
SciPost Phys. 6, 075 (2019)

On 2d CFTs that interpolate between minimal models

Sylvain Ribault

Institut de physique théorique, CNRS, CEA, Université Paris-Saclay, France

sylvain.ribault@ipht.fr

Abstract

We investigate exactly solvable two-dimensional conformal field theories that exist at
generic values of the central charge, and that interpolate between A-series or D-series
minimal models. When the central charge becomes rational, correlation functions of
these CFTs may tend to correlation functions of minimal models, or diverge, or have
finite limits which can be logarithmic. These results are based on analytic relations
between four-point structure constants and residues of conformal blocks.

Copyright S. Ribault.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 05-12-2018
Accepted 17-06-2019
Published 25-06-2019

Check for
updates

doi:10.21468/SciPostPhys.6.6.075

Contents

1 Introduction and summary 2
1.1 Motivations 2
1.2 The models under consideration 3
1.3 The results 4
1.4 Outlook 5

2 Solvable CFTs as limits of minimal models 6
2.1 Minimal models 6
2.2 Non-rational limits 6
2.3 Structure constants 8
2.4 Analytic continuation 9

3 Rational limits of conformal blocks 10
3.1 Recursive representation 10
3.2 Rational limits of generic conformal blocks 11
3.3 Degenerate representations 14

4 Rational limits of non-diagonal four-point functions 15
4.1 Zeros and poles of structure constants 16
4.2 Singular case 18
4.3 Back to minimal models 22

5 Rational limits of generalized minimal models 23
5.1 Zeros and poles of structure constants 24

1

https://scipost.org
https://scipost.org/SciPostPhys.6.6.075
mailto:sylvain.ribault@ipht.fr
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.6.6.075&amp;domain=pdf&amp;date_stamp=2019-06-25
http://dx.doi.org/10.21468/SciPostPhys.6.6.075


SciPost Phys. 6, 075 (2019)

5.2 Cancellation of singularities 25
5.3 Limits of four-point functions 26

6 Acknowledgments 27

References 27

1 Introduction and summary

1.1 Motivations

Thanks to their infinite-dimensional symmetry algebras, two-dimensional conformal field the-
ories can in some cases be classified and solved. This not only benefits their own applications,
but also provides lessons for the study of higher-dimensional conformal field theories, for
which exact results are much harder to derive.

The simplest nontrivial two-dimensional CFTs are the Virasoro minimal models: rational
CFTs that exist at discrete values of the central charge, and can be either diagonal (A-series) or
not (D-series and E-series). Other solvable CFTs of comparable complexity are known to exist
at arbitrary complex central charges, namely Liouville theory and generalized minimal models.
Both Liouville theory and generalized minimal models are diagonal, i.e. their spectrums are
of the type ⊕iRi ⊗ R̄i , where each term involves the same irreducible representation for the
left-moving Virasoro algebra as for the right-moving Virasoro algebra. Until recently, it was
not clear whether solvable, non-diagonal CFTs could be constructed at generic central charges.

Then, when trying to describe cluster connectivities in the Potts model (a model which
exists at least for central charges c ∈ (−2,1)), we stumbled upon a crossing-symmetric four-
point function whose spectrum was non-diagonal and could be determined exactly [1]. In
subsequent work, we have found large classes of four-point functions with the same spectrum,
and exactly determined the structure constants [2]. These four-point functions actually exist
for any central charge such that ℜc < 13. For c ∈ (−∞, 1), we have argued that they belong
to CFTs that can be constructed as limits of D-series minimal models.

Conversely, in the present work, we will show that (under certain conditions) the new non-
diagonal CFTs reduce to D-series minimal models when the central charge becomes rational.
This is interesting for the following reasons:

1. Some features of these CFTs, such as OPEs between two non-diagonal fields, are still
poorly understood: the reduction to minimal models elucidates such features at rational
central charges.

2. These CFTs then provide approximations of minimal models, which resolve the singu-
larities that plague computations at rational central charges.

3. We will obtain a unified picture of D-series minimal models as special cases of CFTs that
depend smoothly on the central charge. Having a picture of the space of consistent CFTs,
and not just of isolated points such as minimal models, is particularly important when
using solvable CFTs as testing grounds for numerical bootstrap techniques [3].

The last two motivations apply not only to non-diagonal CFTs, but to diagonal CFTs as well,
and we will investigate to what extent generalized minimal models reduce to A-series minimal
models when the central charge becomes rational.
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1.2 The models under consideration

Let us introduce the CFTs that we will consider, by writing their spectrums. The spectrum of
a two-dimensional CFT is a representation of the product of the left-moving and right-moving
Virasoro algebras. Both Virasoro algebras have the same central charge c, which we will write
in terms of the number β2 such that

c = 1− 6
�

β −
1
β

�2

with |β | ≤ 1 . (1)

We will write spectrums as combinations of irreducible highest-weight representations of the
Virasoro algebra. Two types of representations will appear:

• Verma modules VP , with momentums P related to conformal dimensions ∆(P) by

∆(P) =
c − 1
24

+ P2 . (2)

• Degenerate representations R〈r,s〉 with r, s ∈ N∗, with dimensions and momentums of
the type

∆〈r,s〉 =∆(P〈r,s〉) with P〈r,s〉 =
1
2

�

β r −
s
β

�

. (3)

We will investigate the relations between CFTs that exist for β2 irrational, and minimal models,
which exist for

β2 =
p
q

with 2≤ p < q coprime integers . (4)

The spectrum of a minimal model is built from the degenerate representations that appear in its
Kac table. The Kac table is usually written as the finite set of integer indices
(r, s) ∈ [1, p− 1]× [1, q− 1]. Taking advantage of the identity of conformal dimensions

∀λ ∈ C , ∆〈r,s〉 =∆〈r+λq,s+λp〉 , (5)

we will formally write the identities of representations R〈r,s〉 =R〈r− q
2 ,s− p

2 〉
, and rewrite the Kac

table as a set of half-integer indices, centered on (0, 0),

Kp,q =
�

�

Z+ q
2

�

∩
�

− q
2 , q

2

�

�

×
�

�

Z+ p
2

�

∩
�

− p
2 , p

2

�

�

. (6)

With these notations, the spectrums of the A-series (diagonal) and D-series (non-diagonal)
minimal models are

SA-series
p,q =

1
2

⊕

(r,s)∈Kp,q

�

�R〈r,s〉
�

�

2
, (7)

SD-series
p,q =

1
2

⊕

(r,s)∈Kp,q

rs∈Z+ 1
2+

pq
4

�

�R〈r,s〉
�

�

2 ⊕
1
2

⊕

(r,s)∈Kp,q
rs∈Z

R〈r,s〉 ⊗ R̄〈−r,s〉 , (8)

where the factors 1
2 eliminate the redundancy that comes from∆〈r,s〉 =∆〈−r,−s〉. (The D-series

model actually reduces to the A-series model if p, q are both odd, and also if one of them is 2
or 4.)
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The CFTs that exist for generic β2 and that we will relate to minimal models are called the
generalized minimal models (diagonal), and the odd and even CFTs (non-diagonal). Their
spectrums are

SGMM
β2 =

1
2

⊕

(r,s)∈N∗

�

�R〈r,s〉
�

�

2
=
β2>0

lim
p
q→β

2

fixed indices in N∗

SA-series
p,q , (9)

Sodd
β2 = SLiouville ⊕

1
2

⊕

r∈2Z

⊕

s∈Z+ 1
2

VP〈r,s〉 ⊗ V̄P〈−r,s〉
=
β2>0

lim
p
q→β

2

p odd

SD-series
p,q , (10)

Seven
β2 = SLiouville ⊕

1
2

⊕

r∈Z+ 1
2

⊕

s∈2Z
VP〈r,s〉 ⊗ V̄P〈−r,s〉

=
β2>0

lim
p
q→β

2

p even

SD-series
p,q , (11)

where SLiouville =
∫

R+
dP VP ⊗ V̄P is the diagonal, continuous spectrum of Liouville theory.

Generalized minimal models actually exist for β2 ∈ C−Q, while the even and odd CFTs exist
for β2 ∈ (C−Q)∩ {ℜβ2 > 0}.

In order to analyze limits of CFTs, it is not enough to consider spectrums: we should also
study four-point correlation functions. In the spirit of the conformal bootstrap approach, four-
point functions indeed encode all relevant information on a CFT on the sphere, and in principle
allow us to reconstruct all other correlation functions. We will compute a four-point function



V1V2V3V4

�

using its s-channel decomposition into structure constants and conformal blocks,




V1V2V3V4

�

=
∑

s∈S1234

DsF∆s
F̄∆̄s

, (12)

where F∆s
and F̄∆̄s

are left- and right-moving s-channel conformal blocks respectively, and Ds
are the four-point structure constants. The index s runs over a subset S1234 of the spectrum.
This subset can be discrete or continuous, depending on the operator product expansion V1V2,
equivalently on the fusion rules of the corresponding representations.

In Section 2 we will give a more complete review of our CFTs and their correlation func-
tions, in particular for β2 ∈ R>0 we will construct the even and odd CFTs and the generalized
minimal models as limits of minimal models.

1.3 The results

We will study the behaviour of four-point functions (12) in the even and odd CFTs and the
generalized minimal models in the limits β2→ p

q . We will begin with separately analyzing the
behaviour of conformal blocks and structure constants, before bringing them together. When
bringing them together, we will observe many nontrivial simplifications, whose technical basis
lies in expressions for both the structure constants (29) and residues of conformal blocks (40)
in terms of the same special functions. Our results will be mostly conjectures, because we only
analyze the first few terms of infinite s-channel decompositions, and of Zamolodchikov’s ex-
pression for conformal blocks as infinite series: this is enough for guessing the behaviour at all
orders, but it remains to systematically understand the combinatorics of these simplifications.

Let us summarize the main results:

• In Conjecture 3.1, we describe how minimal model conformal blocks are obtained as
limits of conformal blocks with generic conformal dimensions and/or central charge.

