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Abstract

Low-energy effective theories have been used very successfully to study the low-energy
limit of QCD, providing us with results for a plethora of phenomena, ranging from bound-
state formation to phase transitions in QCD. These theories are consistent quantum field
theories by themselves and can be embedded in QCD, but typically have a physical ul-
traviolet cutoff that restricts their range of validity. Here, we provide a discussion of
the concept of renormalization group consistency, aiming at an analysis of cutoff effects
and regularization-scheme dependences in general studies of low-energy effective the-
ories. For illustration, our findings are applied to low-energy effective models of QCD
in different approximations including the mean-field approximation. More specifically,
we consider hot and dense as well as finite systems and demonstrate that violations of
renormalization group consistency affect significantly the predictive power of the corre-
sponding model calculations.
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1 Introduction

The computation of quantum corrections in field theories in general requires a regularization
and renormalization procedure. In perturbation theory, the regularization procedure allows
us to compute the perturbative loop diagrams in a well-defined fashion, e.g., by introducing
a momentum cutoff Λ for the momentum integrals. This cutoff dependence can be absorbed
in counter terms in the underlying bare action, here called ΓΛ. The latter then consists of all
ultraviolet (UV) relevant terms allowed by the symmetry of the classical theory or classical
action S. Potentially, additional terms have to be introduced in ΓΛ, if the momentum cutoff
breaks symmetries present in the classical action. Here, a prominent example is provided by
gauge symmetries that are explicitly broken by a momentum cutoff. Then, symmetry-breaking
counter terms such as a mass term for the gauge field in ΓΛ indeed restores the gauge symmetry
for the full quantum effective action.

This perturbative reasoning extends to the general non-perturbative case. In the past
decade non-perturbative functional methods, such as the functional renormalization group
(FRG), Dyson-Schwinger equations (DSE) and nPI methods, have made rapid progress and
improved our understanding of strongly-correlated systems, ranging from condensed matter
over heavy-ion physics and high energy-physics to quantum gravity. Inherent to all these func-
tional approaches is their formulation in terms of non-perturbative loop equations being struc-
turally very similar to the perturbative setting briefly discussed above. In most cases, and in
particular in numerical applications, these approaches feature momentum cutoffs for the non-
perturbative loops involved as well as respective counter terms in the bare action ΓΛ. The
explicit cutoff dependence of ΓΛ ensures the cutoff independence of the full quantum effective
action Γ ,

Λ
dΓ
dΛ
= 0 . (1)

This is the requirement of a consistent regularization and renormalization of a given theory,
and is called RG consistency. As a central ingredient in a non-perturbative functional setup,
RG consistency will be discussed in detail in Sec. 2. Evidently, these considerations are very
general and are not bound to perturbatively renormalizable theories or to a specific class of
field theories.

In this work, we discuss how cutoff artefacts can be removed consistently within a given
low-energy effective theory in order to ensure the important property of RG consistency (1).
Irrespective of possible fundamental UV completions, the discussion of cutoff artefacts is re-
quired for a meaningful application of a given model and a test of its range of applicability
in terms of external parameters. In Sec. 2, we therefore discuss this issue on very general
grounds. In Sec. 3, we then demonstrate the application of these general considerations to
specific model calculations. This includes a quark-meson model in the vacuum limit, a di-
quark model at finite density, a quark-meson-diquark model at finite temperature and density,
and the quark-meson model confined in a finite box. Our conclusions can be found in Sec. 4.

2 RG consistency

In this section we focus on general aspects of RG consistency which includes both discussions
of formal as well as phenomenological aspects. The reader may skip this section in a first
reading and readily start with Sec. 3 where we exemplify the meaning of RG consistency in
the context of specific QCD low-energy effective theories.
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2.1 RG consistency and low-energy phenomenology

The computation of quantum corrections in field theories in general requires the introduction
of a UV cutoff Λ. This scale is said to be asymptotically large when

si

Λ
� 1 with s = {mphys, mext} , (2)

where the set s stands for all mass scales in the theory, including dimensionful couplings. In
particular, this set consists of the intrinsic fundamental parameters of the theory, mphys (e.g.
masses of particles), as well as the external scales mext. For example, for the low-energy
effective theories (LEFT) of QCD discussed below, we have mext = {T, V−1/3,µ}, where T is
the temperature, V is the volume of the system, and µ is the quark chemical potential.

When Eq. (2) is ensured, the bare action ΓΛ only encodes the microphysics of the situation
at hand, and changes of the intrinsic parameters are simply triggered by changing the respec-
tive bare parameters in the action. In particular, Eq. (2) entails that a change of the external
parameters of the theory does not change the regularization and renormalization of the theory
encoded in the Λ-dependence of ΓΛ. For mext,i/Λ→ 0, the corresponding property then reads

d
dmext,i

�

Λ
dΓΛ
dΛ

�

= 0 , (3)

which highlights the similarity of this condition to the RG-consistency condition given in
Eq. (1). In turn, if Eq. (2) does not hold, ΓΛ has to vary with a change of mext to ensure
that the RG-consistency condition (1) holds. However, a dependence of ΓΛ on the external
parameter then implies

d
dmext,i

�

Λ
dΓΛ
dΛ

�

6= 0 . (4)

This is elaborated below. Note that, if Eq. (3) is violated, (part of) the physics related to the
fluctuation physics of the respective external parameters is already carried by the bare action
ΓΛ. It has to be computed separately, which necessitates an explicit expression for the right-
hand side of Eq. (4). This computation is of eminent importance. As we shall exemplify in
this work, violations of RG consistency may indeed significantly spoil predictions for physical
observables.

For a plethora of physically interesting theories, the cutoff Λ may be limited by a validity
bound. A strict bound is present, if the effective theory at hand cannot be extended beyond
a certain UV scale. For example, a Landau pole at the scale ΛUV is such a strict bound. Then,
we have to choose Λ ≤ ΛUV. This situation applies to most effective theories for the low-
energy regime of QCD, such as Nambu–Jona-Lasinio-type models (NJL) and quark-meson-type
models (QM) with or without Polyakov-loop extensions [1–49], and it also applies to quantum
electrodynamics and a variety of condensed-matter models.

A further, qualitatively different, validity bound of LEFTs is related to the fact, that they
typically lack some of the microscopic degrees of freedom that are relevant at momentum
scales Λ > Λphys. Then, Eq. (2) may hold for a given LEFT but, beyond the scale Λphys, the
LEFT lacks the dynamics associated with the fundamental microscopic degrees of freedom.
Consequently, such a LEFT cannot describe the physics at hand beyond Λphys. For example, in
conventional QCD low-energy effective theories, the gluon dynamics is missing. These LEFTs
describe QCD solely in terms of hadronic degrees of freedom which can only hold true for low
momentum scales.

Of course, by definition, a determination of the scale Λphys is involved as it requires an
actual study of the fundamental dynamics at all momentum scales. Within the FRG ap-
proach to fundamental QCD [50–56], however, it has been shown in various studies that
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the gluonic sector of QCD at low baryon-density decouples from the matter sector at scales
Λphys ∼ 0.4 . . . 1GeV, see e.g. [36, 38, 57–60]. In this context, it should be noted that the
scales Λ, ΛUV, and Λphys depend on the chosen regularization scheme, and are only related to
physical momentum scales by the renormalization procedure.

In our discussion of specific models in Sec. 3, we do not aim at a determination of their
values of Λphys but rather aim at a discussion of how cutoff artefacts can be removed consis-
tently within a given model study. Irrespective of possible fundamental UV completions, such
a discussion of cutoff artefacts is required for a meaningful application of a specific model
within given ranges for the external parameters, in particular in the absence of an accurate
knowledge of the scale Λphys.

2.2 Quantum effective action and regularization

The central object of our general discussion is the quantum effective action Γ [Φ] of a given
theory with field content Φ = (Φ1,Φ2, . . . )T in d Euclidean space-time dimensions. It is the
quantum analogue of the classical action and its saddle points are solutions of the quantum
equations of motion (EoM). Its nth field derivatives, evaluated at the minimal quantum EoM,
are the one-particle-irreducible (1PI) parts of the n-point correlation functions of the theory,
Γ (n)[Φ] = 〈Φi1 · · ·Φin〉1PI for n> 2. For the two-point function we have Γ (2)[Φ] · 〈Φi1Φi2〉1PI = 1.
In a functional approach, the effective action has the generic representation

Γ [Φ] =DΛ[Φ] + ΓΛ[Φ] , (5)

where DΛ stands for all momentum-loop diagrams evaluated in the presence of the momentum
cutoff Λ. This cutoff leads to finite diagrams, as momentum fluctuations with p2 ¦ Λ2 are
suppressed in DΛ. Hence, these fluctuations must reside in ΓΛ.

The relation (5) together with the RG-consistency condition (1) is simply the requirement
that the Λ-dependence of the loops is cancelled by that in the bare action ΓΛ. Moreover, we can
shift the fluctuation information contained in DΛ[Φ] to ΓΛ by lowering the scale Λ. Indeed,
we have limΛ→0 DΛ = 0 and limΛ→0 ΓΛ = Γ .

For this interpretation, ΓΛ has to be seen as an effective action that misses the infrared
dynamics of the theory carried by the diagrams DΛ[Φ]. Hence, the UV-cutoff Λ in the diagrams
serves as an infrared (IR) cutoff k = Λ for the scale-dependent effective action Γk:

k∂kΓk[Φ] = Fk[Φ] , (6)

where Fk = −k∂kDk. This fruitful block-spinning perspective is taken for FRG approaches. In
its modern form, Eq. (6) is a simple one-loop equation, the Wetterich equation [61] with

Fk[Φ] =
1
2

Tr
1

Γ
(2)
k [Φ] + Rk

k∂kRk . (7)

The trace in (7) sums over momentum, space-time and internal indices as well as species
of fields. The latter includes a minus sign for fermionic degrees of freedom as known from
perturbation theory. The regulator function Rk depends on the IR cutoff scale k and defines
the regularization scheme. It adds to the full two-point function of the regularized theory and
changes the dispersion. In the IR limit, it acts as a mass and thus suppresses the IR momentum
fluctuations in Γk. For UV momenta p2 ¦ k2, it decays sufficiently fast in order to keep the UV
physics unchanged. Let us discuss this here at the example of a scalar field. To this end, we
parameterize the regulator as

Rk(p
2) = p2r(x) , (8)
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with x = p2/k2 and a dimensionless shape function r determining the IR and UV asymptotics.
The prefactor p2 carries the classical dispersion of the scalar field. More elaborated choices
substitute the latter with the momentum-dependent part of the full inverse two-point function
p2→ Γ (2)k , known as RG- or spectrally adjusted regulators [62–66].

In general, an admissible regulator Rk has to obey certain conditions regarding its behavior
in the low- and large-momentum limit. For example, it has to render the momentum part of the
trace in (7) finite in the UV limit and, by providing a mass gap for the fields, also in the IR limit.
Hence, from an RG point of view, the regulator function specifies the Wilsonian momentum-
shell integration, such that the right-hand side of the differential equation (6) is dominated
by fluctuations with momenta |p| ∼ k. It should be added that fast decays of r(x) improve
the convergence of the approximation scheme used, for details see Refs. [66,67]. A common
approximation scheme that is also used in the present work, the derivative expansion, is based
on the expansion in powers of momenta. The applicability of this scheme to any order requires
shape functions that decay faster than any polynomial in x . In summary, exponential or even
compact support regulators are best suited for common systematic approximation schemes,
ranging from the derivative expansion to vertex expansions as used in QCD.

In the set of diagrams Dk[Φ], the cutoff k acts as a UV cutoff. UV suppression is achieved
by the occurrence of

1

Γ
(2)
k=0[Φ]

−
1

Γ
(2)
k [Φ] + Rk

(9)

for internal lines. This pattern is easily seen by integrating the flow equation (6) with (7)
within one-loop perturbation theory. On the right-hand side of the flow equation the bare
action enters with ΓΛ = S with S being the classical action. For a sharp cutoff and constant
background fields, we find

1
S(2)
−

1
S(2) + Rk

=
1

S(2)
θ (k2 − p2) . (10)

Additional subtractions occur in perturbation theory by iteratively generating higher loop or-
ders by re-inserting the result on the right-hand side of the flow equation, see e.g. Refs. [66,
68,69]. In total, the flow equation (6) with Eq. (7) leads to a generalized Bogoliubov-Parasiuk-
Hepp-Zimmermann (BPHZ)-type regularization scheme: the regularization is achieved by sub-
traction.

