences of broken currents vs marginal operators

Here we would like to discuss and resolve a potential confusion related to the interpretation
of zero eigenvalues of the linearized beta-function equation.

Consider a fixed point λ∗ with symmetry group G∗ ⊂ O(N). Let Gconn ⊂ SO(N) be the
connected component of G∗ containing the unity. For the free and the O(N) fixed points, and
only for these two, we have Gconn = SO(N). For any other fixed point Gconn is strictly smaller
than SO(N), and this is the case we wish to examine.

As usual we choose a basis of SO(N) generators as {Vk, Bl} where Vk are generators of
Gconn, called unbroken, while the ‘broken generators’ Bl are a remaining set of generators
completing the basis. The number of broken generators NB = dim(SO(N))− dim(Gconn) > 0
by assumption. Acting on the fixed point λ∗ with broken generators we generate a manifold
M of tensors of dimension NB. By covariance of the beta-function equation, all tensors of

22For N = 3, 4 the cubic deformation is marginal and at higher orders it becomes irrelevant for N = 3 and
relevant at N = 4. Recall that higher order stability is beyond our scope in this paper.
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M have zero beta-function. These are all RG fixed points, physically equivalent to λ∗ but
described by different tensors.

Consider now a perturbation of λ∗ by a tensor δλ, in a direction tangent to M. By the
above discussion, any such perturbation will be an eigenperturbation of the linearized RG
equation, with eigenvalue zero. Notice that this statement will be true to any order in pertur-
bation theory. Does this mean we should think of such a perturbation as an exactly marginal
operator? The answer is negative—these zero eigenvalues have a different interpretation.

To understand what’s going on, we should consider the fate of current operators. The
multiscalar theory we are studying,

1
2∂

µφi ∂µφi +
1
4!λi jklφiφ jφkφl (83)

has current operators
Jµ =ω[i j]φi∂µφ j , (84)

where ω[i j] parametrizes the SO(N) algebra. Using the equation of motion

∂ 2φi =
1
3!λi jklφ jφkφl , (85)

the conservation equation for the current takes the form

∂ µJµ =Oδλ = (δλ)i jklφiφ jφkφl , (δλ)i jkl =ωimλmjkl + 3 permutations. (86)

At the fixed point, the currents corresponding to the unbroken generators will have δλ = 0
and will be conserved. On the other hand the broken generators are those for which δλ 6= 0.
Currents corresponding to the broken generators are not conserved, and their divergence is
given the quartic operators Oδλ. The corresponding δλ’s are precisely the deformations along
the manifold M discussed above.23 Since Oδλ is a total derivative operator, perturbing by
∫

Oδλ leaves the theory unchanged. This is not the same as perturbing by an exactly marginal
operator, which leads from one CFT to another, strictly different CFT.

In light of the above, it would not be even correct to ask if
∫

Oδλ is an irrelevant, relevant,
or marginal perturbation, since it’s not a perturbation at all! It still makes sense to ask what is
the scaling dimension of Oδλ (as determined e.g. from the two point function), but linearized
RG teaches us nothing in this respect. Indeed, the RG eigenvalue being zero means that if we
add

g

∫

d 4−ε x Oδλ(x) (87)

to the action and perform an RG step, the coefficient g does not change. However, since
(87) is identically zero, adding it to the action achieves strictly nothing. That g does not
change contains no nontrivial information and cannot be used to draw conclusions about the
scaling dimension of Oδλ. To study this scaling dimension using the RG, one would need more
nuanced probes, for example adding the term like (87) but with a space-dependent coupling
g(x); see below.

Instead, a general conclusion about the scaling dimensions of the Oδλ operators can be
made by relating them to the broken currents Jµ. Being broken, these currents will pick up
anomalous dimensions γJ . As usual for currents, this will first happen at two loops in the ε
expansion, γJ = O(ε2). Importantly, these anomalous dimensions will be positive γJ > 0 as
a consequence of unitarity.24 Their divergences Oδλ will therefore have dimensions d + γJ at

23Notice that any such δλ satisfies the ‘double tracelessness’ condition (δλ)ii j j = 0. This is because the double
trace is invariant under an infinitesimal SO(N) transformation. This remark will be useful in Appendix A.

