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Abstract

Frustrated one-dimensional (1D) magnets are known as ideal playgrounds for new exotic
quantum phenomena to emerge. We consider an elementary frustrated 1D system: the
spin-1

2 ferromagnetic (J1) Heisenberg chain with next-nearest-neighbor antiferromag-
netic (J2) interactions. On the basis of density-matrix renormalization group calculations
we show the existence of a finite spin gap at J2/|J1| > 1/4 and we find the ground state
in this region to be a valence bond solid (VBS) with spin-singlet dimerization between
third-neighbor sites. The VBS is the consequence of spontaneous symmetry breaking
through order by disorder. Quite interestingly, this VBS state has a Affleck-Kennedy-
Lieb-Tasaki-type topological order. This is the first example of a frustrated spin chain in
which quantum fluctuations induce gapped topological order.
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1 Introduction

The one-dimensional quantum world of spin-chain systems connects some of the most ad-
vanced concepts from many-body physics, such as integrability and symmetry-protected topo-
logical order [1], with the measurable physical properties of real materials. An example is
the presence of the Haldane phase [2] in spin-1 chains, which is a topological ground state
protected by global Z2 × Z2 symmetry [3,4]. On the other hand frustrated magnets, in which
a macroscopic number of quasi-degenerate states compete with each other, are an ideal play-
ground for the emergence of exotic phenomena [5]. For instance, the interplay of frustration
and fluctuations leads to unexpected condensed matter orders at low temperatures by spon-
taneously breaking of either a continuous or discrete symmetry, i.e., order by disorder [6].
One of the simplest systems that shares both these features – geometric frustration and one-
dimensionality – is the so-called J1-J2 chain, the Hamiltonian of which is given by

H = J1

∑

i

Si · Si+1 + J2

∑

i

Si · Si+2, (1)

where Si is spin-1
2 operator at sites i, J1 is nearest-neighbor (NN) and J2 is next-nearest-

neighbor (NNN) interactions. This chain system can be also represented as a zigzag lad-
der [Fig. 1(a)] or a diagonal ladder [Fig. 1(b)-(d)]. The NNN interaction is assumed to be
antiferromagnetic (AFM), i.e. J2 > 0, inducing geometrical frustration. The frustration is
parametrised as α= J2/|J1|. The magnetic properties are quite different between the cases of
ferromagnetic (FM) J1 < 0 and AFM J1 > 0, where we denote the systems as “FM J1-J2 chain”
and “AFM J1-J2 chain”, respectively. In this paper, we restrict ourselves to the FM J1-J2 chain,
which is used as a standard magnetic model for quasi-one-dimensional edge-shared cuprates
such as Li2CuO2 [7], LiCuSbO4 [8], LiCuVO4 [9],Li2ZrCuO2 [10], Rb2Cu2Mo3O12 [11] and
PbCuSO4(OH)2 [12]. Especially, multi-magnons bound state [13] and multipolar ordering
[14] under magnetic field have been established both theoretically and experimentally in this
context.

The ground state of the AFM J1-J2 chain is well understood [15–17], assisted by the exact
solution of the Majumdar-Ghosh model for α = 0.5 [18]; but surprisingly the ground and
excited state properties of the FM J1-J2 chain are still not completely identified. It is known
that a phase transition occurs at α = 1

4 [19, 20] from a FM to an incommensurate spiral
state [21, 22] with dimerization order [23], but the quantitative estimation of spin gap (if
it exists) and its numerical confirmation have been a long standing challenge - so far there is
only a field-theoretical predictions of an exponentially small spin gap for α¦ 3.3 [24,25].

