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Abstract

The dualism between superconductivity and charge/spin modulations (the so-called
stripes) dominates the phase diagram of many strongly-correlated systems. A prominent
example is given by the Hubbard model, where these phases compete and possibly co-
exist in a wide regime of electron dopings for both weak and strong couplings. Here, we
investigate this antagonism within a variational approach that is based upon Jastrow-
Slater wave functions, including backflow correlations, which can be treated within a
quantum Monte Carlo procedure. We focus on clusters having a ladder geometry with
M legs (with M ranging from 2 to 10) and a relatively large number of rungs, thus al-
lowing us a detailed analysis in terms of the stripe length. We find that stripe order
with periodicity λ = 8 in the charge and 2λ = 16 in the spin can be stabilized at doping
δ = 1/8. Here, there are no sizable superconducting correlations and the ground state
has an insulating character. A similar situation, with λ= 6, appears at δ = 1/6. Instead,
for smaller values of dopings, stripes can be still stabilized, but they are weakly metallic
at δ = 1/12 and metallic with strong superconducting correlations at δ = 1/10, as well
as for intermediate (incommensurate) dopings. Remarkably, we observe that spin mod-
ulation plays a major role in stripe formation, since it is crucial to obtain a stable striped
state upon optimization. The relevance of our calculations for previous density-matrix
renormalization group results and for the two-dimensional case is also discussed.
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1 Introduction

Despite a long time since the first experimental evidence of superconductivity in copper-oxide
materials [1], the phase diagram of high-temperature cuprate superconductors still contains
many unsolved questions. One of them is the possible coexistence or competition of supercon-
ductivity with inhomogeneous orders in the charge and spin sectors [2–4]. Starting from the
neutron scattering observation of half-filled stripes in La1.48Nd0.4Sr0.12CuO4 around doping
1/8 [5], different inhomogeneous orders have been proposed with a variety of experimental
probes, ranging from scanning tunneling microscopy to x-ray scattering [6–9].

From a theoretical point of view, striped states were first considered in the strong-coupling
limit, i.e., within the so-called t − J model. Here, contradictory results have been obtained
with different numerical methods. In particular, half-filled stripes are found to be stable by
the density-matrix renormalization group (DMRG) [10], the infinite projected entangled-pair
states (iPEPS) [11], and variational Monte Carlo [12] approaches. However, improved vari-
ational wave functions, with the inclusion of hole-hole repulsion [13], as well as recent cal-
culations based upon the renormalized mean-field theory [14], show that striped and homo-
geneous states are almost degenerate. The absence of stripes has been reported by further
improvements of variational Monte Carlo, including the application of a few Lanczos steps
and an imaginary-time projection performed within a fixed-node approximation [15]. Even
though the t − J model has been widely used in the past to describe the low-energy physics of
cuprate materials, neglecting local charge fluctuations is not completely justified; in addition,
antiferromagnetic correlations are usually overestimated, because of the presence of a direct
super-exchange term. These two ingredients may have an important impact on the possible
stabilization of charge and/or spin modulations at finite dopings. In this respect, a better
description can be obtained by considering the Hubbard model:

H = −t
∑

〈R,R′〉,σ

c†
R,σcR′,σ +H.c.+ U

∑

R

nR,↑nR,↓, (1)

where c†
R,σ (cR,σ) creates (destroys) an electron with spin σ on site R and nR,σ = c†

R,σcR,σ is
the electronic density per spin σ on site R. In the following, we indicate the coordinates of the
sites with R = (x , y). The nearest-neighbor hopping integral is denoted as t, while U is the
on-site Coulomb interaction. The electronic doping is given by δ = 1− Ne/L, where Ne is the
number of electrons (with vanishing total magnetization) and L is the total number of sites.
For ladder systems, which will be considered in the paper, we define M as the number of legs
and Lx as the number of rungs, the total number of sites being given by L = M × Lx .