2.3 RG consistency – formal discussion

The effective action Γ is obtained from Eq. (5) by integrating Eq. (6) from the initial UV scale
k = Λ to k = 0. For finite k, we find

Γk[Φ] = ΓΛ[Φ] +

∫ k

Λ

dk′

k′
Fk′[Φ] , (11a)

which leads to (5) for k→ 0. The RG consistency condition (1) follows immediately for any
k 6= Λ from Eq. (11a) by taking the Λ-derivative.1 We have

Λ∂ΛΓk[Φ] = Λ∂ΛΓΛ[Φ]−FΛ[Φ] = 0 , (11b)

where we have used (6) in the last step. Note that in Eqs. (11a) and (11b) the scale Λ is not
necessarily the largest scale possible in the theory at hand, i.e. ΛUV. It is only some scale at
which we fix the couplings of the theory.

1Note that, within the standard convention of the FRG approach, the partial derivative with respect to Λ corre-
sponds to the total derivative in Eq. (1).
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The seemingly simple relations (11a)-(11b) offer a lot of information that is in general
more difficult to access in other approaches. First of all, Eqs. (11a)-(11b) entail that RG con-
sistency and hence cutoff independence of a theory, fundamental or effective, follows trivially
in the FRG approach: the effective action at the initial scale k = Λ has to obey the flow equa-
tion, if we vary the initial scale. Moreover, its Λ-dependence is easily extracted for large initial
cutoff scales Λ with the aid of Eq. (2). In this case, ΓΛ can be expanded in powers of Λ with

ΓΛ[Φ] =
∑

n≤Nmax

γ̃n[Φ]Λ
n + γ̃log[Φ] ln

Λ

s0
, (12a)

where the term with n = 0 carries the physics part of the initial condition at the scale Λ.
Here, we have normalized the logarithmic term with some physical scale s0 ∈ s, e.g. the
physical mass gap of the theory at hand. Choosing a different reference scale shifts terms
from γ̃0 to γ̃log. Note that the γ̃n’s can be a collection of different field-dependent terms
with the same Λ-behavior. The right-hand side of the flow equation can also be expanded
in powers of Λ, and the expansion coefficients only depend on the shape function r(x) and
γ̃= {γ̃Nmax

, γ̃Nmax−1, ..., γ̃log, γ̃0, γ̃−1, . . . },

FΛ[Φ] =
∑

n≤Nmax

fn[Φ; γ̃, r]Λn . (12b)

Inserting Eqs. (12a) and (12b) into the flow equation (6) leads to

γ̃n6=0 =
1
n

fn[Φ, γ̃, r] , γ̃log = f0[Φ, γ̃, r] , (12c)

where we have used Λ∂ΛΛ
n = nΛn, Λ∂Λ lnΛ = 1. Note that there is no relation for γ̃0 as it

contains the physics input. Nonetheless, γ̃0 appears on the right-hand side of the relations for
the γ̃n6=0 and γ̃log.

The set of relations (12c) can be solved recursively and provides the intial effective action
in a well-defined and practically applicable way. Note that only a finite number of terms matter
due to the Λ-suppression of the rest. The relations (12a)-(12c) also make apparent that, for
asymptotically large values of Λ, the initial effective action is nothing but the bare action for
the given FRG scheme. As such, it depends explicitly on the cutoff Λ, see e.g. [66,70].

The setting above is the standard one for perturbatively renormalizable theories in the ab-
sence of Landau poles. Strictly speaking, the formulation above only applies to asymptotically
free theories. In QCD, for example, we are in the fortunate situation that this simple setting
applies. In general LEFTs, we typically have to deal with the existence of an actual finite UV
extent given in form of a maximal UV cutoff scale ΛUV due to an instability of the theory, or a
phenomenologically existing UV extentΛphys above which a given LEFT does no longer provide
a valid description of a more fundamental theory. A priori, a safe choice is then

Λ≤ Λmax , (13)

where Λmax ∈ {Λphys,ΛUV}. For such a choice, Λ may not be sufficiently large compared to the
external parameters mext of interest and we are left with the situation as described by Eq. (4).
Moreover, the intrinsic scales may not even be small compared to Λ.2 Then, the determination
of the initial effective action ΓΛ with Eqs. (12a)-(12c) is no longer possible: for low initial
scales Λ, the initial effective action is a complicated object itself.

In LEFTs of QCD, for example, this issue may potentially be surmounted by computing ΓΛ
with the aid of RG studies of the fundamental theory, see e.g. Refs. [38,59,60,71]. However,

2In the following we focus on the external parameters for clarity. However, the discussion can be straightfor-
wardly generalized to the case of intrinsic scales.
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if a sufficiently accurate determination of ΓΛ from a more fundamental theory is not available,
we still have to ensure that cutoff artefacts associated with a specific choice for the scale Λ are
suppressed or even removed in our model study. Otherwise, over a wide range of the external
parameters, such a model study may only resolve peculiarities of the underlying regularization
schmeme. In this case, we have to make use of “pre-initial” flows that provide a systematic
determination of the effects of the violations described by Eq. (4) by an RG-consistent UV
completion of the LEFT at hand.

To illustrate this, let us assume that we know the effective action at some scale. In case
of QCD models, for example, the effective action is often chosen to assume a simple quadratic
form at some scale. In the following, this scale is denoted as Λ′, see also Sec. 3 for a discussion
of specific models. The UV completion ΓΛ of the LEFT is then obtained by following the RG
flow from k = Λ′ < Λ to k = Λ≤ ΛUV, such that we have Λ∂ΛΓΛ→ 0 for mext,i/Λ� 1, i.e. RG
consistency is ensured in the presence of finite external parameters. This is demonstrated in
Sec. 3 for specific models and exploits the fact that the effective action ΓΛ can be determined
from Eq. (11) as

ΓΛ[Φ; m(0)ext] = ΓΛ′[Φ; m(0)ext]−
∫ Λ′

Λ

dk′

k′
Fk′[Φ; m(0)ext] , (14)

with Λ chosen such that mext,i/Λ� 1 for all parameters of interest. Here, Fk′ depends on Φ

and m(0)ext, the latter denoting a given set of “benchmark values” for the external parameters at
which ΓΛ has been fixed with the aid of some set of physical low-energy observables. Typical
benchmark values are the vacuum values of the external parameters. For QCD, this is vanishing
temperature, infinite volume, and vanishing quark chemical potential, see also our examples
in Sec. 3.

If not indicated otherwise, we shall assume from now on that ΓΛ has been fixed in the limit
of vanishing external parameters. From our choice (14), we then deduce that the effective
action Γk remains unchanged in this limit:

Γk[Φ; m(0)ext] = ΓΛ′[Φ; m(0)ext] +

∫ k

Λ′

dk′

k′
Fk′[Φ; m(0)ext] = ΓΛ[Φ; m(0)ext] +

∫ k

Λ

dk′

k′
Fk′[Φ; m(0)ext] , (15)

where k < Λ′. However, note that the Φ-dependence of ΓΛ and ΓΛ′ is in general different. At
the same time, the choice (14) allows us to ensure Λ∂ΛΓΛ→ 0 for mext,i/Λ→ 0, see also below.
Indeed, the condition mext,i/Λ→ 0 ensures that Eq. (3) is fulfilled for ΓΛ. Eq. (14) also offers
a practical way to compute the dependence of ΓΛ′ on the external parameters. In other words,
the chosen UV completion in form of Fk>Λ′ has to ensure the overall consistency of the LEFT,
and in particular the thermodynamical consistency. Of course, this procedure is very general
and also applies to the case of asymptotically free theories as well as to asymptotically safe
theories where ΛUV is infinite.

For the construction of ΓΛ in case of LEFTs with Λphys < ΛUV, it may even be required to
choose Λ > Λphys. At first glance, this appears to be in contradiction to the very definition
of the scale Λphys. Strictly speaking, this is correct and an extension of LEFTs beyond Λphys
does not carry the physical fluctuation dynamics of the underlying fundamental theory for
scales Λ > Λphys. Nevertheless, we may have to choose Λ > Λphys in order to suppress cutoff
artefacts, i.e. the failure of Eq. (3). For the generic flow equation (6), the change of the initial
condition reads

Λ
∂ 2ΓΛ[Φ, mext]
∂mext,i ∂Λ

=
∂FΛ[Φ, mext]
∂mext,i

. (16)
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Integrating (16) from m(0)ext,i to mext leads to an even more convenient form,

Λ∂ΛΓΛ[Φ; mext]−Λ∂ΛΓΛ[Φ; m(0)ext] = FΛ[Φ; mext]−FΛ[Φ; m(0)ext] . (17)

If Eq. (3) holds, then the initial effective action is not changed apart from its explicit depen-
dence on mext. The same holds for the flow equation itself. Accordingly, if Eqs. (16) and (17)
are non-vanishing for a fixed initial effective action ΓΛ, then the (pre-)initial flow – and hence
the initial effective action – has to change for the RG-consistency condition (1) to hold: with
the representation of Γ as the integrated flow, see Eqs. (11) and (16), we are immediately led
to the RG consistency condition (1). In turn, assuming (3), and using the representation (11)
of Γ as the integrated flow, we arrive at the important constraint

Λ∂ΛΓ [Φ; mext] = −
�

FΛ[Φ; mext]−FΛ[Φ; m(0)ext]
�

!
= 0 . (18)

Here, the first term on the right-hand side arises from the Λ-derivative of the integrated
flow (11), whereas the second term originates from the Λ-derivative of the initial effective
action that is kept at its benchmark values for the external parameters. Note that Eq. (18) has
been used in Ref. [72] for defining the “thermal range" ΛT [r]≡ Λ[r; T] being the minimal cut-
off value for which Eq. (18) holds to a given accuracy. From our specific examples presented
in Sec. 3, it is moreover possible to extract the “density range" Λ[r;µ] and the “volume range"
Λ[r; V ]. Of course, the actual values of these quantities depend on the regularization scheme
specified by the regulator shape function r.

More generally speaking, the external parameters set the minimal value Λ[r; mext, m(0)ext] of
the cutoff for which Eq. (18) holds to a given accuracy. For the standard benchmark defined
by choosing the vacuum values for the external parameters, the third variable can be dropped.
For a given LEFT with a maximal physical UV range Λphys, this entails that only results with
mext in the set Mext,

Mext(m
(0)
ext)=

¦

mext |Λ[r; mext, m(0)ext]≤ Λphys[r]
©

, (19)

are fully trustworthy. We emphasize that all the above cutoff scales naturally depend on the
regularization scheme as defined by the choice for the regulator function r. In turn, the set
Mext should not depend on r, but may be r-dependent in given low-level approximations.

Provided that Λphys is known for a LEFT at hand, the set Mext defines the physics range of
this LEFT. Interestingly, this discussion makes also clear that the physics range for the external
parameters depends on the chosen benchmark value for the external parameters. Of course,
the latter cannot be chosen freely, as the parameters in the initial effective action ΓΛ[Φ; m(0)ext]
are fixed with the aid of observables at m(0)ext. Only m(0)ext, for which these observables are known,
can be used as a benchmark. Still, this suggests to use available first-principles result from
lattice or functional studies at finite temperature and small chemical potential with m(0)ext 6= 0
as a benchmark instead of the vacuum values. In case of QCD, this in principle allows for more
reliable LEFT computations of, e.g., finite-density effects, and is pursued within “QCD-assisted"
LEFTs.

Irrespective of the knowledge of Λphys and the corresponding physics range of the LEFT
under consideration, it is still crucial to use the strategy associated with Eq. (14) to remove
or at least suppress cutoff artefacts in the results for physical observables within a given LEFT
study. In Sec. 3, we illustrate this strategy in detail with the aid of low-energy models of QCD.

In summary, the RG consistency condition (1) of a given theory is in general a non-trivial
constraint on the initial effective action at finite external parameters if Eq. (4) applies to this
theory. In the present FRG framework, this is practically accessible via Eqs. (16) and (17).
Moreover, the formal discussion in the present section leaves us with a practical toolbox for
amending computations of observables in the presence of finite external parameters. In any
case, we note that the initial effective action is non-trivial if Eq. (2) does not hold.
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3 RG Consistency – Examples

In this section, we apply our general discussion of RG consistency to QCD low-energy mod-
els with Nf = 2 quark flavors and Nc = 3 colors. In the past, low-energy effective theories
including part of the quantum, thermal and density fluctuations have been studied to an in-
creasing level of sophistication. A rather large, but not complete, list of LEFTs ranges from
NJL- and QM-type models [1–21] over quark-meson-diquark models [22–27] to models in-
cluding baryonic degrees of freedom [41–44], and all of them may even be augmented with
statistical confinement in terms of a Polyakov loop background and a corresponding Polyakov
loop potential [28–40]. Eventually, these different models are nothing but different represen-
tations of the low-energy sector of QCD that emerges after the dynamical decoupling of the
gluonic degrees of freedom at cutoff scales ∼ 0.4 . . . 1GeV. For FRG investigations of this de-
coupling phenomenon in fundamental QCD, see Refs. [50–56]; for more detailed discussions
of emergent LEFTS and further investigations in this respect, see, e.g., Refs. [36,38,57–60].