Our aim is to determine the ground state and spin gap of the FM J1-J2 chain. To this end, we
calculated various quantities including spin gap, string order parameter, several dimerization
order parameters, dimer-dimer correlation function, spin-spin correlation function, and en-
tanglement entropy using the density-matrix renormalization group (DMRG) technique [26].
First, we verify the existence of a finite spin gap at α > 1

4 and find its maximum around α' 0.6.
Next, we show that the ground state is a valence bond solid (VBS) state with spin-singlet for-
mations between third-neighbor sites (which we refer to as the “D3-VBS state”), which leads to
the finite spin gap. The leading mechanism for the emergence of this ordered state is magnetic
frustration, which is characterized by the presence of strong quantum fluctuations: while the
classical ground state is highly degenerate, quantum fluctuations in the system lift this degen-
eracy with formation of FM dimers and valence bonds, thus we are observing the formation of
order by disorder. Remarkably, this VBS state is associated with an Affleck-Kennedy-Lieb-Tasaki
(AKLT) [27]-like topological hidden order. While there exist examples of order by disorder in
quantum chains (e.g. Majumdar-Ghosh model [18]), we are not aware of previous example
of topological order by disorder. We support the topological nature of the D3-VBS state by com-
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(d)

(c)

(b)

(a)

(e)

Figure 1: (a) Lattice structure of the J1-J2 chain (at J ′3 = 0) as a zigzag ladder.
The J1 chain is shown in red. Thick lines represent spin-triplet dimers, which are
spontaneously formed in the VBS state. Dotted lines show the third-neighbor J ′3
bonds (see text). (b)(c)(d) Three candidates for the VBS ground state of the FM
J1-J2 chain. A red thick line represents an effective S = 1 site as a spin-triplet pair of
two spin-1

2 sites, a blue ellipse represents a spin-singlet pair, i.e., valence bond. The
dashed J1 bonds at the chain edges are set to be zero in most of our calculations. (e)
Schematic picture of the third-neighbor VBS ground state (“D3-VBS state”) of the FM
J1-J2 chain.

puting the entanglement spectra (ES) of the system. We confirm the robustness of the D3-VBS
state by considering an adiabatic connection of the ground state to the enforced third-neighbor
dimerized state.

2 Methods

We employ the DMRG method, which is one of the most powerful numerical techniques for
studying 1D quantum systems. Open boundary conditions (OBC) are applied unless stated
otherwise. Besides, both edged J1’s (denoted as Jedge

1 ) are taken to be zero in the open chain.
This has an important physical implication which will be clarified in the following. This enables
us to calculate ground-state and low-lying excited-state energies, as well as static quantities,
quite accurately for very large systems. This puts us in the position to carry out an accurate
finite-size-scaling analysis to obtain energies and quantities in the thermodynamic limit. We
keep up to m= 6000 density-matrix eigenvalues in the renormalization procedure. Moreover,
several chains with length up to L = 800 are studied to perform finite size scaling. This way, we
are able to obtain accurate results with error in the energy ∆E/L < 10−11. In some cases we
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(a) (b)

(c)

Figure 2: Expectation value of the z-component of local spin 〈Sz
i 〉 in the first-excited

triplet state (total Sz = 1) as a function of site position i at α= 0.6 with L = 600 for
(a) Jedge

1 = −1 and (b) Jedge
1 = 0. (c) Finite-size scaling of the lowest-state energy

with total Sz = 0 for Jedge
1 = −1 and Jedge

1 = 0 at α= 0.6. A linear fitting is performed
in both cases.

study larger systems up to L = 3000 to estimate the decay length of the spin-spin correlation
function and entanglement entropy.

3 Spin gap

Although the existence of a tiny spin gap was predicted by the field-theoretical analyses [24,
25], it has not been numerically detected so far. In our DMRG calculations, the spin gap ∆ is
defined as the energy difference between the singlet ground state and the triplet first excited
state:

∆(L) = E0(L, Sz = 1)− E0(L, Sz = 0); ∆= lim
L→∞

∆(L), (2)

where E0(L, Sz) is the ground state energy of a system of size L and total spin z-component Sz .
As mentioned above, we set Jedge

1 = 0; otherwise, one cannot measure correctly the excitation
energy for the bulk system. As shown below, our system is spontaneously dimerized along the
FM J1 chain. By regarding the ferromagnetically dimerized NN bond as a S = 1 site, the system
can be considered as a S = 1 Heisenberg chain. In fact, this setting Jedge

1 = 0 corresponds to
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(a)

(c)

(b)

Figure 3: (a)Spin gap ∆/|J1| of the J1-J2 chain as a function of the degree of frus-
tration α. (b) Examples of finite size scaling of the spin gap for α = 0.35 (red line),
α = 0.5 (blue line) and α = 0.75 (green line). (c) Comparison between the gaps of
the FM J1 − J2 and the AFM J1-J2 chain on a semilog scale.