• In Proposition 4.1, we characterize the zeros of three-point structure constants of the
odd and even CFTs, as functions of the central charge.
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• We bring these results together in Conjecture 4.2, which states that certain four-point
functions in the odd and even CFTs only have simple poles as functions of the central
charge, although they are infinite sums of terms that can have poles of unbounded or-
ders.

• From this technical result, we then deduce that any four-point function with two di-
agonal and two non-diagonal fields in a D-series minimal model, is a β2 → p

q limit of
four-point functions in the odd or even CFT, depending on the parity of p. (Conjecture
4.3.)

• We finally focus on diagonal CFTs, and study the limits β2 → p
q of four-point functions

in generalized minimal models. In contrast to the non-diagonal case, we find that we
do not recover the A-series minimal model whenever all four fields belong to its Kac
table Kp,q: Conjecture 5.1 only states that the limit is finite. In some cases the limit is
a four-point function in the minimal model, in other cases it may well belong to some
other CFT, possibly logarithmic and/or non-diagonal.

This means that generalized minimal models interpolate between A-series minimal models,
and that the even and odd CFTs interpolate between D-series minimal models: not in all
cases, but for certain choices of correlation functions and of minimal models.

1.4 Outlook

On the practical side, our results imply that we can approximate correlation functions in min-
imal models by slightly perturbing the central charge. Conformal blocks and structure con-
stants can have singularities at rational central charges: then the perturbation removes these
singularities, and acts as a regulator. Our results also suggest that we should impose minimal
model fusion rules by hand, rather than wait for them to emerge in the rational limit: not only
because they do not always emerge in the A-series case, but also because their emergence can
depend on cancellations between finite or even divergent terms.

It would be interesting to investigate more general four-point functions in rational central
charge limits. To begin with, if we wanted to understand how a given four-point function
behaves at all rational central charges, we would have to study what happens in limits where
at least some of the fields are outside the Kac table. Moreover, it would be interesting to study
the limits of four-point functions with 0 or 4 non-diagonal fields, in addition to the four-point
functions with 2 diagonal fields. However, we would first need to determine the operator
product expansion of two non-diagonal fields in the odd and even CFT: a difficult problem in
its own right.

Our broader message is that CFTs that exist at rational central charges, can often be derived
from CFTs that exist at generic central charges. This is a priori interesting, because at rational
central charges Virasoro representations have complicated structures, and conformal blocks
have singularities: these problems are milder or absent at generic central charges. We do not
necessarily expect that all CFTs at rational central charges can be derived in this manner, and in
particular we do not know how to derive E-series minimal models. But in contrast to the other
series, E-series minimal models have central charges that are not dense in (−∞, 1): in this
sense, we can derive almost all minimal models. (Lest we are accused of circular reasoning,
we insist that the even and odd CFTs can be constructed independently of D-series minimal
models [2].)
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2 Solvable CFTs as limits of minimal models

In this Section, we review the construction of the odd and even CFTs as limits of D-series
minimal models [2]. In particular, we write the exact expressions for the structure constants
of these CFTs.

2.1 Minimal models

We start with a review of the minimal models themselves. Any two coprime integers such that
2≤ p < q label an A-series minimal model. If moreover one of the integers belongs to 3+2N,
and the other one belongs to 6+ 2N, then they also label a D-series minimal model.

We have already written the spectrums of minimal models in Eqs. (7) and (8). In order to
characterize correlation functions, let us sketch the fusion rules and operator product expan-
sions of these models. We will again use notations such that the Kac table is a rectangle whose
center is the origin. In these notations, the fusion rules of the degenerate representations R〈r,s〉
of the Virasoro algebra that appear in the Kac table are,

R〈r1,s1〉 ×R〈r2,s2〉 =

q
2−1−|r1+r2|
⊕

r
2
=1− q

2+|r1−r2|

p
2−1−|s1+s2|
⊕

s
2
=1− p

2+|s1−s2|

R〈r,s〉 , (13)

where the notation
2
= is for sums that run by increments of 2. Equivalently, the condition that

three Kac table representations R〈ri ,si〉 are intertwined by fusion can be written in a manifestly
permutation-invariant form,

∃ε ∈ {±1}|∀(ε1,ε2,ε3) ∈ {±1}3 , ε1ε2ε3 = ε =⇒
� q

2 +
∑

i εi ri ∈ 2N+ 1 ,
p
2 +

∑

i εisi ∈ 2N+ 1 .
(14)

This condition on three pairs of indices (ri , si) actually implies that all of them belong to the
Kac table.

While fusion rules are statements about representations of the Virasoro algebra, states
and fields of our models belong to representations of the product of a left- and right-moving
Virasoro algebras. In order to describe operator product expansions, we must therefore sup-
plement fusion rules with information on how left- and right-moving representations interact.
Calling V D

〈r,s〉 and V N
〈r,s〉 the diagonal and non-diagonal fields of our D-series minimal models,

their OPEs are determined by the requirements that fusion rules are respected, and diago-
nality is conserved. For example, the OPE of a diagonal field with a non-diagonal field is a
combination of non-diagonal fields,

V D
〈r1,s1〉

V N
〈r2,s2〉

∼

q
2−1−|r1+r2|
∑

r
2
=1− q

2+|r1−r2|

p
2−1−|s1+s2|
∑

s
2
=1− p

2+|s1−s2|

V N
〈r,s〉 , (15)

where the notation
2
= is for sums that run by increments of 2. Having written this V DV N ∼ V N

OPE, we trust that we need not explicitly write the V DV D ∼ V D and V N V N ∼ V D OPEs.

2.2 Non-rational limits

When the integer parameters p, q of D-series minimal models vary, the parameter β2 = p
q (4)

takes values that are dense in (0, 1]. Each value of β2
0 ∈ (0, 1) can be approached by fractions

with either p odd, or p even, giving rise to the odd and even limits of D-series minimal models.
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It was conjectured that both limits exist [2]. Therefore, for any β2
0 ∈ (0,1), there exist two

distinct limiting CFTs, which we call the odd and even CFTs.
Let us review how the spectrum behaves in these limits. The fundamental feature of the

degenerate representation R〈r,s〉 with r, s ∈ N∗ is that it has a vanishing null vector at the level
rs, with therefore the conformal dimension

∆〈r,−s〉 =∆〈r,s〉 + rs . (16)

Actually, if β2 = p
q , we have R〈r,s〉 =R〈q−r,p−s〉 due to eq. (5), and therefore a second vanishing

null vector at the level (q − r)(p − s). In the limit p, q →∞ with r, s fixed, the second null
vector disappears, and we are left with a degenerate representation with only one vanishing
null vector:

lim
p
q→β

2
0

r,s∈N∗ fixed

R〈r,s〉 =R〈r,s〉 . (17)

Let us apply this limit to the spectrums (7) of the A-series minimal models. Since
limp,q→∞[1, q − 1] × [1, p − 1] = N∗ × N∗, we obtain the spectrum (9) of the generalized
minimal model. The fusion rules also simplify in this limit, and we recover the fusion rules of
degenerate representations at generic central charges,

R〈r1,s1〉 ×R〈r2,s2〉 =
r1+r2−1
⊕

r
2
=|r1−r2|+1

s1+s2−1
⊕

s
2
=|s1−s2|+1

R〈r,s〉 . (18)

This suggests that the limits of A-series minimal models are generalized minimal models.
When it comes to D-series minimal models, we cannot take a limit where the integer indices

of degenerate representations would be fixed. This is because the non-diagonal sector of the
spectrum (8) is a sum of representations of the type R〈r,s〉 ⊗ R̄〈q−r,s〉, with
(r, s) ∈ [1, p−1]×[1, q−1]. This is actually the reason why we wrote the spectrum as combina-
tions of representations of the type R〈r,s〉⊗ R̄〈−r,s〉, at the cost of allowing non-integer indices.
In this notation, the representation R〈r,s〉 has vanishing null vectors at the levels ( q

2 + r)( p
2 + s)

and ( q
2 − r)( p

2 − s). These levels go to infinity if we keep (r, s) ∈ Kp,q fixed while p, q →∞,
where the Kac table Kp,q was given in eq. (6). Then our representation tends to the Verma
module with the same momentum,

lim
p
q→β

2
0

(r,s)∈Kp,q fixed

R〈r,s〉 = VP〈r,s〉 . (19)

It is now straightforward to compute the limit of the non-diagonal sector of the spectrum. The
only subtlety is that we have to choose which one of the two minimal model indices p, q is
odd, and which one is even. Depending on this choice, we obtain two different limits: the
non-diagonal sectors of the odd (10) and even (11) CFTs. For example, if p is odd, then an
element of the Kac table (r, s) ∈ Kp,q has a half-integer first index r ∈ Z + 1

2 . The condition
rs ∈ Z from the non-diagonal sector of the spectrum (8) then implies s ∈ 2Z.

Taking our limit is more subtle in the diagonal sector than in the non-diagonal sector, be-
cause the diagonal representation R〈r,s〉⊗R̄〈r,s〉 depends on r, s solely through the combination
P〈r,s〉. We will therefore study the distribution of the momentums P〈r,s〉, as was first done in the
case β2

0 = 1 by Runkel and Watts [4]. In both our even and odd limits, the momentums P〈r,s〉
become uniformly distributed on the real line, and we have

lim
p
q→β

2
0

SD-series, diagonal
p,q ∝

∫

R+

dP VP ⊗ V̄P . (20)
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The unknown proportionality coefficient is the multiplicity of representations in the limit di-
agonal spectrum: this should be an integer, possibly infinite. It will turn out that in the limit
theory, correlation functions depend solely on the fields’ conformal dimensions, and this means
that the multiplicity is one. Therefore, the limit diagonal spectrum coincides with the spec-
trum of Liouville theory [5], and the limits (10), (11) hold for the full spectrum, not just the
non-diagonal sector.

