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Abstract

We prove that a recently derived correlation equality between conserved charges and
their associated conserved currents for quantum systems far from equilibrium [O.A.
Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys. Rev. X 6, 041065 (2016)], is valid
under more general conditions than assumed so far. Similar correlation identities, which
in generalized Gibbs ensembles give rise to a current symmetry somewhat reminiscent
of the Onsager relations, turn out to hold also in the absence of translation invariance,
for lattice models, and in any space dimension, and to imply a symmetry of the non-
equilibrium linear response functions.
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1 Introduction

Of particular interest in the general context of transport far from thermal equilibrium are
the correlations between the conserved charges Qα and their associated currents Jαi in space
direction i. We refer to the review by Spohn [1] for a discussion from a broad perspective.
Very recently, charge-current correlations in one-dimensional quantum integrable systems have
been shown to play an important role in work on the Drude weight [2,3] and for generalized
hydrodynamics [4,5].

Specifically, for the one-dimensional quantum case the global charge-current symmetry

〈QαJβ 〉c = 〈 JαQβ 〉c (1)

for the connected correlation functions has been derived in [4] under quite general circum-
stances, viz., assuming only translation invariance of the stationary density matrix and the
quantum Hamiltonian, a generic assumption on the decay of correlations, and, more signifi-
cantly, commutativity of the stationary density matrix with the charges Qα.

This result was subsequently generalized to a stronger local version
〈qα(x , t) jβ(0, 0) 〉c = 〈 jα(x , t)qβ(0,0) 〉c [6] which does not require the assumption of
commutativity of the charges and which is valid for any decay of correlations with distance.
The main aim of the present work is to derive related global and local charge-current
correlation equalities and to clarify the necessary and sufficient conditions under which such
correlation equalities, including (1) and its local version, are valid.

We start out from generic stationary one-dimensional lattice quantum systems of finite size
with local conservation laws, without requiring translation invariance, as detailed in Sec. 2.
The main results are derived in Sec. 3, first very generally and then more specifically under var-
ious additional generic conditions imposed on the physical system. Some simple consequences
for symmetries of far-from-equilibrium linear response functions are indicated in Sec. 4.

All results derived below are straightforwardly extended to higher dimensions by projec-
tion on one space coordinate and going through the same steps as below for each space coor-
dinate. Furthermore, the results are valid also for dissipative quantum systems where the time
evolution of the density matrix is generated by a Lindblad quantum master equation, and for
purely classical stochastic systems with Markovian dynamics for the probability distribution.
However, to avoid heavy notation and to expose clearly the essential ingredients that lead to
charge-current correlation equalities, we stick to the one-dimensional quantum context.

2 The setting

We consider a stationary many-body quantum system on a one-dimensional lattice of L sites
with Hamiltonian H. We shall not from the outset assume translation invariance, but allow
for non-translation-invariant stationary density matrices ρ and/or spatially inhomogeneous
dynamics encoded in H. The system is not assumed to be in thermal equilibrium. Stationarity
only means that we take expectations w.r.t. a density matrix ρ that satisfies

S1: [ρ, H] = 0. (2)

For observables O we recall the definition

O(t) = e
i
ħh HtOe−

i
ħh Ht (3)

of time-dependent operators in the Heisenberg picture. We denote stationary ex-
pectation values and connected correlation functions by 〈O 〉L := tr(ρO) and
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〈O1(t)O2 〉
c
L := tr(ρO1(t)O2) − 〈O1 〉〈O2 〉 resp., with the size-dependence indicated by

the subscript L.
Specifically, we consider a family of n locally conserved charges, i.e., operators qαk that

satisfy for k ∈ {1, . . . , L} the discrete continuity equation

S2:
i
ħh
�

H, qαk (t)
�

= jαk−1(t)− jαk (t), (4)

with the conserved currents jαk and the definition jα0 := jαL . Then the operators

Qα =
∑

k

qαk (5)

form a set of n conserved charges Qα =Qα(t). We remark that for a non-translation invariant
H the operator jαk−1(t) may not be the lattice translation of jαk (t) but may have an explicit k-
dependence that we do not indicate. Nevertheless, the discrete continuity equation (4) alone
implies that the stationary current, denoted by jα, does not depend on k.