an explicit replacement of S = 1 spin at each end by S = 1
2 spin in the S = 1 Heisenberg open

chain. It is known that this procedure is necessary to numerically calculate the Haldane gap as
a singlet-triplet excitation defined by Eq.(2) because a S = 1

2 degree of freedom appears as an
unpaired (nearly) free spin at both edges, i.e., so-called edge spin state, in the S = 1 Heisenberg
open chain. The appearance of edge spin states is a definite signature of the Haldane state. To
illustrate the presence of edge spin states in our model, we plot the expectation value of the
local spin z-component, i.e. 〈Sz

i 〉, in the Sz = 1 first-excited triplet state as a function of site

position i at α= 0.6 for L = 600. As shown in Fig. 2(a), when we naively keep Jedge
1 = −1, the

spin flipped from the singlet ground state (spinon) is mostly localized around the chain edges.
It resembles the fact that a residual S = 1/2 edge spin (out of a valence bond) in the 1D S = 1
Heisenberg model can be flipped without energy cost. In this case, the excitation energy, i.e.
the spin gap, is zero or significantly underestimated. It thus prevents us from estimating the
bulk spin gap correctly. Whereas in the case of Jedge

1 = 0, the flipped spin is distributed inside

the system as seen in Fig. 2(b). Therefore, this setting of Jedge
1 = 0 enables us to obtain the

spin gap after an extrapolation of the singlet-triplet excitation energy to the thermodynamic
limit.

Fig. 3(a) shows the spin gap in the thermodynamic limit as a function ofα. For information,
we present three examples of finite-size scaling analysis for the spin gap in Fig. 3(b). We
performed second-order polynomial fitting for all values of α. For α≥ 0.6, larger system sizes

5

https://scipost.org
https://scipost.org/SciPostPhys.6.2.019


SciPost Phys. 6, 019 (2019)

up to L = 800 were taken into account due to the oscillations of the data point reflecting the
incommensurate structure. For α > 0.85 the oscillations become a crucial problem and we
could not perform a reasonable fitting. The spin gap of the FM J1-J2 chain is compared to
that for the AFM J1-J2 chain in Fig. 3(c). For the FM J1-J2 chain a finite spin gap is clearly
observed in a certain α region, although it is about two orders of magnitude smaller than that
for the AFM J1-J2 chain. The spin gap seems to grow continuously from α = 1

4 reaching its
maximum ∆ ' 0.007|J1| around α ' 0.6, which is within the most highly-frustrated region.
This already suggests that the origin of the spin gap is a frustration-induced long-range order,
and the result of order by disorder.

We here check to be sure that the artificial setting Jedge
1 = 0 does not change the ground

state. To study it, we compare the lowest energies at α = 0.6 for the two different values
of Jedge

1 in Fig. 2(c) as a function of 1/L. We see that at finite L the energy for Jedge
1 = 0 is

rather lower than that for Jedge
1 = −1. Nevertheless, they coincide perfectly in the thermo-

dynamic limit (1/L = 0); a linear fitting yields E0/L = −0.2874202246 for Jedge
1 = −1 and

E0/L = −0.2874200731 for Jedges
1 = 0. This means that the bulk ground state does not depend

on the choice of Jedge
1 .

Additionally, it would be interesting to mention the relation between edge spin states and
spinon excitations. Since the spin gap is very small in our system, the spinons are expected to
be nearly deconfined. With setting Jedge

1 = −1, the system exhibits spin edge states; thus, a
spinon is created at the system edges as an edge spin-1

2 excitation in the total Sz = 1 state [see
Fig. 2(a) ]. Typically, the Friedel oscillation decays quickly (with decay length of the order of
1) from the edges in a Haldane gapped system. If the edge spin-1

2 is completely free like in
the AKLT state, the decay length is 0. However, in our system, it decays very slowly and the
amplitude seems to be still sizable even around the system center for L = 600. The slow decay
of the Friedel oscillation clearly indicates nearly complete deconfinement of spinons. This is
also consistent with an exponential decay of the spin-spin correlation with very large decay
length, ξ∼ 50 (α∼ 0.6) at the minimum.

