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Abstract

Over time, many different theories and approaches have been developed to tackle the
many-body problem in quantum chemistry, condensed-matter physics, and nuclear
physics. Here we use the helium atom, a real system rather than a model, and we use
the exact solution of its Schrödinger equation as a benchmark for comparison between
methods. We present new results beyond the random-phase approximation (RPA) from a
renormalized RPA (r-RPA) in the framework of the self-consistent RPA (SCRPA) originally
developed in nuclear physics, and compare them with various other approaches like
configuration interaction (CI), quantum Monte Carlo (QMC), time-dependent density-
functional theory (TDDFT), and the Bethe-Salpeter equation on top of the GW approx-
imation. Most of the calculations are consistently done on the same footing, e.g. using
the same basis set, in an effort for a most faithful comparison between methods.
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1 Introduction

The neutral helium atom and other two-electron ionized atoms are among the simplest many-
body systems in nature. Here “many-body” is reduced to only three bodies, two electrons plus
the nucleus. Even when treating the nucleus classically (i.e., as an external classical source
and neglecting its wave function), in quantum mechanics two interacting bodies (the two elec-
trons) already raise a many-body problem (an inhomogeneous two-body problem in helium).
The Schrödinger equation cannot be solved in a closed form. The calculation of many-body
correlation energies and correlation effects presents similar difficulties in two-electron systems
(including the noteworthy case of the hydrogen molecule) as in any other many-body system.

Nevertheless, thanks to the pioneering work of Hylleraas in 1929 [1], the helium atom (and
two-electron atoms in general) is almost a unique case in which we own an exact solution,
though not in a closed form. By exploiting the full rotational symmetry of the system and
rewriting the Schrödinger equation in reduced degrees of freedom, these being the three scalar
Hylleraas coordinates over which the wave function is expanded as a power series, a numerical
solution can be found. This numerical solution is “exact” in the sense that it consists of a
number and a quantifiable margin of error on that number, together with the possibility of
arbitrarily reducing that margin of error. The historical series of published results [2–11] (see
Table I in [11]) has confirmed the numerically exact nature of the Hylleraas method for helium.

Hylleraas’s original solution had a relative error of only 10−4, which is remarkable for a
time in which computers did not yet exist. It played a fundamental role in assessing the va-
lidity of quantum mechanics as a universal theory that does not just apply to the hydrogen
atom. Once higher-order effects are taken into account, such as nuclear finite-mass recoil
(reduced mass of the electron and mass polarization term), relativistic fine structure (e.g.
relativistic correction to the velocity, spin-orbit coupling, etc.), and quantum electrodynamic
(QED) radiative corrections (the analog of the Lamb shift of hydrogen) [12–14], its quantita-
tive agreement with the experiment, within the measured and calculated error bars, was one
of the first triumphs of quantum mechanics [3].

Over the years, the Hylleraas calculation has been improved more and more [2–11], reach-
ing an accuracy of 35 decimal digits in 2006 [10], a result confirmed and further extended [11],
which required computer octuple precision. Beyond the academic interest, the comparison of
such an accurate theoretical result with experimental measurements of the helium excitation
spectrum has been proposed to estimate the fine structure constant accurately.

The availability of an exact solution suggests that the helium atom can serve as a work-
bench for many-body theories. Many body theories were at the beginning mostly tailored
for systems with many, up to infinite particles. More recently one requires that a good many
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body approach embraces simultaneously the small and high number of particles cases. A two-
electron atom might appear a limiting case to study the many-body problem. However, it is
not that far from the hydrogen molecule, of interest in molecular physics and quantum chem-
istry, or the deuterium nucleus, of interest in nuclear physics. Each of these systems presents
a nontrivial many-body problem to describe the electronic correlation beyond the Hartree-
Fock (HF) exchange. Many different formalisms beyond HF have been developed over time
aimed at the solution of the many-body problem. While exact in principle, in practice all ap-
proaches rely on approximations and recipes whose validity are difficult to judge. The general
tendency is to evaluate them against experiment. However, benchmarks against experiment
are always affected by unaccounted effects not present in the theoretical description (non-
Born-Oppenheimer, electron-phonon, relativistic corrections, etc.), which can mask the real
many-body performances of the approaches. Validation of many-body approaches against the
benchmark of an exact solution is an unavoidable step for further improvement. When calling
for an exact solution one first thinks of a model system. Workbenches for many-body theories
have been identified in more or less realistic simplified models, e.g. by replacing the long-
range 1/r real electromagnetic interaction by a local interaction δ(r), and/or by discretizing
the space, or somehow reducing the number of degrees of freedom of the system. One ex-
ample of particular relevance here is the spherium model. With respect to the helium atom,
in spherium only the angular degrees of freedom are considered, whereas the radial ones are
dropped by confining the two electrons on the 2D surface of a sphere of radius R. However,
the interaction is the real 3D 1/r across the sphere. R is a model parameter which allows the
tuning of the electronic density (like rs of the jellium model) and so of the correlations: this
allows interesting studies which are impossible in real helium. By comparing the spherium
solution to the real helium atom electronic structure (Fig. 2) one can appreciate the validity
of this model to describe nature, as well as its limits. An interesting work on spherium also
comparing many-body approaches is Ref. [15]. However the exact solution is often unknown
even for simple models, or known only in particular cases or in reduced dimensions. Another
drawback is that many-body theories could be checked on unrealistic features of models, and
so one theory can be validated with respect to another on aspects that might be absent in real
systems. So, we think that the helium atom and its exact solution is certainly preferable to
more schematic models as a benchmark for many-body theories. Furthermore, the electronic
structure of helium is very rich (see Fig. 2), presenting a complex spectrum of many excitations
of different nature; it is certainly much more critical for a theory to be able to reproduce, as
a whole, such a rich electronic structure rather than a model that can present just a couple
of levels. Finally, the helium atom represents a very severe workbench for testing condensed-
matter approaches devised for describing correlations in infinite solids by e.g. the introduction
of the concept of “screening,” a check that, according to our results, these approaches have
surprisingly passed.

In the present work, the intention is to perform a comparison of several many body ap-
proaches. Most of those approaches are well known in condensed-matter physics. However,
a direct comparison of their performances is often hampered by not consistent techniques of
numerical resolution. One objective of the present work, therefore, is to improve on this.
Second, we also want to introduce and apply a method used in nuclear physics which is the
equation of motion (EOM) approach to go beyond the standard random-phase approxima-
tion (RPA). It is called the self-consistent RPA (SCRPA), of which the renormalized RPA (r-
RPA) is a sub-product [16, 17]. We will give a short outline of this approach. We right now
clarify that all along this paper we consistently use the nuclear physics convention to define
the random-phase approximation (RPA) which in quantum chemistry and condensed-matter
physics is rather known as linearized time-dependent Hartree-Fock (TDHF). The RPA here
contains both the direct and the exchange terms, and should not be confused with the RPA of
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condensed-matter physics (also known as the ring approximation), which only contains the
direct term. We will here refer to the latter as dRPA (direct RPA) to avoid confusion. In order
to provide the reader with an orientation table among the acronyms used in this article, in
Fig. 1 we present the Feynman diagrams for the irreducible polarizability eΠ corresponding to
all the approximations explored in this work. The last line of Fig. 1 presents the Dyson equa-
tion relating the irreducible eΠ to the reducible polarizability Π whose poles are the excitation
energies tabulated in this work for helium.

In order to compare with the other approaches, we at the same time calculate helium
ground and excited states by some of the most widespread many-body approaches, includ-
ing Hartree-Fock (HF), quantum Monte Carlo (QMC), quantum chemistry configuration in-
teraction (CI), density-functional theory (DFT) and time-dependent density-functional theory
(TDDFT), Bethe-Salpeter equation (BSE) [18–20] on top of the GW approximation [21–25],
and the dRPA approximation on top again of the GW electronic structure, or also of the HF or
the DFT ones (see Fig. 1). Some of these results were previously presented in the literature,
but here we made the effort to recalculate most of them on the same footing, in particular
using the same Gaussian basis set, which, as we will see, significantly affects the accuracy of
the results. This yields a more faithful comparison between methods. 1 For obvious reasons,
only the QMC calculations and the exact-DFT (including also TDDFT on top of exact-DFT) cal-
culations, apart of course from the exact Hylleraas calculation, are not based on the Gaussian
basis set. Most importantly, the spirit which has driven our comparison of so many methods
was to understand and demonstrate the effective performances achieved in practice by a given
methodology, avoiding idealistic statements. One can claim, for example, that “solving full
Hedin equations self-consistently will provide the exact solution,” but this remains an abstract
statement if nobody was ever able to perform such a calculation for any real or even model
system. When going for a real calculation one can face unforeseen problems related to, for ex-
ample, basis-set issues, nonlinearity of equations, divergences to be avoided, self-consistency
instabilities, etc., which can reduce the exactness of the solution achieved, if not actually pre-
venting the achievement of a solution. We will discuss such issues in the present work. Beyond
this, to situate the performance and pros and cons of each approach with respect to the oth-
ers, the purpose of this article is to propose a workbench and a methodology for evaluation of
future developments.

Most of the results shown in this paper are new and to our knowledge have not been
presented earlier in the literature: i) r-RPA calculations have so far only been applied to models
in use in nuclear physics and to the jellium-sphere model [16, 17], but not previously to real
systems. We also give a short outline of this method, as it is not well known outside the nuclear
physics community. ii) The novelty aspect is also apparent for our d-RPA calculations, which
are applied on top of three approximations, namely HF, GW , and DFT-LDA. iii) Likewise for
the GW , GW+RPA, and GW+BSE results studied as a function of starting point, from PBE [26]
to full HF exchange (PBEh) [27]. iv) Although the DFT-LDA + TDLDA helium-atom excitation
spectrum has been discussed several times in the literature [28–31], numerical results have
never been published to our knowledge. We fill this gap in this work. v) Finally, our variational
(VMC) and diffusion Monte Carlo (DMC) calculations present improved results with respect
to earlier QMC works on helium, and the achievement of an accuracy high enough to be at the
level of the experimental error bar.

1One should expect that, on localized gaussians, long-range 1/r methods (e.g., wavefunction based, GW, hy-
brids) converge more slowly than short-range e−r methods (e.g., LDA xc-potential or other DFT pure function-
als) [85]: this is the reason why we chose basis-set families optimized for correlation wavefunction methods.
Another possible way is to assess each method with its best complete basis set. However, if one checks Fig. 1
of Ref. [86], one can see that for He the convergence error can be reduced from 10−4 to 10−6 Ha using basis-set
families optimized for DFT LDA. Since the error of the LDA approximation with respect to the exact Hylleraas is
already 7 · 10−2 Ha (Table 2), the basis-set convergence error of 10−4 can be neglected.