A detailed discussion of this interesting embedding of LEFTs in QCD goes beyond the scope
of the present work. Here, we rather aim at a discussion of how cutoff artefacts can be removed
consistently within a given model study. However, it is worth emphasizing that the different
LEFT representations of low-energy QCD discussed below can be all mapped into each other
within self-consistent and systematic expansion schemes. Accordingly, the structural results
obtained below in one of these models extend straightforwardly to all representations of low-
energy QCD. In turn, the impact of truncation artefacts might be limited to the specific model
under investigation.

3.1 Quark-meson model in the vacuum limit

We start our discussion of specific examples with a variant of the QM model as a representation
of low-energy QCD in the vacuum limit. On the mean-field level, its relation to NJL-type
models [1–7] is most apparent. Its classical or UV action is nothing but an NJL-type model in
its partially bosonized form. In its instant form (no ∼ ∂iφ-terms), the classical action of the
QM-model reads

S =

∫

d4 x
¦

q̄
�

∂/+
1
2

h̄(σ+i~τ · ~πγ5)
�

q+
1
2

m̄2φ2
©

, (20)

where h̄ denotes the Yukawa coupling between quarks and the scalar and pseudo-scalar mesons.
The τi ’s are the Pauli matrices which couple the quark spinors q in flavor space. The scalar
fields φT = (σ, ~π) do not carry an internal charge, e.g. color and flavor. Phenomenologically,
these scalar fields mediate the interaction between the quarks and carry the quantum numbers
of the σ-meson, σ ∼ (q̄q), and the pions, ~π∼ (q̄~τγ5 q), respectively.

Let us now compute the effective action of our model in a one-loop approximation where
we only take into account purely fermionic loops. Of course, the effective action can be ob-
tained in various ways. We shall employ the Wetterich equation, (6) with (7), which allows
for a convenient computation of the scale-dependent effective action. For simplicity, we shall
drop terms of the form ∼ (∂µϕ)2 in our calculation although they are generated by purely
fermionic loops. Here, ϕ is the so-called classical scalar field associated with the quantum
field φ appearing in the action S. Our approximations imply that we neglect the RG running
of the wavefunction renormalization of the scalar fields as well as the running of the Yukawa
coupling, i.e. we keep h̄k constant, h̄k ≡ h̄. By expanding the scalar fields ϕ about a ho-
mogeneous background ϕ̄, we then arrive at the following result for the RG-scale dependent
effective action:

1
V4
Γk[ϕ̄] =

1
V4
ΓΛ′[ϕ̄]− 8Nc Lk(Λ

′, 1
4 h̄2ϕ̄2) , (21)
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where V4 is the four-dimensional volume of Euclidean spacetime, the auxiliary function Lk
parametrizes the loop integral (see below), and Λ′ denotes the scale at which we assume a
simple form of the effective action ΓΛ′[ϕ̄]. Note that we do not indicate the dependence of Γk
on the classical quark fields corresponding to the quantum fields q in the action S here and in
the following as they are set to zero.

The initial condition employed to solve the differential equation (6) is given by ΓΛ′[ϕ̄]. For
example, as often done in conventional NJL/QM-type model studies, we choose

1
V4
ΓΛ′[ϕ̄] =

1
2

m2
Λ′ϕ̄

2 . (22)

In this case, the parameters h̄ and m̄2
Λ′ are then fixed such that the experimental/physical

values of a given set of low-energy observables are recovered in the long-range limit from the
effective action Γk→0[ϕ̄], e.g. the constituent quark mass mq =

1
2 h̄|ϕ̄0| and the pion decay

constant fπ = |ϕ̄0|. In principle, the three parameters h̄, m̄2
Λ′ , and Λ′ can be used to fix

the constituent quark mass, the pion decay constant, and the mass of the σ-meson. In our
numerical studies below, we only use m̄2

Λ′ and h̄ to fix the constituent quark mass and the pion
decay constant. However, our line of arguments with respect to the RG consistency criterion
can also be applied to the former case. The appearance of three parameters is related to the
fact that the Yukawa coupling is marginally relevant with its RG flow being governed only by
a Gaußian fixed point [73,74].

It is worth mentioning that it is not only conventional to parametrize the effective action
as a quadratic form as given in Eq. (22) at some scale Λ′ ∼ 0.4 . . . 1GeV. It rather mimics the
form of the mesonic part of the effective action in QCD in this energy regime. Indeed, it has
been found in FRG studies of fundamental QCD that mesonic self-interactions of higher orders
are suppressed [50–56].

The auxiliary function Lk parametrizing the loop integral in (21) is defined as

Lk(Λ,χ) =
1
2

∫

d4p
(2π)4

¦

ln(p2(1+ rψ)
2 +χ)

�

�

�

k
− ln(p2(1+ rψ)

2 +χ)
�

�

�

Λ

©

, (23)

where p2 = p2
0 + · · · + p2

3. For k → 0, Eq. (21) then corresponds to the standard mean-field
result for the effective action for a general (mass-like) regularization scheme as specified by
the regulator shape function rψ.

The shape function rψ is implicitly defined via the definition of the regulator function
Rk ≡ Rk(p) appearing in Eq. (7). In order to preserve chiral symmetry, we choose the following
general form for this function [8–10]:

Rk(p) = −p/ rψ(
p2

k2 ) . (24)

As also mentioned in Sec. 2, the shape function rψ is to a large extent at our disposal [61].
For example, using the Litim or flat regulator [75–77] for an evaluation of the function Lk, we
find

Lk(Λ,χ) =
1
2

∫

d4p
(2π)4

¦

ln(k2 +χ)θ (k2 − p2)

+ ln(p2 +χ)θ (Λ2 − p2)θ (p2 − k2)

− ln(Λ2 +χ)θ (Λ2 − p2)
©

. (25)

In the long-range limit (k→ 0), this expression simplifies considerably (see e.g. [73]),

L0(Λ,χ) =
1
2

∫

d4p
(2π)4

θ (Λ2−p2)
�

ln(p2 +χ)− ln(Λ2 +χ)
	

. (26)
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For comparison, we also give the result for Lk as obtained from a sharp regulator function
which is often used in mean-field studies,

Lk(Λ,χ) =
1
2

∫

d4p
(2π)4

θ (Λ2−p2)θ (p2−k2) ln(p2+χ) . (27)

As expected, this regulator function cuts off small as well as large momenta sharply. For k→ 0,
we then have

L0(Λ,χ)=
1
2

∫

d4p
(2π)4

θ (Λ2−p2) ln(p2 +χ) , (28)

which, together with Eq. (21), yields indeed the standard result for the effective action
Γ [ϕ̄] ≡ Γk→0[ϕ̄] in the mean-field approximation. Note also the difference in the expres-
sions (25) and (27) for Lk which can be traced back to the difference in the underlying regular-
ization schemes. We add that the momentum integrations in Eqs. (25)-(28) can be performed
analytically, if needed, see, e.g., Refs. [73,78].

Although our ansatz for the effective action at the scale Λ′ mimics the situation in QCD,
the effective action ΓΛ′ at the scale Λ′ does not yet obey the RG-consistency condition (1).
Therefore, we now apply our general line of arguments detailed in Sec. 2 to obtain an RG-
consistent result for the effective action of our present model in the mean-field approximation.
From our general discussion, we immediately conclude that the effective action Γ ≡ Γk→0 does
not depend on the actual scale Λ at which we fix ΓΛ, provided that we adapt ΓΛ accordingly,
see Eq. (15). Indeed, assuming Λ> Λ′ and using Eqs. (14) and (15), we obtain

1
V4
Γ [ϕ̄] =

1
V4
ΓΛ[ϕ̄]− 8Nc L0(Λ, 1

4 h̄2ϕ̄2) , (29)

where

1
V4
ΓΛ[ϕ̄] =

1
2

m̄2
Λ′ϕ̄

2 + 8Nc LΛ′(Λ, 1
4 h̄2ϕ̄2) . (30)

Note that ΓΛ′[ϕ̄] and ΓΛ[ϕ̄] obey a different dependence on the field ϕ̄. This can be readily
demonstrated for asymptotically large scales Λ. In this case, the initial effective action ΓΛ
receives Λ-dependent corrections only from terms up to fourth order in the field ϕ̄ as higher
orders are suppressed by powers of Λ:

1
V4
ΓΛ[ϕ̄] =

3h̄2Λ2

(4π)2
ϕ̄2 −

3h̄4 lnΛ
(8π)2

ϕ̄4 −
h̄6

(16π)2Λ2
ϕ̄6 +O

�

ϕ̄8

Λ4

�

. (31)

In this expansion of Eq. (30) about Λ → ∞, we have only kept terms depending explicitly
on Λ and ϕ̄. In any case, in the long-range limit (k → 0), the effective action (29) agrees
identically with the one given in (21), as it should be. In particular, we find that the effective
action Γ obeys the RG consistency condition (1), that is Λ∂ΛΓ [ϕ̄] = 0.

For a study with finite external parameters, we can now adjust Λ such that cutoff artefacts
are removed. The latter may appear if Λ> Λ′ has been chosen too small initially for a specific
range of the considered parameter set. A priori, it may indeed be difficult to choose a suitable
value for Λ. However, our line of arguments given in Sec. 2 shows how this issue can be
resolved. Even more, it allows us to investigate systematically cutoff effects in the presence of
external parameters since the vacuum physics is left unchanged.3

3Of course, it is mandatory that the vacuum contributions to the effective action as well as those arising in the
presence of finite external parameters are regularized consistently, i.e. in exactly the same way, as worked out in
detail in Sec. 2, see also Ref. [79] for a discussion of this issue in terms of a Polyakov-loop extended NJL model.
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Before we shall demonstrate this explicitly, we stress that our line of arguments, which
eventually led us to the RG consistency criterion in Sec. 2, goes qualitatively beyond what is
sometimes called extended mean-field theory in the literature. In fact, the vacuum fermion
loop associated with extended mean-field calculations is naturally included in an RG treatment
and should anyway not be discarded in any other approach, see, e.g., Refs. [73, 78, 80] for
detailed discussions of mean-field theory in the RG context and Refs. [71,81] for approximative
treatments of RG consistency in low-energy models of QCD. Moreover, it is clear from our line
of arguments that manifestation of RG consistency in general requires to include the fully
field-dependent fermion loop and, beyond the mean-field approximation, it even requires to
include the fully field-dependent contributions from all loop diagrams considered in a specific
calculation of the quantum effective action. This also becomes apparent from the right-hand
side of the differential equation (6) which includes contributions from all fields of a given
theory, e.g. by means of the Wetterich equation.

3.2 Diquarks – equation of state

As a second example, we consider the computation of the equation of state of a simple quark-
diquark model as a function of the quark chemical potential at vanishing temperature. The
model is defined by the following classical action (for reviews see, e.g., [22–25]):

S =

∫

d4 x
¦

q̄ (∂/−µγ0)q+ν̄
2∆∗A∆A+ q̄γ5τ2∆

∗
ATACq̄T − qTCγ5τ2∆ATAq

©

, (32)

where C is the charge conjugation operator and the sum over the color index A runs only over
antisymmetric color generators TA in the fundamental representation. The complex-valued
scalar fields ∆A carry the quantum numbers of diquark states, ∆A ∼ (q̄γ5τ2TACq̄T ), with
J P = 0+. The parameter ν̄ is at our disposal and can be used to determine the ground-state
properties of the vacuum in this model. From a general fixed-point analysis, see [82,83] and
e.g. [84] for a mean-field analysis, it follows immediately that two qualitatively distinct sce-
narios are possible. To be specific, we may choose ν̄2 to be positive but small such that already
the ground state in the vacuum limit is governed by the formation of a diquark condensate
breaking the UV(1) symmetry of our model. Alternatively, we may choose a sufficiently large
value of ν̄2 such that the UV(1) symmetry is only broken at finite µ due to the existence of
a Cooper instability in the system but remains intact in the vacuum limit. In the latter, we
therefore conclude that a critical value ν̄∗ (associated with a non-Gaußian fixed point) exists
which separates these two distinct scenarios from each other.