4 Valence Bond Solid

Having established the existence of a finite spin gap for α > 1
4 , we investigate a possible

mechanism leading to it. It is known that a spontaneous FM dimerization is driven along
J1 bonds [24, 25] and an emergent effective spin-1 degrees of freedom is created with the
dimerized two spin-1

2 ’s [23]. If the system (1) can be mapped onto a S = 1 Heisenberg chain,
the finite spin gap might be interpreted as a Haldane gap with a VBS state [27]. However, it
is nontrivial whether an arbitrary set of valence bonds, i.e., resonating valence bonds forming
in different directions, between the neighboring effective S = 1 sites leads to a finite spin
gap [see Fig. 1(b)]. To investigate the stability of VBS state, we examine the string order
parameter [28]:

Oz
string = − lim

|k− j|→∞
〈(Sz

k + Sz
k+1)exp(iπ

j−1
∑

l=k+2

Sz
l )(S

z
j + Sz

j+1)〉. (3)

For our system (1), Eq.(3) can be simplified as

Oz
string = − lim

|k− j|→∞
(−4)

j−k−2
2 〈(Sz

k + Sz
k+1)

j−1
∏

l=k+2

Sz
l (S

z
j + Sz

j+1)〉 (4)
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(a) (b)

(c)

Figure 4: (a)String-order parameter as a function of α. Red (blue) line refers to
open (periodic) boundary conditions. (b) Entanglement entropy as a function of the
subsystem length l. (c) Inverse of the decay length estimated from the spin-spin
correlation (ξcorr) and the entanglement entropy (ξent) as a function of α. Red line
is a fit with the exponential function 1/ξcorr = 0.13exp (−0.35α).

(see App. A). The two-fold degeneracy due to the FM dimerization of the ground state is
lifted under OBC and the value of Oz

string is different for even and odd j (k). We thus take

their average obtained with (k, j) =
� L

4 , 3L
4

�

and (k, j) =
� L

4 + 1, 3L
4 − 1

�

. We confirm the
validity of this method by checking the agreement of the OBC results with those obtained under
periodic boundary conditions keeping |k − j| = L

2 . In Fig. 4(a) the string order parameter in
the thermodynamic limit is plotted as a function of α. The finite value of Oz

string suggests the
formation of a VBS state with a hidden topological long-range order. The string order vanishes
when approaching α = 1

4 , indicating a second-order phase transition at the FM critical point.
With increasing α, it goes through a maximum at α ' 0.55, which is roughly consistent with
the maximum position of the spin gap, and tends slowly towards zero in the limit α →∞.
The maximum value Oz

string ∼ 0.06 is much smaller than Oz
string =

4
9 ' 0.4444 for the perfect

VBS state for the AKLT model [27] and Oz
string ' 0.3743 for the S = 1 Heisenberg chain [29].

This means that our VBS state is very fragile which is a reason why it is so difficult to detect
the spin gap numerically.

Furthermore, the criticality of a 1D system can be definitely identified by its entanglement
structure. We use the von Neumann entanglement entropy of the subsystem with length l,
SL(l) = −Trlρl logρl , where ρl = TrL−lρ is the reduced density matrix of the subsystem and
ρ is the full density matrix of the whole system. A gapped state is characterized by a saturation
of SL(l) as as function of l [30]. In Fig. 4(b) the entanglement entropy is plotted as a function
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(a) (b)

(c) (d)

Figure 5: (a) Depiction of the cutting of the system with PBC. Red ellipses represent
effective S = 1, blue lines represent singlet formation between third-neighbors. (b)
ES as a function of α, lilac area shows the FM region, green one is the D3-VBS state.
λ are the eigenstates of ρ`. (c)(d) ES as a function of Sz for (c) α = 0.2 (FM) and
(d) α= 0.4 (D3-VBS).

of l with fixed whole system length L = 2000. We can clearly see the saturation behavior
indicating a gapped ground state. The saturation value is slightly split depending on whether
the system is divided inside or outside the effective S = 1 site. In a VBS state, SL(l) approaches
the saturation value Ssat

L exponentially, i.e., SL(l)∼ Ssat
L − a exp(−l/ξent); while, the spin-spin

correlation decays with distance exponentially, i.e., |〈Sz
0Sz

r 〉| ∼ b exp(−r/ξcorr) [31]. For the
AKLT VBS state ξent and ξcorr must coincide, which is indeed what we observe numerically in
the D3-VBS state. [see Fig. 4(c)] For technical reasons, we could determine the spin gap only
for α ≤ 0.85. However, since ξcorr · (∆/J2) = const. is expected in the large α regime, a tiny
but finite gap is expected up to α=∞.