4

https://scipost.org
https://scipost.org/SciPostPhys.6.4.040


SciPost Phys. 6, 040 (2019)

HF+dRPA Π̃ =

GHF

GW+dRPA Π̃ =

GGW

DFT+dRPA Π̃ =

GDFT

RPA (TDHF) Π̃ =

GHF

+ w

r-RPA Π̃ =

Gr−RPA

+ w

GW+RPA Π̃ =

GGW

+ w

GW+BSE Π̃ =

GGW

+ W

TDDFT Π̃ =

GDFT

+
fxc

Π̃

Π = Π̃ +
w

Π̃ Π

Figure 1: Irreducible polarizability eΠ in the various approximations studied in this
work. HF+dRPA: direct RPA (dRPA) or ring approximation on top of the Hartree-Fock
(HF) electronic structure; GW+dRPA: dRPA on top of the GW electronic structure;
DFT+dRPA: dRPA on top of the (either exact or approximated, e.g., LDA, GGA, etc.)
DFT Kohn-Sham electronic structure; RPA (TDHF): random-phase approximation ap-
proximation, also known as linearized time-dependent Hartree-Fock; r-RPA: renor-
malized RPA; GW+RPA: RPA on top of GW ; GW+BSE: Bethe-Salpeter equation on
top of GW ; TDDFT: linear response time-dependent density-functional theory with
kernel fxc on top of either exact or approximated (e.g. LDA) DFT. Last line: Dyson
equation Π = eΠ + eΠwΠ between the irreducible eΠ and the reducible polarizabil-
ity Π. The wiggly line marked w indicates the bare many-body interaction (here the
Coulomb interaction), while the double wiggly line indicates the screened interaction
W .
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Figure 2: Helium atom full electronic structure (left panel). Both the noninteracting,
independent-particle spectrum [Eq. (2)] and the exact [32] spectrum are shown. The
right panel is a zoom on the first excitations of the exact spectrum.

The paper is organized as follows: we first introduce the electronic structure of helium
and the exact Hylleraas solution, showing this to be a safe reference. We then describe in
particular the SCRPA approach, referring to the literature for the other well known methods,
and present the parameters of all our calculations. The results will be presented, first for the
ground state and then for the excited states. Our conclusions are drawn at the end. We will
generally use atomic units (Hartree, Bohr), but will also report energies in electronvolts (eV)
when this is more intuitive. The zero of the energies will be fixed at the helium atom double
excitation level He++ + 2e− when studying the helium ground state, and at the ground state
11S when studying the excitation spectrum.

2 Helium atom electronic structure and exact solution

The experimental spectrum of a real helium atom is affected by many effects (e.g. the finite
mass of the nucleus, relativistic corrections, and QED radiative corrections) beyond many-body
correlations. These effects are small corrections [3] that can be calculated at the first order,
but must be taken into account in a comparison with experiment within experimental and
theoretical error bars. Here we are interested in reproducing not the experiment, but an exact
solution as a benchmark for many-body theories and their performances on correlation. So
our workbench system will be an idealized nonrelativistic helium atom, with infinite nuclear
mass and without relativistic and QED effects, whose Hamiltonian is

H = −
∂ 2

r1

2
−
∂ 2

r2

2
−

Z
r1
−

Z
r2
+

1
|r 1 − r 2|

, (1)

consisting of the kinetic terms, the interaction with the nucleus of charge Z , and the two-body
Coulomb interaction between the electrons (last term). If we neglect the latter (noninteracting
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or independent-particle approximation) the Hamiltonian can be split into two single-particle
Hamiltonians of hydrogenic form, and the solution for the excitation spectrum can easily be
written

E0
n1n2
= −

Z2

2

�

1

n2
1

+
1

n2
2

�

. (2)

This is the noninteracting, independent-particle electronic structure reported (for helium Z = 2)
in Fig. 2, left. One can identify the ground state, corresponding to the principal quantum num-
bers (n1 = 1, n2 = 1), the first excitations, (1, 2), (1,3), . . . , forming a Rydberg series up to the
first ionization onset (1,∞) in which we are left with a He+(1s) + e− helium positive ion in
its hydrogenic 1s ground state, plus a free electron. We then have so-called double excitations
(n1 > 1, n2 > 1), which are resonant with the continuum of the first ionization onset, and fur-
ther single ionization onsets (n1 > 1,∞). Finally we have the full ionization level (∞,∞),
in which we are left with the bare He nucleus plus two free electrons, He++ + 2e−.

When comparing the independent-particle with the exact electronic structure (Fig. 2 left
panel), one can see that the many-body term has an important, non-negligible effect already in
helium. There are important shifts, especially for the ground state, and splits of levels accord-
ing further quantum numbers as the total spin S and the total orbital angular momentum L
(see also Fig. 2 right panel). A good many-body theory should be able to reproduce reasonably
well both shifts and splits.

We now also briefly explain how the exact solution to the Schrödinger equation for the
Hamiltonian in Eq. (1) could be obtained by Hylleraas. Starting from the solution of the
hydrogen atom, and exploiting the full rotational symmetry of the ionic potential (an important
simplification with respect to e.g. the hydrogen molecule) it was possible to write the electronic
wave functions Ψ(s, t, u) in terms of only three scalar coordinates,

s = r1 + r2,

t = r1 − r2,

u = r12 = |r 1 − r 2|,

instead of the two vectors or six scalars Ψ(r 1, r 2) normally required for a two-electron system.
The wave function is then written as a power series over the s, t, and u Hylleraas coordinates,

Ψ(s, t, u) = e−ks
∑

l,m,n

cl,m,nsl tmun, (3)

apart from an important cusp factor e−ks in analogy with the solution of the hydrogen atom.
It has been demonstrated [2] that the expansion Eq. (3), including negative powers l, m < 0,
represents a formal solution to the He Schrödinger Eq. (1). The solution is found variationally,
by minimizing the energy with respect to the free parameters cl,m,n and k. It is possible to select
the symmetry of the wave function, for example by choosing even m for space-symmetric
singlet solutions and odd m for space-antisymmetric triplets, like also the orbital character
(upon reintroducing angular variables within multiplicative spherical harmonics [32]), and
even the principal quantum number. This provides access not only to the ground state, but
also all excited states, both energies and wave functions, and so also oscillator strengths. The
Hylleraas accuracy of 10−4 (relative error), which was obtained with a reduced sum in Eq. (3)
running only on positive powers, was in the following years improved by extending the series
also to include negative powers [2]. An important increase in the accuracy was obtained thanks
to a better description of the coalescence region at the origin by introducing a logarithmic
singularity ln(s) [3], like in the wave functions which allowed Schwartz [10] to obtain an
accuracy of 35 decimal digits,

Ψ(s, t, u) = e−ks
∑

j,l,m,n

c j,l,m,nsl(t/s)m(u/s)n ln j(s). (4)
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The logarithm factor, first introduced by Frankowski and Pekeris [3], was important to over-
come the Kinoshita [2] accuracy of 10−6 Ha.

3 Formalisms

In this section we will in particular introduce SCRPA and detail the r-RPA approach we have
followed.

3.1 Standard, renormalized and self-consistent RPA

The standard and also self-consistent RPA equations can be quite straightforwardly derived
from the equations of motion (EOM) [33,34] of excitation creation operators Q̂†

λ
, defined by

Q̂†
λ
|Φ0〉= |Φλ〉, with Q̂†

λ
= |Φλ〉〈Φ0|,

with Φλ the excited states, both singlets and triplets, and Φ0 the ground state,

Ĥ|Φλ〉= Eλ|Φλ〉,

of the full Hamiltonian Ĥ,

Ĥ = Ĥ0 + Ŵ =

=
∑

k1k2

ε0
k1k2

ĉ†
k1

ĉk2
+

1
4

∑

k1k2k3k4

v̄k1k2k3k4
ĉ†

k1
ĉ†

k2
ĉk4

ĉk3
,

where Ĥ0 = T̂ + V̂ext is the noninteracting Hamiltonian and ε0
kk′ is its matrix elements with

respect to a basis set φk(r) over which we also define the creation/annihilation operators
ĉ†

k/ĉk, while
v̄k1k2k3k4

= 〈φk1φk2|v|φk3φk4〉 − 〈φk1φk2|v|φk4φk3〉 (5)

are the antisymmetrized matrix elements of the many-body interaction v, in this work the
Coulomb interaction v(r , r ′) = 1/|r − r ′|. The Hermitian conjugated annihilation operators
are subject to the killing condition on the ground state,

Q̂λ|Φ0〉= 0. (6)

From the equation of motion obeyed by the Q̂†
λ
, we can derive the equation [33–35]

〈Φ0|[δQ̂, [Ĥ, Q̂†
λ
]]|Φ0〉= Ωλ〈Φ0|[δQ̂, Q̂†

λ
]|Φ0〉, (7)

where Ωλ = Eλ − E0 are the excitation energies measured from the ground state, and δQ̂ is
an arbitrary variation of the operator Q̂†

λ
, associated to a generic state of the Hilbert space

|Φ〉= δQ̂†|Φ0〉. For a variant of the derivation of Eq. (7), see Ref. [36] where the minimization
of an energy weighted sum rule is employed.

So far everything is exact. We understand that Q̂†
λ

is a complicated many body operator
which may be considered as a superposition of one body, two-body, . . . , N-body operators. We
now restrict, as an approximation, the Q̂†

λ
operators to be of the one-body form

Q̂†
λ
=
∑

k1 6=k2

χλk1k2
ĉ†

k1
ĉk2

,
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with both k1 and k2 running over all indices, besides the diagonal configurations. We obtain
the secular equation

∑

k′1k′2

Sk1k2,k′1k′2
χλk′1k′2

= Ωλχ
λ
k1k2

, (8)

with the matrix S defined as

Sk1k2,k′1k′2
= 〈Φ0|[ĉ

†
k1

ĉk2
, [Ĥ, ĉ†

k′1
ĉk′2
]]|Φ0〉(nk′2

− nk′1
)−1,

where nkδkk′ is the single-particle density matrix

〈Φ0|ĉ
†
k ĉk′ |Φ0〉= δkk′nk,

supposed, for convenience, to be diagonal. (This is an approximation. It can be avoided
without formal problems by using the canonical basis which diagonalizes the single-particle
density matrix, but usually it does not add much to the accuracy of the solution.) By developing
the double commutator we obtain

Sk1k2,k′1k′2
=(εk1

− εk2
)δk1k′1

δk2k′2
+ (nk2

− nk1
)v̄k1k′2k2k′1

+
�

−δk2k′2

1
2

∑

j1 j2 j3

v̄k1 j1 j2 j3 C j2 j3k′1 j1 −δk1k′1

1
2

∑

j1 j2 j3

v̄ j1 j2k2 j3 Ck′2 j3 j1 j2

+
∑

j1 j2

(v̄k1 j1k′1 j2 Ck′2 j2k2 j1 + v̄k′2 j1k2 j2 Ck1 j2k′1 j1)

−
1
2

∑

j1 j2

(v̄k1k′2 j1 j2 C j1 j2k2k′1
+ v̄ j1 j2k2k′1

Ck1k′2 j1 j2)
�

(nk′2
− nk′1

)−1,

in terms of the cumulant of the two-particle correlation functions

Ck1k2k3k4
= 〈Φ0|ĉ

†
k3

ĉ†
k4

ĉk2
ĉk1
|Φ0〉 − nk1

nk2
[δk1k3

δk2k4
−δk2k3

δk1k4
],

and of the single-particle energies εk and basis set φk eigensolutions of the equation

[H0 + V MF]φk = εkφk, (9)

with the mean-field potential given by

V MF
k1k2
=
∑

k

v̄k1kk2knk. (10)

(Note that a priori in the mean-field basis φk neither the kinetic energy, nor the external po-
tential are diagonal separately). The correlation functions C contain only the fully connected
terms of the two-body density matrix, i.e., the fully correlated part.