Let us discuss how the OPEs behave in our limits. When p, q→∞, the fusion rules (13)
simply lose their bounds on the summed indices. As a result, the only constraint on OPEs that
survives is the conservation of diagonality. In the odd theory, the limiting OPEs are therefore

V D
P1

V D
P2
∼
∫

R+

dP V D
P , (21)

V D
P1

V N
〈r2,s2〉

∼
∑

r∈2Z

∑

s∈Z+ 1
2

V N
〈r,s〉 , (22)

V N
〈r1,s1〉

V N
〈r2,s2〉

∼
∫

R+

dP V D
P . (23)

However, these formal limits of OPEs do not necessarily coincide with the OPEs of the even
and odd CFTs, because taking our limits does need not necessarily commute with taking OPEs.
A finer analysis of the behaviour of correlation functions would be needed in order to reliably
derive the OPEs of the even and odd CFTs, and it is not even clear that diagonality is actually
conserved. Nevertheless, we know that the V DV N OPE (22) is correct, because it leads to
crossing-symmetric four-point functions of the type




V DV N V DV N
�

[2]. It is such four-point
functions that we will analyze in Section 4.

2.3 Structure constants

In any CFT, arbitrary correlation functions can be reduced to combinations of conformal blocks,
and two- and three-point functions. (This is a consequence of the existence of OPEs.) In
minimal models and in our odd and even CFTs, two- and three-point functions are known
explicitly [2], and we will now review them. We adopt a particular field normalization, namely
the normalization such that Y = 1 in the notations of [2]. Our results do not depend on this
choice. Moreover, since two- and three-point functions have universal dependences on field
positions, we will keep these dependences implicit, and identify two- and three-point functions
with the corresponding structure constants.

For a two-point function to be nonzero, the left and right conformal dimensions of the
two fields must be the same. We are dealing with CFTs where the Virasoro generator L0 is
diagonalizable, so there is a basis of fields whose two-point functions are of the type

〈V1V2〉= δ12 〈V1V1〉 . (24)

Here 〈V1V1〉 is a function of the left and right momentums of the field, namely

〈V V 〉=
(−1)P

2−P̄2

∏

± Γβ(β ± 2P)Γβ(β−1 ± 2P̄)
. (25)

This expression uses the double Gamma function Γβ . We refrain from defining this function or
giving its basic properties, since this information is available in Wikipedia.

Unlike the two-point function, the three-point function does not depend solely on the
momentums of the fields, but also on whether they are diagonal or non-diagonal. We will
now write the three-point function for one diagonal and two non-diagonal fields: this will be
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enough for computing four-point functions of the type



V DV N V DV N
�

. We assume that both
non-diagonal fields belong to a minimal model, to the odd CFT, or to the even CFT, i.e. that
they have indices (r, s) in 2Z× (Z+ 1

2) or (Z+ 1
2)×2Z. On the other hand, the diagonal fields

can have arbitrary momentums. The three-point function is then




V D
1 V N

2 V N
3

�

=
1

∏

±,±
Γβ(

β
2 +

1
2β + P1 ± P2 ± P3)

∏

±,±
Γβ(

β
2 +

1
2β − P1 ± P̄2 ± P̄3)

. (26)

(The original formula in ref. [2] has an extra sign factor; in our case this factor only depends
on the diagonal field, and can be absorbed in its normalization.) In the case of three diagonal
fields, the three-point function is still given by eq. (26). It can we written more compactly
using the function Υβ(x) =

1
Γβ (x)Γβ (β+β−1−x) , namely




V D
1 V D

2 V D
3

�

=
∏

±,±
Υβ

�

β
2 +

1
2β + P1 ± P2 ± P3

�

. (27)

From the two- and three-point functions, we can build the four-point structure constants,
i.e. the coefficients Ds of the four-point function’s decomposition into conformal blocks (12),

Ds =
〈V1V2Vs〉




V3V4Vs

�

〈VsVs〉
. (28)

We now assume that our four-point function is of the type



V D
1 V N

2 V D
3 V N

4

�

, so that our s-channel
fields are non-diagonal and belong to a discrete set. Let us introduce a factorization of the
four-point structure constants into left- and right-moving factors,

Ds = d+(Ps)d̄−(P̄s) . (29)

This factorization will be important in the following, because we will express conformal blocks
in terms of the same functions d±. We define these functions as

d+(Ps) =
eiπP2

s
∏

± Γβ(β ± 2Ps)
∏

±,±
Γβ(

β
2 +

1
2β + P1 ± P2 ± Ps)

∏

±,±
Γβ(

β
2 +

1
2β + P3 ± P4 ± Ps)

, (30)

d̄−(P̄s) =
e−iπP̄2

s
∏

± Γβ(β
−1 ± 2P̄s)

∏

±,±
Γβ(

β
2 +

1
2β − P1 ± P̄2 ± P̄s)

∏

±,±
Γβ(

β
2 +

1
2β − P3 ± P̄4 ± P̄s)

, (31)

where the bar over d̄− indicates that we should use the right-moving momentums P̄2, P̄4.

2.4 Analytic continuation

Although we are mainly concerned with rational limits, and therefore with central charges
in the line c ∈ (−∞, 1), let us discuss the analytic continuation of the even and odd CFTs
to complex central charges, if only to complete the picture. In the s-channel decomposition
(12) of four-point function is of the type




V D
1 V N

2 V D
3 V N

4

�

, the structure constants and conformal
blocks depend analytically on β , which makes the analytic continuation possible. However, the
sum converges only if the real part of the total conformal dimension is bounded from below.
The total conformal dimension of a non-diagonal field V N

〈r,s〉 is

∆〈r,s〉 +∆〈r,−s〉 =
c − 1
12

+
1
2

�

β2r2 + β−2s2
�

. (32)
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For (r, s) ∈ 2Z× (Z+ 1
2), this is bounded from below provided ℜβ2 > 0 i.e. ℜc < 13.

Now we have defined the parameter β such that |β | < 1 (1), but what happens if we
analytically continue through the circle |β | = 1? Nothing dramatic, since our correlation
functions are smooth functions of β . But according to our terminology, the odd CFT turns
into the even CFT and vice-versa. Therefore, we can view both CFTs as two cases of a unique
CFT that lives on the half-plane {ℜβ2 > 0}, equivalently on the double cover of the half-plane
{ℜc < 13}. We then have a change of terminology across |β | = 1, equivalently across the
branch cut c ∈ (1,13).

0 1 β2 1 13 c

Figure 1: The complex β2- and c-planes, with the boundaries of the domains of
definition of the even and odd CFTs in blue, and the name-changing lines in red.

3 Rational limits of conformal blocks

3.1 Recursive representation

The s-channel conformal block F∆ is a function not only of the conformal dimension ∆, but
also of the central charge c and of the dimensions {∆i} and positions {zi} of the four fields
V1, . . . , V4. (See [6] for a review.) Let us write it as

F∆({zi}) = F (0)({zi})ρ∆H∆(ρ) . (33)

Here F (0)({zi}) is a ∆-independent prefactor that depends analytically on c and {∆i}, ρ is a
function of {zi} (namely 16 times the elliptic nome), and the function H∆(ρ) is determined
by Zamolodchikov’s recursive representation

H∆(ρ) = 1+
∞
∑

m,n=1

ρmn

∆−∆〈m,n〉
Rm,nH∆〈m,−n〉

(ρ) . (34)

This is an entire function of the type

H∆(ρ) = 1+
∞
∑

N=1

HN
∆ρ

N , (35)

where the integer N is called the level. The recursive representation shows that as a function of
∆, the conformal block has simple poles at the degenerate dimensions {∆〈m,n〉}. The residues
of these poles involve coefficients Rm,n that we will call residues themselves, and that are given
by the formula

Rm,n =
−2P〈0,0〉P〈m,n〉

∏m
r=1−m

∏n
s=1−n 2P〈r,s〉

m−1
∏

r
2
=1−m

n−1
∏

s
2
=1−n

∏

±
(P2 ± P1 + P〈r,s〉)(P3 ± P4 + P〈r,s〉) , (36)
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where the degenerate momentums P〈r,s〉 are defined in eq. (3). Let us write these residues in

terms of the Barnes double Gamma function Γβ(x). From x = Γ (x+1)
Γ (x) and Γ (β x) =

p
2πββ x− 1

2
Γβ (x)
Γβ (x+β)

, we deduce the identities

m−1
∏

r
2
=1−m

n−1
∏

s
2
=1−n

(x + P〈r,s〉) =
Γβ(

β
2 +

1
2β + x + P〈m,n〉)Γβ(

β
2 +

1
2β + x + P〈−m,−n〉)

Γβ(
β
2 +

1
2β + x + P〈−m,n〉)Γβ(

β
2 +

1
2β + x + P〈m,−n〉)

, (37)

as well as

1
2P〈0,0〉

m
∏

r=1−m

n
∏

s=1−n

2P〈r,s〉 =
Γβ(β + 2P〈m,n〉)Γβ(β + 2P〈−m,−n〉)

Res Γβ(β + 2P〈−m,n〉)Γβ(β + 2P〈m,−n〉)
, (38)

= −
Γβ(β−1 + 2P〈m,n〉)Γβ(β−1 + 2P〈−m,−n〉)

Res Γβ(β−1 + 2P〈−m,n〉)Γβ(β−1 + 2P〈m,−n〉)
, (39)

where Res Γβ(x) denotes the residue of Γβ at a simple pole x ∈ −βN− β−1N. This allows us
to write the residues in terms of the functions d± (30)-(31) that enter the four-point structure
constants,

Rm,n = 2P〈m,n〉
Res d+(P〈m,−n〉)

d+(P〈m,n〉)
= −2P〈m,n〉

Res d−(P〈m,−n〉)

d−(P〈m,n〉)
. (40)

(Beware that if f (x) has a pole at x = ax0 and f̃ (x) = f (ax), then Res f̃ (x0) =
1
a Res f (ax0).)

It is not completely obvious that these expressions for Rm,n have the right signs. In particular,

the prefactor eiπP2
s in d+(Ps) of d+(Ps) leads to a sign factor (−1)mn in the ratio that appears

in eq. (40). But this sign factor is also present in our original definition (36) of Rm,n, due to
the relation

m−1
∏

r
2
=1−m

n−1
∏

s
2
=1−n

(P2 − P1 + P〈r,s〉) = (−1)mn
m−1
∏

r
2
=1−m

n−1
∏

s
2
=1−n

(P1 − P2 + P〈r,s〉) . (41)

Similar relations between conformal blocks’ residues, and Liouville theory structure con-
stants, have already appeared in [7] and [8]. These relations will be useful for two reasons:

1. The residue Rm,n now depends on its integer indices via the combinations P〈m,±n〉. Re-
lations of the type P〈m,n〉 = P〈m′,n′〉 that occur at rational central charges will therefore
lead to identities between residues. (See the present Section.)