Let us now compute the effective action of this model in a one-loop approximation where
we only take into account the purely fermionic loop again. Moreover, we set the wavefunction
renormalizations associated with the diquark fields to zero. In other words, we shall drop
terms of the following form in our computation of the effective action:

∫

d4 x
¦1

2
Z⊥(|∆|2)| ~∇∆|2 +

1
2

Z‖(|∆|2)|∂τ∆|2 +µZµ(|∆|2)(∆∂τ∆∗ −∆∗∂τ∆)
©

, (33)

where ∆∗O∆ ≡
∑

A∆
∗
AO∆A and |O∆|2 ≡

∑

A |O∆A|2 with O being some operator acting
on the diquark fields. Note that, in general, such terms are dynamically generated due to
quantum effects, even if only purely fermionic loops are taken into account. As a consequence
of the listed approximations, we also do not take into account a scale dependence of the
Yukawa-type quark-diquark coupling but set it to be constant. Using the Wetterich equation (7)
and expanding the diquark fields about a homogeneous background ∆̄A, we then obtain the
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following expression for the scale-dependent effective action:

1
V4
Γk[{∆̄A}]=

1
V4
ΓΛ′[{∆̄A}]−

µ4

6π2
−8Mk(Λ

′, |∆̄|2) , (34)

where |∆̄|2 =
∑

A |∆̄A|2 and Λ′ denotes again the scale at which we know the form of the
effective action. The contribution ∼ µ4 arises from quark degrees of freedom which do not
couple to the diquark fields and therefore appear as non-interacting “spectators".

The loop integral associated with the effective action (34) is parametrized by the func-
tion Mk,

Mk(Λ,χ) =
1
2

∫

d3p
(2π)3

∑

σ=±1

�

ω(σ)
�

�

�

k
−ω(σ)

�

�

�

Λ

�

, (35)

where the auxiliary quantityω(σ)may be viewed as (infrared) regularized quasiparticle energy,

ω(σ) =
q

(|~p |(1+ rψ) +σµ)2 +χ . (36)

Evidently, for χ = 0, we have ω(σ) = |~p |(1 + rψ) + σµ. In the calculation of the loop inte-
gral (35), we have now employed the class of so-called 3d regulator functions which is defined
as

Rk(p) = −~p/ rψ(
~p 2

k2 ) . (37)

This class of regularization schemes is also frequently used in QCD model studies since it allows
to perform analytically the Matsubara sums in at least some of the loop diagrams. However,
it should also be noted that 3d regularization schemes break the Poincaré symmetry explic-
itly. This explicit breaking is present even in the limit of vanishing temperature and chemical
potential, see, e.g., Refs. [72, 80, 82, 85, 86]. The appearance of this issue can be traced back
to the fact that, by construction, 3d regulators do not cut off the time-like momentum modes,
thereby treating the time-like and spatial modes differently. We shall ignore this issue in our
present study.

For convenience, we shall only consider the 3d sharp cutoff in our numerical studies below.
The function Mk is then given by

Mk(Λ,χ) =
1
2

∫

d3p
(2π)3

θ (Λ2−~p 2)θ (~p 2−k2)
¦
Æ

(|~p |+µ)2 +χ +
Æ

(|~p | −µ)2 +χ
©

, (38)

which reduces to the standard mean-field expression in the limit k→ 0.
Before we present our results for the equation of state of our diquark model, we would

like to discuss first a subtlety in our calculation: In contrast to a possible renormalization of
the quark chemical potential driven by diagrams with internal bosonic and fermionic lines, the
renormalization of the chemical potential of the diquarks associated with a term ∼ µ2|∆|2 is
already included in our present analysis. Indeed, the field-dependent renormalization factor
Y ≡ Yk→0 of the diquark chemical potential is given by

Yk(|∆̄|2) = −
1

4V4
∂ 2
µ Γk[{∆̄A}]

�

�

�

µ=0
. (39)

Using Eq. (34) for the effective action, we find Y ∼ |∆|2 lnΛ′+ . . . . Thus, Y exhibits the same
dependence on Λ′ as expected for the renormalization factors of kinetic terms, such as the ones
for the diquark fields in Eq. (33). This coincidence in the Λ′-dependence of Y and, e.g., Z‖ is
by no means accidental. It is rather related to a more abstract symmetry of our model which
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Figure 1: Left panel: Pressure P/PSB of our diquark model as a function of the chem-
ical potential µ/Λ′ (with Λ′ = 0.6 GeV) as obtained from conventional mean-field
theory (MFT) with a UV cutoff Λ = Λ′ (black line) as well as from RG-consistent
MFT with Λ/Λ′ = 2,3, 5,10. Right panel: Pressure P/PSB of our diquark model as
a function of the chemical potential µ/Λ′ as obtained from RG-consistent MFT with
Λ/Λ′ = 10 together with the perturbative expression for the pressure at leading or-
der in the weak-coupling expansion, see Eq. (46). Moreover, we also show the gap
∆̄0/Λ

′ (gray line) as extracted from RG-consistent MFT with Λ/Λ′ = 10.

is associated with the so-called Silver-Blaze property of quantum field theories [87–90]. In
general, this property is linked to the fact that the free energy should not exhibit a dependence
on the baryon/quark chemical potential at zero temperature, provided that it is smaller than
some critical value. Then, the corresponding symmetry is not violated. The critical value is
set by the gaps in the propagators of the fields associated with a finite baryon number. Note
that the gap is not necessarily given by the physical (pole) mass. In our RG study, for example,
the gap may also arise for k > 0 from the IR regularization of the propagator, see Ref. [89] for
details.

In the presence of the symmetry associated with the Silver-Blaze property [89], a finite
renormalization factor Y of the diquark chemical potential implies that the renormalization
factors Z⊥, Z‖, and Zµ of the diquark fields are in principle finite as well. In mean-field calcu-
lations, these renormalization factors are usually set to zero. Therefore, the resulting effective
action violates the Silver-Blaze property.4 As already stated above, we shall not compute these
renormalization factors in this work but also set them to zero. Since we shall fix the cou-
plings/parameters of our model at a scale k = Λ′ > µ, i.e. at a point where the model is
expected to respect the symmetry associated with the Silver-Blaze property, we set the initial
condition for the renormalization factor Y to zero as well. This ensures that this property is
at least manifestly present at the scale Λ′ at which we fix the parameters of the model. To be
specific, we make the following ansatz for the effective action at the scale Λ′ in the vacuum
limit,

1
V4
ΓΛ′[{∆̄A}] = ν̄2

Λ′ |∆̄|
2 , (40)

where ν̄2
Λ′ is at our disposal and corresponds to the parameter ν̄2 in the classical action (32).

However, our choice (40) for the effective action at the scale Λ′ does not imply that Y remains
zero at scales k 6= Λ′. Since we do not take into account the running of the renormalization
factors Z⊥, Z‖, and Zµ, the symmetry associated with the Silver-Blaze property is therefore in

4Irrespective of the regularization scheme, the so-called Silver-Blaze property of the theory is already violated
by the fact that the quasiparticle energies are only positive semi-definite in (standard) mean-field approximations,
see Eq. (36).
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general violated away from the scale Λ′. Still, the consideration of the renormalization factor
Y is required to ensure RG consistency within our model study, see below.

Along the lines of our discussion of the vacuum limit, we can now construct an RG-
consistent effective action Γk→0 from (34) by adapting the effective action at the scale Λ> Λ′

such that the effective action at scales k ≤ Λ′ remains unchanged:

1
V4
Γk[{∆̄A}]=

1
V4
ΓΛ[{∆̄A}]−

µ4

6π2
−8Mk(Λ, |∆̄|2) , (41)

where

1
V4
ΓΛ[{∆̄A}] =

1
V4
ΓΛ′[{∆̄A}] + 8MΛ′(Λ, |∆̄|2)

�

�

�

µ=0
+ 4µ2

�

∂ 2
µ MΛ′(Λ, |∆̄|2)

�

�

�

µ=0

�

. (42)

Here, the last term on the right-hand side accounts for the fact that the diquark chemical
potential is renormalized. Using Eq. (41), we indeed find that Γ is RG-consistent in a strict
sense in the limit Λ→∞ since

Λ∂ΛΓ [{∆̄A}]=−2V4|∆̄|2µ2
� µ

πΛ

�2
+O(1/Λ4) . (43)

Moreover, we deduce from Eq. (41) that the renormalization of the diquark chemical potential
still vanishes identically at the scale Λ′,

YΛ′(|∆̄|2) = 0 , (44)

as it should be. With our RG-consistent effective action (41) at hand, we now compute the
equation of state of our diquark model. More specifically, we compute the pressure P which is
directly obtained from the effective action:

P = −
1
V4
Γ [{∆̄A}gs]

�

�

�

µ
+

1
V4
Γ [{∆̄A}gs]

�

�

�

µ=0
. (45)

Here, the subscript ‘gs’ indicates that the effective action is evaluated on the µ-dependent
minimum (i.e. on the ground-state (gs) configuration of the fields {∆̄A}). Note that we have
normalized the pressure with respect to the pressure in the vacuum limit. The latter is given
by the second term on the right-hand side of Eq. (45).

As an explicit example, we compute the pressure of our pure diquark model for
(ν̄Λ′/ν̄∗)2 = 4/3 where ν̄2

∗ ≈ 0.036. Moreover, we set Λ′ = 0.6 GeV in the following. Phe-
nomenologically speaking, our parameter choice implies that the UV(1) symmetry is only bro-
ken at finite µ but remains intact in the vacuum limit, see our discussion above. Thus, the
ground state in the vacuum limit is governed by ungapped quarks.

In the left panel of Fig. 1, we show our results for the pressure P/PSB of our diquark model,
where PSB = µ4/(2π2) denotes the Stefan-Boltzmann limit of the pressure, i.e. the pressure
of a free quark gas at zero temperature. We observe that cutoff effects become continuously
smaller whenΛ/Λ′ is increased. Recall that, in our RG-consistent calculations, an increase ofΛ
leaves the model in the vacuum limit unchanged. Moreover, we find that the corrections to the
results from the conventional mean-field study are significant. Indeed, the pressure obtained
from the conventional mean-field study underestimates the (effectively) cutoff-independent
result for the pressure obtained from our RG-consistent mean-field study (with Λ/Λ′ = 10)
by about 10% at µ/Λ′ = 1/2. Thus, “cutoff contaminations" are clearly visible even at val-
ues of the chemical potential which seem to be sufficiently small compared to the originally
chosen scale Λ′. At µ/Λ′ = 1, the results from the conventional mean-field study and our RG-
consistent mean-field study (withΛ/Λ′ = 10) then already deviate by about 30%. Increasing µ
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even further, we observe that the pressure approaches the Stefan-Boltzmann limit from above,
provided Λ/Λ′ has been chosen sufficiently large.

From (45), we can also derive the perturbative result for the pressure. At leading order of
|∆̄0|2/µ2 in the weak-coupling expansion, we indeed recover the well-known result [91,92]:

P
PSB
= 1+

2|∆̄0|2

µ2
+ . . . , (46)

where ∆̄0 denotes the gap as obtained from a minimization of the effective action. In the right
panel of Fig. 1, we compare this perturbative result for the pressure with the results from our
RG-consistent mean-field calculation with Λ/Λ′ = 10. Moreover, the gap as obtained from the
same RG-consistent calculation is shown. Plugging this result for the gap into the perturbative
expression (46) for P/PSB, we find very good agreement with the RG-consistent results for
the pressure in the regime where |∆̄0|/µ® 0.5. For larger values of µ, the results from the
perturbative approximation of the pressure then exceed the results from the RG-consistent
calculation. Still, the perturbative expression for the pressure appears to provide us with a
reasonable estimate for the pressure over a wide range of the chemical potential, at least for
our present choice for the model parameter ν̄Λ′ .

3.3 Quarks, mesons, and diquarks – phase diagram

Let us now turn to our third example, the computation of the phase diagram and the zero-
temperature equation of state of a quark-meson-diquark model with two massless quark flavors
and Nc = 3 colors. The classical action S underlying our study may be viewed as a combination
of the actions already discussed in Subsecs. 3.1 and 3.2 and reads

S =

∫

d4 x
¦

q̄
�

∂/−µγ0+
1
2

h̄(σ+i~τ · ~πγ5)
�

q+ q̄γ5τ2∆
∗
ATACq̄T

− qTCγ5τ2∆ATAq+
1
2

m̄2φ2+ν̄2∆∗A∆A

©

, (47)

where h̄, m̄2 and ν̄2 are parameters at our disposal. In the following, we compute the effec-
tive action of this model in a one-loop approximation where we only take into account purely
fermionic loops. Moreover, the wavefunction renormalization factors of the meson and di-
quark fields are set to zero again. These approximations also imply that we neglect the RG
runnings of the Yukawa-type couplings of our model. As before, we moreover neglect correc-
tions to the wavefunction renormalization factors of the quark fields (as well as to the quark
chemical potential). Note that our discussion in the previous subsection regarding the fate of
the Silver-Blaze property in mean-field-like calculations also holds for the present study of a
quark-meson-diquark model.