The correlation functions C can be expressed by the RPA solution, and thus Eq. (8), with
the expression for S above, constitute the full self-consistent RPA (SCRPA) equations. If we
neglect in S all two-body correlation functions C , we obtain the renormalized RPA (r-RPA)
approach. Replacing additionally the correlated nk by the uncorrelated integer Hartree-Fock
occupation numbers, nHF

h = 1 for holes and nHF
p = 0 for particles, we re-obtain the standard

RPA equations with the exchange term [33–35]
�

A B
B∗ A∗

��

Xλ

Y λ

�

= Ωλ

�

1 0
0 −1

��

Xλ

Y λ

�

, (11)

9

https://scipost.org
https://scipost.org/SciPostPhys.6.4.040


SciPost Phys. 6, 040 (2019)

with

Aph,p′h′ = (εHF
p − ε

HF
h )δpp′δhh′ + (n

HF
h − nHF

p )v̄ph′hp′ ,

Bph,p′h′ = (nHF
h − nHF

p )v̄pp′hh′ .

Indeed in this case the mean-field potential [Eq. (10)] is exactly the Hartree potential plus
the exchange (Fock) operator, and Eq. (9) is the Hartree-Fock equation, so that εk and φk(r)
are the Hartree-Fock energies and wave functions. So the S matrix contains HF energies εk
along the diagonal, while the kernel reduces to the v̄ terms.

In this work we went beyond standard RPA towards self-consistency, but did not pursue
full SCRPA. The latter task remains for the future. We followed the r-RPA approach where
in Eq. (11) all HF occupation numbers and energies are replaced by correlated ones, see,
e.g., Catara et al. [16, 17]. In this approach, at each step of self-consistency a new, beyond
Hartree-Fock, correlated mean-field electronic structure is calculated. The correlated elec-
tronic structure is characterized by noninteger occupation numbers nh and np, unlike the inte-
ger uncorrelated Hartree-Fock occupation numbers. The depletion/repletion with respect to
HF uncorrelated occupation numbers can, e.g., be calculated from the correlated RPA ampli-
tudes χλhp (number operator method [16,33])

np =
1
2

∑

λh

(nh − np)|χλhp|
2, (12)

nh = 1−
1
2

∑

λp

(nh − np)|χλhp|
2. (13)

(The same result can be obtained with other formulations [37]). For small depletion/repletion
one can replace the occupation numbers on the right-hand side with uncorrelated Hartree-
Fock 0/1 occupation numbers. These expressions are correct to second order in |χλhp|. Catara
et al. [16, 17] considered higher-order corrections but we will see that in helium the deple-
tion/repletion of occupation numbers constitute a correction of less than 1%, so that higher-
order corrections are negligible, and stopping at second order is safe. Note that the occupation
numbers of Eqs. (12) and (13) fulfill Luttinger’s theorem, since the particle number N is con-
served:

∑

h

nh +
∑

p

np = N .

Also we will restrict the configuration space to particle-hole (hole-particle).
So, starting from standard RPA, after having solved the RPA equations and having calcu-

lated the χ amplitudes, we recalculate the correlated occupation numbers using Eqs. (12) and
(13), the new mean-field potential using Eq. (10) and the new correlated energies εk using
Eq. (9). The procedure is cycled till self-consistency. This r-RPA approach can be considered
an approach towards SCRPA with the important simplification that the two-body correlation
functions in the S matrix are neglected, but correlations are at least self-consistently intro-
duced in the occupation numbers and in the single-particle energies that now depart from the
uncorrelated HF expressions (see Fig. 1).

Finally, this methodology also allows one to calculate the total energy of the ground state,
that is the correlation contribution of RPA, ERPA

c , or SCRPA, ESCRPA
c , to be added to the Hartree-

Fock EHF kinetic, external, Hartree and exchange contributions to the total energy,
ERPA = EHF + ERPA

c . The correlation contribution can be calculated by [see Eq. (8.111) in
Ref. [35]]

Ec = −
∑

λ>0

Ωλ

∑

ph

|χλhp|
2,
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but also by the expression [see Eq. (8.94b) in Ref. [35]]

Ec =
1
2

∑

λ>0

�

Ωfull
λ −Ω

TDA
λ

�

,

(the sums over λ run only over the positive Ωλ energies) implying a difference between the
excitation energies obtained by solving the full RPA Eq. (11), and excitation energies in the
Tamm-Dancoff approximation (TDA), obtained by neglecting the coupling terms B between
the particle-hole and the hole-particle sectors of the full matrix in the solution of the Eq. (11).
The two formulas gave the same results well within the accuracy quoted in this work, and so
provided a cross check over the validity of the total-energy results. The same formulas were
also used to calculate the total energy in the BSE approach.

To perform the renormalized RPA calculation on helium we first calculated the HF ground
state and electronic structure energies and wave functions εHF

i ,φHF
i (r ) by solving the Hartree-

Fock equations

HH(r )φ
HF
i (r ) +

∫

dr ′Σx(r , r ′)φHF
i (r

′) = εHF
i φ

HF
i (r ),

where HH(r ) = −∂ 2
r /2 + vext(r) + vH(r ) is the Hartree Hamiltonian and Σx is the Fock ex-

change operator. We did not rely on pseudopotentials and rather use the full nuclear potential
vext(r) = −Z/r to reduce any source of inaccuracy in our comparison to the exact result. The
HF calculation was carried out by the NWCHEM package [38]. With the HF electronic structure
we calculated the S matrix of the RPA equation (8) and then solved it to get the standard
RPA excitations (both singlet and triplet) energies Ωλ and amplitudes χλ. These are the exci-
tations that we report in our tables and figures as (standard) RPA or TDHF, and are also the
first-iteration result of an r-RPA calculation towards self-consistency. We then used the χλhp
amplitudes to update the occupation numbers [Eqs. (12) and (13), where λ run over both
singlet and triplet excitations] and energies εk from Eq. (9), which are reinjected into the RPA
equation to be solved again for new χλ amplitudes. The procedure was repeated until self-
consistency, (at most four cycles were enough to achieve the 10−4 Ha accuracy we quote). The
r-RPA calculations were carried out using a modified version of the FIESTA code [39, 40]. We
used the d-aug-cc-pV5Z [41] correlation-consistent Gaussian basis set with angular momen-
tum up to l = 5 and including a double set of diffuse orbitals. This was the most converged
basis set and the best available to us.

3.2 QMC

We performed variational and diffusion quantum Monte Carlo (VMC and DMC) calculations
[42, 43] of the nonrelativistic ground-state energy of an isolated all-electron helium atom
with infinite nuclear mass. The CASINO code was used to perform our calculations [44]. The
ground-state wave function is nodeless and hence the DMC algorithm is unbiased in the limit
of zero time step, infinite walker population, and sufficiently long equilibration time.

We used a trial wave function of Slater-Jastrow form [43]:

Ψ(r1, r2) = φ
HF
1s (r1)φ

HF
1s (r2) exp(J), (14)
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where the Jastrow exponent is [45]

J =
∑

l

αl r
l
12(r12 − Lu)

3Θ(Lu − r12)

+
∑

i

∑

m

βmrm
i (ri − Lχ)

3Θ(Lχ − ri)

+
∑

l,m,n

γlmnr l
1rm

2 rn
12(r1 − L f )

3(r2 − L f )
3

×Θ(L f − r1)Θ(L f − r2), (15)

where Θ is the Heaviside function. The electron orbital φHF
1s in the Slater part was calculated

using Hartree-Fock theory and was represented numerically on a radial spline grid, allowing
the electron-nucleus Kato cusp condition to be satisfied [46, 47]. The Jastrow exponent con-
sisted of polynomial electron-electron, electron-nucleus, and electron-electron-nucleus terms,
which were smoothly truncated at distances of Lu = 8, Lχ = 8, and L f = 6 Bohr, respec-
tively [45]. Constraints were imposed on the parameters αl , βm, and γlmn to enforce the
electron-electron Kato cusp condition and to avoid interfering with the electron-nucleus cusp
condition; the remaining parameters were optimized. The Jastrow factors used in the great
majority of QMC calculations are of this form or similar. Since the exact helium-atom wave
function is a function solely of the electron-nucleus and electron-electron distances, the he-
lium atom is a favorable case for our Jastrow exponent, which is a polynomial expansion in
these distances. Free parameters in our trial wave function were optimized by energy mini-
mization [48]. Our wave function contained 42 free parameters, and optimization of the wave
function required about 32 core hours of computational effort. The resulting VMC energy is
−2.90372220(7) Ha. This is lower than the VMC energy [−2.903693(1) Ha] reported with a
similar form of Jastrow factor in Ref. [45] due to the use of a different optimization method.

In our DMC calculations we used time steps of 0.002 and 0.008 Ha−1, with corresponding
target populations of 1024 and 256 walkers. The resulting DMC energies were extrapolated
linearly to zero time step and hence, simultaneously, to infinite population. The resulting DMC
energy of a helium atom with infinite nuclear mass is −2.9037246(9) Ha. The total cost of the
two DMC calculations was 121 core hours.

The DMC result is within error bars of the exact energy, as shown in Table 2. This is to
be expected, as DMC is a statistically exact method for helium. However, a small difference
between the VMC result and the exact result can be seen. This is due to the finite extent
and order of the polynomials in the wave function, and the use of a finite number of random
configurations in the wave-function optimization.