It is tacitly assumed that the charge and current operators are bounded so that all stationary
expectations of the charges qαk (t) and currents jαl (t) and all stationary correlations between
them are finite for all system sizes L and have well-defined thermodynamic limits.

In d > 1 dimensions the lattice continuity equation for the locally conserved charges qαk (t)
at the lattice point k= (k1, . . . , kd) reads

i
ħh
�

H, qαk (t)
�

=
d
∑

i=1

h

j i,α
k−i
(t)− j i,α

k (t)
i

, (6)

with the conserved currents j i,α
k (t) in space direction i and the shifted i th coordinate

k−i := (k1, . . . , ki − 1, . . . , kd). One considers the projected operators

qαki
(t) =

∑

k\ki

qαk (t), (7)

j i,α
ki
(t) =

∑

k\ki

j i,α
k (t), (8)

where the summations exclude the space coordinate i and goes through the same calculations
as below for the one-dimensional case.

3 Charge-current correlation equalities

Specifically, we consider the time-dependent stationary correlation functions

SαβL (k, l, t) := 〈qαk (t)q
β

l (0) 〉
c

L , (9)

CαβL (k, l, t) := 〈 jαk (t)q
β

l (0) 〉
c

L , (10)

C̃αβL (k, l, t) := 〈qαk (t) j
β

l (0) 〉
c

L . (11)

By identifying all lattice sites k modulo L, the correlation functions can be defined for all
k, l ∈ Z with periodicity L for both space arguments k, l.
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3.1 Results of general validity

In this subsection we study relations between the charge-current correlation functions (10)
and (11) that arise alone from S1 and S2, i.e., stationarity of the density matrix (2) and the
conservation law (4), without requiring translation invariance or any other specific property
of ρ or H.

(i) With the Heisenberg representation (3) and the cyclic invariance of the trace, one gets
for the time derivative of the charge-charge correlation function (9) the two expressions

ṠαβL (k, l, t) = 〈 ( jαk−1(t)− jαk (t))q
β

l (0) 〉
c

L (12)

= −〈qαk (t)( j
β

l−1(0)− jβl (0)) 〉
c

L , (13)

from which one deduces by subtraction the fundamental charge-current correlation equality

0= CαβL (k− 1, l, t)− CαβL (k, l, t) + C̃αβL (k, l − 1, t)− C̃αβL (k, l, t). (14)

which is local in both coordinates k and l and which is the basis for further considerations.
(ii) To explore consequences of this relation we consider the correlations involving the

total charges Qα, viz.,

AαβL (k, t) :=
∑

l

CαβL (k, l, t), (15)

ÃαβL (l, t) :=
∑

k

C̃αβL (k, l, t). (16)

Because of the global charge conservation (5), both averages AαβL (k, t) and ÃαβL (l, t) are triv-
ially independent of time. The local relations (12) and (13) then imply that both functions
are independent also of the space coordinate. This yields without further computation the
charge-current correlation equalities

AαβL (k, t) = 〈 jαk (t)Q
β 〉cL = 〈 jα0 (0)Q

β 〉cL =: aαβL , (17)

ÃαβL (l, t) = 〈Qα(t) jβl (0) 〉
c

L = 〈Q
α jβ0 (0) 〉

c

L =: ãαβL , (18)

with constants aαβL , ãαβL that depend neither on k nor on t.
(iii) Next we consider the space averages

BαβL (r, t) :=
1
L

∑

k

CαβL (k, k+ r, t), (19)

B̃αβL (r, t) :=
1
L

∑

k

C̃αβL (k, k+ r, t). (20)

For examining the relationship between BαβL (k, t) and B̃αβL (l, t)we define the auxiliary function

GαβL (k, l, t) :=
k
∑

k′=1

�

C̃αβL (k
′, 0, t)− C̃αβL (k

′, l, t)
�

(21)

and its space average

gαβL (r, t) :=
1
L

∑

k

GαβL (k, k+ r, t), (22)
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which allow for expressing both CαβL (k, t) and C̃αβL (l, t) in terms of GαβL (k, l, t) and the space

averages BαβL (k, t) and B̃αβL (l, t) in terms of gαβL (r, t). The auxiliary function GαβL (k, l, t) sat-

isfies GαβL (k, 0, t) = GαβL (0, l, t) = 0 and the periodicity property

GαβL (k+mL, l + nL, t) = GαβL (k, l, t) (23)

that is inherited from the periodicity of the correlation functions. Similarly, one has
gαβL (r +mL, t) = gαβL (r, t).