2. In a four-point function (12), both the structure constants and the conformal blocks can
be expressed in terms of the same functions d±, which will lead to simplifications. (See
Section 4.)

3.2 Rational limits of generic conformal blocks

Let us discuss the behaviour of conformal blocks at β2 = p
q (with p, q coprime positive integers)

for generic momentums P1, . . . , P4 and s-channel dimension ∆. From their definition as sums
over states in the Verma module V∆, we know that such blocks exist so long ∆ does not
take a degenerate value ∆〈r,s〉. However, Zamolodchikov’s recursive representation diverges
at β2 = p

q . As functions of β2, some terms in that representation indeed have poles from two
origins:

• The residues Rm,n themselves can have poles due to P〈q,p〉 = 0.
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• Factors of the type 1
∆〈m,−n〉−∆〈m′ ,n′〉

can diverge.

All the resulting poles have to cancel, leaving a finite expression for the block at β2 = p
q . As a

function of ∆, this block is still expected to have poles at the degenerate dimensions {∆〈r,s〉},
but these are now multiple poles, as several degenerate dimensions can now coincide.

Let us illustrate the cancellation of two β2-poles, and the resulting appearance of a double
∆-pole, in an example. Given a pair of indices (r, s) ∈ [1, q − 1]× [1, p − 1] in the Kac table,
the pole of H∆(ρ) at ∆ = ∆〈r,s〉 = ∆〈q−r,p−s〉 receives the following two contributions at the
level N = pq+ qs− pr:

HN
∆ =

Rr,sRq−r,p+s

(∆−∆〈r,s〉)(∆〈r,−s〉 −∆〈q−r,p+s〉)

+
Rq−r,p−sR2q−r,s

(∆−∆〈q−r,p−s〉)(∆〈q−r,s−p〉 −∆〈2q−r,s〉)
+ · · · . (42)

Both contributions become infinite at β2 = p
q due to identities of degenerate conformal dimen-

sions eq. (5). For example,

∆〈r,−s〉 −∆〈q−r,p+s〉 = P2
〈r,−s〉 − P2

〈q−r,p+s〉 = −P〈q,p〉P〈q−2r,p+2s〉 , (43)

with P〈q,p〉 =
β2= p

q

0. But the sum in eq. (42) remains finite, as we will now check. In our

calculation, we will neglect terms that are manifestly finite, and only keep the divergent terms
in each contributions. Using eq. (40), these divergent terms are

HN
∆ ∼
β2→ p

q

2P〈r,s〉
P〈q,p〉d+(P〈r,s〉)

�

−
Res d+(P〈r,−s〉)Res d+(P〈q−r,−p−s〉)

(∆−∆〈r,s〉)d+(P〈q−r,p+s〉)

+
Res d+(P〈q−r,s−p〉)Res d+(P〈2q−r,−s〉)

(∆−∆〈q−r,p−s〉)d+(P〈2q−r,s〉)

�

+ · · · . (44)

This expression involves some values and residues of d+ that are finite for generic β , but
become infinite for β2 → p

q . In particular, the residues at P〈q−r,−p−s〉 and P〈2q−r,−s〉 both be-
come infinite, because the corresponding poles coincide. Introducing the second-order residue
Res2 d+(P〈2q−r,−s〉) = limP→P〈2q−r,−s〉

limβ2→ p
q
(P − P〈2q−r,−s〉)2d+(P), we find

d+(P〈q−r,p+s〉) ∼
β2→ p

q

−
Res d+(P〈r,−s〉)

P〈q,p〉
, (45)

d+(P〈2q−r,s〉) ∼
β2→ p

q

Res d+(P〈q−r,s−p〉)

P〈q,p〉
, (46)

Res d+(P〈q−r,−p−s〉) ∼
β2→ p

q

−
Res2 d+(P〈2q−r,−s〉)

P〈q,p〉
, (47)

Res d+(P〈2q−r,−s〉) ∼
β2→ p

q

Res2 d+(P〈2q−r,−s〉)

P〈q,p〉
. (48)

This leads to

HN
∆ ∼
β2→ p

q

2P〈r,s〉Res2 d+(P〈2q−r,−s〉)

P〈q,p〉d+(P〈r,s〉)

�

−
1

∆−∆〈r,s〉
+

1
∆−∆〈q−r,p−s〉

�

+ · · · . (49)
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Taking the limit, we obtain the manifestly finite expression

HN
∆ ∼
β2→ p

q

−
4P2
〈r,s〉Res2 d+(P〈2q−r,−s〉)

d+(P〈r,s〉)(∆−∆〈r,s〉)2
+ · · · , (50)

which now involves a double pole at ∆=∆〈r,s〉. We have therefore determined the residue of
this double pole, while neglecting terms that only have a simple pole.

The lowest level double pole of this type occurs for (p, q) = (3,2) and (r, s) = (1, 1), at the
level N = 5. In this case, the two divergent terms are

H5
∆ =

R1,1R1,4

(∆−∆〈1,1〉)(∆〈1,−1〉 −∆〈1,4〉)
+

R1,2R3,1

(∆−∆〈1,2〉)(∆〈1,−2〉 −∆〈3,1〉)
+ · · · . (51)

Let us introduce the function λ(P) =
∏

±(P2±P1+P)(P3±P4+P). From the original definition
of the residues (36), we have

R1,1 = −
1
2
λ(0) , (52)

R1,2 =
1

4(β−4 − 1)

∏

±
λ
�

± 1
2β

�

, (53)

R3,1 = −
1

24(β4 − 1)(4β4 − 1)
λ(0)

∏

±
λ (±β) , (54)

R1,4 =
1

288(9β−4 − 1)(4β−4 − 1)(β−4 − 1)

∏

±
λ
�

± 1
2β

�

λ
�

± 3
2β

�

. (55)

Manifestly, R1,1R1,4 and R1,2R3,1 involve the same λ-factors if β2 = 3
2 . And we obtain a double

pole at ∆= 0,

H5
∆ ∼
β2→ 3

2

3
11200∆2

λ(0)
∏

±
λ
�

± 1
2β

�

λ (±β) + · · · . (56)

Another type of pole cancellation occurs between the two terms

Hq(p+1)
∆ =

Rq,p+1

∆−∆(q,p+1)
+

Rq,p−1R2q,1

(∆−∆(q,p−1))(∆(q,1−p) −∆(2q,1))
+ · · · , (57)

where the residue Rq,p+1 becomes infinite while the denominator ∆(q,1−p) −∆(2q,1) vanishes.
Using the expression (40) for the residues Rm,n, and neglecting manifestly finite contributions,
we have

Hq(p+1)
∆ ∼

β2→ p
q

2P〈0,1〉

d+(P〈0,1〉)

�

Res d+(P〈q,−p−1〉)

∆−∆〈q,p+1〉

+
Res d+(P〈q,1−p〉)Res d+(P〈2q,−1〉)

P〈q,p〉d+(P〈2q,1〉)(∆−∆〈q,p−1〉)

�

+ · · · . (58)

The value d+(P〈2q,1〉), and the residues Res d+(P〈q,−p−1〉) and Res d+(P〈2q,−1〉), actually diverge
as β2→ p

q , and we find

Hq(p+1)
∆ ∼

β2→ p
q

2P〈0,1〉Res2 d+(P〈2q,−1〉)

P〈q,p〉d+(P〈0,1〉)

�

−
1

∆−∆〈q,p+1〉
+

1
∆−∆〈q,p−1〉

�

+ · · · . (59)
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Taking the limit, we obtain the double pole term,

Hq(p+1)
∆ ∼

β2→ p
q

−
8P2
〈0,1〉Res2 d+(P〈2q,−1〉)

d+(P〈0,1〉)(∆−∆〈0,1〉)2
+ · · · . (60)

The lowest level double pole of this type occurs for (p, q) = (2, 1), at the level 3. In this case,
our two divergent terms are

H3
∆ =

R1,3

∆−∆〈1,3〉
+

R1,1R2,1

(∆−∆〈1,1〉)(∆〈1,−1〉 −∆〈2,1〉)
+ · · · . (61)

The residues that appear in these terms can be deduced from eqs. (52)-(54) via the identity
Rn,m = Rm,n

�

�

β→β−1 , and we find

H3
∆ ∼
β2→2

1
36∆2

λ(0)
∏

±
λ
�

± 1
β

�

+ · · · . (62)

We have therefore shown how some terms in the recursive representation diverge in the
rational limit, how these divergences cancel when the terms are added, and how this yields
conformal blocks with double poles. At higher levels, we expect similar cancellations to yield
poles of arbitrary orders. It would be interesting to find a recursive representation of blocks for
rational central charges that would be manifestly finite, and that would explicitly exhibit these
higher-order poles. This may involve the combinatorial structures that appear when recovering
minimal model characters from the recursive representation of torus blocks [9]. It may also
be useful to notice that the double pole term of Hq(p+1)

∆ (60) has the same expression (up to a
factor 2) as the double pole term of H pq+qs−pr

∆ (50), if we set (r, s) = (0,1). At rational central
charges, the dimensions ∆〈r,s〉 are degenerate for any (r, s) ∈ Z2, and it might be simpler to
represent conformal blocks as sums over (r, s) ∈ Z2, rather than over strictly positive integers.

3.3 Degenerate representations

As a function of ∆, the conformal block F∆ has poles for ∆ = ∆〈r,s〉 with r, s ∈ N∗, as is
manifest in Zamolodchikov’s recursive representation. Nevertheless, F∆〈r,s〉 must be finite and
well-defined whenever it appears in a minimal model or generalized minimal model. In such
cases, we expect that the dimensions ∆1, . . . ,∆4 of the four fields are such that the residue of
the pole actually vanishes.