24As recently discussed in [43] the theory in 4 − ε dimensions is not quite unitary. This absence of unitarity,
however, affects only the high-dimension sector of the theory, while at low dimensions unitarity constraints still
apply.
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Figure 4: For fixed point perturbations by quartic scalar interactions correspond-
ing to broken symmetry generators, linearized RG naively predicts that they are
marginal. Instead such deformations correspond to total derivative operators of scal-
ing dimension larger than d; see the text.

the IR fixed point. Based on their dimension, one could say that these operators are irrelevant,
but as mentioned above the term ‘irrelevant’ is not applicable to total derivative operators. See
Fig. 4.

To avoid any misunderstanding, we confirm that there is no subtlety for all the other zero
eigenvalues of the linearized RG evolution, those whose eigenvectors cannot be obtained
by acting on λ∗ with an SO(N) generator. Their eigenvectors correspond to perturbations
marginal in the one-loop approximations, which may become relevant or irrelevant in higher-
loop approximation.

Let us illustrate the above discussion with a concrete example for N = 2. As mentioned in
section 3.4, in this case there is a complete classification of fixed points [9]. We have the O(2)
fixed point, the free fixed point, the direct product of the Ising fixed point and a free theory,
and the direct product of two Ising fixed points.

Let us focus on the latter case, which obviously does not have O(2) symmetry. Let us study
this theory in the frame whereφ1 andφ2 are the two Ising fixed point fields (i.e. λ1111 = λ2222
are the only two nonzero components of the fixed point coupling tensor). We can consider
arbitrary linearized perturbations around this fixed point. The space of N = 2 symmetric
four-tensors being five-dimensional, we have 5× 5 stability matrix. It has a zero eigenvalue,
corresponding to the operator O− = φ1φ2

3 −φ1
3φ2 [9]. This operator is precisely the result

of acting on λ∗ with an infinitesimal rotation. Using the equations of motion we easily check
that this is a descendant:

O− = φ1φ2
3 −φ1

3φ2 ∼ ∂µ(φ1∂
µφ2 −φ2∂

µφ1) . (88)

Since O− is a total derivative, a corresponding zero RG eigenvalue does not imply that its
dimension is d. Given that we are considering a factorized theory, the dimension of the primary
φ1∂µφ2−φ2∂µφ1 is computed immediately as d − 1+ γφ1

+γφ2
, hence the dimension of O−

is d+γφ1
+γφ2

. This is also consistent with the fact that the dimension of O− should be equal,
in the factorized theory, to that of O+ = φ1φ2

3 +φ1
3φ2. Notice that since the operator O+

is not a total derivative its dimension is correctly predicted by linearized RG methods (it’s the
second eigenvector in [9, Eq. (3.12)]).

It is interesting to extract the dimension of O− in a more direct way. As mentioned this
can be done by performing a deformation of our theory with this total-derivative operator but
with an x-dependent coupling. In that case, we can no longer integrate by parts to remove the
deformation. Renormalization with space-dependent couplings requires new counterterms as
explained in [44, 45]. The operator Jµ = ωi jJ

µ
i j = ωi jφi∂

µφ j , ωi j = −ω ji has dimension
d + γi j , where the anomalous dimension is given by

γi j = (ρklmn)i j(ωλ)klmn , (ωλ)i jkl =ωimλmjkl + permutations , (89)

with

(ρklmn)i j = (N
1
klmn)i j +λpqrs

∂

∂ λpqrs
(N1

klmn)i j , (90)
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where (N1
klmn)i j is the 1/ε pole of the counterterm (Nklmn)i j ∂

µλklmnφi∂µφ j required in the
theory with space-dependent couplings. This receives contributions order by order in pertur-
bation theory, and it has been computed that at two loops [44,45]

N1
klmn)i j = −

1
24(λiklmδ jn −λ jklmδin) . (91)

From this and (90) we find for (89), at two loops,

γi j = −
1
12(λiklmλklmnω jn −λ jklmλklmnωin)−

1
2λikmnλ jlmnωkl . (92)

In our case of two fields φ1 and φ2, where ωi j = εi j , (92) gives, at the decoupled Ising fixed
point,

γ12 =
1

12(λ
2
1111 +λ

2
2222) , (93)

exactly as expected in order to give the dimension of O− as d +γφ1
+γφ2

. Note that although
we have used the fact that O− ∼ ∂µ(φ1∂

µφ2 −φ2∂
µφ1), the result (93) arose directly from

the general expression (92), i.e. without using our knowledge of γφ1
and γφ2

in the decoupled
Ising theory.