3.3 CI

The configuration interaction (CI) results we report here are standard calculations for which
we invite the reader to refer to the specialized literature [49]. We were able to perform full-
CI [49] calculations for all Gaussian basis sets employed here, except for the d-aug-cc-pV5Z
which is fundamental to get the best convergence for excited states. This basis set is already
too large to allow a full-CI calculation, at least for the computing resources available to us. This
is already an important indication of the extent to which a given methodology, here CI, is able
to achieve in practice. However, for d-aug-cc-pV5Z we performed an iterative-configuration
expansion configuration interaction (ICE-CI) calculation [50,51] and we checked, within the
cc-pV5Z and the d-aug-cc-pVQZ basis sets, that ICE-CI provides results that are indistinguish-
able from full-CI, in particular on the ground state where the difference is < 10−9 Ha, and
remains generally at 10−9 Ha for most excited states, except in one case, where the difference
was found to be 7 · 10−6 Ha (see Table 1), well beyond what can be considered the accuracy
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Table 1: Helium excitation energies in atomic units (Ha), comparing Full-CI and ICE-
CI results within the cc-pV5Z and the d-aug-cc-pVQZ Gaussian basis sets. The zero
of energy is the full ionization onset, He++ + 2e−.

cc-pV5Z d-aug-cc-pVQZ
nSL Full-CI ICE-CI nSL Full-CI ICE-CI
11S −2.903151884 −2.903151884 11S −2.902536607 −2.902536607
23S −2.041940640 −2.041940640 23S −2.174798591 −2.174798592
21S −1.923273478 −1.923273482 21S −2.145020288 −2.145020287
23P −1.714041381 −1.714041383 23P −2.130703422 −2.130703422
21P −1.593255618 −1.593255621 21P −2.119799159 −2.119799159
31S −0.588140506 −0.588140506 33S −2.063091342 −2.063091342
33S −0.575726092 −0.575726092 31S −2.046569475 −2.046576198
33P −0.390104384 −0.390104386 33D −1.920654679 −1.920654679
31P −0.326412907 −0.326412909 31D −1.920163475 −1.920163475

of CI with respect to the exact solution. It would be unfair not to say that, beyond ICE-CI,
there are several other methods able to provide near-full-CI energies, like CIPSI, CCSD, etc.
We again invite the reader to refer to the specialized literature [49, 52–54] In the rest of the
paper we therefore quote these results (with a number of decimal digits equal to or less than
6) as CI tout court, irrespective of whether they were obtained using full-CI or ICE-CI. All CI
calculation were carried out using the publicly available ORCA code [51,55].

3.4 HF+dRPA, GW+dRPA, BSE

The results and the details of many-body perturbation theory using the Bethe-Salpeter equation
have been already reported by some of us in a previous publication [56] to which we refer the
reader for both the theory and the parameters used in the calculation. In practice, the BSE
equation is very similar to the standard RPA equation [Eq. (11)]. The major differences are
that the RPA kernel v̄, Eq. (5), is replaced by a kernel

KBSE
i jkl = 〈i j|v|kl〉 − 〈i j|W |lk〉,

in the BSE equation, where the second term has been replaced by matrix elements of the
screened Coulomb interaction W , instead of the bare Coulomb interaction v. Another major
difference is that the BSE calculation is done on top of an already correlated GW electronic
structure instead of the HF uncorrelated electronic structure used in standard RPA (see Fig. 1).

In this work we add some other new results obtained using the dRPA approximation, that is
the direct RPA without exchange diagrams. The difference between the two can be understood
when looking at the Feynman diagrams entering the irreducible polarizability eΠ (see Fig. 1):
in the dRPA polarizability only the particle-hole bubble (ring) diagram enters, while in the full
RPA both the ring bubble and also the particle-hole exchange bubble diagram enter. In both
cases then the irreducible polarizabilities eΠ are resummed up to infinity to get the reducible
polarizability Π (last line of Fig. 1). The dRPA is therefore a lower level of approximation.
Another often used name for the dRPA is ring approximation, with reference to the diagrams
taken into account.

We report new results for helium obtained using this dRPA on top of both Hartree-Fock and
also GW electronic structures. So, the particle-hole ring bubbles are calculated using electron
and hole Green’s functions relying in one case on the HF electronic structure (HF+dRPA), and
in the other on the quasiparticle GW (GW+dRPA, see Fig. 1). The comparison between the
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HF+dRPA with the RPA results and between the GW+dRPA with the BSE result, will show us
the effect of the electron-hole interaction represented, in the first case by the bare Coulomb in-
teraction, and by the screened Coulomb interaction in the second (Fig. 1). Like in all the other
cases, we used the same ingredients, Gaussian basis sets (d-aug-cc-pV5Z), and parameters of
the calculation so to allow the most faithful comparison between methods. The calculations
were carried out using again the FIESTA code, switching off the electron-hole interaction term
of the kernel.

3.5 TDDFT

TDDFT calculations share a lot of similarities with the standard RPA. In TDDFT excitation
energies and amplitudes are calculated by solving also the RPA equations [Eq. (11)], which in
chemistry are called the Casida equations [57, 58]. The differences with respect to standard
RPA are that (see Fig. 1): 1) The DFT Kohn-Sham electronic structure is used instead of the
HF electronic structure to calculate the zero-order polarizability; 2) The kernel v̄, Eq. (5), of
the standard RPA equations is replaced by a TDDFT kernel f TDDFT given by

f TDDFT
i jkl = 〈i j|v|kl〉+ 〈i j| fxc|kl〉. (16)

The first term is exactly the same in standard RPA, BSE and TDDFT kernels. TDDFT replaces
the second exchange term of RPA or the W term of BSE, by a direct term called exchange-
correlation kernel, fxc , which is defined as the functional derivative of the exchange-correlation
potential with respect to density (the second functional derivative of the exchange-correlation
energy):

fxc[ρ](x1, x2) =
δvxc[ρ](x1)
δρ(x2)

=
δ2Exc[ρ]

δρ(x2)δρ(x1)
.

TDDFT is an in-principle-exact framework to calculate neutral excitation energies and oscilla-
tor strengths. However, the exact form of fxc is in general unknown. The latter in particular
is in principle a dynamical quantity depending on time and hence on frequency [59]. So one
must resort to approximations. The adiabatic local-density approximation (ALDA or TDLDA)
is one of the most popular and consists of taking the functional derivative of the DFT local-
density approximation to the exchange-correlation potential with respect to the density. Here
we report calculations using this TDLDA approximation on top of both a DFT-LDA Kohn-Sham
electronic structure as well as the exact DFT Kohn-Sham electronic structure. The latter is
reported in Ref. [60,61], and was done using a real-space-real-time code. On the other hand,
we carried out DFT-LDA+TDLDA calculations using the NWCHEM code relying once again on
the same basis set and calculation parameters as in all other calculations, in particular the
d-aug-cc-pV5Z basis.

Finally, we also report the results of a DFT-LDA+dRPA calculation, that is using the dRPA
approximation on top of a DFT LDA Kohn-Sham electronic structure. This is equivalent to a
TDDFT calculation neglecting completely the exchange-correlation kernel, fxc = 0, in Eq. (16)
[62]. The comparison between DFT-LDA+dRPA and DFT-LDA+TDLDA results shows the effect
of the approximated exchange-correlation kernel fxc .

4 Results

In this section we will compare the results provided by the different methods, starting with
the ground-state energy and then moving to excitations.
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Table 2: Ground-state energy as calculated by different many-body approaches. The
zero of energy is set to the full ionization onset, He++ + 2e−. GGA refers to the
PBE functional. The exact-DFT result quoted from Ref. [61] is calculated from the
exact exchange-correlation potential obtained by reverse engineering from the exact
Hylleraas solution. So, its accuracy only reflects the accuracy of the Hylleraas solution
that must be known in advance, in contrast to the accuracies of all other methods
which are genuine and real. We quote the exact-DFT result just to remind the reader
of the scope of DFT, which should be the target of improved approximations.

Method Energy [Ha]
Noninteracting −4
Hartree −1.9517
HF −2.8616
DFT-LDA −2.8348
DFT-GGA −2.8929
Exact-DFT [61] −2.903724377034118
RPA (TDHF) −2.9097
r-RPA −2.9085
GW+BSE −2.9080
CI −2.9032
QMC-VMC (SJ) −2.90372220(7)
QMC-DMC −2.9037246(9)
Exact [10] −2.903724377034119598311159245194404

4.1 Ground-state

In Table 2 we report the helium atom ground-state energy (in atomic units [Hartree] and
setting the zero of the energies to the full ionization onset He++ + 2e−) as calculated by all
the methods we have considered. The exact result is quoted from the Hylleraas-like Schwartz
calculation [10], which achieved an accuracy of 35 decimal digits, further confirmed by later
work [11]. The noninteracting energy [Eq. (2)] of 4.0 Ha presents a large error of ∼ 1 Ha ∼
30 eV from the exact result, showing how important are the interactions between electrons
and how crude is the independent-particle approximation when calculating energies. The
simplest many-body method, the Hartree-Fock (HF) theory, provides a total energy of −2.8616
(our Gaussian d-aug-cc-pV5Z HF calculation converged up to 10−4 Ha), already an important
reduction of the error by almost two orders of magnitude down to ∼ 0.04 Ha ∼ 1 eV. This
cannot at all be considered chemical accuracy that requires an error one order of magnitude
less. Nevertheless, Hartree-Fock already provides a reasonable answer at least for the total
energy of the system, and we will see also for the ionization potential. The difference between
the exact and the Hartree-Fock energy,

Ec = EExact − EHF, (17)

is the more rigorous definition of the correlation energy. In helium, one of the few real systems
where we know the exact total energy, we can calculate exactly the correlation energy and see
that it is Ec = −0.042Ha= −1.15eV (see Table 5), only 1.4% of the total energy.

Next we analyze the DFT-LDA result which presents an error larger (almost the double)
than that of HF: 0.07 Ha ∼ 1.9 eV. A DFT generalized gradient approximation (GGA) [63,64]
calculation (we used the most popular PBE functional [26]) reduces the error below the HF
one: 0.01 Ha ∼ 0.3 eV. Notice that these are errors of the approximation, LDA or GGA (PBE),
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Table 3: Ground-state correlation energy for the different many-body approaches,
obtained by subtracting from the total ground-state energy (Table 2) the Hartree-
Fock energy calculated at the same d-aug-cc-pV5Z Gaussian basis set (Table 2 second
line). The exact correlation energy, calculated by Eq. (17), is converged to the same
accuracy of the Hartree-Fock d-aug-cc-pV5Z calculation (10−4 Ha.)