Using the Wetterich equation (7) with the class of 3d regulator functions and expanding
the meson and diquark fields about homogeneous backgrounds ϕ̄ and ∆̄A, respectively, we
obtain the following result for the scale-dependent RG-consistent effective action:

T
V
Γk[ϕ̄, {∆̄A}] =

T
V
ΓΛ[ϕ̄, {∆̄A}]− 4L(T )k (Λ, 1

4 h̄2ϕ̄2)− 8M (T )k (Λ, 1
4 h̄2ϕ̄2, |∆̄|2) , (48)

where T is the temperature, V is the spatial volume of the system, and

T
V
ΓΛ[ϕ̄, {∆̄A}] =

T
V
ΓΛ′[ϕ̄, {∆̄A}] + 4L(T )

Λ′
(Λ, 1

4 h̄2ϕ̄2)
�

�

�

T=µ=0

+ 4µ2
�

∂ 2
µ M (T )

Λ′
(Λ, 1

4 h̄2ϕ̄2, |∆̄|2)
�

�

�

T=µ=0

�

+ 8M (T )
Λ′
(Λ, 1

4 h̄2ϕ̄2, |∆̄|2)
�

�

�

T=µ=0
.

(49)
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Figure 2: Change of the effective action at ∆̄= 0 under a variation of the UV scale Λ,
i.e. Λ∂ΛΓ , relative to the effective action Γ itself as a function of ϕ̄ for T/mq = 1/2
and µ = 0 (left panel) as well as for T/mq = 1/5 and µ/mq = 1 (right panel) for
various different values of Λ/mq, where mq ≈ 0.300GeV is the vacuum quark mass.

Here, the auxiliary functions L(T )k and M (T )k parametrize loop integrals in the presence of a heat
bath with temperature T = 1/β , see below for their definitions. The term ∼ µ2 in Eq. (49)
accounts for the renormalization of the chemical potential of the diquarks. As done in the
previous subsections, we shall assume that the parameters of the model are fixed at the scale
k = Λ′ < Λ by means of an ansatz for ΓΛ′ in Eq. (49). For a study of the effect of a finite
temperature and/or quark chemical potential, the scale Λ then has to be chosen sufficiently
large such that cutoff artefacts are suppressed. For ΓΛ′ , to be specific, we use the following
ansatz (in the vacuum limit):

lim
T→0

T
V
ΓΛ′[ϕ̄, {∆̄A}] =

1
2

m̄2
Λ′ϕ̄

2 + ν̄2
Λ′ |∆̄|

2 . (50)

As often done in quark-meson-diquark model studies [22–25], we shall relate the parameters
appearing in Eq. (50) via 2m̄2

Λ′/h̄
2 = (3/4)ν̄2

Λ′ and fix h̄, m̄2
Λ′ at Λ′/mq = 2 in the vacuum limit

such that we obtain mq =
1
2 h̄ϕ̄0 ≈ 0.300GeV for the quark mass and fπ = 2mq/h̄≈ 0.088GeV

for the pion decay constant.
For sufficiently large values of Λ, the effective action ΓΛ receives corrections only from

terms up to fourth order in the fields ϕ̄ and ∆̄, respectively. Higher orders are suppressed when
Λ is increased. This resembles the situation in Subsec. 3.1. Recall that we have Λ∂ΛΓ = 0 by
construction at T = µ = 0 and, for sufficiently large values of Λ, also at T > 0 and/or µ > 0.
From Eqs. (48) and (49), however, we deduce that ΓΛ′ depends on T and µ and is no longer
only quadratic in the fields for T > 0 and/or µ > 0. This implies that RG consistency is in
general violated in conventional QCD low-energy model studies with fixed Λ′ = Λ since these
modifications of ΓΛ′ at T > 0 and/or µ > 0 are not taken into account. There, the quadratic
form (50) is rather left unchanged for any value of the external parameters.

For convenience, we shall restrict ourselves to the 3d sharp regulator in our numerical
calculations below. Then, the auxiliary functions parametrizing the loop integrals in Eqs. (48)
and (49) read

L(T )k (Λ,χ) =
1
2

∫

d3p
(2π)3

∑

σ=±1

n
�

ω(σ)ϕ + 2T ln
�

1+ e−βω
(σ)
ϕ

��

�

�

�

k

−
�

ω(σ)ϕ + 2T ln
�

1+ e−βω
(σ)
ϕ

��

�

�

�

Λ

o

(51)

with

ω(σ)ϕ =
q

~p 2(1+ rψ)2 +χ +σµ (52)
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and

M (T )k (Λ,χ,ξ) =
1
2

∫

d3p
(2π)3

∑

σ=±1

n�

ω
(σ)
∆ + 2T ln

�

1+ e−βω
(σ)
∆

��
�

�

�

k

−
�

ω
(σ)
∆ + 2T ln

�

1+ e−βω
(σ)
∆

��
�

�

�

Λ

o

(53)

with

ω
(σ)
∆ =

s

�q

~p 2(1+ rψ)2 +χ +σµ
�2
+ ξ . (54)

For ξ = 0, we use ω(σ)∆ =ω(σ)ϕ to preserve the Silver-Blaze property along the axis associated
with ∆̄= 0. For the 3d sharp regulator function, for example, these functions are given by

L(T )k (Λ,χ) =
1
2

∫

d3p
(2π)3

θ (Λ2−~p 2)θ (~p 2−k2)
∑

σ=±1

�

ω(σ)ϕ +2T ln
�

1+ e−βω
(σ)
ϕ

��

�

�

�

(1+rψ)→1

(55)

and

M (T )k (Λ,χ,ξ) =
1
2

∫

d3p
(2π)3

θ (Λ2−~p 2)θ (~p 2−k2)
∑

σ=±1

�

ω
(σ)
∆ +2T ln

�

1+ e−βω
(σ)
∆

��
�

�

�

(1+rψ)→1
.

(56)

Corresponding expressions for L(T )k for the 3d Litim regulator can be found in Ref. [73]. We
note that the effective action (48) is identical to the effective action (41) for ϕ̄ = 0 in the limit
T → 0.

In Fig. 2, we show (Λ∂ΛΓ )/Γ , i.e. the change of the effective action under variation of
the scale Λ > Λ′ relative to Γ itself, at ∆̄ = 0 as a function of ϕ̄ for various different values
of Λ/mq. We observe that Γ exhibits a strong dependence on our choice for Λ in the phe-
nomenologically most relevant regime ϕ̄ ® fπ. In particular, this is true close to the critical
temperature at µ = 0, see left panel of Fig. 2, where cutoff artefacts are still clearly present
in the effective action even for already seemingly large values of Λ > Λ′. At low temperature
but large quark chemical potential µ ¦ mq, see right panel of Fig. 2, cutoff contaminations of
the effective action are also present but appear to be less strong compared to the case with
µ= 0. However, this is misleading as the minimum of the effective action is pushed away from
the axis with ∆̄ = 0 in this regime. There, the dynamics is no longer governed by the pions
and the σ-meson but rather by the diquark degrees of freedom. Indeed, close to the physical
minimum of the effective action in this regime, cutoff effects even appear to be stronger as in
the case with µ = 0. This can be inferred from the phase diagram in the (T,µ) plane as well
as from the pressure at zero temperature. We emphasize that the value of Λ associated with
effectively converged results depends on the temperature, the quark chemical potential, and
the employed regularization scheme. Note that the effective actions associated with different
values of Λ> Λ′ agree identically in the vacuum limit, i.e. we have Λ∂ΛΓ = 0 in this limit.

In Fig. 3, we present the results for the (T,µ) phase diagram of our quark-meson-diquark
model. Qualitatively, the structure of the phase diagram is determined by the emergence of
three different phases: a phase governed by spontaneous chiral symmetry breaking at low
temperature and small quark chemical potential, a phase governed by spontaneous UV(1)-
symmetry breaking as associated with diquark condensation at low temperature and large
chemical potential, and a symmetric high-temperature phase. Moreover, for our parameter
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Figure 3: Phase diagram of the quark-meson-diquark model in the plane spanned
by the dimensionless temperature T/mq and the dimensionless chemical potential
µ/mq for various different values of Λ/mq (with mq ≈ 0.300 GeV). Solid lines are
associated with second-order phase transitions whereas dashed lines are associated
with first-order phase transitions. Note that the effective actions obtained with dif-
ferent values of Λ agree identically in the vacuum limit, i.e. the RG-consistency
condition (1) is strictly satisfied in this limit.

choice, we observe the existence of a critical endpoint (depicted by the dot in Fig. 3), at which
the line of chiral second-order phase transitions meets a line of chiral first-order phase transi-
tions, as well as a triple point (depicted by the triangle in Fig. 3), at which the phase governed
by chiral symmetry breaking meets the diquark phase and the symmetric high-temperature
phase. The general structure of the phase diagram suggests that a description of the dynamics
in terms of only quarks, pions, and σ mesons is insufficient for T/µ ® 0.2 and µ/mq ¦ 1.
Below this line, diquark degrees of freedom become relevant, as well-known from previous
mean-field studies [22–25]. Note that these general statements on the structure of the phase
diagram are also in accordance with a recent Fierz-complete NJL model study beyond the
mean-field limit [83]. Of course, in addition to the issue of an RG-consistent treatment of
cutoff artefacts as discussed in our present work, artefacts from specific truncations of the ef-
fective action may become relevant in the dense and/or low-temperature regime, see, e.g.,
Ref. [93–95].

The general structure of the phase diagram appears to be insensitive with respect to an
increase of the cutoff scale Λ, at least for the values of the model parameters used in our nu-
merical studies. However, the positions of the two second-order phase transition lines exhibit
a strong dependence on Λ, meaning that they converge only slowly when Λ is increased, in
particular at large chemical potential, see Fig. 3. To be more specific, despite the fact that we
employed a 3d regulator, the critical temperature at µ= 0 is lowered by about 10% compared
to the conventional mean-field study when we take into account cutoff corrections enforced by
the RG-consistency condition (1). In the regime governed by diquark dynamics, we observe
that the critical temperature is not decreased but rather increased significantly when cutoff
corrections are taken into account. Compared to the conventional mean-field study (associ-
ated with Λ = Λ′), we indeed find a change of about 30% at µ/mq ≈ 4/3 and about 100% at
µ/mq ≈ 2. The strength of cutoff artefacts in the high-density regime also becomes apparent
in other observables, such as the pressure of the system at zero temperature as a function of
the quark chemical potential, see Fig. 4. Here, we find that the pressure now exceeds the pres-
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Figure 4: Pressure P/PSB of our quark-meson-diquark model as a function of the
chemical potential µ/mq (with mq ≈ 0.300GeV) as obtained from conventional MFT
associated with Λ/mq ≡ Λ′/mq = 2 (black line) as well as from RG-consistent MFT
with Λ/mq = 3, 4,6, 10.

sure PSB of the free quark gas once cutoff artefacts have been removed. Increasing the quark
chemical potential further, we eventually observe that the pressure approaches the pressure
of the free gas from above, as also observed for the pure diquark model, see Fig. 1. Clearly, it
appears crucial to enforce RG consistency in the high-density regime. Note that our observa-
tions may even be very relevant from a phenomenological point of view since the associated
corrections may significantly alter the equation of state of dense strong-interaction matter as
relevant for astrophysical applications [96].

3.4 Quarks and mesons – finite-volume effects

As a fourth and final example, we demonstrate that our general line of arguments detailed in
Sec. 2 can also be applied straightforwardly to studies beyond the mean-field approximation as
well as to studies with an external parameter other than the temperature or the quark chemical
potential. To this end, we employ again a variant of the quark-meson model with two quark
flavors and Nc = 3 colors but we now take fluctuation effects into account to analyze the effect
of a finite cubic periodic box on the dynamics of this model. To be specific, the classical action
underlying our studies may be viewed as an extension of the action (20) and reads

S =

∫

d4 x
¦

q̄
�

∂/+
1
2

h̄(σ+i~τ · ~πγ5)
�

q+
1
2
(∂µφ)

2 + U(φ2)− c̄σ
©

. (57)

Compared to our previous studies, we allow for a term linear in the σ-field. The latter breaks
explicitly the chiral symmetry. The associated parameter c̄ is related to the quark mass through
a combination of the couplings of this model, see below. The inclusion of an explicit quark
mass is now essential as we aim at a study of the effect of a finite cubic periodic box on the
dynamics of the model [97,98].

In the following we shall compute the effective action in the local potential approximation
where a possible space dependence of the expectation value of the scalar fields is not taken into
account and the wave-function renormalizations of the fields are considered to be constant.
Moreover, as also done in the studies presented in the previous subsections, we shall assume
that the Yukawa coupling h̄ does not depend on the RG scale k, i.e. h̄k ≡ h̄Λ′ = h̄, with Λ′ being
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the scale at which we fix the couplings of the model by means of an ansatz for the effective
action ΓΛ′ . Still, we include effects beyond the mean-field approximation even within such a
setting, see, e.g., Refs. [73, 80] for a detailed discussion of the relation of the local potential
approximation and the mean-field approximation. In any case, we only use this setting here to
demonstrate how RG consistency can be ensured in approximations which are more involved
than the mean-field approximation. Of course, the line of arguments detailed in Sec. 2 is
very general anyhow and therefore does not depend on the underlying approximations by any
means.