7 Conclusion

A very important characteristic of low loop order beta-function expressions obtained in scalar
theories in 4− ε dimensions is that they arise from a gradient, i.e.

β I = g I J∂JA . (94)

The main result of this paper is a general bound on the critical value of A at leading loop order,
given by

A∗ ¾ −
1

12 N cN ε
3 , (95)

where N is the length of the vector order parameter φi and

cN =



















2
9 N = 1

0.24047 N = 2

0.24801 N = 3
1
4 N ¾ 4

. (96)

This bound demonstrates that although RG flows toward the IR cause A to decrease, this cannot
continue indefinitely for flows leading to a fixed point. More specifically, CFTs that are closest
to saturating or actually saturate the bound (95) cannot be deformed by relevant operators
and flow to other CFTs. Such deformations, if they exist, can give rise only to flows running
away to large couplings and/or unstable potentials. A physical interpretation of such runaway
flows is a first-order phase transition.

A perhaps more desirable way to phrase our bound would be to express it in terms of a
physical quantity. The coefficient of the stress-energy tensor two-point function, CT , provides
us with a good candidate. At leading order there is a general result [9],

CT

CT,scalar
= N − 5

36λi jklλi jkl , (97)
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where CT,scalar is the result for a single free scalar. Our bound can then be cast in the form

CT

CT,scalar
¾ N

�

1− 5
72 cN ε

2
�

. (98)

We have found that certain theories saturate the bound (95). Saturation of the bound can
be achieved when fixed points with the same global symmetry that move in coupling space as
N is varied coincide. The N = 1, 4 cases are special—the bound is then saturated by the Ising
and O(4) models respectively. For N = 2 the bound cannot be saturated. For N = 3 we do not
know of a theory that saturates the bound, as is also the case for theories with N = 6,7, 11.
For N = 5 the tetrahedral theory saturates the bound. Further nontrivial examples of bound
saturation arise by the bifundamental fixed point, e.g. for N = 511. It would be interesting
to compile a complete list of theories that can saturate our bound. In general, fixed points
saturating the bound at N 6= 4 have a marginal deformation (see appendix A).

It is obviously of interest to extend our results in other directions. Within the ε expansion,
one could examine the fate of the bound when fermions are added. Even when Yukawa cou-
plings are considered, it is still the case that the flow is gradient at leading order [35]. When
applied to the results of [46] our bound shows that F̃UV− F̃IR is bounded from above for scalar
fixed points. It would be interesting to find a physical argument to justify this upper bound,
and examine possible generalizations using the methods and results of [46].

It is also important to examine the fate of the bound beyond leading order. We remind the
reader that the RG flow is gradient even at two loops in a theory with scalars and fermions in
4− ε dimensions [44,47]. In a theory with only scalars at two loops we have

A= −1
2 ελi jklλi jkl +λi jklλklmnλmni j +

1
12λi jklλ jklmλmnpqλnpqi −

3
2λi jklλkmnpλlmnqλpqi j .

(99)

Using the beta-function equation and the expansion λi jkl = ai jkl ε + bi jkl ε
2 +O(ε3) we find,

at a fixed point,

A∗ = −
1
6 ε

3 ai jkl ai jkl + ε
4
� 1

12 ai jkl a jklmamnpqanpqi −
3
2 ai jkl akmnpalmnqapqi j

�

+O(ε5) , (100)

extending the result (31) beyond leading order. It is interesting that using the one-loop beta-
function equation we were able to eliminate bi jkl from the ε4 term. However, a bound per-
taining to the ε4 correction is not obvious. We hope to explore this possibility in future work.

In Sec. 3 we provided a review of some known fixed points in d = 4−ε. For specific choices
of N there are many more fixed points one encounters, see e.g. [42] for N = 4 and [31, 33]
for N = 6. The study of these fixed points in d = 4− ε but also in d = 3 with the conformal
bootstrap [48] is of obvious interest and importance. As of this writing there have been only
a couple of attempts in this direction [49,50].