To further support the existence of topological order in our system, we computed the ES
for several value of α through the FM critical point. We studied systems of size L = 82 with ap-
plying periodic boundary conditions (PBC). We assumed that the system consists of L = 4n+2
sites and it is divided in half as in Fig. 5(a). Since each subsystem includes an odd number of
sites, the edge spin state can be directly observed. The results are plotted as a function of α
in Fig. 5(b). The FM state (α < 1

4) has only double degenerate states. The double degenerate
state indicates a trivial state because of the area law acting on a periodic system cut at two
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(a) (b)

Figure 6: (a) Finite-size scaling of the dimer order parameter for NNN bonds (δ = 2)
at α = 0.6. The order parameter is vanishing in the thermodynamical limit. (b)
Dimer order parameters for NN (δ = 1, red line) and third-neighbor (δ = 3, blue
line) bonds as a function of α.

points (the typical 1- 3- degeneracy is not possible due to the impossibility of forming a triplet
state, having an odd number of spins). The Haldane phase is thus characterized by a four-fold
degeneracy of the entire ES [32]. In fact, our D3-VBS shows 4n-degeneracy in the entire ES.
Therefore, we confirmed that our D3-VBS state is an expression of the symmetry protected
Haldane state. In Fig. 5(c)(d), we show the ES as a function of total spin z-component of the
subsystem Sz for the FM (α = 0.2) and D3-VBS (α = 0.4) states: While in the FM state the
double degeneracy is lifted for Sz 6= 0 and the spectrum moves away from 0 symmetrically
with increasing the Schmidt value, in the D3-VBS state the Schmidt values are 2n-degenerate
and the spectrum is dense around Sz = 0 due to the possibility that the free spins in the two
subsystems are aligned (Sz = 0) or anti-aligned (Sz = 1) .

5 Dimerization order

The above analysis makes clear that a gap opens due to the formation of a topologically ordered
VBS state but it is not yet obvious how the VBS structure is formed. We can determine a more
specific VBS structure by considering the possibility of longer-range dimerization orders. The
dimerization order parameter between sites distant δ is defined as

Odimer(δ) = lim
L→∞

|〈Si−δ · Si〉 − 〈Si · Si+δ〉|, (5)

where we take i = L/2 for δ = 1 and i = L/2− 1 for δ = 2,3 (the extrapolated value in the
thermodynamic limit does not depend on these choices). If Odimer(δ) is finite for δ, it signifies
a long-range dimerization order associated with translational symmetry breaking to period of
4− 2(δmod 2) 1. For the case of δ = 2, Odimer(2) goes to zero in the thermodynamic limit,

1This formula becomes obvious for the δ = 1 case: A dimerized bond and an undimerized bond appear alter-
nately along the J1 chain, meaning the symmetry breaking period is 2. For odd values of δ > 1, considering the
ladder representation as in Fig. 1(d), the mirror symmetry between the two J2 chains is broken and the transla-
tional symmetry along the J2 chains is preserved. It leads to symmetry breaking with period 2 along the J1 chain.
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(i)

(ii)

(iii)

(i)

(ii)

(iii)

(a) (b)

Figure 7: (a) Dimer-dimer correlation 〈D3(i)D3(i)〉 as a function of distance |i − j|
for several values of α. To see the net correlation the product of expectation values
〈D̄3〉2 is subtracted. (b) Dimer-dimer correlation functions for the three different
kinds of third-neighbor bonds pairs at α= 0.6.