Method Correlation energy [Ha]
RPA (TDHF) −0.0481
r-RPA −0.0469
GW+BSE −0.0464
CI −0.0416
Exact −0.0421

not of DFT, which is in principle an exact theory to calculate the total ground-state energy. The
latter is just an idealistic statement which is better to avoid. Nevertheless, these statements
are important to identify the scope and the limits of a theory, and orient the research to the
real challenges within these limits [65]. Helium is one of the few cases where this statement
is not purely idealistic, and the “exact DFT” that mathematical theorems guarantee to exist,
can be really touched by hands. Thanks to the existence of the exact Hylleraas solution, the
exact exchange-correlation potential of DFT can be calculated by reverse engineering [61,66].
The exact Hylleraas ground-state wave functions allows the calculation of the exact electron
density, and from the latter we can calculate the only occupied DFT Kohn-Sham wave func-
tion. Knowing the exact Kohn-Sham occupied wave function and its corresponding Kohn-Sham
energy (equal to the exact ionization potential also provided by the Hylleraas solution), the
Kohn-Sham equation can be inverted to provide the exact exchange-correlation potential of
DFT. This is the potential plotted in Fig. 8 of Ref. [61]. Using the exact exchange-correlation
(XC) potential we can run the exact DFT and, for example, calculate the total ground-state
energy (Table I of Ref. [61] reported in our Table 2) which, with no surprise, coincides with
the exact Hylleraas energy. So for helium exact DFT is something more than only an idealistic
theory. We cannot predict anything not already provided by the Hylleraas solution, but we can
at least study the DFT methodology. Unlike all other entries in Table 2, the “Exact-DFT” line is
there not to indicate the actual performances of DFT in general, but just to show that an exact
exchange-correlation potential exists and is able to provide the exact ground-state total energy
by a mono-determinantal (Kohn-Sham) approach (but not other quantities outside the scope
of Kohn-Sham DFT), and it is thus meaningful to search for approximate functionals that try
to be as close as possible to the exact potential also in the general case [65].

Next in our table we have a bunch of approximations that improve with respect to Hartree-
Fock up to one order of magnitude (∼ 0.004 Ha ∼ 0.12 eV for the GW+BSE ground-state

Table 4: CI ground-state energy calculation, Gaussian basis set convergence.

CI cc-pVxZ d-aug-cc-pVxZ
TZ −2.900232 −2.900608
QZ −2.902411 −2.902537
5Z −2.903152 −2.903202
Extrapolation −2.903878 −2.903840
Exact [9] −2.903724
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Figure 3: He atom ground-state 11S energy by CI calculations using increasing Gaus-
sian basis sets. In orange: calculations using the standard cc-pVxZ Gaussian ba-
sis set at increasing x (orange circles) and their extrapolation to x → ∞ (orange
line). Red: calculations using the double augmented d-aug-cc-pVxZ Gaussian basis
set at increasing x (red squares) and their extrapolation to x →∞ (red line). The
Hartree-Fock and the correlation energies were separately fit to different formulas:
the exponential function EHF(x) = EHF

∞ + ae−bx for Hartree-Fock, and a power law
Ec(x) = Ec

∞+ cx−3 for correlation (see inset). Black line: Exact Hylleraas-like calcu-
lation ground-state energy [10]. The zero of energy is set to the full ionization onset,
He++ + 2e−.

energy). The standard RPA (TDHF) result presents a consistent improvement with respect to
HF. Then both our r-RPA and the GW+BSE result improve almost by the same, non-negligible
but small amount, with respect to standard RPA.

The first result that starts to be within the level of chemical accuracy (usually set to 1
kcal/mol ∼ 0.0016 Ha ∼ 0.043 eV [49]) is the CI result. In Table 2 we quote our best con-
verged d-aug-cc-pV5Z result, presenting an error with respect to the exact result of 5 · 10−4

Ha. However, looking to Table 4 we can see that quadruple-Z Gaussian basis sets are at the
limits of chemical accuracy, and triple-Z, often the only possibility for molecular calculations
and by many considered as the golden standard, are well outside. Our study here tried also
to investigate to what extent the accuracy of CI can be improved. Helium is a very favorable
case also for CI since the presence of only two electrons limits the configurations to be taken
in consideration to singles and doubles only, with no need to include triples and beyond. Nev-
ertheless a CI calculation is to be done within a basis, here as in most chemical calculations
using a finite, incomplete Gaussian basis set. This limits the accuracy of the calculation due to
two factors: 1) the number of configurations taken into account is limited by the number of
elements in the basis set; for example, in the cc-pV5Z we have 55 basis elements, so that we
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can at best take into account all the singles and doubles configurations out of 55 Hartree-Fock
orbitals. 2) the chosen, localized or delocalized, basis set can limit the representation of the
exact wave functions; for example, it can be very hard to represent the highest, almost free,
excited states by using a necessarily limited set of localized Gaussians. We tried to study to
which extent the accuracy of CI with respect to the previous issues can be pushed by applying
a standard [67–69] extrapolation technique over the x-tuple zeta Gaussian basis set series,
towards the limit x →∞. We fit the Hartree-Fock total energies calculated at both the cc-
pVxZ and the d-aug-cc-pVxZ basis sets to the exponential function EHF(x) = EHF

∞+ae−bx , and
separately the correlation energies to the power law Ec(x) = Ec

∞ + cx−3. Figure 3 is a plot
of this extrapolation technique compared to the exact Hylleraas energy (in the inset the x−3

linear extrapolation for the correlation energy only). We report in Table 4 the extrapolated
values, ECI

∞ = EHF
∞+Ec

∞. It can be seen that the extrapolation overshoots the exact result. With
respect to the 5Z basis it provides a reduction of the error by a factor 5, but it is unable to go
below an error of 10−4 Ha. The 6Z basis would present an error of the same magnitude of the
extrapolated values, so it would not be convenient to go for the extrapolation once at the level,
say, of 7Z or 8Z. (Of course these values might be system dependent.) Our analysis seems to
show that a Gaussian CI extrapolation technique towards the exact result is improved by the
augmentation of the basis set. This implies that delocalized basis set elements, that we will
see are fundamental for the description of excited states, are also important for an accurate
description of the ground-state wave function and energy.

Quantum Monte Carlo is the most accurate among the many-body methods studied here.
The VMC approach generally relies on a Slater-Jastrow Ansatz for the variational trial wave
function, and this form is used in nearly all QMC codes. Our VMC calculation achieves a
random error of only 7·10−8 Ha, with the systematic error (bias due to the restricted form of the
trial wave function and the method used to optimize the free parameters) being 2.18(7) ·10−6

Ha. Our DMC calculations using this VMC-optimized Slater-Jastrow wave function achieved
a statistical error of 9 · 10−7 Ha, with no evidence of systematic bias. This demonstrates that
QMC is effectively able to achieve the experimental accuracy of Herzberg [70] used in the
hystorical theory-experiment comparison of Pekeris [71]. However, as noted earlier, helium
is a very favorable case for QMC because the ground-state wave function is nodeless; hence
fixed-node DMC is unbiased, i.e., one can obtain arbitrarily precise and accurate DMC results
by running for times as long as necessary. The present DMC calculation lasted 121 core hours.
The statistical error bar falls off as the reciprocal of the square root of the computational effort.
So the error bar can easily be reduced further, but the level of precision achieved in Hylleraas
calculations is completely unachievable with QMC in practice, or would require a significantly
better trial wave function, together with an adaptation of a QMC code for high-precision work.

The VMC accuracy achieved is 6 significant decimal digits, similar to the accuracy of Ki-
noshita’s 1957 Hylleraas-like calculation [2]. Fundamental to achieving this accuracy is the
cusp-like exponential factor e−ks present in the Kinoshita wave function of Eq. (3). This fac-
tor is also present in the standard VMC SJ Ansatz. So standard VMC can achieve Kinoshita’s,
but not Frankowski and Pekeris’s [3] accuracy of 14 significant decimal digits. Achieving the
latter might require the logarithmic factor ln(s) of Eq. (4), which is absent in the standard
VMC SJ Ansatz of multipurpose codes. One can easily implement such logarithmic behavior
in the VMC Ansatz. Knowing from the literature the best Hylleraas result and the associated
wave function, one could code an Ansatz modeled on the latter and possibly achieve the same
accuracy within VMC. However, this is not the criterion we have chosen in Table 2, where the
results are deliberately obtained using “standard” methodology. In any case, the genuine QMC
accuracies, compared to the rest of the methods that do not require advance knowledge of the
exact solution, are already very impressive.
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Table 5: Different contributions to the ground-state energy in atomic units (Hartree),
as calculated in our Gaussian d-aug-cc-pV5Z HF calculation converged only up to
10−4 Ha (second column), and in the Exact-DFT calculation of Umrigar and Gonze
[61] accurate to the quoted digits (third column). The 8th line reports the correlation
energy, whose more rigorous definition is the difference between the exact and the
Hartree-Fock energy. The zero of energy is set to the full ionization onset, He+++2e−.

Energy contribution HF Exact-DFT VMC
Kinetic +2.8615 +2.867082 +2.90377(6)
External (e-N) −6.7489 −6.753267 −6.75332(6)
Hartree +2.0515 +2.049137
Exchange −1.0257
Exchange-Correlation −1.066676
Many-body (e-e) +0.94585(5)
Total −2.8616 −2.903724 −2.90372220(7)
Correlation −0.0421
Exact [9] −2.903724377

4.2 Ground-state energy components

It is also instructive to analyze the individual components of the total ground-state energy. In
Table 5 we report them for HF, QMC and once again also for exact DFT for illustration purposes
rather than quantifying errors. The total energy benefits from the zero-variance principle (its
error bar goes to zero as the trial wave function is optimized) in both VMC and DMC [43].
Hence the total energy is much more precisely and a little more accurately determined than its
individual components. It is possible to calculate the exact energy components once the exact
many-body wave function is available from a Hylleraas calculation. However we could not find
them in the literature. We could anyway reconstruct what should be the exact components,
for example from the virial theorem which in the case of Coulomb interacting systems says
that the exact kinetic energy must be minus the total energy. By this argument we can see that
only VMC provides the expected behavior for the kinetic energy, to within the error bars. This
is not the case for HF: although the HF kinetic energy is virial with respect to its full HF total
energy, it does not coincide with the exact kinetic energy. The HF kinetic energy is the average
value of the kinetic energy operator over the HF single Slater determinant ground-state wave
function, and the latter is just an approximation to the exact many-body ground-state wave
function.

The same holds for exact DFT: the exact KS kinetic energy has nothing to do with the exact
kinetic energy T . It is the kinetic energy Ts of the fictitious Kohn-Sham independent-particle
system, i.e. the sum of the average kinetic energies of the Kohn-Sham fictitious electrons. In
fact, the difference between the exact and the Kohn-Sham kinetic energies, T−Ts, is included in
the DFT exchange-correlation energy Exc which, hence, contains also a part of the real kinetic
energy. Here we can evaluate this part to be+0.036642 Ha: this is almost the same magnitude
(with change of sign) as the correlation energy rigorously defined by Eq. (17), Ec = −0.0421
(8th line in Table 5). So, this kinetic contribution to the defined total exchange-correlation
energy Exc of DFT is not negligible at all with respect to the correlation contribution.