For positive U and an even number of legs M , the formation of short-ranged antiferro-
magnetic electron pairs is responsible for the opening of a spin gap in a finite doping range
0 < δ ≤ δc . This is signaled by the hidden ordering of a spin-parity operator [16, 17].
From one side, this hidden ordering is accompanied by large superconducting correlations for
M ≥ 4 [18], suggesting a direct connection with the d-wave superconductivity observed in the
uniform state of the two-dimensional Hubbard model [19–26]. From the other side, stripes
may be stabilized, with a possible suppression of the superconducting order. Indeed, early
DMRG studies suggested the formation of stripes on the 6-leg Hubbard model [27,28]; these
results have been corroborated by using constrained path auxiliary-field Monte Carlo [29] and
density-matrix embedding theory [30]. More recently, a combination of advanced numerical
methods [31] focused on doping 1/8, where maximal inhomogeneity is observed in many
high-temperature superconductors. This work highlighted the fact that the ground state is a
bond-centered linear stripe, with periodicity λ = 8 in the charge (which defines the wave-
length of the stripe) and periodicity 2λ = 16 in the spin, due to the so-called π-phase shift;
in this case, the stripe is filled and commensurate with the doping, since it accommodates
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two holes in a one-dimensional cell of length 16. This striped state is reported to have an
energy lower of about 0.01t with respect to the uniform state. Other states, such as diagonal
stripes or checkerboard order have been tested, but they were not found to be competitive
with the linear stripe. Even if different stripe wavelengths are close in energy, the most fa-
vorable one is the filled one with wavelength λ = 8, in agreement with older Hartree-Fock
calculations [32–35], but unlike the stripes in real materials, that are half-filled with wave-
length λ = 4. The presence of nearest-neighbor d−wave coupling coexisting with the stripe
has been also reported in this study [31]. A striped nature of the ground state, also away from
the 1/8 doping, has been suggested by both cellular dynamical mean-field theory [36] and
variational Monte Carlo calculations [37, 38]. Both methods report the presence of stripes in
the doping range 0.07 ® δ ® 0.17, with the ground state being uniform for higher dopings;
the stripe wavelength is shown to decrease when the doping increases, with the optimal stripe
wavelength at doping 1/8 being slightly different from what reported in Ref. [31]. Interest-
ingly, a finite superconducting order parameter at large distances has been reported to coexist
with stripes in Ref. [38]. Concerning the wavelength of the stripe, it has been suggested by a
finite-temperature determinant quantum Monte Carlo study that the presence of a finite next-
nearest-neighbor hopping t ′ reduces the stripe wavelength, from λ = 8 at t ′ = 0 to λ = 5 at
t ′/t = −0.25 [39].

In this paper, we employ the variational Monte Carlo method with backflow correlations
to study the presence of striped ground states in the doped Hubbard model. First, we con-
sider doping δ = 1/8 on ladders with M = 2, 6, and 10, in order to extrapolate to the two-
dimensional limit. While no evidence of static stripes is seen on the 2-leg ladder, a filled stripe
of wavelength λ = 8 is stabilized on a larger number of legs, as well in the two-dimensional
extrapolation. This state is compatible with an insulator, with charge and spin order and no su-
perconductivity. On a 6-leg ladder, we have investigated also the dopings away from δ = 1/8.
In particular, at doping δ = 1/6, a striped state of wavelength λ = 6, compatible with an
insulating state, occurs, while, at doping δ = 1/12, the best striped state is not filled, hav-
ing wavelength λ = 8. However, this state is only weakly metallic, since, on a 6-leg ladder,
it is commensurate with the doping, having an even number of holes per spin modulation.
On the contrary, away from these commensurate dopings, stripes can be metallic and coex-
isting with superconductivity, even if it is suppressed with respect to the homogeneous case.
In this respect, we show that in the whole range between doping δ = 1/12 and δ = 1/8, the
best ground-state approximation is a striped state with wavelength λ= 8, but with a metallic
behavior and superconducting correlations with a power-law decay. Furthermore, we report
that spin modulation plays a major role in stripe formation, since it is crucial to obtain a sta-
ble striped state upon optimization. The role of spin modulation can be also observed in the
formation of a peak in spin-spin correlations, that is much stronger than the one in density-
density correlations. In summary, our results show that striped states are a common feature
of the doped repulsive Hubbard model. They coexist with superconductivity away from se-
lected dopings where they are commensurate, their formation being favored by the presence
of magnetic order with π shift.