This is easy to check in the case of generalized minimal models. For an arbitrary cen-
tral charge, let us consider a four-point function of four degenerate fields

¬

∏4
i=1 V〈ri ,si〉

¶

, and
an s-channel field V〈r,s〉 that obeys the fusion rules (18). Let us compute the residue Rr,s of
the corresponding pole of the conformal block, using the formula (36). The fusion rules im-
ply 1 − r ≤ r1 − r2 ≤ 1 + r and 1 − s ≤ s1 − s2 ≤ 1 + s, so that the residue has a factor
P2− P1+ P〈r1−r2,s1−s2〉 = 0. Therefore Rr,s = 0, and the conformal block F∆〈r,s〉 is not only finite,
but also computable using Zamolodchikov’s recursive representation.

Then let us consider a four-point function of four degenerate fields that belong to the Kac
table of a minimal model with β2 = p

q . As we saw in Section 3.2, the conformal block F∆ in
general has higher-order poles that result from the coincidence of several simple poles, and
we do not have explicit expressions for the residues. Since the minimal model has finite four-
point functions, we nevertheless expect that the residues vanish whenever ∆ = ∆〈r,s〉 obeys
the fusion rules, i.e. whenever (r, s) appears in both fusion products R〈r1,s1〉 ×R〈r2,s2〉 and
R〈r3,s3〉 ×R〈r4,s4〉.

Let us discuss how F∆ behaves as a function of the central charge. This raises the is-
sue of continuing F∆ beyond β2 = p

q . We certainly want the four dimensions ∆1, . . . ,∆4
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to remain degenerate, but this does not uniquely determine how they should be continued:
the coincidence ∆〈r1,s1〉 = ∆〈q−r1,p−s1〉 at β2 = p

q leaves us with two different continuations of
∆〈r1,s1〉. (We refrain from considering the continuations that are suggested by the coincidences
(5).) Taken together, the four dimensions ∆1, . . . ,∆4 therefore have 16 degenerate continu-
ations. However, for half of these continuations, the fusion products R〈r1,s1〉 ×R〈r2,s2〉 and
R〈r3,s3〉 ×R〈r4,s4〉 (18) have zero intersection. We eliminate such continuations, by assuming
that the indices (ri , si) of our four degenerate fields obey

4
∑

i=1

ri ≡ 0 mod 2 and
4
∑

i=1

si ≡ 0 mod 2 . (63)

This defines 8 possible continuations of F∆ to arbitrary central charges: let F (β
2)

∆ be one
such continuation. Let (r, s) be a pair of Kac table indices that appears in the fusion products
R〈r1,s1〉 × R〈r2,s2〉 and R〈r3,s3〉 × R〈r4,s4〉 (13) at β2 = p

q . Then either (r, s) or (q − r, p − s)
appears in the fusion products R〈r1,s1〉 ×R〈r2,s2〉 and R〈r3,s3〉 ×R〈r4,s4〉 (18) at generic β2: we

assume without loss of generality that it is (r, s). ThenF (β
2)

∆〈r,s〉
is a conformal block in generalized

minimal models, which continues the minimal model conformal block F
( p

q )
∆〈r,s〉

, and this suggests

limβ2→ p
q
F (β

2)
∆〈r,s〉

= F
( p

q )
∆〈r,s〉

.
We summarize our expectations as the

Conjecture 3.1. Let F
( p

q )
∆〈r,s〉

be a minimal model conformal block, and F (β
2)

∆ a continuation to
arbitrary central charges and s-channel dimensions, with four degenerate fields that obey eq. (63)

and are such that R〈r,s〉 is allowed by fusion. Then F (β
2)

∆ is analytic with respect to both ∆ and

β2 in the neighbourhood of the finite value F
( p

q )
∆〈r,s〉

, and in particular

F
( p

q )
∆〈r,s〉

= lim
∆→∆〈r,s〉

F
( p

q )
∆ = lim

β2→ p
q

F (β
2)

∆〈r,s〉
. (64)

This raises the issues of proving the Conjecture from the definition of conformal blocks, and
of finding a generalization of the recursive representation where these equalities manifestly
hold.

4 Rational limits of non-diagonal four-point functions

Let us investigate how four-point functions of the odd and even CFTs behave when we take
the limit β2→ p

q , where 0< p < q are coprime integers.
Zamolodchikov’s recursive representation (34) shows that the conformal block F∆ has

poles at ∆ = ∆〈r,s〉 for r, s ∈ N∗. In the odd CFT, non-diagonal fields have dimensions of the
type ∆=∆〈r1,s1〉 with r1 ∈ 2Z and s1 ∈ Z+

1
2 . If ∆〈r1,s1〉 =∆〈r,s〉, then pr1 − qs1 = ±(pr − qs),

which implies that q is even. Similarly, a field in the non-diagonal spectrum SZ+ 1
2 ,2Z of the

even CFT can have a diverging conformal block only if p is even. For a number of rational
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values of β2, let us indicate which CFT (if any) has potential divergences:

c β2 Related model Odd CFT Even CFT

−22
5

2
5 Yang–Lee singularity finite Ø

−2 1
2 Spanning tree Ø finite

0 2
3 Percolation finite Ø

1
2

3
4 Ising model Ø finite

7
10

4
5 Tricritical Ising model finite Ø

4
5

5
6 Three-state Potts model Ø finite

1 1 Four-state Potts model finite finite

(65)

In particular, the odd CFT behaves smoothly as β2→ 2
3 i.e. c→ 0, and both CFTs are regular

as β2→ 1 i.e. c→ 1.
A particular four-point function may or may not actually diverge at a potential singularity.

Two mechanisms can cancel potential singularities:

• Poles of conformal blocks can have vanishing residues, as happens in minimal models.

• The behaviour of structure constants can make a four-point function finite even when
the conformal blocks diverge.

In this Section, we will first investigate the behaviour of structure constants, and then distin-
guish two cases: a singular case where these two mechanisms do not occur, and a minimal
case of four-point functions that have finite limits. These finite limits moreover coincide with
four-point functions in minimal models.

4.1 Zeros and poles of structure constants

Our four-point structure constants (29) are written in terms of the double Gamma function.
For irrational values of β2, the function Γβ(x) has simple poles for x ∈ −βN − β−1N. For
rational values of β2, some of these poles coincide. Since Γβ(x) depends smoothly on β ,
coincidences of simple poles lead to multiple poles. Let us count the multiplicity Sr,s of the
pole of the four-point structure constant D〈r,s〉 at P = P〈r,s〉. The factors that produce poles
come from the inverse of the two-point function (25), and they are

D〈r,s〉 =
∏

±
Γβ
�

β(1± r)∓ β−1s
�

∏

±
Γβ
�

±β r + β−1(1± s)
�

× · · · . (66)

The conditions for poles to occur are the same as for conformal blocks to have potential di-
vergences: q even in the odd CFT (where r is an even integer), and p even in the even CFT
(where s is an even integer). Then we find that the multiplicity is

Sr,s =max
�¡

|r|
q
−

1
2

¤

,
¡

|s|
p
−

1
2

¤�

+max
��

|r|
q
+

1
2

�

,
�

|s|
p
+

1
2

��

. (67)
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Let us graphically represent this function:

r

s

q
2

3q
2

− q
2−3q

2

p
2

3p
2

− p
2

−3p
2

2

2

2

2

2

2

2 20 (68)

The multiplicity vanishes inside the Kac table, and it is 2max(|m|, |n|) in the image of the Kac
table under the translation by (mq, np) for m, n ∈ Z. At a boundary between two images of
the Kac table, the multiplicity takes an intermediate value: in particular we have Sr,s = 1 at
the boundary of the Kac table (including at the corners).

Let us discuss the remaining factors of the four-point structure constant (29). These factors
can have zeros, but no poles. In the four-point function

¬

V D
P1

V N
〈r2,s2〉

V D
P3

V N
〈r4,s4〉

¶

with generic

values of P1, P3, the four-point structure constant D〈r,s〉 has no zeros at β2 = p
q . We now define

a discrete four-point function as a four-point function of the type
¬

V D
〈r1,s1〉

V N
〈r2,s2〉

V D
〈r3,s3〉

V N
〈r4,s4〉

¶

,
where the indices ri , si obey







r1 ∈ Z ,
r1 − r3, r2, r4 ∈ 2Z ,
si ∈ Z+

1
2 ,

or







ri ∈ Z+
1
2 ,

s1 ∈ Z ,
s1 − s3, s2, s4 ∈ 2Z .

(69)

A discrete four-point function belongs to the odd or even CFT. In the odd case, r1, r3 are two
integers with the same parity. The four fields belong to the spectrum SD-series

p,q (8) provided
q > 2max(|ri|), p > 2 max(|si|) and

q ∈ 2r1 + 2+ 4Z (odd case) or p ∈ 2s1 + 2+ 4Z (even case) . (70)

Similarly, we define a discrete three-point function as a three-point function that appears in
the s-channel decomposition of a discrete four-point function, i.e. a three-point function of
the type

¬

V D
〈r1,s1〉

V N
〈r2,s2〉

V N
〈r3,s3〉

¶

with







r1 ∈ Z ,
r2, r3 ∈ 2Z ,
si ∈ Z+

1
2 ,

or







ri ∈ Z+
1
2 ,

s1 ∈ Z ,
s2, s3 ∈ 2Z .

(71)

(The third field is now the s-channel field.) Let us determine whether this vanishes at β2 = p
q ,

assuming that the even integer p or q obeys eq. (70). The formula (26) for the three-point
function involves the double Gamma function, and we have

1
Γβ (β r − β−1s)

=
β2= p

q

0 ⇐⇒ ∃λ ∈ C,

�

λq+ r ∈ −N ,
λp+ s ∈ N .