as seen in Fig. 6(a). This clearly indicates the absence of long-range dimerization order along
the two J2 chains like in Fig. 1(c). Thus, this VBS state can be excluded as a candidate for the
ground state for the FM J1-J2 chain. Hence, the possibility of a VBS state with dimerization
along two J2 chains is excluded. Whereas for δ = 1 and 3, Odimer(δ) is finite. In Fig. 6(b)
the values of Odimer(1) and Odimer(3) in the thermodynamic limit are plotted as a function
of α. Remarkably, Odimer(3) is significantly larger than Odimer(1) despite the longer distance.
Moreover, though FM dimerization between fifth-neighbors and AFM dimerization betweem
seventh-neighbor may be finite, we expect them to be much smaller than the values reported
in Fig. 6(b). We also find that 〈Si · Si+3〉 is always negative at α > 1

4 suggesting that a VBS
ground state with third-neighbor valence bonds, i.e., D3-VBS state, is stabilized as shown in
Fig. 1(d).

In order to further prove the D3-VBS picture, we calculate the dimer-dimer correlation
function defined as

〈D3(i)D3( j)〉 − 〈D̄3〉2, (6)

where D3(i) = Si · Si+3 is spin-spin correlation between the third-neighbor sites (i,i + 3) and
〈D̄3〉 is the averaged value of D3(i) over i = 1, · · · , L in the thermodynamic limit. In Fig. 7(a)
we show the dimer-dimer correlation is plotted as a function of the distance |i − j| for dif-
ferent values of α. For all α values a fast saturation with the distance is clearly seen. This
directly evidences the presence of the long-range D3-VBS order. In fact, in Fig. 7(a) only the
correlations for dimer pairs forming valence bond as in Fig. 7(b)(i) are shown. It would be in-
formative to see the correlation between the other third-neighbor bond pairs. As expected, the
correlation between third-neighbor pairs without valence bond saturates to a negative value
[Fig. 7(b)(iii)] and that between third-neighbor pairs with and without valence bond vanishes
[Fig. 7(b)(ii)].

Thus, the finite spin gap is related to the emergent spin-singlet formation on every third-
neighbor bond. To test this concept, we introduce an explicit AFM exchange interaction

For even values of δ, as depicted in Fig. 1(c), the translational symmetry is broken on the J2 chain with a twofold
structure, and the mirror symmetry between the two J2 chains is also broken. This leads to a symmetry breaking
period of 4 along the J1 chain.
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Figure 8: Spin gap ∆ as a function of the third neighbor AFM interaction J ′3 for
α = 0.6. The red line points are data points, the blue line is a linear fitting. We
indicate ∆(J ′3 = 0) as ∆0. The fitting function yields ∆−∆0 ' 0.5046J ′2/33 .

J ′3Si · Si+3 on the third-neighbor bonds [see Fig. 1(a)]. Note that i is chosen to be either
even or odd depending on the symmetry breaking pattern; in our open chain i is taken to be
even. The dependence of ∆ on J ′3 with fixing α = 0.6 is shown in Fig. 8(a). We find that the
spin gap is smoothly enhanced by the AFM J ′3. This means that our ground state is adiabati-
cally connected to an explicit formation of the third-neighbor VBS state by J ′3. With increasing

J ′3 the gap increases like ∆−∆(J ′3 = 0)∝ J
′ 23
3 , though small but finite intrinsic dimerization

should exist at J ′3 = 0. This is qualitatively the same behavior as in the spin-Peierls transition
of the S = 1

2 dimerized Heisenberg chain [33]. We thus conclude that the ground state of the
system (1) is the D3-VBS state depicted in Fig.1(c). If we regard the system (1) as a diagonal
ladder with effective S = 1 rungs as in Fig.1(c), the D3-VBS state may be interpreted as a
symmetry protected state [1] with a plaquette unit including two effective S = 1 rungs, i.e.,
four S = 1

2 sites. The plaquette is sketched in the inset of Fig. 9(a). The third-neighbor valence
bond is locally stabilized in a |

∑4
i=1 Si| = 1, i.e., Stot = 1, sector. The spin gap can be qualita-

tively estimated from the excitation energy to a state with |
∑4

i=1 Si| = 2, i.e. Stot = 2, sector
which is projected out from the ground state as in the AKLT model. We plot the excitation
energy as a function of α. We can see that the tendency of ∆ is qualitatively reproduced by
the single plaquette: With increasing α, the gap starts to increase at α = 1