2 Variational Monte Carlo method

Our numerical results are obtained by means of the variational Monte Carlo method, which
is based on the definition of suitable wave functions to approximate the ground-state prop-
erties beyond perturbative approaches [40]. In particular, we consider the so-called Jastrow-
Slater wave functions that include long-range electron-electron correlations, via the Jastrow
factor [41, 42], on top of uncorrelated states, extending the original formulation proposed
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Figure 1: Unit cell for a stripe of wavelength λ = 8. The size of the red circles is
proportional to the hole density per site, while the length of the arrows is proportional
to the magnetization per site. Data are taken from the optimal state at U/t = 8 and
δ = 1/8.

by Gutzwiller [43, 44]. In addition, the so-called backflow correlations will be applied to the
Slater determinant [45, 46], in order to sizably improve the quality of the variational state.
Our variational wave functions are described by:

|Ψ〉= J |Φ0〉, (2)

where J is the Jastrow factor and |Φ0〉 is a state that, starting from an uncorrelated wave
function obtained from an auxiliary Hamiltonian, redefines the orbitals on the basis of the
many-body electronic configuration, incorporating virtual hopping processes, as discussed in
Refs. [45, 46]. Unless otherwise specified, results are obtained considering backflow correc-
tions.

We consider two different kinds of wave functions, the first one that is appropriate to study
homogeneous superconducting states (with possible additional Néel antiferromagnetism) and
the second one that describes bond-centered striped states with charge and spin modulation.
The latter one can be further supplemented with either uniform or modulated pairing.

Let us start with the homogeneous superconducting state that is the ground state of the
following auxiliary Hamiltonian:

HBCS =
∑

k,σ

εkc†
k,σck,σ −µ

∑

k,σ

c†
k,σck,σ +

∑

k

∆kc†
k,↑c

†
−k,↓ + h.c., (3)

which includes a free-band dispersion εk, defined as in the Hubbard Hamiltonian of Eq. (1), a
BCS coupling ∆k, with nearest-neighbor pairings ∆x and ∆y along the x and the y direction,
respectively, and a chemical potential µ. Néel antiferromagnetism can be further included by
adding the following term to the Hamiltonian of Eq. (3):

HAF =∆AF

∑

R

(−1)x+y
�

c†
R,↑cR,↑ − c†

R,↓cR,↓

�

. (4)

All the parameters∆x ,∆y ,∆AF, and µ are optimized to minimize the variational energy (while
t = 1, in the definition of εk, sets the energy scale of the uncorrelated Hamiltonian).

Bond-centered striped states can be included in the variational wave function by means of
charge and spin modulations along the x direction. The auxiliary Hamiltonian reads as

HMF =HBCS+Hcharge +Hspin. (5)

Here, the term

Hcharge =∆c

∑

R

cos
�

Q
�

x −
1
2

��

�

c†
R,↑cR,↑ + c†

R,↓cR,↓

�

(6)
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describes a charge modulation in the x direction with periodicity λ= 2π/Q; the term

Hspin =∆AF

∑

R

(−1)x+y sin
�

Q
2

�

x −
1
2

��

�

c†
R,↑cR,↑ − c†

R,↓cR,↓

�

(7)

describes an antiferromagnetic order that is the standard Néel one along the y direction, while
it is modulated along the x direction with a periodicity that is doubled with respect to the
charge one, i.e., 2λ = 4π/Q; indeed, after one period in the charge modulation, spins are
reversed, as illustrated in Fig. 1 for λ = 8. In the presence of stripes, ∆c and ∆AF are further
variational parameters to be optimized.

The BCS term that is included in Eq. (5) can be either uniform with pairings ∆x and ∆y
along the x and the y direction, respectively, or modulated with the following periodicity, that
has been named “in phase” in Ref. [12]:

∆R,R+ x̂ =∆x

�

�

�

�

cos
�

Q
2

x
�

�

�

�

�

∆R,R+ ŷ = −∆y

�

�

�

�

cos
�

Q
2

�

x −
1
2

��

�

�

�

�

, (8)

where x̂ and ŷ are the versors along the x and the y directions, respectively, while ∆x and
∆y are variational parameters to be optimized. In Ref. [12], a different modulation in the
pairing, named “antiphase” has been introduced, without the absolute values that are present
in Eq. (8). However, in our simulation, we always found that the “antiphase” modulation does
not lead to any energy gain with respect to the “in phase” case. We have also verified that
the modulation proposed in Ref. [13], where hole density is maximum at the sites with the
smallest pairing amplitude and the smallest magnetization, does not lead to an energy gain
with respect to the modulation described in Eq. (8).

The Jastrow factor J is defined as:

J = exp

 

−
1
2

∑

R,R′
vR,R′nRnR′

!