(72)

It follows that our three-point function vanishes if and only if

∃λ ∈ 2Z+ 1 , ∃(ε1,ε2,ε3) ∈ {±1}3,

�

λ
q
2 + ε1(r1 + ε2r2 + ε3r3) ∈ −2N− 1 ,
λ

p
2 + ε1s1 + ε2s2 + ε3s3 ∈ 2N+ 1 ,

(73)
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where the complex number λ must actually be an odd integer due to eq. (70). Doing sign
reversals, this can equivalently be rewritten as

∃λ ∈ 2Z+ 1 , ∃(ε1,ε2,ε3) ∈ {±1}3,

�

λ
q
2 + ε1(r1 − ε2r2 − ε3r3) ∈ 2N+ 1 ,
λ

p
2 + ε1s1 + ε2s2 + ε3s3 ∈ −2N− 1 .

(74)

Let us compare this condition to the fusion rules (14). In the fusion rules, the condition on ri
can equivalently be rewritten as q

2 +ε1(r1+ε2r2+ε3r3) ∈ 2N+1. Moreover, our assumptions
on the integers or half-integers ri , si , p, q guarantee that the fusion rules are always obeyed up
to signs, i.e. there is a unique ε ∈ {±1} such that

∀(ε1,ε2,ε3) ∈ {±1}3 , ε1ε2ε3 = ε =⇒
� q

2 + ε1(r1 + ε2r2 + ε3r3) ∈ 2Z+ 1 ,
p
2 +

∑

i εisi ∈ 2Z+ 1 .
(75)

Obeying fusion rules now means that the elements of 2Z + 1 are actually positive. If fusion
rules are obeyed, then the condition (73) cannot hold for λ = 1. By a simple sign reversal,
it also cannot hold for λ = −1. And |λ| ≥ 3 is excluded, because the fusion rules imply that
our three fields are in the Kac table, so that |ri| <

q
2 and |si| <

p
2 . Therefore, the three-point

function does not vanish.
Conversely, let us assume that fusion rules are violated. For definiteness, assume that the

second condition in eq. (14) is violated, so that p
2 +

∑

i εisi < 0 for some εi . Let us also
assume that the three-point function is not zero. According to eq. (74) with λ = 1, we must
have q

2 +ε1(r1−ε2r2−ε3r3)< 0. Then according to eq. (73) with again λ= 1, we must have
p
2+ε1s1−ε2s2−ε3s3 < 0. Combining this with our original assumption, we obtain p

2+ε1s1 < 0,
which implies that the diagonal field V D

〈r1,s1〉
is outside the Kac table. To summarize, we have

established the

Proposition 4.1. In rational limits of discrete three-point functions (71) with one diagonal and
two non-diagonal fields,

fusion rules (14) are obeyed ⇐⇒
�

the three-point function is nonzero ,
the diagonal field is in the Kac table .

We refrain from counting the zeros of four-point structure constants. This would be not only
complicated, but also not especially illuminating: as we will see, the behaviour of four-point
functions depends not only on the behaviour of individual terms in the s-channel decomposi-
tion, but also on cancellations between different terms.

4.2 Singular case

We consider the four-point function
¬

V D
P1

V N
〈r2,s2〉

V D
P3

V N
〈r4,s4〉

¶

in the even or odd CFT, and take

a limit β2 → p
q where we have potential divergences. For generic P1, P3, structure constants

have poles (and no zeros), conformal blocks have poles, then how does the four-point functions
behave?

Let Z(ρ) be our four-point function, after stripping off the factors F (0)({zi}) from the
conformal blocks (33). The s-channel decomposition is then

Z(ρ) =
∑

r,s

Zr,s(ρ) =
∑

r,s

D〈r,s〉ρ
∆〈r,s〉ρ̄∆〈r,−s〉H∆〈r,s〉(ρ)H∆〈r,−s〉

(ρ̄) , (76)

where r, s are summed over 2Z× (Z+ 1
2) or (Z+ 1

2)× 2Z. Let us consider a term Zr,s(ρ) with
(r, s) in the Kac table, i.e. |r| < q

2 and |s| < p
2 : according to eq. (67), D〈r,s〉 has a finite limit.
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However, H∆〈r,s〉 has poles, starting with a first-order pole due to the term

H∆〈r,s〉 = 1+
ρ(

q
2+r)( p

2+s)R q
2+r, p

2+s

∆〈r,s〉 −∆〈 q
2+r, p

2+s〉
+ · · · . (77)

This term appears in the expansion of H∆〈r,s〉 because q
2 + r, p

2 + s ∈ N∗, and it diverges be-

cause lim
β2→ p

q

�

∆〈r,s〉 −∆〈 q
2+r, p

2+s〉

�

= 0. This pole corresponds to a null vector whose left-moving

conformal dimension is, according to eq. (16),

∆〈r,s〉 + (
q
2 + r)( p

2 + s) =
β2= p

q

∆〈 q
2+r,− p

2−s〉 . (78)

Due to an analogous contribution from the right-moving conformal block, Zr,s(ρ) actually has
a second-order pole, with the left and right dimensions

(∆, ∆̄) =
β2= p

q

�

∆〈 q
2+r,− p

2−s〉,∆〈 q
2+r,− p

2+s〉

�

=
β2= p

q

�

∆〈q+r,−s〉,∆〈q+r,s〉
�

. (79)

Therefore, our second-order pole, which corresponds to a null descendent of the primary field
V N
〈r,s〉, has the same dimensions as the primary field V N

〈q+r,−s〉. The structure constant D〈q+r,−s〉
for that primary field has a second-order pole according to eq. (67). We will now show that
our two second-order poles cancel, leaving us with a first-order pole.

Let us consider the sum T1 of our two terms with second-order poles with the dimensions
(79),

T1 = D〈q+r,−s〉ρ
∆〈q+r,−s〉ρ̄∆〈q+r,s〉

+ D〈r,s〉ρ
∆〈r,s〉ρ̄∆〈r,−s〉

ρ(
q
2+r)(

p
2+s)R q

2+r, p
2+s

∆〈r,s〉 −∆〈 q
2+r, p

2+s〉

ρ̄(
q
2+r)(

p
2−s)R̄ q

2+r, p
2−s

∆〈r,−s〉 −∆〈 q
2+r, p

2−s〉
. (80)

Let us define ε= P〈q,p〉, so that lim
β2→ p

q

ε= 0. We then have

∆〈r,s〉 −∆〈 q
2+r, p

2+s〉 = −ε
�

P〈r,s〉 +
ε
4

�

. (81)

We will moreover rewrite the structure constants and the conformal block residues in terms
of the functions d±(P), using eqs. (29) and (40). As an additional simplification, we redefine
these functions so as to absorb the dependence on ρ,

d±(P)→ ρ∆(P)d±(P) , (82)

where ∆(P) was given in eq. (2). We have refrained from doing this redefinition earlier,
because it would have made the structure constants (29) ρ-dependent. This redefinition is
therefore conceptually awkward, and we treat it as a computational trick. We then obtain

T1 = d+(P〈q+r,−s〉)d̄−(P〈q+r,s〉)

−
4
ε2

d+(P〈r,s〉)d̄−(P〈r,−s〉)
Res d+(P〈 q

2+r,− p
2−s〉)

d+(P〈r,s〉 +
ε
2)

Res d̄−(P〈 q
2+r,− p

2+s〉)

d̄−(P〈r,−s〉 +
ε
2)

∏

±

P〈r,±s〉 +
ε
2

P〈r,±s〉 +
ε
4

. (83)

The function d+(P) has a simple pole at P = P〈 q
2+r,− p

2−s〉, let us introduce the function d1
+(P)

such that

d+(P) =
d1
+(P)

P − P〈 q
2+r,− p

2−s〉
. (84)
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We then have

Res d+(P〈 q
2+r,− p

2−s〉) = d1
+(P〈q+r,−s〉 −

ε
2) , d+(P〈q+r,−s〉) =

2
ε

d1
+(P〈q+r,−s〉) . (85)

If we moreover introduce the analogous function d̄1
−(P) = (P−P〈 q

2+r,− p
2+s〉)d̄−(P), we can write

T1 =
4
ε2

d1
+(P〈q+r,−s〉)d̄

1
−(P〈q+r,s〉)

−
4
ε2

d1
+(P〈q+r,−s〉 −

ε
2)d̄

1
−(P〈q+r,s〉 −

ε
2)

d+(P〈r,s〉)

d+(P〈r,s〉 +
ε
2)

d̄−(P〈r,−s〉)

d̄−(P〈r,−s〉 +
ε
2)

∏

±

P〈r,±s〉 +
ε
2

P〈r,±s〉 +
ε
4

. (86)

In this form, it is manifest that the double poles cancel as ε → 0. We are left with a simple
pole, whose residue is

lim
ε→0

εT1 = d1
+(P〈q+r,−s〉)d̄

1
−(P〈q+r,s〉)

�

2(log d1
+)
′(P〈q+r,−s〉)

+ 2(log d̄1
−)
′(P〈q+r,s〉) + 2(log d+)

′(P〈r,s〉) + 2(log d̄−)
′(P〈r,−s〉)−

1
P〈r,s〉

−
1

P〈r,−s〉

�

. (87)

In particular, the ρ-dependence of d±(P) (82) leads to logarithmic terms, whose sum is

lim
ε→0

εT1 = 8d1
+(P〈q+r,−s〉)d̄

1
−(P〈q+r,s〉)P〈 q

2+r,0〉 log(ρρ̄) + · · · . (88)

The reason why there are logarithmic terms, is that we have a cancellation of poles between
two terms whose conformal dimensions differ by O(ε).

This cancellation of second-order poles is not an isolated incident: actually, any second-
order pole from some term of Z(ρ), is resonant with a pole from another term, i.e. has the
same left- and right-moving dimensions. Let us show this by enumerating various terms with
second-order poles. We will characterize these terms by three integers (S, B, B̄) that indicate
the respective orders of poles from the structure constant, left-moving and right-moving con-
formal blocks, with S + B + B̄ = 2:

• (0,1, 1): The case that we already dealt with in detail.

• (0,2, 0): The left-moving block’s second-order pole corresponds to a subsingular vec-
tor, with the dimension ∆〈 3q

2 +r,s− p
2 〉

or ∆〈r− q
2 , 3p

2 +s〉. In the former case, the pole has the
dimensions

(∆, ∆̄) =
�

∆〈 3q
2 +r,s− p

2 〉
,∆〈r,−s〉

�

=
β2= p

q

�

∆〈q+r,−p+s〉,∆〈q+r,p−s〉
�

. (89)

So this pole is resonant with the primary field V N
〈q+r,−p+s〉, whose structure constant has

a second-order pole.