While the ε expansion of scalar theories around four dimensions has had a long history of
active research, general statements about fixed points that can be obtained within it are rather
scarce. In this work we proved the bound (95), and discussed a few other general statements,
some of which have appeared in the work of L. Michel. We also provided a quick review of
some famous scalar fixed points. We hope that our work will provide at least an ε step towards
the goal of fully classifying scalar CFTs in d = 4− ε dimensions.
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A Saturation of the bound and marginality

It was observed in section 5.4 that saturation of the bound on A seems to go hand in hand with
pairs of fixed points colliding. We saw these collisions in families of fixed points having fixed
symmetry, but one may wonder if there is more general significance to this observation. The
following result gives an affirmative answer:

Fact. For N 6= 4, a fixed point saturating the bound necessarily has a marginal deformation
(independently of any symmetry assumptions).

The connection to fixed point collisions is obvious, since colliding fixed points are well-
known to have marginal deformations. Intuitively we can understand this by using the follow-
ing toy model. Suppose we have a family of RG flows continuously depending on a parameter
y , and for each y < y0 there are two fixed points that collide for y = y0. Generically, close
to the collision point we can focus on just one coupling g whose running is described by the
phenomenological beta-function

β(g) = y − y0 + (g − g0)
2 . (101)

The precise value of g0 is not important. What is important is that for y < y0 we have two
fixed points at g = g0 ±

p

y0 − y and the dimension of the operator which couples to g is
∆ = d + β ′(g) = d ± 2

p

y0 − y at each of them. For y = y0, when fixed points collide, this
operator is marginal.25

Let us now move past this toy model and prove the above fact. We use the general charac-
terization of fixed points saturating the bound given in section 5.4. These are precisely fixed
points that can be written in the form (10)-(12) with a symmetric traceless tensor di jkl and
z = 1

2 . For convenience we copy these conditions here:

λi jkl =
1

N+2z Ti jkl + di jkl , Ti jkl = δi jδkl +δikδ jl +δilδ jk ,

d ∨ d = 1
3(p T + q d) , p = 1

N+2 z
�

1− N+8
N+2 z

�

, q = 1− 12
N+2 z .

(102)

Here, following [5], we introduced the vee product of two symmetric four-tensors u, v which
is the symmetric four tensor u∨ v defined by

(u∨ v)i jkl =
1
6(ui jmnvmnkl + uikmnvmnjl + uilmnvmnjk + u↔ v) . (103)

We are interested in N 6= 4 because for N = 4 the O(N) fixed point (di jkl = 0) is the only
solution.

We would like to find a perturbation u of the fixed point that is marginal. By section 6, a
marginal direction is a zero eigenvector of the Hessian H of the A-function around the fixed
point, which means

Huv = 0 for any v . (104)

25See [10] for a more detailed review, and for what happens at y > y0 when fixed points go to the complex
plane.
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It will be convenient to evaluate this matrix element in an index-free way, as

Huv = ∂s∂tA(λ+ tu+ sv) . (105)

Expressing the A-function in the notation of section 6 as (we set ε = 1)

A= −1
2(λ,λ) + (λ,λ,λ) , (106)

we find
Huv = −(u, v) + 6(λ, u, v) = (−u+ 6λ∨ u, v) . (107)

This vanishes for any v if and only if

λ∨ u= 1
6u , (108)

which is therefore the condition for the existence of a marginal direction u.
Let us show that this equation has a solution. We will look for a solution in the form

u= T + x d (109)

for some unknown x . It’s easy to compute

T ∨ T = N+8
3 T , T ∨ d = 2d , (110)

while d ∨ d is given in (102). The parameter x has to satisfy two linear equations. For z 6= 1
2

one finds that there is no solution, while precisely for z = 1
2 the two equations become linearly

dependent and one finds
x = −12(N+2)

N−4 . (111)

Therefore, we have a marginal direction as claimed. Notice that the worries from section 6.3
do not apply: u cannot be obtained from λ acting by an SO(N) generator, as it does not satisfy
the double tracelessness condition, see footnote 23.
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