, (9)

where nR =
∑

σ nR,σ is the electron density on site R and vR,R′ (that include also the local
Gutzwiller term for R = R′) are pseudopotentials that are optimized for every independent
distance |R−R′|.

The presence of charge disproportionations can be analyzed by means of the static structure
factor N(q) defined as:

N(q) =
1
L

∑

R,R′
〈nRnR′〉eiq·(R−R′), (10)

where 〈. . . 〉 indicates the expectation value over the variational wave function. In particular,
the presence of a peak at a given q vector denotes the presence of charge order in the system.
Moreover, the static structure factor allows us to assess the metallic or insulating nature of the
ground state. Indeed, charge excitations are gapless when N(q)∝ |q| for |q| → 0, while a
charge gap is present whenever N(q)∝ |q|2 for |q| → 0 [46, 47]. A more direct approach to
discriminate between insulating and conducting states, e.g., computing the Drude weight, is
not possible since it requires the knowledge of excited states.

Analogously, spin order in the system is associated to a peak in the spin-spin correlations
defined as:

S(q) =
1
L

∑

R,R′
〈Sz

RSz
R′〉e

iq·(R−R′), (11)

where Sz
R is the spin operator along the z direction, i.e., Sz

R = 1/2(c†
R,↑cR,↑ − c†

R,↓cR,↓).
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Figure 2: Energy gain (per site) ∆E = Estripe − Ehomogen of the striped state of wave-
length λ = 8, with respect to the homogeneous superconducting one, as a function
of the number of legs M , for lattices of size L = M × (8×M). Data are reported for
U/t = 8 and δ = 1/8, for the cases with and without backflow correlations in the
variational state.

Finally, the presence of superconductivity can be assessed by looking at the pair-pair cor-
relations, i.e., a correlation function between singlets on rungs at distance x , defined as

D(x) = 〈∆(x + 1)∆†(1)〉, (12)

where
∆†(x) = c†

x ,1,↑c
†
x ,2,↓ − c†

x ,1,↓c
†
x ,2,↑ (13)

is a vertical singlet located on the rung between sites of coordinates (x , 1) and (x , 2). Here,
we explicitly denoted the coordinates of the site R, i.e., c†

R,σ ≡ c†
x ,y,σ.

Our simulations are performed with periodic boundary conditions along the x direction,
while, in the y direction, they are taken to be open for M = 2 and periodic for M = 6, for
M = 10, and for 2D lattices. For M = 2, open boundary conditions along the rungs are
necessary, in order to avoid a double counting of the intra-rung bonds.

3 Results

Let us focus on the possibility that a bond-centered stripe may be stabilized at dopings δ = 1/p,
with p even. These cases can, in principle, accommodate a filled stripe of wavelength λ = p
(the full periodicity of the stripe is 2p due to spin), as recently suggested in Ref. [31], where
the case with δ = 1/8 has been considered in detail. In order to fit the stripe with our cluster
with L = M × Lx sites, we take Lx to be multiple of 2p.

First of all, in Fig. 2, we plot the energy gain ∆E = Estripe − Ehomogen, where the energies
are intended per site, between a homogeneous superconducting state and a striped one for the
2-, 6-, and 10-leg ladders. In order to properly scale to the two-dimensional case, we preserve
the aspect ratio of the ladder considering L = M × (8×M). We observe that the energy gain
of the striped state with respect to the uniform one increases linearly with the system size.
We mention that the less accurate variational wave function without backflow correlations
has a larger energy gain with respect to the case in which these correlations are included.
Still, even in the most accurate calculations, there is a finite (and relatively large) energy gain
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Figure 3: Left panel: Spin-spin correlations S(qx ,π) on a semi-log scale, as a function
of qx at doping δ = 1/8. Results are reported for the homogeneous wave function
(empty symbols) and for the striped one with wavelength λ = 8 (full symbols), on
a 2-leg ladder with Lx = 48 (red circles) and on a 6-leg ladder with Lx = 48 (blue
squares). Data are shown for U/t = 8. Right panel: Same as in the left panel, but
on a linear scale for the static structure factor N(qx , 0).

when charge and spin modulations are considered. Even though a reliable extrapolation to the
thermodynamic limit is not easy to perform, we verified that a striped state can be stabilized
also in a square-lattice geometry, as we checked for a L = 16×16 lattice, observing an energy
gain of about 5× 10−3.