• (1,1, 0): The case Sr,s = 1 in eq. (67) corresponds to the edge of the Kac table, for
instance r = q

2 and |s|< p
2 . The left-moving block has a first-order pole with the dimen-

sions

(∆, ∆̄) =
�

∆〈q,− p
2−s〉,∆〈 q

2 ,−s〉

�

=
β2= p

q

�

∆〈 q
2 ,−p−s〉,∆〈 q

2 ,p+s〉

�

. (90)

So this pole is resonant with the primary field V N
〈 q

2 ,−p−s〉
, whose structure constant has a

second-order pole.
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• (2,0, 0): In the four previous cases, we have found that any pole of the type (0,1, 1),
(0,2, 0) or (1,1, 0) is resonant with a (2,0, 0) pole. Now the converse is actually true:
any (2, 0,0) pole is resonant with a pole of the type (S ≤ 1, B, B̄).

And it can be checked that all these resonances lead to cancellations of second-order poles.
Let us study terms with third-order poles. We focus on terms with the left and right dimen-

sions (∆〈 3q
2 +r,− p

2+s〉,∆〈 q
2+r,− p

2+s〉), with (r, s) in the Kac table. Let us write the five relevant terms,
while omitting the dependence on ρ, ρ̄. These terms are of the types (0, 2,1), (0, 2,1), (2,1, 0),
(2, 1,0), (2, 0,1):

t1 = D〈r,s〉
R q

2+r, p
2+s

∆〈r,s〉 −∆〈 q
2+r, p

2+s〉

R 3q
2 +r, p

2−s

∆〈 q
2+r,− p

2−s〉 −∆〈 3q
2 +r, p

2−s〉

R̄ q
2+r, p

2−s

∆〈r,−s〉 −∆〈 q
2+r, p

2−s〉
, (91)

t2 = D〈r,s〉
R q

2−r, p
2−s

∆〈r,s〉 −∆〈 q
2−r, p

2−s〉

R q
2+r, 3p

2 −s

∆〈 q
2−r,− p

2+s〉 −∆〈 q
2+r, 3p

2 −s〉

R̄ q
2+r, p

2−s

∆〈r,−s〉 −∆〈 q
2+r, p

2−s〉
, (92)

t3 = D〈q+r,−s〉

R 3q
2 +r, p

2−s

∆〈q+r,−s〉 −∆〈 3q
2 +r, p

2−s〉
, (93)

t4 = D〈r,p−s〉

R q
2+r, 3p

2 −s

∆〈r,p−s〉 −∆〈 q
2+r, 3p

2 −s〉
, (94)

t5 = D〈q+r,−p+s〉

R̄ q
2+r, p

2−s

∆〈q+r,−p+s〉 −∆〈 q
2+r, p

2−s〉
. (95)

Let us write these expressions in terms of the functions d±. From d± we build the auxiliary
functions r0, r1, r2, r3 such that

d+(P) =
r0(P)

(P − P〈 3q
2 +r,− p

2+s〉)(P − P〈 q
2+r,− 3p

2 +s〉)
, (96)

=
r1(P)

P − P〈 q
2+r,− p

2−s〉
, (97)

=
r2(P)

P − P〈 q
2−r,− p

2+s〉
, (98)

d̄−(P) =
r̄3(P)

P − P〈 q
2+r,− p

2+s〉
, (99)

and we find

t1 =
4
ε3

r̄3(P〈 q
2+r,− p

2+s〉)r0(P〈q+r,−p+s〉 +
ε
2)

d̄−(P〈r,−s〉)

d̄−(P〈r,−s〉 +
ε
2)

d+(P〈r,s〉)

d+(P〈r,s〉 +
ε
2)

×
r1(P〈q+r,−s〉 −

ε
2)

r1(P〈q+r,−s〉 +
ε
2)

P〈r,s〉 +
ε
2

P〈r,s〉 +
ε
4

P〈q+r,−s〉 +
ε
2

P〈q+r,−s〉

P〈r,−s〉 +
ε
2

P〈r,−s〉 +
ε
4

, (100)
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t2 =
4
ε3

r̄3(P〈 q
2+r,− p

2+s〉)r0(P〈q+r,−p+s〉 −
ε
2)

d̄−(P〈r,−s〉)

d̄−(P〈r,−s〉 +
ε
2)

d+(P〈r,s〉)

d+(P〈r,s〉 −
ε
2)

×
r2(P〈−r,−p+s〉 +

ε
2)

r2(P〈−r,−p+s〉 −
ε
2)

P〈r,s〉 −
ε
2

P〈r,s〉 −
ε
4

P〈−r,−p+s〉 −
ε
2

P〈−r,−p+s〉

P〈r,−s〉 +
ε
2

P〈r,−s〉 +
ε
4

, (101)

t3 = −
8
ε3

r̄3(P〈 q
2+r,− p

2+s〉 +
ε
2)r0(P〈q+r,−p+s〉 +

ε
2)

r1(P〈q+r,−s〉)

r1(P〈q+r,−s〉 +
ε
2)

P〈q+r,−s〉 +
ε
2

P〈q+r,−s〉 +
ε
4

, (102)

t4 = −
8
ε3

r̄3(P〈 q
2+r,− p

2+s〉 −
ε
2)r0(P〈q+r,−p+s〉 −

ε
2)

r2(P〈−r,−p+s〉)

r2(P〈−r,−p+s〉 −
ε
2)

P〈−r,−p+s〉 −
ε
2

P〈−r,−p+s〉 −
ε
4

, (103)

t5 =
8
ε3

r̄3(P〈 q
2+r,− p

2+s〉)r0(P〈q+r,−p+s〉)
d̄−(P〈r,−s〉 + ε)

d̄−(P〈r,−s〉 +
ε
2)

P〈r,−s〉 +
ε
2

P〈r,−s〉 +
3ε
4

. (104)

In this form, it is easy to see that
∑5

i=1 t i =
ε→0

O(1
ε ), i.e. the third-order and second-order poles

cancel. It is also clear that the needed cancellations do not depend on the properties of the
functions d±, beyond having poles at degenerate momentums. We are thus led to the

Conjecture 4.2. For any positive fraction p
q and any truncation of

¬

V D
P1

V N
〈r2,s2〉

V D
P3

V N
〈r4,s4〉

¶

to a

given order in ρ, there is a neighbourhood of β2 = p
q where the truncation is meromorphic, with

at most a first-order pole at β2 = p
q .

While its truncations are meromorphic, the four-point function itself is not, because at higher
order inρwe have poles that are arbitrarily close to β2 = p

q . Rather, the four-point function has
an essential singularity on the whole line β2 ∈ (0,∞). When β2 = p

q approaches an irrational
number, the poles occur at increasingly high conformal dimensions due to p, q→∞, and their
residues tend to zero. So we expect that our four-point function is perfectly well-defined for
irrational β2, just like the toy function

ϕ(β2,ρ) =
∞
∑

p,q=1

ρpq

β2 − p
q

. (105)

Even though the four-point function is not meromorphic, there is a natural definition of its
residue at β2 = p

q , using the expansion in powers of ρ. This residue has a logarithmic de-
pendence (88) on ρ. We refrain from conjecturing that this residue is the four-point function
of a logarithmic CFT, because it is not clear that the residue obeys crossing symmetry. If it
existed, that logarithmic CFT would not contain our non-diagonal primary fields V N

〈r,s〉, whose
contributions to the four-point function are finite, but only some descendents thereof. The
spectrum of that CFT would therefore be quite different from the non-diagonal spectrum of
the odd CFT.

4.3 Back to minimal models

Let us consider a discrete four-point function in the sense of Section 4.1, in a limit β → p
q

where the four fields belong to the spectrum of the D-series minimal model. In other words,
we consider a four-point function of the type

¬

V D
〈r1,s1〉

V N
〈r2,s2〉

V D
〈r3,s3〉

V N
〈r4,s4〉

¶

, where the values of

the indices (ri , si) are as in the spectrum SD-series
p,q (8).
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Let us first show that in the s-channel decomposition Z =
∑

r,s Zr,s eq. (76), all structure
constants D〈r,s〉 have finite limits. The behaviour of D〈r,s〉 as a function of r, s was discussed in
Section 4.1: we have poles whose positions do not depend on ri , si , as indicated in the plot
(68), and zeros whose positions do depend on ri , si . For (r, s) in the Kac table, there are no
poles, so D〈r,s〉 has a finite limit. Going outside the Kac table, we encounter simple and double
poles. However, going ouside the Kac table necessarily violates fusion rules, and we have seen
that a fusion-violating three-point structure constant has at least one zero. But D〈r,s〉 involves
two three-point structure constants, which contribute at least two zeros: enough for cancelling
the double poles. Further from the Kac table, we encounter zeros and poles of higher orders,
with always at least as many zeros as there are poles. (In fact, far from the Kac table, there
are of the order of twice as many zeros as poles.)

Furthermore, if (r, s) is not only in the Kac table, but also allowed by fusion, then not only
the structure constant D〈r,s〉, but also the corresponding conformal block, have finite limits:
these limits are the structure constant and conformal block of the minimal model. On the
other hand, if fusion rules are violated, then the conformal block can diverge, and actually the
term Zr,s can be nonzero or divergent. But we expect that the sum of fusion-violating terms
tends to zero:

Conjecture 4.3. If (ri , si) belong to SD-series
p,q , then lim

β2→ p
q

¬

V D
〈r1,s1〉

V N
〈r2,s2〉

V D
〈r3,s3〉

V N
〈r4,s4〉

¶

exists, and

coincides with the corresponding minimal model four-point function.

This Conjecture follows from Conjecture 4.2, which limits divergences to simple poles, and
Proposition 4.1, which supplies two zeros in fusion-violating terms.