4 , goes through the
maximum at α = 0.5, and then decreases slowly at larger α. Moreover, in the Stot = 1 sector
the antiferromagnetic spin-spin correlation between sites 1 and 4 is much stronger than that
between sites 1 and 3 for α > 1/4. This clearly indicates a spin-singlet formation between sites
1 and 4, which corresponds to the third-neighbor valence bond in our D3-VBS state. Each of
the remaining two S = 1/2 spins on sites 2 and 3 forms another spin-singlet with a S = 1/2
spin in the neighboring plaquette.
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(b)(a)

Figure 9: (a) Excitation energy from the Stot = 1 (ε0,1) to Stot = 2 (ε0,2) sectors in
a single plaquette extracted from the diagonal ladder [Fig. 1(c)]. A spin-singlet is
formed between sites 1 and 4 in the Stot = 1 sector. (b) Spin-spin correlations in a
single plaquette as a function of α.

6 Matrix product state

Our VBS wave function can be expressed as the matrix product state

|VBS〉=
1
p

2

�

Tr
∏

i odd

gi + Tr
∏

i even

gi

�

(7)

with

gi =

�

0 1
−1 0

��

| ↑〉i+1| ↑〉i | ↑〉i+1| ↓〉i
| ↓〉i+1| ↑〉i | ↓〉i+1| ↓〉i

�

, (8)

where |a〉i+1|b〉i (a, b =↑,↓) denotes the spin state of effective S = 1 site created by the original
two S = 1

2 sites (i, i+1). This is similar to the ground state of the AKLT model but the symmetric
operation between two spin-1

2 ’s within the effective S = 1 site, i.e., 1p
2
(| ↑〉| ↓〉 + | ↓〉| ↑〉), is

not explicitly included (see also App. B). Alternatively, two terms in Eq. (12) correspond to
two-fold degenerate states. The Lieb-Schultz-Mattis theorem is thus satisfied. A schematic
picture of either one is shown in Fig.1(d), in which every site forms a singlet pair with the
third neighbor site. In fact, setting Jedge

1 = 0 corresponds to an explicit replacement of S = 1
spin at the each end by S = 1

2 spin in our effective S = 1 chain [34]. It removes the degeneracy
due to the edge spin state and enables us to calculate the spin gap with the DMRG method.
The essential physics of our D3-VBS state can be explained by extracting a single plaquette
including two effective S = 1 sites, i.e., four S = 1

2 sites, in the same way that a combined
spin-2 state is projected out in the AKLT model.

7 Conclusion

We studied the frustrated FM J1-J2 chain using the DMRG technique. Based on the results of
string order parameter, dimerization order parameters, dimer-dimer correlation function, and
entanglement entropy, we find a second order phase transition at α = 1

4 from a FM state to a
third-neighbor VBS state with the AKLT-like topological hidden order. This provides a simple
realization of coexistence of spontaneous symmetry breaking and topological order, or rather,
topological order caused by spontaneous symmetry breaking. It may be helpful to consider this
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transition in two steps: (i) The system exhibits a spontaneous nearest-neighbor FM dimerization,
i.e., breaking of translational symmetry, as a consequence of the quantum fluctuations typical
of magnetic frustration – order by disorder. (ii) By regarding the ferromagnetically dimerized
spin-1

2 pair as a spin-1 site, the system is effectively mapped onto a S = 1 Heisenberg chain and
topological order as in the Haldane state is possible. The coexistence of symmetry breaking and
topological order is thus allowed. Then, we proposed the third-neighbor valence bond formation
as the origin of the finite spin gap since the FM dimerization alone does not lead to a finite gap.
The third-neighbor valence bond formation is consistent with the Haldane state with valence bond
formation between nearest-neighbor S = 1 sites, as the two third-neighbor spins in the J1-J2 chain
can be seen as nearest-neighbor spin-1 sites on the effective S = 1 chain. The emergence of third-
neighbor VBS formation was also confirmed by the observation of adiabatic connection of the
ground state to an enforced third-neighbor dimerized state. Originated from the VBS state, the
spin gap opens at α= 1