In Fig. 3, we report the density-density correlations N(q) and the spin-spin correlations
S(q) at doping δ = 1/8, for both the 2-leg and the 6-leg case, comparing the results for a ho-
mogeneous wave function and for a striped state. For the 2-leg case, the correlation functions
are the same for both wave functions, in agreement with the energy results of Fig. 2, where
it is shown that almost no energy gain comes from the explicit inclusion of stripes in the vari-
ational state. On the contrary, for the 6-leg case, the striped wave function is characterized
by a peak in N(q) at Q = (π/4, 0), in agreement with a periodicity λ = 8 in the x direction
and no charge modulation along the y direction. A peak appears also in the spin-spin cor-
relations S(q) at a vector Q = (7π/8,π). Indeed, the spin modulation described in Eq. (7)
is antiferromagnetic along the y direction, while it is antiferromagnetic, with an additional
modulation of periodicity 2λ = 16, along the x direction. We remark that the peak in S(q)
is much stronger than the one in N(q), suggesting that spin modulation plays a major role
with respect to charge modulation. We would like to emphasize that, by setting ∆c = 0 in
Eq. (6) and optimizing only ∆AF, we recover the striped state, with peaks in both S(q) and
N(q), while, setting ∆AF = 0 in Eq. (7) and optimizing only ∆c, the stripe is not stable and
the optimized state converges to the homogeneous one. This fact implies that spin modulation
plays a major role in stripe formation.

As suggested in Ref. [31], our results show that the filled striped state with periodicity
λ = 8 in the charge sector is the appropriate one for the Hubbard model at doping δ = 1/8.
The half-filled striped state with periodicity λ= 4, which has been previously suggested for the
t − J model [10,12], is not stable upon optimization in the Hubbard model. This observation
remains valid also for a larger value of the Coulomb repulsion, i.e., U/t = 16. In addition to
charge and spin modulation, our variational state can also include pairing, either homogeneous
or with the modulation of Eq. (8). Both states can be stabilized in the variational state even if
neither of them leads to an energy gain with respect to the striped state with no pairing that
is shown in Fig. 2.

We have then compared homogeneous and striped wave functions at dopings δ = 1/p,
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Figure 4: N(q)/qx , as a function of qx at qy = 0, on lattice sizes L = 6× Lx . Results
are reported at δ = 1/12 (top left) for the optimal striped state with λ = 8 (up
triangles) and for the striped state with λ = 12 (stars); at δ = 1/10 (top right) for
the optimal striped state with λ= 8 (diamonds) and for the striped state with λ= 10
(stars); at δ = 1/8 (bottom left) for the homogeneous wave function (empty squares)
and for the optimal striped state with λ= 8 (full squares); at δ = 1/6 (bottom right)
for the homogeneous wave function (empty circles) and for the optimal striped state
with λ= 6 (full circles).

with p = 12, 10, and 6, that are also relevant for the phase diagram of cuprate superconduc-
tors. We observe that at dopings δ = 1/12 and δ = 1/10, the best striped state has wavelength
λ = 8, like in the δ = 1/8 case. Striped states of wavelength λ = 12 and λ = 10 can be sta-
bilized as local minima, with an energy difference with respect to the best stripe of the order
of 10−3. On the contrary, the striped state of wavelength λ= 8 cannot be stabilized at doping
δ = 1/6, where, instead, a stripe of wavelength λ = 6 characterizes the ground state. In
Table 1, we present a summary of the energies per site of homogeneous and striped states.
Even if our accuracy in the ground-state energies is not as good as what has been reported
in Ref. [31], we are expected to capture the correct ground-state behavior, since we simul-
taneously optimize a large number of variational parameters, that can capture the correct
ground-state behavior among a wide range of possible quantum phases. Our results show that
the energy gain due to striped phases with respect to homogeneous phases is becoming larger
when approaching half filling. Furthermore, we observe that at all densities we can stabilize a
finite BCS pairing, both uniform and modulated, within the striped state, even if this pairing
is reduced with respect to the uniform case.