A differential equation for the scale-dependent effective action Γk can be derived with the
aid of the flow equation (7). Expanding the fields about a homogeneous background ϕ̄ and
using the 3d Litim regulator for both the quark and meson fields [99, 100], we obtain [101–
103]:

k∂kUk(ϕ̄
2) = k∂k

�

lim
T→0

T
V
Γk[ϕ̄]

�

(58)

with V = L3 and

k∂kUk(ϕ̄
2) =

k4

2

 

−
24

q

k2 + 1
4 h̄2ϕ̄2

+
3

q

k2 + 2U ′k
+

1
q

k2 + 2U ′k + 4ϕ̄2U ′′k

!

B(kL) . (59)

Here, ϕ̄ denotes the homogeneous background of the scalar fields and the primes denote
derivatives with respect to ϕ̄2. Note that the parameter c̄ measuring the explicit breaking of
the chiral symmetry does not depend on the RG scale k. Thus, we have

Uk(ϕ̄
2)− c̄σ̄ = lim

T→0

T
V
Γk[ϕ̄] (60)

in our present approximation where σ̄ denotes the zeroth component of the field vector ϕ̄.
The first term on the right-hand side of the flow equation (59) is associated with the quark

degrees of freedom. The second and the third term represent contributions from the mesonic
modes. By dropping the latter two contributions to the RG flow of the effective action, we
simply recover the mean-field effective action as already discussed above for the 3d Litim
regulator in the infinite-volume limit. The explicit dependence of the RG flow on the finite
periodic cubic volume V = L3 is encoded in the momentum-modes counting function B:

B(kL) =
1
(kL)3

∑

~n∈Z3

θ
�

(kL)2 − (2π~n)2
�

, (61)

where ~n labels a three-dimensional vector of integers. In the limit L → ∞, we have
B(kL) → 1/(6π2). Thus, the flow equation (59) agrees identically with the known flow
equation for the scale-dependent effective action in the local potential approximation in the
infinite-volume limit [71,104], as it should be. We note that, for finite L, the right-hand side of
the flow equation (59) is discontinuous for the Litim regulator. However, this does not cause
any conceptional problem. In fact, the resulting effective action is still continuous as a function
of k. For more detailed discussions of the properties of RG flows of finite systems with this
regulator, we refer the reader to Refs. [101–103,105].

In order to compute the scale-dependent effective action Γk in our present illustrational
study, we shall now parametrize Uk as follows:

Uk(ϕ̄
2) =

1
2

m̄2
k

�

ϕ̄2−ϕ̄2
0,k

�

+
1
4
λ̄k

�

ϕ̄2−ϕ̄2
0,k

�2
. (62)
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The condition

∂

∂ σ̄

�

lim
T→0

T
V
Γk[ϕ̄]

�

�

�

�

�

ϕ̄=ϕ̄0,k

!
= 0 (63)

then ensures that the effective action is always expanded about the actual physical ground
state by relating the couplings m̄2

k and ϕ̄0,k [106]:

m̄2
kϕ̄0,k = c̄ . (64)

Thus, the RG flows of the two scale-dependent couplings ϕ̄0,k and λ̄k parametrize the RG
flow of the effective action in our present approximation. The flow equations for ϕ̄0,k and
λ̄k can be obtained by expanding the flow equation (59) about ϕ̄0,k and then projecting it
onto the logarithmic scale-derivative of the ansatz (62). The resulting flow equations can then
be solved by specifying the values of the two couplings at some scale k = Λ′. For example,
the parameters ϕ̄0,Λ′ and λ̄Λ′ may be chosen such that the physical values of a given set of
low-energy observables are recovered in the long-range limit k→ 0.

Let us now discuss how RG consistency can be ensured in the present setting. Following
our general discussion in Sec. 2, this requires a suitable adaption of the effective action ΓΛ at
the scale k = Λ > Λ′. In the infinite-volume limit, the effective action ΓΛ at the scale k = Λ is
obtained from the given effective action ΓΛ′ at the scale Λ′ by solving the flow equation (59)
from k = Λ′ up to the scale k = Λ > Λ′. This ensures RG consistency, see also Eq. (14)
and the related discussion. In the present case, to be specific, this corresponds to solving the
set of coupled flow equations for ϕ̄0,k and λ̄k from k = Λ′ up to the scale k = Λ > Λ′ with
given values for the two couplings at the scale k = Λ′. The effective action Γ = Γk→0 then
does not depend on our choice for Λ, Λ∂ΛΓ → 0, implying that the values for the low-energy
observables, such as the constituent quark mass mq, the pion decay constant fπ, and the pion
mass mπ do not depend on our actual choice for Λ.

Of course, we also would like to ensure that the RG-consistency condition is satisfied in
our study of finite-volume effects. To discuss this issue further, we shall first assume that the
parameters of our model (i.e. the values of ϕ̄0,k and λ̄k at the scale k = Λ′ as well as c̄) have
been fixed in the infinite-volume limit as discussed above. RG consistency for 1/L > 0 can now
be ensured by fixing the two scale-dependent couplings ϕ̄0,k and λ̄k at a scale Λ > Λ′ in such
a way that RG consistency is still ensured in the infinite-volume limit. If Λ has been chosen
sufficiently large, i.e. 1/(ΛL) is sufficiently small, then the effective action Γ and therefore
also the physical observables become independent of Λ, i.e. Λ∂ΛΓ → 0, even for 1/L > 0.
Note that the value for Λ effectively ensuring RG consistency for a given box size depends on
the regularization scheme.

With an RG-consistent effective action at hand, we may now compute physical observables,
such as the pressure P of the system,

P = −
∂

∂ V

�

lim
T→0

T Γ [ϕ̄0]
�

, (65)

as we have done it in the previous subsections.5 However, since we only aim at an illustration
of how RG consistency is ensured in a study beyond the mean-field approximation, we shall
only discuss the volume dependence of the simplest physical observable that can be extracted
from the effective action in our present setting, namely the position of its minimum in the
long-range limit, i.e. fπ ≡ |ϕ̄0|= limk→0 ϕ̄0,k. To this end, we need to fix the initial conditions

5Note that the derivative of the effective action with respect to the volume is trivial in case of infinite-volume
studies, see, e.g., Eq. (45). In the presence of a finite volume, the computation is more involved as the volume
dependence of the couplings and ϕ̄0 has to be taken into account as well.
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Figure 5: Normalized pion decay constant fπ(L)/ fπ(∞) as a function of the box
size L computed with the 3d Litim cutoff for Λ/mq ≈ 10/3,30/3,50/3, where
mq ≡ mq(∞) ≈ 0.300GeV and fπ ≡ fπ(∞) ≈ 0.092GeV. For increasing ΛL, the
pion decay constant fπ(L)/ fπ(∞) is continuously “smoothened". In any case, devi-
ations of the results for Λ/mq = 10/3 from those for Λ/mq = 50/3 are found to be
on the 1% level at most. Note that the effective actions associated with the differ-
ent values of Λ agree identically in the infinite-volume limit by construction, i.e. the
RG-consistency condition (1) is exactly satisfied in this limit.

for the couplings ϕ̄0,k and λ̄k at some scale Λ′ (as well as the parameter c̄) which corresponds
to fixing the effective action at this scale. Here, we choose the parameters such that the phys-
ical values of a given set of low-energy observables are recovered from our ansatz for the
effective action Γ in the infinite-volume limit. To be specific, the parameters are determined
such that we have mq =

1
2 h̄ϕ̄0 ≈ 0.300 GeV, fπ = 2mq/h̄ ≈ 0.092GeV, and mπ ≈ 0.138GeV,

in accordance with chiral perturbation theory [107]. These values are obtained by choosing
ϕ̄0,Λ′/mq ≈ 1.08 · 10−2, λ̄Λ′ ≈ 50.8, h̄≈ 6.52, c̄/m3

q ≈ 6.48 · 10−2 at the scale Λ′/mq ≈ 10/3.
In Fig. 5, we show our results for the pion decay constant as a function of L as obtained

from calculations with Λ/mq ≡ Λ′/mq ≈ 10/3 as well as for Λ/mq ≈ 30/3 and Λ/mq ≈ 50/3.
For Λ= Λ′, the pion decay constant seems to exhibit a pathological behavior when the volume
is decreased. For increasing box size, however, the dependence of fπ on L is continuously
“smoothened" and fπ eventually approaches its value in the infinite-volume limit. This overall
behavior of the pion decay constant does not come unexpected and can be traced back to
the behavior of the momentum-modes counting function (61). The non-analytic form of the
latter originates from the use of a non-analytic regulator function in our study. With such
regulators, the presence of a momentum cutoff becomes very evident. Indeed, we observe
that the seemingly pathological behavior is continuously “smoothened" when Λ is increased
in an RG-consistent manner. The latter corresponds to increasing the dimensionless quantity
ΛL and therefore also explains why this behavior of fπ observed for, e.g., Λ/mq ≈ 10/3 and
small box sizes goes away when the box size is increased. In particular, we observe that the
results for the pion decay constant as a function of L converge when Λ is increased. In any
case, we find that the deviations of the results for Λ/mq ≈ 10/3 from those for Λ/mq ≈ 50/3
are on the 1% level at most for the range of box sizes shown in Fig. 5. For a discussion of the
general behavior of the pion decay constant as a function of the box size, we refer the reader to
Ref. [108] where also qualitative comparisons to lattice QCD calculations [109,110] of related
quantities can be found.
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Note that in practice it may be advantageous – although not necessarily required – to
employ analytic regulators which lead to an exponential suppression of cutoff effects when
ΛL is increased rather than a polynomial suppression as in the case of non-analytic regulators.
Here, the strength of the exponential suppression is related to the first pole or cut in the
complex plane introduced by the regulator. It is not necessarily the typical thermal damping
in the presence of a mass. The latter decay is indeed only seen for 3d regulators, see Ref. [105]
for a detailed discussion. In this context, we emphasize again that the meaning of the actual
value of the cutoff Λ is ambiguous without referring to the employed regularization scheme,
see our discussion in Sec. 2. Indeed, the values of the momentum cutoff Λ associated with
analytic regulators used in the past to study fluctuation effects in finite volumes [97, 98, 105,
108, 111, 112] effectively correspond to larger values of Λ in case of typically employed non-
analytic regulators, such as the sharp or Litim regulator.

We would like to close our discussion with a word of caution regarding the construction of
UV completions of low-energy models. In contradistinction to the mean-field studies in Sub-
secs. 3.1-3.3, the UV cutoff scale Λ cannot be pushed to arbitrarily large values in the present
case where we have taken into account fluctuation effects. This can be traced back to the
fact that the mesonic fluctuations induce a Landau-pole instability at large momentum scales,
irrespective of the employed regulator. For the simple quartic approximation of the effective
action considered here, this instability occurs at comparatively large scales Λ> 5GeV (for the
3d Litim regulator). However, the position of this instability is shifted to smaller momentum
scales when corrections of higher order are included. It may then not be possible anymore
to construct an RG-consistent effective action for the range of parameters of interest. In such
a situation, a suitable workaround to preserve RG consistency at least approximately may be
obtained by simply dropping the mesonic fluctuations in the construction of the UV comple-
tion, i.e. by only employing the corresponding mean-field UV completion simply constructed
from the fully field-dependent quark loop as detailed in Subsecs. 3.1-3.3. In practice, this may
already suffice to reduce cutoff artefacts to a large extent in studies beyond the mean-field
approximation.

4 Conclusions

In the present work we have discussed the concept of RG consistency in the context of model
studies, with an emphasis on studies in the presence of external parameters. In general, RG
consistency requires that the effective action Γ of a given theory does not depend on the cutoff
scale Λ, i.e. Λ∂ΛΓ = 0, also in the presence of external parameters. After a detailed general
discussion of RG consistency in Sec. 2, we have given an illustrative discussion of RG consis-
tency in mean-field studies of a quark-meson model in the vacuum limit, a diquark model at
finite density, and a quark-meson-diquark model at finite temperature and density. We note
that in the latter two cases, we had to take into account the renormalization of the diquark
chemical potential to ensure RG consistency. Moreover, we discussed RG consistency in studies
of finite-volume effects by considering the quark-meson model beyond the mean-field approx-
imation.