The electron-nucleus external energy can be calculated once again exactly (within the error
bar) by VMC as the average of the external potential local operator over the VMC wave func-
tion. The external energy can also be in principle calculated exactly within DFT: to calculate
this quantity the full many-body wave function is not needed, just the electronic density, which
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Table 6: He excitation energies in Hartree and eV, comparison between BSE and CI
calculated at the d-aug-cc-pV5Z basis against the exact [32] result. The zero of energy
is set to the He ground state 11S.

nSL BSE CI Exact nSL BSE CI Exact
atomic units [Ha] electronvolt [eV]

23S 0.7271 0.7282 0.7285 23S 19.786 19.815 19.824
21S 0.7676 0.7577 0.7578 21S 20.888 20.618 20.621
23P 0.7724 0.7714 0.7706 23P 21.018 20.991 20.969
21P 0.7894 0.7818 0.7799 21P 21.480 21.274 21.222
33S 0.8427 0.8404 0.8350 33S 22.930 22.868 22.722
31S 0.8637 0.8565 0.8425 31S 23.502 23.307 22.926
33P 0.9514 0.9542 0.8456 33P 25.890 25.965 23.010
33D 0.9645 0.9617 0.8481 33D 26.247 26.169 23.078
31D 0.9663 0.9621 0.8481 31D 26.294 26.180 23.078
31P 0.9928 0.9829 0.8486 31P 27.015 26.746 23.092

is provided exactly with the exact DFT. The external energies of exact DFT and VMC coincide.
This of course is not the case in approximate (LDA, GGA, etc.) DFT. On the other hand, HF
provides only an approximate electronic density, and so the external electron-nucleus energy
provided by HF is only an approximation for this component.

Ambiguities related to the definitions start to arise when looking at the Hartree energy. At
the beginning this component was defined with respect to a particular method, the Hartree
or the Hartree-Fock method. These two methods already provide a different estimate for the
Hartree energy, due to the fact that the ground-state wave functions and electronic densities
are different. However the Hartree energy can be defined as the classical component to the
many-body electron-electron energy:

EH =

∫

d3rd3r ′
ρ(r )ρ(r ′)
|r − r ′|

.

With this definition, one can see that exact DFT also provides the exact Hartree energy,
again because the density is exact. And we can measure the error in this component within
HF theory, which is related to the error in the HF external energy. In principle the charge
density and hence Hartree energy can be calculated within QMC, but in practice QMC directly
evaluates the many-body electron-electron interaction energy (6th line of Table 5). Likewise
for the exchange and correlation energies. In fact, the exchange energy can only be defined
once the exchange operator, which relies on single-particle wave functions, is defined, what
is meaningless in a QMC framework. A meaningful exchange energy can only be defined
within the Hartree-Fock method and not within DFT even in the exact case. An exchange
energy defined using the same HF shape for the exchange operator but using Kohn-Sham (KS)
wave functions, i.e. the wave functions of the noninteracting KS electrons, has not the same
physical interpretation as the genuine Hartree-Fock exchange. In DFT normally one simply
requires a full exchange-correlation functional/potential that takes into account all missing
components together, including the kinetic energy not accounted for by the Kohn-Sham kinetic
energy Ts. This is indeed the case for exact DFT where the exchange-correlation energy exactly
provides the missing contribution (exchange plus correlation plus residual non-Kohn-Sham
kinetic energy) to achieve the exact total ground-state energy (5th line in Table 5). Of course
DFT LDA, GGA, or other approximations, should be evaluated for their error strictly done on
this quantity or on the density [65].

20

https://scipost.org
https://scipost.org/SciPostPhys.6.4.040


SciPost Phys. 6, 040 (2019)

BSE

BSE

Exact

Exact

CI

CI

0.7

0.8

0.9

1

[H
a

rt
re

e
]

2
3
S

2
1
S

2
3
P

2
1
P

triplet

singlet

He
+
(1s) + e

-

He atom

3
3
S

3
1
S

continuum

3
1
P

3
1
D

3
3
P

3
3
D

20

21

22

23

24

25

26

27

E
x
c
it
a

ti
o

n
 E

n
e

rg
y
 [

e
V

]

Figure 4: He excitation energies in Hartree and eV, comparing BSE and CI results
calculated within the d-aug-cc-pV5Z basis against the exact [32] result. The zero of
energy is set to the He ground state 11S.

Finally from this table one can read off the exact value of the correlation energy, rigorously
defined with respect to the total exact and Hartree-Fock energies by Eq. (17), and so have
an estimate of its size and the only nonarbitrary and reliable evaluation of how strongly or
weakly correlated a many-body system is. By comparing the correlation energy with the other
contributions to the total energy, one can appreciate how important correlations are in a given
system, whether correlations are going to change qualitatively the picture or they are only a
quantitative adjustment. In helium the correlation energy is more than one order of magnitude
less than all other components, only a small fraction < 5% of them, no matter how the other
components are decomposed. So, the helium atom can be classified as a weakly correlated
system.

4.3 Excitations

We now start to analyze excited states, starting from the comparison of CI and exact results
(Table 6). The first three CI excitations are still within chemical accuracy from the exact re-
sult. The agreement is still acceptable, within 0.5 eV, for the next three excitations. However,
starting from 33P the error jumps to 3 eV and more. These states are also provided as unbound
since the ionization potential is set to 0.9037 Ha. This degradation is evidently a finite-basis ef-
fect. The lowest excited states are more localized and require few Gaussians to be represented
accurately. Higher states get more and more delocalized and, consequently, require larger
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Table 7: He excitation energies in atomic units (Hartree, top) and electronvolt (eV,
bottom), comparison between different methods. The zero of energy is set to the He
ground state 11S. The exact DFT + TDLDA result is taken from Ref. [28] and it is the
only one in the table calculated without using the Gaussian basis set. The last line
reports the ionization potential (IP), i.e. the first ionization onset He+(1s) + e−, ob-
tained from the last-occupied energy, IP = −ε1s, of the (depending on the methodol-
ogy) HF, GW , DFT LDA or exact electronic structures. Notice that for DFT LDA based
calculations we could have used the IPDFT−LDA

∆SCF = 0.8931 Ha calculated by the ∆SCF
method, providing a fully bound Rydberg series, although severely red-shifted.

nSL Exact CI
GW
+

BSE

TDHF
(RPA)

HF
+

dRPA

GW
+

dRPA

DFT-
LDA
+

dRPA

DFT-
LDA
+

TDLDA

Exact-
DFT
+

TDLDA
atomic units [Ha]

23S 0.7285 0.7282 0.7271 0.7237 0.9396 0.9289 0.5826 0.5792 0.7351
21S 0.7578 0.7577 0.7676 0.7759 0.9414 0.9307 0.5882 0.5853 0.7678
23P 0.7706 0.7714 0.7724 0.7806 1.0136 1.0020 0.6381 0.6337 0.7698
21P 0.7799 0.7818 0.7894 0.7997 1.0157 1.0041 0.6437 0.6340 0.7764
33S 0.8350 0.8404 0.8427 0.8499 1.0574 1.0444 0.6693 0.6575 0.8368
31S 0.8425 0.8565 0.8637 0.8732 1.0774 1.0644 0.7002 0.6872 0.8461
IP 0.9037 0.9179 0.9075 0.9179 0.9179 0.9075 0.5704 0.5704 0.9037

electronvolt [eV]
23S 19.824 19.815 19.786 19.692 25.569 25.276 15.853 15.760 20.003
21S 20.621 20.618 20.888 21.115 25.618 25.324 16.007 15.928 20.893
23P 20.969 20.991 21.018 21.242 27.581 27.266 17.363 17.244 20.947
21P 21.222 21.274 21.480 21.762 27.639 27.323 17.515 17.251 21.127
33S 22.722 22.868 22.930 23.128 28.773 28.421 18.214 17.891 22.770
31S 22.926 23.307 23.502 23.762 29.317 28.963 19.054 18.701 23.024
IP 24.591 24.979 24.696 24.979 24.979 24.696 15.522 15.522 24.591

(more diffuse) basis sets. In particular we have found it is essential to use augmented Gaus-
sian basis set to describe even the lowest excited states. Looking at Table 1 one can see that the
cc-pV5Z basis presents an error of more than 3 eV already on the first excited state 23S. This
problem could be mitigated in large molecules because of the effect of basis elements sharing,
i.e. the fact that each atom profits from the basis functions on its many neighbors. However,
states towards the continuum of hydrogenic He+(1s) plus a free electron would require better
adapted bases, e.g., plane waves. The states quoted in Table 6 (see also Table 1 for reference
of convergence) are the only ones that could be unambiguously identified, though already in
the unbound part of the spectrum.

The BSE approach is at the limit of chemical accuracy only for the first excited state 23S
and generally presents a larger error than CI. Very importantly, we observe the same trend as
in CI, with the characteristic breakdown at the level of the 33P excitation. From that point on
we observe a large error of both CI and BSE, but the two methods are close to each other. The
worsening is evidently due to basis-set incompleteness in both methods. The CI error can be
regarded as mostly due to the incompleteness of the basis-set. With this assumption, we can
evaluate the error due to the approximations done in the BSE formalism, independently from
the basis set incompleteness error, by comparing directly BSE and CI results at the same basis
set. We see that this BSE formalism error is no more than 0.2 eV, an error that allows us to
describe the main physics of a system.

In Ref. [56] some of us already analyzed the results of GW+BSE in comparison to RPA
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Figure 5: He excitation energies in Hartree and eV. The zero of energy is set to the
He ground state 11S. From the left: exact-DFT [60, 74]; TDLDA on top of exact-
DFT [28]; exact spectrum [32]; TDLDA on top of DFT-LDA; dRPA on top of DFT-LDA.
The DFT-LDA spectra are calculated at the d-aug-cc-pV5Z basis, while the exact-DFT
are real-space calculations. Notice that for DFT LDA based calculations we have used
as onset of the continuum the IPDFT−LDA = −εDFT−LDA

1s = 0.5704 Ha, but we could
have better used the IPDFT−LDA

∆SCF = 0.8931 Ha calculated by the ∆SCF method. In
the latter case we would have found a fully bound Rydberg series, and even severely
red-shifted and overbound.

(TDHF). We now analyze the results one can obtain from a dRPA (ring) approximation on
top of the HF or the GW quasiparticle electronic structure. It can be seen in Table 7 that the
excitation energy is strongly overestimated in both approaches, a nonrigid shift of 5–7 eV, and
a slightly larger one with HF+dRPA. The difference between GW+BSE and GW+dRPA is a
term that introduces electron-hole (excitonic) screened interaction effects. This also holds for
RPA (TDHF) and HF+dRPA, with the difference that we start from uncorrelated Hartree-Fock
energies and the electron-hole interaction is unscreened. One can see that this electron-hole
interaction term is very important at least in this isolated system, like it has been found to be
important in large band-gap insulators [72] and in molecules [40,73].

In helium we know that the distance between the first ionization level and the full ioniza-
tion is exactly 2 Ha. This is trivially given by the solution of the Schrödinger equation for the
system He+, which is a one-electron hydrogenic atom with Z = 2. So, the ionization potential
could be obtained by subtracting this value of 2 Ha from the ground-state energy. However, in
general, for systems with more than two electrons, this information is not available. We can
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Table 8: Helium atom first dipole-allowed 1S → 21P transition oscillator strength
f11S→21P .