The insulating or metallic nature of the ground state can be seen in the small-q behavior of
the static structure factor N(q). In Fig. 4, we show N(q)/qx for homogeneous states (empty
symbols) and for the striped ground states (full symbols) at doping 1/p, with p = 12, 10, 8, and
6. We observe that in the homogeneous cases, as well as for the optimal striped state at p = 10
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Table 1: Energies per site for the homogeneous state, the best striped state, as well
the energy gain ∆E = Estripe − Ehomogen between the best striped state and the ho-
mogeneous one, at dopings 1/p with p = 6, 8, 10, and 12. Error-bars are estimated
in order to take into account the weak size dependence of the energies; calculations
have been performed on the following lattices: L = 6× Lx with Lx = 48, 72, and 96
at p = 6; L = 6× Lx with Lx = 48, 64, and 96 at p = 8,12; L = 6× 80 at p = 10.

p E/t (Homogeneous) E/t (Best stripe) ∆E

12 -0.6661(1) -0.6726(1) (λ= 8) -0.0065(1)
10 -0.6966(1) -0.7027(1) (λ= 8) -0.0061(1)
8 -0.7436(1) -0.7483(1) (λ= 8) -0.0047(1)
6 -0.8191(1) -0.8207(1) (λ= 6) -0.0016(1)

(with λ = 8), N(q) ' qx at small qx , clearly indicating that the state is metallic. The latter
result can be explained by the fact that the optimal stripe is not commensurate with the doping,
since an even number of holes cannot be accommodated in each of the Lx/16 periods in the
spin modulation. The results for the striped ground states at p = 8 and 6 are instead compatible
with an insulating ground state, with the behavior of N(q)/qx extrapolating to zero when
the lattice size increases. These striped states accommodate 2M holes in each of the Lx/2p
periods in the spin modulation. At p = 12, the situation is less clear, but more compatible with
a metallic behavior for the optimal striped state with λ = 8 and with an insulating behavior
for the filled stripe with λ = 12. In this case, even if the optimal striped state is not filled,
it is still commensurate with the doping since, on a 6-leg ladder, an even number of holes
can be accommodated in each of the Lx/16 periods in the spin modulation (with an unequal
distribution of holes in different legs). The ordered nature of these striped states can be clearly
seen in the emergence of peaks in the charge and in the spin structure factors. Given the
wavelength λ of the optimal stripe, N(q) has a peak at Q = (2π/λ, 0) and S(q) has a peak at
Q= [π(1−1/λ),π], as reported in Fig. 5 for p = 12, 8, and 6. The divergence of these peaks
with the system size is also reported in Fig. 6, with both limL→∞ N(Q)/L and limL→∞ S(Q)/L
decreasing upon increasing doping.

We mention that the stripe wavelength increases when approaching half filling, as we have
verified at doping δ = 1/16, where the optimal striped state is metallic with λ = 12. Here,
different stripe wavelengths with a long periodicity are close in energy, as expected when the
system is prone to phase separation. Indeed, at the accuracy level of variational Monte Carlo,
a region of phase separation is predicted close to half filling [38,48,49].

Generic dopings are more difficult to treat, because they cannot be exactly reproduced
on different lattice sizes; however, some predictions can be formulated also in this case. In
particular, for the density range between dopings δ = 1/12 and δ = 1/8, where we can assume
that a possible striped state has to have a wavelength λ = 8, since this is the optimal one for
the two extremal cases. Given this assumption, we can consider a generic incommensurate
doping: for example, doping δ = 0.104 that can be approximately obtained on both L = 6×48
and L × 64 lattice sizes. Here, the ground state is metallic in analogy with the p = 10 case,
with an energy gain of the order of 6×10−3 when stripes are included. A similar analysis can
be performed also for a generic doping, in the range between δ = 1/8 and δ = 1/6, leading
to analogous conclusions on the metallic nature of the ground state. In this case, we cannot
exclude that, for a sufficiently large lattice size, a suitable striped state leading to an insulating
ground state may be found, since the optimal stripe wavelength shifts from λ = 8 to λ = 6 at
δ ' 0.13. Finally, we observe that for dopings δ ¦ 0.20, no stripe order can be stabilized in the
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Figure 5: Left panel: Spin-spin correlations S(qx ,π) on a semi-log scale, as a function
of qx at dopings δ = 1/12 (black triangles), δ = 1/8 (blue squares), and δ = 1/6
(red circles), for the best striped state, that has wavelength λ= 8 at δ = 1/12 and at
δ = 1/8 and has wavelength λ = 6 at δ = 1/6. Data are reported on a 6-leg ladder
with Lx = 48 at U/t = 8. Right panel: Same as in the left panel, but on a linear scale
for the static structure factor N(qx , 0).
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Figure 6: Left panel: Spin-spin correlations S(q) at the pitch vector
Q = [π(1 − 1/λ),π], divided by the lattice size L, as a function of 1/L at doping
δ = 1/p, with p = 12 (triangles), 8 (squares), 6 (circles). Right panel: Density-
density correlations N(q) at the pitch vector Q = (2π/λ, 0), divided by the lattice
size L, as a function of 1/L at doping δ = 1/p, with p = 12 (triangles), 8 (squares),
6 (circles). The value of λ for each doping is indicated in Table 1. Results are shown
for 6-leg ladders and U/t = 8.

wave function, with the ground state being a homogeneous superconductor up to δc ' 0.27,
as reported in Ref. [18].