One gets from the definition (21) and from the doubly local relation (14)

CαβL (k, l, t) = CαβL (0, l, t) + GαβL (k, l, t)− GαβL (k, l − 1, t) (24)

C̃αβL (k, l, t) = C̃αβL (k, 0, t),+GαβL (k− 1, l, t)− GαβL (k, l, t). (25)

By setting l = k + r in (24) and (25) and summing over k one finds from the charge-current
correlation equalities (17) and (18)

BαβL (r, t) =
1
L

aαβL + gαβL (r, t)− gαβL (r − 1, t), (26)

B̃αβL (r − 1, t) =
1
L

ãαβL + gαβL (r, t)− gαβL (r − 1, t) (27)

in terms of the space average (22). Thus we arrive at the charge-current correlation equality

BαβL (r + 1, t)− B̃αβL (r, t) =
1
L
α
αβ
L ∀r, t, (28)

with the constant ααβL := aαβL − ãαβL .

The constant ααβL is given by (17) and (18)

α
αβ
L = 〈 jα0 (0)Q

β 〉cL − 〈Q
α jβ0 (0) 〉

c

L (29)

in terms of the stationary charge-current correlations for the global charges. Notice that the
independence of r and t allows for expressingααβL also as a stationary long-distance correlation
as

α
αβ
L = L[BαβL (bL/2c+ 1,0)− B̃αβL (bL/2c, 0)], (30)

where bxc ∈ Z is the integer part of x ∈ R. This is a finite-size term that is generically small, but
can be relevant for long-range interactions or non-local conserved charges. Also in the pres-
ence of stationary long-range correlations at or below a quantum critical point the correlation
may not be negligible.

As an aside we note without further comment that by (12) and (13) the auxiliary function
Gαβ(k, l, t) is related to the structure function as

ṠαβL (k, l, t) = GαβL (k− 1, l, t) + GαβL (k, l − 1, t)

−GαβL (k− 1, l − 1, t)− GαβL (k, l, t). (31)

For the space average

sαβL (r, t) :=
1
L

∑

k

SαβL (k, k+ r, t), (32)

one gets the evolution equation

ṡαβL (r, t) = gαβL (r + 1, t) + gαβL (r − 1, t)− 2gαβL (r, t). (33)
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3.2 Specializations

The results (14), (17), (18), and (28) - (30) are valid without any conditions on the density
matrix ρ and on the Hamiltonian H, except that all correlations are assumed to be bounded.
Now we consider some conditions of a general character and explore their consequences.

3.2.1 Decay of correlations

We make the generic assumption of decay of correlations in the thermodynamic limit L→∞,
i.e., for all r, t we postulate

C1: lim
r→∞

Bαβ∞ (r, t) = lim
r→∞

B̃αβ∞ (r, t) = 0. (34)

This assumption is justified by the finite Lieb-Robinson speed in non-relativistic quantum me-
chanics [7].

Decay of correlations implies ααβL /L→ 0 for L→∞ and therefore (28) yields the asymp-
totic charge-current correlation equality

Bαβ∞ (r + 1, t) = B̃αβ∞ (r, t) (35)

for the space averaged correlation function.
Under the slightly stronger condition

C1’: lim
L→∞

L[BαβL (bL/2c+ 1, 0)− B̃αβL (bL/2c, 0)] = 0 (36)

on the decay of correlations one has ααβL → 0 for L→∞. Then (29) yields

〈 jα0 (0)Q
β 〉c∞ = 〈Q

α jβ0 (0) 〉
c

∞. (37)

We stress that no translation invariance is used to prove (35) and (37).