Exact
GW
+

BSE

TDHF
(RPA)

HF
+

dRPA

GW
+

dRPA

DFT-
LDA
+

dRPA

DFT-
LDA
+

TDLDA
f11S→21P 0.27616 0.2763 0.2916 0.1011 0.0996 0.1476 0.1848

then use Koopmans’ theorem: the last occupied HF eigenvalue, and more so the corresponding
GW quasiparticle energy, can be interpreted as minus the ionization potential (IP) of the atom.
This is IPHF = 0.9179 Ha for HF and IPGW = 0.9075 for GW , against the exact IPexact = 0.9037
Ha. Referring to these values, one can conclude that the excitation spectra of both HF+dRPA
and GW+dRPA are unbound (even the first excitation lie above the IP), in contrast to the exact
excitation spectrum, which presents a whole Rydberg series below the ionization onset. From
this point one can see the importance of running a BSE (or a TDHF / RPA) calculation using a
kernel that contains the electron-hole interaction (exchange term) beyond the direct term of
the simpler dRPA.

In DFT the last occupied Kohn-Sham eigenvalue is the only one that can be physically
interpreted as minus the ionization potential, that is the energy to strip an electron from the
system [75–77]. In exact DFT the last eigenvalue exactly coincides with minus the ionization
potential. In Ref. [61] that value was taken from the exact Hylleraas calculation and imposed
for the inversion of the Kohn-Sham equation. In approximate DFT-LDA the last occupied Kohn-
Sham eigenvalue is supposed to give an approximate ionization potential in order to estimate
where the onset of the continuum of excitation occurs. This gives us IPDFT−LDA = 0.5704 Ha.
With respect to this value it turns out that the DFT-LDA + dRPA spectrum is also fully unbound
(see Table 7 and Fig. 5). The same for a DFT-LDA + TDLDA spectrum. There is no Rydberg
series before the onset of the continuum in DFT-LDA both with dRPA and TDLDA. Notice that
if we had used the information that the hydrogenic 1-electron helium ground-state energy is
exactly 2 Ha and calculated the IP as the 2-electron helium DFT-LDA ground-state energy (from
Table 2) minus these 2 Ha, getting IP = 0.83 Ha, then we would have found a bound Rydberg
series, although severely red-shifted. An always available and more convenient choice of the
ionization potential could have been obtained by taking the difference between the DFT-LDA
ground-state energies of the 2-electron and the 1-electron atoms, what is called the ∆SCF
method [78]. Even though the 1-electron DFT LDA calculation is the most critically affected
by the self-interaction problem and error (that anyway our 1-electron DFT LDA calculation
quantified to just only 0.06 Ha), by cancellation of errors with the 2-electron calculation a
better result can be obtained: IPDFT−LDA

∆SCF = 0.8931 Ha. So, we argue that in atoms, finding or
not an unbound Rydberg series in TDLDA (or dRPA) on top of DFT LDA calculations depends,
to a large extent, on the choice of how the IP has been calculated.

The use of the exact DFT Kohn-Sham spectrum [60, 74] (Fig. 5 left side), for which the
last occupied Kohn-Sham energy provides the exact ionization potential [75–77], allows us
to recover a bound Rydberg series in good agreement with the exact result. Indeed, an ap-
proximate TDLDA calculation done on top of exact DFT [28] is not any more affected by the
two drawbacks of the TDLDA calculation done on top of approximate DFT LDA, i.e. both the
unboundness of the entire spectrum due to the misplaced ionization potential, and also the
3∼5 eV severe shift of all excitations measured with respect to the ground-state energy (see
Fig. 5 and Table 7). Notice that, as is commonly done in solids, one can simulate this cor-
rection by applying a scissor operator to the DFT-LDA KS eigenvalue spectrum. The LDA KS
HOMO-LUMO gap of 15.853 eV has to be brought not to the exact HOMO-LUMO gap= IP - EA
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Figure 6: Starting point dependence, with respect to the PBEh exchange weight α,
of GW and BSE results. α = 0 coincides with the original PBE [26] functional,
while α= 1 represents a full HF exchange plus the correlation contained in the PBE
functional. a-c) The GW (green diamonds) and PBEh (black squares) gaps and the
singlet (blue circles) and triplet (red circles) BSE excitation energies for a) 1s→ 2s,
b) 1s→ 2p, and c) 1s→ 3s, respectively. The corresponding exact singlet (blue solid
line) and triplet (red solid line) excitation energies are reported from Ref. [32]. d)
The 11S → 21P BSE transition oscillator strength (blue circles). We report also the
BSE transition oscillator strength obtained starting from pure HF (cyan square) and
starting from pure DFT LDA (cyan triangle). The exact 11S→ 21P transition oscillator
strength (solid line) is reported from Ref. [32].

(electron affinity) of∼25 eV, but rather to the exact “optical gap”, i.e. at the 19.8 eV of the first
excitation 23S, or better at an average level of 20.2 eV between the singlet and triplet 2S exci-
tations. A scissor operator rigid shift of 4–∼ 4.4 eV would better situate the DFT-LDA+TDLDA
excitation spectrum.

To conclude this section we analyze the excitation oscillator strengths (Table 8). This is a
quantity directly related to the quality of the wave functions. By checking oscillator strengths
the different methodologies are evaluated with respect to the quality of the wave functions,
independently from energies. We note the good performances of BSE, but also of RPA, against
the unsatisfactory results of GW+dRPA and of HF+dRPA. Like for the excitation energies, both
the unscreened kernel of RPA and the screened one of BSE are fundamental to achieve good
oscillator strengths.

4.4 GW and BSE starting point dependence

All the previously quoted results with GW and BSE have been calculated starting from Hartree-
Fock. This is the approach of the origins [19,22,23] and it also looks to us more significative
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Figure 7: Starting point dependence, with respect to the PBEh exchange weight α,
of the ionization potential IP= −E1s as calculated in PBEh (black squares) and in the
GW approximation (green circles), compared to the exact [32] value (green solid
line).

for a comparison with TDHF and quantum chemistry methods like CI. A dependence on the
starting point for GW and BSE calculations should be expected, although in this work we have
performed a partial self-consistent GW concerning only the energies. In this section we will
analyze the dependence of both GW and BSE results with respect to the starting point. We
have chosen the hybrid DFT/HF PBEh approach [27] with variable exchange weight α [79]
because this will allow to explore a full range of situations. From pure DFT-PBE at α = 0, to
a HF approach including correlation in the form of the local potential associated to the PBE
DFT functional at α = 1. The results are reported in Fig. 6(a) for the 2S excitation energies
(both singlet and triplet), Fig. 6(b) for the 2P, and 6(c) for the 3S. It is quite surprising to see
that in all the cases the value of α, that is the starting point, is little affecting the GW HOMO-
LUMO+n gaps, although PBEh gaps are strongly affected. This is also what we observe if we
consider the ionization potential (IP), equal to minus the energy of the HOMO 1s state (Fig.
7). However we point out again that we performed a self-consistency on the GW energies.
Wave functions on the other hand are kept at the level of PBEh, and these can have a more
important effect on the matrix elements of the BSE kernel, and consequently also on the BSE
eigenvalues. We observe such an effect in Figs. 6(a-c), in particular more on the triplet states,
while singlet states seem to follow the trend of GW gaps. A much more important effect is to
be expected on oscillator strengths since the latter are only sensitive to wave functions. This
is indeed what we observe in Fig. 6(d) for the oscillator strength of the transition 11S→ 21P,
varying in a broad range, from f = 0.51 at α= 0, to f = 0.27 at α= 1

In conclusion, if the value of α and the starting point seems to affect little the result of the
GW gaps, and in part also the energy of singlet excitations, a choice of an α close to 1 seems
to provide results more in agreement with the exact calculation. This in particular for the
oscillator strength but also for the energy of triplet states, and finally also for the ionization
potential. This seems to indicate that HF is the best starting point for many-body perturbation
theory calculations, at least in the case of the helium atom and probably also of other isolated
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Figure 8: Depletion and repletion of occupation numbers as calculated in r-RPA
(renormalized RPA) towards SCRPA taken at self-consistency, as a function of the
Hartree-Fock energies. The orbital character of the states is indicated by different
colors and as label of dots. The zero of energy is set to the first ionization onset.

systems.
We also report on a GW+BSE calculation starting from DFT LDA: the results are close to

the ones starting from DFT PBE (PBEh functional at α = 0). When starting from DFT LDA,
excitation energies are 0.2∼0.3 eV larger than when starting from DFT PBE, like also the
oscillator strength f11S→21P , larger by 0.03 (see Fig. 6(d)).

Finally, we would like to compare our results with the available literature. To the best
of our knowledge, on helium atom there are no BSE calculations, only GW calculations of
the ionization potential, IP = −E1s, and these are one iteration G0W0 calculations starting
from DFT LDA [80] or PBE [81]. Without performing any self-consistency, our fully dynami-
cal contour-deformation G0W0 calculation at the d-aug-cc-pV5Z Gaussian basis set provide an
ionization potential of 23.57 eV when starting from LDA, and 23.40 eV when starting from
PBE. When starting from PBE, the best result Van Setten et al. [81] have obtained is 23.48 eV,
either using the codes FHI-AIMS (their analytic continuation 16 parameters Padé approximant,
P16 result) or TURBOMOLE (their no-resolution of identity, noRI result) in both cases using
a def2-QZVP Gaussian basis set, which is less converged with respect to our d-aug-cc-pV5Z.
By using the same def2-QZVP basis set we were able to reproduce their same result: 23.4769
eV. Van Setten et al. also quote a plane waves G0W0 result by the BERKELEY-GW code using a
plasmon-pole model and again starting from PBE: 24.10 eV, that is 0.6 eV larger than the Gaus-
sian basis result. This result is very close to the Morris et al. [80] result of 24.20 eV obtained
by a G0W0 on top of DFT LDA, using plane waves and with a full treatment of the frequency
dependence, i.e., without using the plasmon-pole model. We remark that our G0W0 result
starting from LDA is also larger (by 0.17 eV) than the G0W0 starting from PBE. So, our data
seem coherent with the data available in the literature, in the limit of the expected differences
between using localized and delocalized basis sets.