4 and reaches its maximum∆' 0.007|J1|, which is about two orders of
magnitude smaller than that for the AFM J1-J2 chain, at α' 0.6. Since the correlation length
of spin-spin correlation seems to diverge at α =∞, a tiny but finite spin gap may be present
up to α=∞. A typical value for J1 in cuprates is J1 = −200K, which leads to a gap closing at
external magnetic field' 1 T. In real materials, the exchange couplings have been estimated to
be J1 = −6.95meV, J2 = 5.20meV (α= 0.75) for LiCuVO4 [35]; J1 = −6.84meV, J2 = 2.46meV
(α= 0.36) for PbCuSO4(OH)2 [36]. If experimental measurements are performed at very low
temperature, a spin excitation gap with magnitude ∆ = 0.035meV and ∆ = 0.013meV could
be observed, respectively.

Acknowledgements

We thank U. Nitzsche for technical assistance. C.E.A. thanks R. Ray for fruitful discussions.

Funding information J. v. d. B. and S. N. are supported by SFB 1143 of the Deutsche
Forschungsgemeinschaft.

A Derivation of the string order parameter for numerical calcula-
tions

The string order parameter for a spin S = 1 chain is defined as

Oz
string = − lim

|k− j|→∞
〈(S̃z

k)exp(iπ
j−1
∑

l=k+1

S̃z
l )(S̃

z
j )〉, (9)

where S̃z
i is the z-component of a spin-1 operator at site i. In our system, the resultant spin

of two S = 1/2 spins forming a spin-triplet pair is regarded as an effective S = 1 spin. Hence,
Eq. (9) can be rewritten in term of S = 1/2 spins as

Oz
string = − lim

|k− j|→∞
〈(Sz

k + Sz
k+1)exp(iπ

j−1
∑

l=k+2

Sz
l )(S

z
j + Sz

j+1)〉, (10)

where Sz
i is the z-component of a spin-1/2 operator at site i. Considering that the z-component

of a spin-1/2 spin can only take the values Sz = ±1/2, we have

exp(iπSz
l ) = i sin(±π/2) = ±i,
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since cos(±π/2) = 0. Taking pairs of spins Sz
l Sz

l+1 (within an effective spin-1 site), we get a
relation

exp[iπ(Sz
l + Sz

l+1)] = −4Sz
l Sz

l+1,

where the coefficient 4 accounts for renormalizing the 1/4 factor from multiplying two spin-
1/2’s. Finally, we obtain a simplified string order parameter:

Oz
string = − lim

|k− j|→∞
(−4)

j−k−2
2 〈(Sz

k + Sz
k+1)

j−1
∏

l=k+2

Sz
l (S

z
j + Sz

j+1)〉, (11)

which is expressed only by products of Sz .

B Matrix product expression of the D3-VBS state

The D3-VBS wave function is expressed as a matrix product state

|VBS〉=
1
p

2

�

Tr
∏

i odd

gi + Tr
∏

i even

gi

�

(12)

with

gi =

�

0 1
−1 0

��

| ↑〉i+1| ↑〉i | ↑〉i+1| ↓〉i
| ↓〉i+1| ↑〉i | ↓〉i+1| ↓〉i

�

, (13)

where |a〉i|b〉i (a, b =↑,↓) denotes the spin state of the effective S = 1 site created by the
original S = 1

2 sites (i, i+1). Let us perform a part of the product between two effective S = 1
sites:

�

| ↑〉i+1| ↑〉i | ↑〉i+1| ↓〉i
| ↓〉i+1| ↑〉i | ↓〉i+1| ↓〉i

��

0 1
−1 0

��

| ↑〉i+3| ↑〉i+2 | ↑〉i+3| ↓〉i+2
| ↓〉i+3| ↑〉i+2 | ↓〉i+3| ↓〉i+2

�

=

�

| ↑〉i+1| ↑〉i+2 | ↑〉i+1| ↓〉i+2
| ↓〉i+1| ↑〉i+2 | ↓〉i+1| ↓〉i+2

�

⊗ (| ↑〉i| ↓〉i+3 − | ↓〉i| ↑〉i+3). (14)

A spin-singlet is formed between S = 1/2 spins at sites i and i + 3, namely, between third-
neighbor sites. Since the resultant 2 × 2 matrix has the same form as before, this matrix
product state can be extended up to an arbitrary length.
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