For regularization schemes and values of the cutoff scale Λ as widely employed in mean-
field studies of QCD models, our illustrational studies already suggest that “cutoff contamina-
tions" of physical observables can be significant. Indeed, for the zero-temperature pressure of
our quark-meson-diquark model, we found corrections of up to 30% in the considered range
for the quark chemical potential. However, it is not only the computation of the pressure
that suffers from “cutoff contaminations". For example, the critical temperature of our quark-
meson-diquark model at µ = 0 is lowered by about 10% when we take into account cutoff
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corrections enforced by the RG-consistency condition (1). In general, such corrections do not
necessarily only lead to a decrease of the critical temperature. In fact, in the regime governed
by diquark condensation, cutoff corrections rather tend to increase it. To be specific, the criti-
cal temperature is increased by about 30% at µ/mq = 4/3 (with mq ≈ 0.300GeV) and already
by more than 100% at µ/mq = 2 compared to the results from a conventional mean-field study.
Thus, the implementation of RG consistency appears to be very relevant in the high-density
regime of our QCD models. For example, the associated corrections may significantly alter
the presently available equations of state of dense strong-interaction matter as relevant for
astrophysical applications [96]. In any case, our illustrational studies show clearly that it is of
phenomenological relevance to ensure RG consistency in general model studies, even in the
mean-field approximation.
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[34] V. Skokov, B. Stokić, B. Friman and K. Redlich, Meson fluctuations and thermodynam-
ics of the Polyakov-loop-extended quark-meson model, Phys. Rev. C 82, 015206 (2010),
doi:10.1103/PhysRevC.82.015206.

[35] V. Skokov, B. Friman and K. Redlich, Quark number fluctuations in the Polyakov loop-
extended quark-meson model at finite baryon density, Phys. Rev. C 83, 054904 (2011),
doi:10.1103/PhysRevC.83.054904.

[36] T. Katharina Herbst, J. M. Pawlowski and B.-J. Schaefer, The phase structure of
the Polyakov–quark–meson model beyond mean field, Phys. Lett. B 696, 58 (2011),
doi:10.1016/j.physletb.2010.12.003.

[37] N. Strodthoff and L. von Smekal, Polyakov-quark–meson–diquark model for two-color
QCD, Phys. Lett. B 731, 350 (2014), doi:10.1016/j.physletb.2014.03.008.

[38] L. M. Haas, R. Stiele, J. Braun, J. M. Pawlowski and J. Schaffner-Bielich, Improved
Polyakov-loop potential for effective models from functional calculations, Phys. Rev. D 87,
076004 (2013), doi:10.1103/PhysRevD.87.076004.

[39] R. D. Pisarski and V. V. Skokov, Chiral matrix model of the semi-QGP in QCD, Phys. Rev.
D 94, 034015 (2016), doi:10.1103/PhysRevD.94.034015.

[40] K. Fukushima and V. Skokov, Polyakov loop modeling for hot QCD, Prog. Part. Nucl. Phys.
96, 154 (2017), doi:10.1016/j.ppnp.2017.05.002.

[41] S. Floerchinger and C. Wetterich, Chemical freeze-out in heavy ion col-
lisions at large baryon densities, Nucl. Phys. A 890-891, 11 (2012),
doi:10.1016/j.nuclphysa.2012.07.009.

[42] M. Drews and W. Weise, Functional renormalization group approach to neutron matter,
Phys. Lett. B 738, 187 (2014), doi:10.1016/j.physletb.2014.09.051.

[43] M. Drews and W. Weise, From asymmetric nuclear matter to neutron stars:
A functional renormalization group study, Phys. Rev. C 91, 035802 (2015),
doi:10.1103/PhysRevC.91.035802.

27

https://scipost.org
https://scipost.org/SciPostPhys.6.5.056
http://dx.doi.org/10.1016/j.nuclphysbps.2012.06.006
http://dx.doi.org/10.1016/S0370-2693(97)00741-7
http://dx.doi.org/10.1103/PhysRevD.62.111501
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1016/j.physletb.2004.04.027
http://dx.doi.org/10.1103/PhysRevD.75.034007
http://dx.doi.org/10.1103/PhysRevD.76.074023
http://dx.doi.org/10.1103/PhysRevC.82.015206
http://dx.doi.org/10.1103/PhysRevC.83.054904
http://dx.doi.org/10.1016/j.physletb.2010.12.003
http://dx.doi.org/10.1016/j.physletb.2014.03.008
http://dx.doi.org/10.1103/PhysRevD.87.076004
http://dx.doi.org/10.1103/PhysRevD.94.034015
http://dx.doi.org/10.1016/j.ppnp.2017.05.002
http://dx.doi.org/10.1016/j.nuclphysa.2012.07.009
http://dx.doi.org/10.1016/j.physletb.2014.09.051
http://dx.doi.org/10.1103/PhysRevC.91.035802


SciPost Phys. 6, 056 (2019)

[44] J. Weyrich, N. Strodthoff and L. von Smekal, Chiral mirror-baryon-meson model and
nuclear matter beyond mean-field approximation, Phys. Rev. C 92, 015214 (2015),
doi:10.1103/PhysRevC.92.015214.

[45] S. Floerchinger, Analytic continuation of functional renormalization group equations, J.
High Energ. Phys. 05, 021 (2012), doi:10.1007/JHEP05(2012)021.

[46] K. Kamikado, N. Strodthoff, L. von Smekal and J. Wambach, Fluctuations in the quark-
meson model for QCD with isospin chemical potential, Phys. Lett. B 718, 1044 (2013),
doi:10.1016/j.physletb.2012.11.055.

[47] R.-A. Tripolt, N. Strodthoff, L. von Smekal and J. Wambach, Spectral functions for the
quark-meson model phase diagram from the functional renormalization group, Phys. Rev.
D 89, 034010 (2014), doi:10.1103/PhysRevD.89.034010.

[48] T. Yokota, T. Kunihiro and K. Morita, Tachyonic instability of the scalar mode prior to the
QCD critical point based on the functional renormalization-group method in the two-flavor
case, Phys. Rev. D 96, 074028 (2017), doi:10.1103/PhysRevD.96.074028.

[49] C. Jung, F. Rennecke, R.-A. Tripolt, L. von Smekal and J. Wambach, In-medium spectral
functions of vector- and axial-vector mesons from the functional renormalization group,
Phys. Rev. D 95, 036020 (2017), doi:10.1103/PhysRevD.95.036020.

[50] H. Gies and C. Wetterich, Universality of spontaneous chiral symmetry breaking in gauge
theories, Phys. Rev. D 69, 025001 (2004), doi:10.1103/PhysRevD.69.025001.

[51] H. Gies, Introduction to the functional RG and applications to gauge theories, in Renormal-
ization Group and Effective Field Theory Approaches to Many-Body Systems, Springer
Berlin Heidelberg (2012), doi:10.1007/978-3-642-27320-9_6.

[52] J. Braun, L. M. Haas, F. Marhauser and J. M. Pawlowski, Phase structure of
two-flavor QCD at finite chemical potential, Phys. Rev. Lett. 106, 022002 (2011),
doi:10.1103/PhysRevLett.106.022002.

[53] M. Mitter, J. M. Pawlowski and N. Strodthoff, Chiral symmetry breaking in continuum
QCD, Phys. Rev. D 91, 054035 (2015), doi:10.1103/PhysRevD.91.054035.

[54] J. Braun, L. Fister, J. M. Pawlowski and F. Rennecke, From quarks and gluons to
hadrons: Chiral symmetry breaking in dynamical QCD, Phys. Rev. D 94, 034016 (2016),
doi:10.1103/PhysRevD.94.034016.

[55] F. Rennecke, Vacuum structure of vector mesons in QCD, Phys. Rev. D 92, 076012 (2015),
doi:10.1103/PhysRevD.92.076012.

[56] A. K. Cyrol, M. Mitter, J. M. Pawlowski and N. Strodthoff, Nonperturbative quark,
gluon, and meson correlators of unquenched QCD, Phys. Rev. D 97, 054006 (2018),
doi:10.1103/PhysRevD.97.054006.

[57] J. M. Pawlowski, The QCD phase diagram: Results and challenges, AIP Conf. Proc. 1343,
75 (2011), doi:10.1063/1.3574945.

[58] J. M. Pawlowski, Equation of state and phase diagram of strongly interacting matter, Nucl.
Phys. A 931, 113 (2014), doi:10.1016/j.nuclphysa.2014.09.074.

[59] T. K. Herbst, M. Mitter, J. M. Pawlowski, B.-J. Schaefer and R. Stiele, Ther-
modynamics of QCD at vanishing density, Phys. Lett. B 731, 248 (2014),
doi:10.1016/j.physletb.2014.02.045.

28

https://scipost.org
https://scipost.org/SciPostPhys.6.5.056
http://dx.doi.org/10.1103/PhysRevC.92.015214
http://dx.doi.org/10.1007/JHEP05(2012)021
http://dx.doi.org/10.1016/j.physletb.2012.11.055
http://dx.doi.org/10.1103/PhysRevD.89.034010
http://dx.doi.org/10.1103/PhysRevD.96.074028
http://dx.doi.org/10.1103/PhysRevD.95.036020
http://dx.doi.org/10.1103/PhysRevD.69.025001
http://dx.doi.org/10.1007/978-3-642-27320-9_6
http://dx.doi.org/10.1103/PhysRevLett.106.022002
http://dx.doi.org/10.1103/PhysRevD.91.054035
http://dx.doi.org/10.1103/PhysRevD.94.034016
http://dx.doi.org/10.1103/PhysRevD.92.076012
http://dx.doi.org/10.1103/PhysRevD.97.054006
http://dx.doi.org/10.1063/1.3574945
http://dx.doi.org/10.1016/j.nuclphysa.2014.09.074
http://dx.doi.org/10.1016/j.physletb.2014.02.045


SciPost Phys. 6, 056 (2019)

[60] P. Springer, J. Braun, S. Rechenberger and F. Rennecke, QCD-inspired de-
termination of NJL model parameters, EPJ Web Conf. 137, 03022 (2017),
doi:10.1051/epjconf/201713703022.

[61] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301, 90
(1993), doi:10.1016/0370-2693(93)90726-X.

[62] M. Reuter and C. Wetterich, Effective average action for gauge theories and exact evolution
equations, Nucl. Phys. B 417, 181 (1994), doi:10.1016/0550-3213(94)90543-6.

[63] J. M. Pawlowski, On Wilsonian flows in gauge theories, Int. J. Mod. Phys. A 16, 2105
(2001), doi:10.1142/S0217751X01004785.

[64] D. F. Litim and J. M. Pawlowski, Wilsonian flows and background fields, Phys. Lett. B
546, 279 (2002), doi:10.1016/S0370-2693(02)02693-X.

[65] H. Gies, Running coupling in Yang-Mills theory: A flow equation study, Phys. Rev. D 66,
025006 (2002), doi:10.1103/PhysRevD.66.025006.

[66] J. M. Pawlowski, Aspects of the functional renormalisation group, Ann. Phys. 322, 2831
(2007), doi:10.1016/j.aop.2007.01.007.

[67] J. M. Pawlowski, M. M. Scherer, R. Schmidt and S. J. Wetzel, Physics and the choice
of regulators in functional renormalisation group flows, Ann. Phys. 384, 165 (2017),
doi:10.1016/j.aop.2017.06.017.

[68] D. F. Litim and J. M. Pawlowski, Perturbation theory and renormalization group equa-
tions, Phys. Rev. D 65, 081701 (2002), doi:10.1103/PhysRevD.65.081701.

[69] D. F. Litim and J. M. Pawlowski, Completeness and consistency of renormalization group
flows, Phys. Rev. D 66, 025030 (2002), doi:10.1103/PhysRevD.66.025030.

[70] O. J. Rosten, Fundamentals of the exact renormalization group, Phys. Rep. 511, 177
(2012), doi:10.1016/j.physrep.2011.12.003.

[71] J. Braun, H.-J. Pirner and K. Schwenzer, Linking the quark meson model with QCD at
high temperature, Phys. Rev. D 70, 085016 (2004), doi:10.1103/PhysRevD.70.085016.

[72] A. J. Helmboldt, J. M. Pawlowski and N. Strodthoff, Towards quantitative precision in
the chiral crossover: Masses and fluctuation scales, Phys. Rev. D 91, 054010 (2015),
doi:10.1103/PhysRevD.91.054010.

[73] J. Braun, Fermion interactions and universal behavior in strongly interacting theories, J.
Phys. G: Nucl. Part. Phys. 39, 033001 (2012), doi:10.1088/0954-3899/39/3/033001.

[74] J. Braun and T. K. Herbst, On the relation of the deconfinement and the chiral phase tran-
sition in gauge theories with fundamental and adjoint matter (2012), arXiv:1205.0779.

[75] D. F. Litim, Optimisation of the exact renormalisation group, Phys. Lett. B 486, 92 (2000),
doi:10.1016/S0370-2693(00)00748-6.

[76] D. F. Litim, Optimized renormalization group flows, Phys. Rev. D 64, 105007 (2001),
doi:10.1103/PhysRevD.64.105007.