4.5 Renormalized RPA (r-RPA) and single quasiparticle energies

We will now present the self-consistent results of our r-RPA calculation. Three or four iterations
were necessary to achieve self-consistency at the accuracy we quote in our tables. In Fig. 8 we
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Table 9: He electron removal (first line) and addition (following lines) energies (Ha)
in HF, GW , exact [32] and experimental (EXP) result and renormalized RPA (r-RPA).
The zero of energy is set to the first ionization onset, so that the ground-state value
is coincident with minus the ionization potential.

nl HF GW Exact r-RPA
1s (= −IP) −0.9179 −0.9075 −0.9037 −0.9123
2s (= −EA) +0.0217 +0.0213 > 0 +0.0202
2p +0.0956 +0.0944 +0.0935
3s +0.1394 +0.1369 +0.1370

show the values of depletion/repletion of the correlated r-RPA occupation numbers, |nk−nHF
k |,

with respect to the integer uncorrelated HF occupation numbers, as a function of the HF single-
particle energy. Our data were calculated by Eq. (12) and Eq. (13) and include both S = 0
spin singlet and S = 1 triplet contributions. We remark that the correlation corrections to
the occupation numbers are small, 1% for the only occupied 1s level, becoming smaller and
smaller for the unoccupied ones with increasing principal quantum number n. In the plot we
are also able to reveal a decreasing trend at increasing angular momentum l. In the jellium
metallic spheres studied by Catara et al. [16] depletions and repletions were found much
larger, beyond 30% in some cases. As already indicated in the literature [82–84], the absolute
value of depletions and repletions in occupation numbers and momentum distributions, can
be considered a reliable indication of the correlation strength in one system.

In Table 9 we report the calculated r-RPA single-particle energies, as calculated by solving
the single-particle Schrödinger equation (9), using the mean-field potential Eq. (10) calculated
with the fractional correlated occupation numbers already plotted in Fig. 8. We report the
values at self-consistency and compare them to the values calculated with other approaches as
HF, GW , and the exact values only where known, in practice just only the ionization potential
can be derived from an exact Hylleraas calculation. Focussing on the last occupied 1s energy,
we see that the 1.6% error of HF is reduced to less than 1% in r-RPA, showing the same correct
trend as the GW correction which reduces the error to 0.4%. The Hylleraas calculation cannot
provide the exact values of the electron affinity and other addition energies, but comparing the
r-RPA values to HF and GW we see that, with respect to HF, they go in the same direction of
GW corrections, and go even beyond them. They are anyway very close to GW quasiparticle
energies. So, the correlation corrections brought by both r-RPA and GW on top of the HF
electronic structure seem to go in the same direction, although it is, a priori, not clear how
they are physically related to each other. We may clarify this point in a future publication. We
remark in particular that all the HOMO-LUMO+n gaps close down from HF, and r-RPA situates
half way with respect to GW .

In Fig. 9 and Table 10 we report on the excitation energies obtained at self-consistency by
the r-RPA approximation. We distinguish the case of updating only the occupation numbers
[Eqs. (12) and (13)] keeping the energies at the level of HF (indicated in the table and in
the figure as “r-RPA occ. only”), from the full r-RPA, where we update occupation numbers
and energies [Eq. (9), indicated in figures and tables as “r-RPA occ. & ene.”]. In all the cases
we report the result at self-consistency. By looking at Fig. 9 and Table 10 we see that the
introduction of correlated occupation numbers (r-RPA occ. only) systematically increases the
energy of all excitations with respect to standard RPA. This results in an overall worsening of
the excitation spectrum with respect to the exact. Renormalized RPA (r-RPA) improves only
on the first 23S excitation whose energy is the only one underestimated by standard RPA. This
result is rather discouraging since, when looking at the full SCRPA matrix S, it can be expected
that the introduction of fractional occupation numbers should play a major role in SCRPA.
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Figure 9: He atom excitation spectrum by the renormalized r-RPA towards SCRPA, in
two different flavors: updating up to self-consistency the occupation numbers only (r-
RPA occ. only); and updating both occupation numbers and single-particle energies
(r-RPA tout court). We compare the r-RPA spectra to the standard RPA, to the exact
solution and finally also to a GW+RPA unscreened kernel approximation (left panel)
and to a GW+BSE screened kernel calculation (right). The zero of energy is set to
the ground state 11S.

However the situation is completely reversed when considering a full r-RPA, taking into
account corrections to the occupation numbers and also to energies (r-RPA occ. & ene. or r-RPA
tout court). The effect of replacing occupation numbers in energies, that might appear second-
order with respect to their direct effect when replaced where they appear in the S matrix,
is instead quite important to correct standard RPA towards the right direction. We see that
the excitation energy is reduced not only with respect to the r-RPA occ. only approximation,
but also with respect to standard RPA. This results in an overall improvement with respect
to standard RPA, towards the exact solution. Again the exception is represented by the first
excited state where in full r-RPA we observe a worsening.

These r-RPA results can be better understood if compared not directly with the GW+BSE
approach, but rather with a GW+RPA calculation using a v̄ unscreened kernel. Indeed, in both
the full r-RPA and the GW+RPA cases the novelty with respect to standard RPA (TDHF) is the
introduction of a correlated, in place of the uncorrelated HF electronic structure, as starting
point of the RPA equations. While the kernel keeps in all cases the same v̄ as in standard
RPA. We see in Fig. 9 (left panel) and Table 10 that, with respect to standard RPA, the effect
of both GW+RPA and r-RPA is exactly in the same direction. For all excitations we observe
a reduction of their energy with respect to standard RPA. This can be directly traced back
to the reduction of single-particle HOMO-LUMO gaps taken as starting points to the same v̄
kernel RPA equations. The GW+RPA excitation energies are lower than r-RPA simply because
the HOMO-LUMO GW gaps are smaller than r-RPA. For this reason the GW+RPA is more in
agreement with the exact result, again with the exception of the first 23S excitation where
both r-RPA and GW+RPA go in the wrong direction with respect to standard RPA, and the
more important GW+RPA correction turns out in a worse result.
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Table 10: He excitation energies in atomic units (Hartree, top) and electronvolt (eV,
bottom) as calculated in a renormalized RPA towards SCRPA, both updating only the
occupation numbers, or also the energies. The zero of energy is set to the He ground
state 11S.

nSL
RPA

(TDHF)

r-RPA
occ.
only

r-RPA
occ. &
ene.

Exact
GW
+

RPA

GW
+

BSE
atomic units [Ha]

23S 0.7237 0.7278 0.7199 0.7285 0.7104 0.7271
21S 0.7759 0.7783 0.7708 0.7578 0.7644 0.7676
23P 0.7806 0.7840 0.7759 0.7706 0.7676 0.7724
21P 0.7997 0.8024 0.7945 0.7799 0.7875 0.7894
33S 0.8499 0.8518 0.8442 0.8350 0.8378 0.8427
31S 0.8732 0.8750 0.8672 0.8425 0.8609 0.8637

electronvolt [eV]
23S 19.692 19.805 19.590 19.824 19.330 19.786
21S 21.115 21.178 20.976 20.621 20.800 20.888
23P 21.242 21.333 21.112 20.969 20.888 21.018
21P 21.762 21.835 21.619 21.222 21.428 21.480
33S 23.128 23.179 22.973 22.722 22.798 22.930
31S 23.762 23.811 23.598 22.926 23.426 23.502

To correctly describe this first excitation and improve, rather than worsen with respect
to standard RPA, a correction of the kernel seems required. For example the introduction of
screening into the bare particle-hole exchange interaction of the RPA kernel, like done in BSE.
This reduces the strength of the kernel and so of the correction to the excitation energy when
starting from GW+dRPA. The effect of the screened BSE W kernel is impressively evident
on this first 23S excitation (compare left and right panel of Fig. 9). The screening reduces
its effect when moving to higher excitations. For the highest excitations one might argue
that the introduction of the screening, although with smaller and smaller effect, goes in the
wrong direction to increase the energy, but we remind that the overestimation of the excitation
energy is a finite basis set effect due to the poor representation of highly delocalized states by
Gaussians also detected in the CI calculation.

The r-RPA result here presented may appear not yet satisfactory, for example if compared
to BSE. However, we think it is a very encouraging result. This result makes us hope that the
introduction of the two-particle correlation terms into the full SCRPA S matrix can reduce the
strength of the kernel, like it happens in BSE when introducing the screening into the bare
Coulomb v. Indeed, the neglect of the correlation terms in S atrophies SCRPA very much.
This the more so as the correlation terms can be shown to contain screening in a similar way
as with BSE. These aspects may be elaborated in a future publication.

In Table 11 we report the f11S→21P first dipole allowed transition oscillator strength for
r-RPA. We remark an improvement with respect to standard RPA. This is mostly due to the
update of occupation numbers. Since the oscillator strength is above all sensitive to wave
functions, the difference between r-RPA with or without updating the energies is less evident
than in excitation energies themselves. Nevertheless, the fact to have different energies along
the diagonal of the RPA S matrix has also an effect on eigenvectors, wave functions and, thus,
oscillator strengths. This effect is also appreciable when comparing the standard RPA to the
GW+RPA oscillator strength. The latter even shows a worsening. A correction to occupation
numbers and/or the kernel, like in BSE, is required to improve the oscillator strength towards
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the good direction.

Table 11: Helium atom first dipole-allowed 11S→ 21P transition oscillator strength,
calculated in RPA (TDHF), r-RPA updating up to self-consistence occupation num-
bers only, r-RPA updating both occupation numbers and energies, exact Hylleraas
calculation [32], RPA on top of GW quasiparticle energies, and BSE.

RPA
(TDHF)

r-RPA
occ.
only

r-RPA
occ. &
ene.

Exact
GW
+

RPA

GW
+

BSE
f11S→21P 0.2916 0.2889 0.2877 0.27616 0.2946 0.2763

5 Conclusions

Our work presented a comparison on the same footing, in particular using the same Gaussian
basis set, of several many-body approaches, including a not so much explored renormalized
RPA (r-RPA) derived from the EOM method developed in nuclear physics. Our work shows
that the r-RPA, which is a sub-product of the SCRPA approach, improves over the standard
RPA (i.e. linearized time-dependent Hartree-Fock (TDHF) [33]) and achieves a result of accu-
racy comparable to GW+BSE, except for the first excited state where there is no improvement.
Also GW+BSE improves on dRPA on top of both HF and GW , but also on RPA/TDHF. CI is
certainly one of the most accurate methods, but localized-basis-set issues seriously reduce its
accuracy on the highest excited states, well outside chemical accuracy. On the Rydberg series,
an Exact-DFT+TDLDA calculation done in real space shows superior performances with re-
spect to even Gaussian-basis CI. In the same CI Gaussian basis set, we have presented also the
DFT-LDA+dRPA and DFT-LDA+TDLDA helium excitation spectra, arguing that the question of
the boundness of the Rydberg series depends on the way the ionization potential is calculated.
On the ground state CI achieves chemical accuracy, but cannot do better even relying on recent
basis set extrapolation techniques. On the other hand, standard QMC, Slater-Jastrow varia-
tional Monte Carlo (VMC) followed by diffusion Monte Carlo (DMC) at the actual computer
power, has shown 2 orders of magnitude superior accuracy with respect to CI. We should men-
tion however that the helium ground state wave function is nodeless, a favorable case where
QMC is unaffected by the so-called fermion sign problem.
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