For example, let us consider the four-point function


V D
〈0, 1

2 〉
V N
〈0, 1

2 〉
V D
〈0, 1

2 〉
V N
〈0, 1

2 〉

·

, which be-

longs to the odd CFT. The limit of this four-point function as β2→ p
q depends on the value of

q:

• If q ≡ 2 mod 4, then both fields V D
〈0, 1

2 〉
and V N

〈0, 1
2 〉

belong to the spectrum SD-series
p,q (8), and

we recover a minimal model four-point function.

• If q ≡ 0 mod 4, then V D
〈0, 1

2 〉
no longer belongs to SD-series

p,q . (That spectrum contains for

instance V D
〈1, 1

2 〉
.) The limit is therefore singular.

• If q is odd, nothing happens, the four-point function has a finite limit, and the odd CFT
retains its infinite spectrum.

5 Rational limits of generalized minimal models

Let us consider a continuation of a diagonal minimal model four-point function in the sense of
Section 3.3: a four-point function of diagonal degenerate fields

¬

∏4
i=1 V D

〈ri ,si〉

¶

, whose indices
belong to the Kac table i.e. (ri , si) ∈ [1, q− 1]× [1, p− 1], and moreover obey eq. (63). This
generalized minimal model four-point function exists for any complex central charge, and we
will investigate its limit as β2→ p

q . Using the fusion rule (18), the s-channel decomposition is

® 4
∏

i=1

V D
〈ri ,si〉

¸

=
min(r1+r2,r3+r4)−1

∑

r
2
=max(|r1−r2|,|r3−r4|)+1

min(s1+s2,s3+s4)−1
∑

s
2
=max(|s1−s2|,|s3−s4|)+1

D〈r,s〉F∆〈r,s〉F̄∆〈r,s〉 , (106)
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where the four-point structure constant is, according to Section 2.3,

D〈r,s〉 =

∏

±,± Υβ

�

β
2 +

1
2β + P〈r,s〉 ± P1 ± P2

�

∏

±,± Υβ

�

β
2 +

1
2β + P〈r,s〉 ± P3 ± P4

�

∏

± Υβ(β ± 2P〈r,s〉)
. (107)

5.1 Zeros and poles of structure constants

For fixed integers r, s, let us consider Υβ(β+2P〈r,s〉) as a function of β . At β2 = p
q , this function

has a zero with the multiplicity

Mr,s =

�

�

�

�

�

s
p

�

−
�

r
q

�

�

�

�

�

. (108)

We deduce that the structure constant D〈r,s〉 has a pole with the multiplicity

Sr,s = Mr,s +M−r,−s −M r+r1+r2−1
2 ,

s+s1+s2−1
2
−M r+r3+r4−1

2 ,
s+s3+s4−1

2
, (109)

where negative multiplicities mean zeros rather than poles. One might have expected extra
terms with reversed signs for some pairs of indices (ri , si), but these terms actually vanish: for
example, M r+r1−r2−1

2 ,
s+s1−s2−1

2
= 0 due to r+r1−r2−1

2 ≤ r1 − 1< q and s+s1−s2−1
2 ≤ s1 − 1< p.

Let us plot these pole multiplicities as functions of r, s. The values of r, s that appear in the
decomposition (106) do not necessarily all belong to the Kac table, but to the first 4 copies of
the Kac table, i.e. r < 2q and s < 2p. The value of the terms Mr,s + M−r,−s only depends on
the copy,

0 r

p

2p

0

02

2

s

q 2q

(110)

We do not explicitly show the values at the boundaries of copies of the Kac tables i.e. for r = q
or s = p: in this case we have Mr,s + M−r,−s = 1. We then plot the values of the remaining
terms −M r+r1+r2−1

2 ,
s+s1+s2−1

2
−M r+r3+r4−1

2 ,
s+s3+s4−1

2
:

0 r

p

2p

s

q 2q
s1 − s2

s3 + s4

2p− s1 − s2

2p− s3 − s4

0

0

0

−1

−1 −2

−1

−1−2
(111)
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In this plot the values of r, s on red lines have wrong parities for appearing in the decompo-
sition (106). We indicate the ordinates of the horizontal red lines under assumptions such as
s1− s2 > |s3− s4|. And we color the region that is allowed by the minimal model’s fusion rules
(13) in light red. Altogether, the values of the pole multipicities Sr,s are as follows:

0 r

p

2p

s

q 2q

0

0

0

02

2

−1

−1 −2 0

−1 1

−1

1

−2

0 (112)

Therefore, structure constants have poles if min(r1+r2, r3+r4)> q and min(s1+s2, s3+s4)> p.
Even in the absence of poles, it can happen that D〈r,s〉 6= 0 for some (r, s) that violate minimal
model fusion rules.

5.2 Cancellation of singularities

Thanks to the relation between structure constants and residues of conformal blocks, we expect
cancellations between resonant terms, and in particular between resonant terms that have
singular limits. Let us illustrate this in the case of the terms whose structure constants have
double poles. We consider r < q and s < p, such that D〈r,s〉 and D〈2q−r,2p−s〉 have finite limits,
while D〈2q−r,s〉 and D〈r,2p−s〉 have double poles. These four terms are resonant, and they belong
to the four top-right regions in Figure 112. Let us compute the combination

T2 = D〈2q−r,s〉 + D〈r,2p−s〉

+ D〈r,s〉

�

Rq−r,p−s

∆〈r,s〉 −∆〈q−r,p−s〉

�2

+ D〈2q−r,2p−s〉

�

Rq−r,p−s

∆〈2q−r,2p−s〉 −∆〈q−r,p−s〉

�2

. (113)

Let us write this in terms of functions d+, d− using eq. (29) and eq. (40). For this calculation
we introduce the notations ε, P0, P1, r±(P), defined as

ε= P〈q,p〉 ,

�

P0 = P〈q−r,p−s〉
P1 = P〈q−r,−p+s〉

, d±(P) =
r±(P)
P − P1

. (114)

The combination T2 is then rewritten as

T2 =
(r+r−)(P1 − ε) + (r+r−)(P1 + ε)

ε2

−
(r+r−)(P1)

ε2

�

(d+d−)(P0 − ε)
(d+d−)(P0)

P2
0

(P0 −
ε
2)2
+
(d+d−)(P0 + ε)
(d+d−)(P0)

P2
0

(P0 +
ε
2)2

�

. (115)

It is now clear that this has a finite limit as ε→ 0: the leading O( 1
ε2 ) terms fall victim to our

usual cancellations, while the subleading O(1
ε ) terms are killed by invariance under ε→ −ε.
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The finite limit is

lim
β2→ p

q

T2 = (r+r−)
′′(P1) + (r+r−)(P1)

�

(d+d−)′′(P0)
(d+d−)(P0)

−
2
P0

(d+d−)′(P0)
(d+d−)(P0)

+
3

2P2
0

�

. (116)

This limit is nonzero, and it contains logarithmic terms. More generally, we expect that all
singular terms similarly cancel:

Conjecture 5.1. Any continuation of a four-point function of the (p, q) diagonal minimal model,
has a finite limit when β2→ p

q .

Next we will discuss whether this finite limit coincides with the corresponding minimal model
four-point function. From the presence of logarithmic terms, we already know that this is not
always the case.

5.3 Limits of four-point functions

In the decomposition (106) of our four-point function, let us consider a term that is allowed
by the minimal model’s fusion rules. According to Section 3.3, the corresponding conformal
block then tends to a minimal model conformal block. Moreover, the corresponding structure
constant also has a finite limit, which coincides with the minimal model structure constant.
Therefore, the sum of such terms tends to the minimal model four-point function. The question
is whether the sum of the rest of the terms tends to zero. Several situations may occur:

• The limit of our four-point function may disagree with the minimal model. This must
happen whenever this limit has logarithmic terms, as in eq. (116). This must also
happen whenever there is a term that is disallowed by minimal model fusion rules, that
does not resonate with another term, and whose structure constant has a finite limit.
For example, let us consider

¬

V D
〈3,2〉V

D
〈3,2〉V

D
〈2,2〉V

D
〈2,2〉

¶

in the limit β2 → 4
3 . The s-channel

fields, and the numbers of poles of their structure constants, are:

field V D
〈1,1〉 V D

〈1,3〉 V D
〈3,1〉 V D

〈3,3〉

# poles 0 −1 −1 0
(117)

where the minimal model fusion rules only allow the field V D
〈1,1〉. The structure constants

and contributions of V D
〈1,3〉 and V D

〈3,1〉 tend to zero, but the contribution of V D
〈3,3〉 has a finite

limit.

• The limit of our four-point function may agree with the minimal model thanks to can-
cellations between different terms. For example, consider

¬

V D
〈4,1〉V

D
〈4,1〉V

D
〈4,1〉V

D
〈4,1〉

¶

in the

limit β2→ 5
6 . The s-channel fields, and the numbers of poles of their structure constants,

are:

field V D
〈1,1〉 V D

〈3,1〉 V D
〈5,1〉 V D

〈7,1〉

# poles 0 −2 −1 0
(118)

where the minimal model fusion rules only allow the field V D
〈1,1〉. The contributions of

V D
〈3,1〉 and V D

〈7,1〉 both have finite limits, but they are resonant and actually cancel.

• The limit of our four-point function may agree with the minimal model because our
fusion rules coincide with minimal model fusion rules. For a given four-point function,
this happens whenever p, q are large enough, thanks to our assertion in Section 2.2 on
the limit of minimal model fusion rules for p, q→∞.
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To conclude, let us imagine that we follow a given four-point function of degenerate fields
as the central charge varies in the half-line (−∞, 1). At most rational values of β2 = p

q , the
integers p, q will be large enough for our four-point function to coincide with the corresponding
minimal model four-point function. There may however be rational values of β2 where our
four-point function differs from the minimal model four-point function. And there will be an
infinite but not dense set of rational values of β2, such that one or more of our four fields is
outside the Kac table. We leave the exploration of this last case for future work.

These results provide more justification for the name generalized minimal models. We use
this name for diagonal CFTs that exist at any central charge, and whose spectrums are made
of all degenerate fields. We now know that these CFTs not only generalize minimal models,
but also interpolate between them.
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