[77] D. F. Litim, Mind the gap, Int. J. Mod. Phys. A 16, 2081 (2001),
doi:10.1142/S0217751X01004748.

29

https://scipost.org
https://scipost.org/SciPostPhys.6.5.056
http://dx.doi.org/10.1051/epjconf/201713703022
http://dx.doi.org/10.1016/0370-2693(93)90726-X
http://dx.doi.org/10.1016/0550-3213(94)90543-6
http://dx.doi.org/10.1142/S0217751X01004785
http://dx.doi.org/10.1016/S0370-2693(02)02693-X
http://dx.doi.org/10.1103/PhysRevD.66.025006
http://dx.doi.org/10.1016/j.aop.2007.01.007
http://dx.doi.org/10.1016/j.aop.2017.06.017
http://dx.doi.org/10.1103/PhysRevD.65.081701
http://dx.doi.org/10.1103/PhysRevD.66.025030
http://dx.doi.org/10.1016/j.physrep.2011.12.003
http://dx.doi.org/10.1103/PhysRevD.70.085016
http://dx.doi.org/10.1103/PhysRevD.91.054010
http://dx.doi.org/10.1088/0954-3899/39/3/033001
https://arxiv.org/abs/1205.0779
http://dx.doi.org/10.1016/S0370-2693(00)00748-6
http://dx.doi.org/10.1103/PhysRevD.64.105007
http://dx.doi.org/10.1142/S0217751X01004748


SciPost Phys. 6, 056 (2019)

[78] J. Meyer, K. Schwenzer, H.-J. Pirner and A. Deandrea, Renormalization group flow in
large Nc , Phys. Lett. B 526, 79 (2002), doi:10.1016/S0370-2693(01)01482-4.

[79] J. Braun, F. Karbstein, S. Rechenberger and D. Roscher, Crystalline ground states in
Polyakov-loop extended Nambu–Jona-Lasinio models, Phys. Rev. D 93, 014032 (2016),
doi:10.1103/PhysRevD.93.014032.

[80] J. Braun, Thermodynamics of QCD low-energy models and the derivative expansion of the
effective action, Phys. Rev. D 81, 016008 (2010), doi:10.1103/PhysRevD.81.016008.

[81] V. Skokov, B. Friman, E. Nakano, K. Redlich and B.-J. Schaefer, Vacuum fluctua-
tions and the thermodynamics of chiral models, Phys. Rev. D 82, 034029 (2010),
doi:10.1103/PhysRevD.82.034029.

[82] J. Braun, M. Leonhardt and M. Pospiech, Fierz-complete NJL model study: Fixed points
and phase structure at finite temperature and density, Phys. Rev. D 96, 076003 (2017),
doi:10.1103/PhysRevD.96.076003.

[83] J. Braun, M. Leonhardt and M. Pospiech, Fierz-complete NJL model study. II. Toward the
fixed-point and phase structure of hot and dense two-flavor QCD, Phys. Rev. D 97, 076010
(2018), doi:10.1103/PhysRevD.97.076010.

[84] M. Alford, K. Rajagopal and F. Wilczek, QCD at finite baryon density: nucleon droplets
and color superconductivity, Phys. Lett. B 422, 247 (1998), doi:10.1016/S0370-
2693(98)00051-3.

[85] J. M. Pawlowski and N. Strodthoff, Real time correlation functions and
the functional renormalization group, Phys. Rev. D 92, 094009 (2015),
doi:10.1103/PhysRevD.92.094009.

[86] J. M. Pawlowski, N. Strodthoff and N. Wink, Finite temperature spectral functions in the
O(N) model, Phys. Rev. D 98, 074008 (2018), doi:10.1103/PhysRevD.98.074008.

[87] T. D. Cohen, Functional integrals for QCD at nonzero chemical potential and zero density,
Phys. Rev. Lett. 91, 222001 (2003), doi:10.1103/PhysRevLett.91.222001.

[88] G. Markó, U. Reinosa and Z. Szép, Bose-Einstein condensation and Silver Blaze prop-
erty from the two-loop Φ-derivable approximation, Phys. Rev. D 90, 125021 (2014),
doi:10.1103/PhysRevD.90.125021.

[89] N. Khan, J. M. Pawlowski, F. Rennecke and M. M. Scherer, The phase diagram of QC2D
from functional methods (2015), arXiv:1512.03673.

[90] W.-j. Fu and J. M. Pawlowski, Relevance of matter and glue dynamics for baryon number
fluctuations, Phys. Rev. D 92, 116006 (2015), doi:10.1103/PhysRevD.92.116006.

[91] K. Rajagopal and F. Wilczek, Enforced electrical neutrality of the color-flavor locked phase,
Phys. Rev. Lett. 86, 3492 (2001), doi:10.1103/PhysRevLett.86.3492.

[92] I. A. Shovkovy and P. J. Ellis, Thermal conductivity of dense quark matter and cooling of
stars, Phys. Rev. C 66, 015802 (2002), doi:10.1103/PhysRevC.66.015802.

[93] T. K. Herbst, J. M. Pawlowski and B.-J. Schaefer, Phase structure and thermodynamics of
QCD, Phys. Rev. D 88, 014007 (2013), doi:10.1103/PhysRevD.88.014007.

30

https://scipost.org
https://scipost.org/SciPostPhys.6.5.056
http://dx.doi.org/10.1016/S0370-2693(01)01482-4
http://dx.doi.org/10.1103/PhysRevD.93.014032
http://dx.doi.org/10.1103/PhysRevD.81.016008
http://dx.doi.org/10.1103/PhysRevD.82.034029
http://dx.doi.org/10.1103/PhysRevD.96.076003
http://dx.doi.org/10.1103/PhysRevD.97.076010
http://dx.doi.org/10.1016/S0370-2693(98)00051-3
http://dx.doi.org/10.1016/S0370-2693(98)00051-3
http://dx.doi.org/10.1103/PhysRevD.92.094009
http://dx.doi.org/10.1103/PhysRevD.98.074008
http://dx.doi.org/10.1103/PhysRevLett.91.222001
http://dx.doi.org/10.1103/PhysRevD.90.125021
https://arxiv.org/abs/1512.03673
http://dx.doi.org/10.1103/PhysRevD.92.116006
http://dx.doi.org/10.1103/PhysRevLett.86.3492
http://dx.doi.org/10.1103/PhysRevC.66.015802
http://dx.doi.org/10.1103/PhysRevD.88.014007


SciPost Phys. 6, 056 (2019)

[94] W.-j. Fu, J. M. Pawlowski, F. Rennecke and B.-J. Schaefer, Baryon number fluc-
tuations at finite temperature and density, Phys. Rev. D 94, 116020 (2016),
doi:10.1103/PhysRevD.94.116020.

[95] R.-A. Tripolt, B.-J. Schaefer, L. von Smekal and J. Wambach, Low-temperature
behavior of the quark-meson model, Phys. Rev. D 97, 034022 (2018),
doi:10.1103/PhysRevD.97.034022.

[96] J. Braun, C. Drischler, K. Hebeler, M. Leonhardt, M. Pospiech and A. Schwenk, In prepa-
ration.

[97] J. Braun, B. Klein and H. J. Pirner, Volume dependence of the pion mass in the quark-
meson model, Phys. Rev. D 71, 014032 (2005), doi:10.1103/PhysRevD.71.014032.

[98] J. Braun, B. Klein, H.-J. Pirner and A. H. Rezaeian, Volume and quark mass
dependence of the chiral phase transition, Phys. Rev. D 73, 074010 (2006),
doi:10.1103/PhysRevD.73.074010.

[99] D. F. Litim and J. M. Pawlowski, Non-perturbative thermal flows and resummations, J.
High Energ. Phys. 11, 026 (2006), doi:10.1088/1126-6708/2006/11/026.

[100] J.-P. Blaizot, A. Ipp, R. Méndez-Galain and N. Wschebor, Perturbation theory and non-
perturbative renormalization flow in scalar field theory at finite temperature, Nucl. Phys.
A 784, 376 (2007), doi:10.1016/j.nuclphysa.2006.11.139.

[101] J. Braun, B. Klein and P. Piasecki, On the scaling behavior of the chiral phase
transition in QCD in finite and infinite volume, Eur. Phys. J. C 71, 1576 (2011),
doi:10.1140/epjc/s10052-011-1576-7.

[102] J. Braun, B. Klein and B.-J. Schaefer, On the phase structure of QCD in a finite volume,
Phys. Lett. B 713, 216 (2012), doi:10.1016/j.physletb.2012.05.053.

[103] R.-A. Tripolt, J. Braun, B. Klein and B.-J. Schaefer, Effect of fluctuations on
the QCD critical point in a finite volume, Phys. Rev. D 90, 054012 (2014),
doi:10.1103/PhysRevD.90.054012.

[104] B.-J. Schaefer and J. Wambach, The phase diagram of the quark–meson model, Nucl.
Phys. A 757, 479 (2005), doi:10.1016/j.nuclphysa.2005.04.012.

[105] L. Fister and J. M. Pawlowski, Functional renormalization group in a finite volume, Phys.
Rev. D 92, 076009 (2015), doi:10.1103/PhysRevD.92.076009.

[106] J. Braun and B. Klein, Finite-size scaling behavior in the O(4) model, Eur. Phys. J. C 63,
443 (2009), doi:10.1140/epjc/s10052-009-1098-8.

[107] G. Colangelo and S. Dürr, The pion mass in finite volume, Eur. Phys. J. C - Part. Fields
33, 543 (2004), doi:10.1140/epjc/s2004-01593-y.

[108] J. Braun, B. Klein and H. J. Pirner, Influence of quark boundary condi-
tions on the pion mass in finite volume, Phys. Rev. D 72, 034017 (2005),
doi:10.1103/PhysRevD.72.034017.

[109] M. Guagnelli, K. Jansen, F. Palombi, R. Petronzio, A. Shindler and I. Wet-
zorke, Finite size effects of a pion matrix element Phys. Lett. B 597, 216 (2004),
doi:10.1016/j.physletb.2004.07.020.

31

https://scipost.org
https://scipost.org/SciPostPhys.6.5.056
http://dx.doi.org/10.1103/PhysRevD.94.116020
http://dx.doi.org/10.1103/PhysRevD.97.034022
http://dx.doi.org/10.1103/PhysRevD.71.014032
http://dx.doi.org/10.1103/PhysRevD.73.074010
http://dx.doi.org/10.1088/1126-6708/2006/11/026
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.139
http://dx.doi.org/10.1140/epjc/s10052-011-1576-7
http://dx.doi.org/10.1016/j.physletb.2012.05.053
http://dx.doi.org/10.1103/PhysRevD.90.054012
http://dx.doi.org/10.1016/j.nuclphysa.2005.04.012
http://dx.doi.org/10.1103/PhysRevD.92.076009
http://dx.doi.org/10.1140/epjc/s10052-009-1098-8
http://dx.doi.org/10.1140/epjc/s2004-01593-y
http://dx.doi.org/10.1103/PhysRevD.72.034017
http://dx.doi.org/10.1016/j.physletb.2004.07.020


SciPost Phys. 6, 056 (2019)

[110] B. Orth, T. Lippert and K. Schilling, Finite-size effects in lattice QCD with dynamical Wilson
fermions, Phys. Rev. D 72, 014503 (2005), doi:10.1103/PhysRevD.72.014503.

[111] B. Klein, J. Braun and B.-J. Schaefer, Curvature of the QCD phase transition line in a
finite volume Proc. Sci. 105, 193 (2010), doi:10.22323/1.105.0193.

[112] G. A. Almási, R. D. Pisarski and V. V. Skokov, Volume dependence of baryon
number cumulants and their ratios, Phys. Rev. D 95, 056015 (2017),
doi:10.1103/PhysRevD.95.056015.

[113] J. Braun, L. Corell, A. K. Cyrol, W.-j. Fu, C. Huang, M. Leonhardt, M. Mitter, J. M.
Pawlowski, M. Pospiech, F. Rennecke, C. Schneider, R. Wen, N. Wink, S. Yin [fQCD
Collaboration], members as of June 2018.

32

https://scipost.org
https://scipost.org/SciPostPhys.6.5.056
http://dx.doi.org/10.1103/PhysRevD.72.014503
http://dx.doi.org/10.22323/1.105.0193
http://dx.doi.org/10.1103/PhysRevD.95.056015

	Introduction
	RG consistency
	RG consistency and low-energy phenomenology
	Quantum effective action and regularization
	RG consistency – formal discussion

	RG Consistency – Examples
	Quark-meson model in the vacuum limit
	Diquarks – equation of state
	Quarks, mesons, and diquarks – phase diagram
	Quarks and mesons – finite-volume effects

	Conclusions
	References