3.2.2 Translation invariance

Now we consider the case where both ρ and H are translation invariant, i.e., for the lattice
translation operator T that transforms observables indexed by site k into the same observable
for site k+ 1 (mod L) one has

C2: TρT−1 = ρ, T HT−1 = H. (38)

Then BαβL (r, t) = CαβL (0, r, t) and B̃αβL (r, t) = C̃αβL (0, r, t) and (28) becomes

〈 jαk (t)q
β

l+1(0) 〉
c

L − 〈q
α
k (t) j

β

l (0) 〉
c

L =
1
L
α
αβ
L , (39)

with the constant ααβL given in (29).
We note that condition C2 together with C1 (decay of correlations) yields

〈 jαk (t)q
β
0 (0) 〉

c

∞ = 〈q
α
k+1(t) j

β
0 (0) 〉

c

∞, (40)

which is the lattice analogue of the local charge-current correlation equality derived for trans-
lation invariant systems in continuous space in [6].
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3.2.3 Mutually commuting charges

We finally comment on mutually commuting charges where

C3:
�

Qα, Qβ
�

= [Qα, ρ] = 0 (41)

for a set of charges labelled by α,β .
(1) First we consider a canonical ensemble where the density matrix is build from eigen-

states of the conserved charges Qα and Qβ , i.e., Qα,βρ = ρQα,β = Lqα,βρ with the charge
densities qα,β . Then aαβL = ãαβL = 0 and (28) yields

BαβL (r + 1, t) = B̃αβL (r, t) (42)

for all r and t and any finite L, without assuming decay of correlations or translation invari-
ance.

(2) Second, we consider a generalized Gibbs ensemble of the form

ρ̃ =
1
Z
ρe

∑n
α=1 λαQα , (43)

with Z = tr(ρe
∑n
α=1 λαQα) and stationary ρ independent of the generalized chemical potentials

λα. It has been conjectured that such a GGE state emerges asymptotically in time when an
integrable system, which has an extensive number of conserved local charges, has suffered
a sudden quench [8, 9], see [10] for a general review. This conjecture has been checked
explicitly in many non-interacting models, see for example [11, 12], and tested in truly in-
teracting integrable models with a truncated GGE taking into account only a finite number
n of charges [13–18]1. Indirect experimental evidence was found by Vidmar et al. [19] who
confirmed the magnetization profile that was theoretically predicted for the evolution of the
X X quantum chain after a quench to a step initial state [20], see also [21] on the current
fluctuations in this setting.

Given a GGE satisfying C3, which by construction (S1 and S2) is then also stationary, one
has with the short-hand notation ∂α ≡ ∂ /(∂ λα)

∂α ln Z = 〈Qα 〉, ∂α〈O 〉= 〈OQα 〉c . (44)

Thus one can express the constants aαβL and ãαβL as derivatives as

aαβL = ∂β jα, ãαβL = ∂α jβ (45)

and obtains from (30)

∂β jα − ∂α jβ = L[BαβL (bL/2c+ 1,0)− B̃αβL (bL/2c, 0)]. (46)

We note that condition C3 for the GGE together with the condition C1’ (36) on the decay
of correlations yields the current symmetry

∂β jα = ∂α jβ , (47)

where the stationary expectations jα are understood as functions of the generalized chemical
potentials λα. No translation invariance is required.

The current symmetry (47) appears in many contexts in hydrodynamic theory, see e.g.
[1,22] for a review and [2,4,6] for recent applications in generalized hydrodynamics where it

1In some cases the set of local charges is not enough to specify the state of the system and one needs to extend
the GGE by incorporating additional so called quasi-local charges, see [16–18]
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was derived under the assumption C1’ (decay of correlations in the form (36)), C2 (translation
invariance) and C3 (GGE). A mathematically rigorous proof of this current symmetry in the
classical Markovian context was presented earlier in [23], using the same conditions C1’ and
C2 and arguments for the proof that were later employed in similar form in [4,22].

We also note that assumption C3 implies for the grandcanonical ensemble the relation
aαβL = ãβαL and hence for α= β the exact charge-current correlation equality (42) for all r and
t and any finite L.

4 Linear response symmetries

We point out some straightforward consequences of the charge-current correlation equalities
for linear response in far-from-equilibrium systems. For definiteness, we assume conditions
C1’ (decay of correlations (36)) and C2 (translation invariance) to be satisfied.

Consider a time-dependent perturbation of the form H(t) = H0 + hA(t) where h is the
interaction strength. The linear-response function for an observable B is given by [24]

R̂AB(t) :=
d
dh
〈B(t) 〉

�

�

�

h=0
. (48)

For a pulse at time t0 = 0, i.e., when the perturbation is of the form A(t) = Aδ(t), and for
a density matrix ρ that is stationary under the evolution of H0, straightforward computation
yields R̂AB(t) = RAB(t)Θ(t) where [24]

RAB(t) =
i
ħh

tr {ρ[A, B(t)]} , (49)

with the time-dependent operator B(t).
Consider now the response at site k of the observable B = qβk to a pulse perturbation with

A= qα0 at the origin. Then (49) yields

Rαβ(k, t) =
i
ħh

tr
¦

ρ
�

qα0 , qβk (t)
�©

. (50)

The total response

Rαβ0 :=
∑

k

Rαβ(k, t) =
i
ħh

tr
�

ρ
�

qα0 , Qβ
�	

= −Rβα0 (51)

is trivially antisymmetric in the indices and independent of time because of the conservation
law.

Now consider the first moment

Rαβ1 (t) :=
bL/2c
∑

k=b−L/2c+1

kRαβ(k, t), (52)

which provides information about the position at time t of the center of mass of the pertur-
bation. Taking the time-derivative and using decay of correlations (36) yields a first moment

vαβ := Ṙαβ1 (t) = 〈
�

Qα, jβ(0)
�

〉c (53)

that does not depend on time so that Rαβ1 (t) = Rαβ1 (0) + vαβ t holds exactly.
Furthermore, from the global correlation equality (1) one derives the symmetry property

vαβ = −vβα (54)
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between the first moments. Assuming further condition C3 (commutativity of the conserved
charges with the stationary density matrix), one obtains

vαβ = vβα = 0, (55)

both in the canonical and grandcanonical ensemble.

5 Conclusions

The charge-current correlation equalities (14), (17), (18), and (28) - (30) are generally valid,
without any specific hypothesis on the nature of a stationary quantum system with conserved
charges qαk (t) that satisfy the discrete continuity equation (4) and have finite stationary cross
correlations among themselves and with the currents jαl (t

′). More specialized equalities arise
as when conditions C1 (34) or C1’ (36) on the decay of correlations are assumed to hold (see
(35), (37), and (54)) or if some of the conserved charges commute among themselves and
with the stationary density matrix (see (42), (46), the current symmetry (47), and the linear
response symmetry (55)). Translation invariance does not play a role for the validity of these
correlation equalities.

These results clarify and generalize the range of validity of similar relations obtained in
[4,6] for translation invariant systems. The correlation equalities are valid arbitrarily far from
thermal equilibrium and provide concrete information about the spatial structure of the linear
response function under these general conditions and about finite-size corrections involving
the local charge-current correlations.

As pointed out in [25], the current symmetry (47) guarantees that for stationary GGE’s only
hyperbolic systems of conservation laws can arise as Eulerian hydrodynamic limits that govern
the macroscopic time-evolution of the local conserved quantities. When the fluctuations of the
locally conserved charges are the most relevant slow dynamical variables, one expects in one
space dimension from mode-coupling theory [22] that fluctuations around the deterministic
hydrodynamics are generically diffusive or in the Kardar-Parisi-Zhang (KPZ) universality class
[26] and, on special manifolds in the space of densities and model parameters, in the Fibonacci
universality classes [27] which include the diffusive and superdiffusive Kardar-Parisi-Zhang
universality class as paradigmatic members. For recent evidence of diffusive and superdiffusive
transport we mention [28,29] and more specifically on the observation of KPZ physics in the
SU(2)-symmetric Heisenberg spin chain we refer to [30,31].

Finally, we note that the current symmetry (47) may be useful in numerical computations
of quantum quenches as a probe of an underlying asymptotic GGE, as (47) would not be valid if
the local stationary state does not approximate a GGE. Likewise, the linear response symmetry
(55) can be used as a probe of the symmetries of a density matrix when its only a priori known
property is stationarity.
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