Finally, we show in Fig. 7 the superconducting pair-pair correlations D(x), defined in
Eq. (12). We remark that the presence of a finite BCS pairing in the variational state does
not necessarily lead to superconductivity, which presence or absence is seen in the long-range
behavior of the pair-pair correlations D(x). For instance, the Mott insulating state at half
filling is characterized by a finite BCS pairing in the variational state and vanishing pair-pair
correlations at large distances [26]. From the analysis of the results, we deduce that supercon-
ductivity, in the presence of stripes, disappears for all the three dopings δ = 1/p with p = 12,
8, and 6, with D(x) ' 0 for large enough x . This result is in agreement with the insulating
(or weakly metallic) nature of the striped states. Once we move away from these dopings,
the system is metallic and superconducting correlations are present, even if suppressed with
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Figure 7: Superconducting pair-pair correlations D(x) as a function of x on the 6-leg
ladder at increasing dopings δ = 1/12, 1/10, 0.104, 1/8, 0.146, and 1/6, from top
left to right bottom. Two different wave functions are employed: the homogeneous
one of Eqs. (3) and (4) (red squares), and the striped one of Eq. (5) with uniform
pairing (black circles). The stripe wavelength is λ = 8 at δ = 1/12, 1/10, 0.104,
and 1/8, while it is λ = 6 at δ = 0.146 and 1/6. Data are reported at U/t = 8 and
L = 6 × 48 (except at doping δ = 1/10, where they are reported on a L = 6 × 80
lattice size), on a log-log scale in order to highlight the power-law decay.

respect to the homogeneous case. In particular, in Fig. 7, we present results for p = 10 and
for two generic dopings, δ = 0.104 and δ = 0.146. Our results in the presence of stripes are
shown with uniform superconductivity, but they would be very similar also for the modulated
one of Eq. (8).

4 Conclusions

In this work, we studied the possibility to stabilize charge and spin modulations (stripes) in the
Hubbard model in a non vanishing doping range, and their coexistence with superconductivity.
To this end, we employed variational wave functions that contain both Jastrow and backflow
correlations. Even though the calculations have been performed on ladder geometries with
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Figure 8: Schematic phase diagram of the doped repulsive Hubbard model at U/t = 8
on a 6-leg ladder. The graduated shading indicates the progressive weakening of the
stripe order.

L = M× Lx sites (with M = 2, 6, and 10, and Lx � M), the results are expected to be relevant
also for the thermodynamic limit. Indeed, as discussed in Ref. [31], the DMRG calculations
performed on ladders with M = 4 and 6 already contain the qualitatively correct features
of the two-dimensional limit. In addition, our results on the 16× 16 cluster (not shown) are
compatibles with the ones obtained on ladders. We also mention that we have performed some
preliminary calculations, based on Green’s Function Monte Carlo [50] with the Fixed-Node
approximation [51], confirming that at dopings δ = 1/p, with p even, the best variational state
contains stripes and confirming that at doping δ = 1/12 the best striped state has wavelength
λ= 8.

Our main results are summarized in Fig. 8. At doping δ = 1/8 and 1/6, we obtain insu-
lating stripes of wavelength λ = 1/δ (the full periodicity is doubled due to spin). The stripe
with λ = 8 appears to be particularly stable, since it corresponds to the lowest-energy state
also for δ = 1/10 and δ = 1/12. In the former case, the ground state shows a metallic behav-
ior with finite superconducting pair-pair correlations, which is compatible with the mismatch
between the doping level and the periodicity of the stripe; furthermore, we have verified that
also for the 10-leg case the best striped state at δ = 1/10 is metallic with a wavelength of
λ = 8. In the latter case, instead, it is not so clear whether the ground state is metallic or
insulating, since N(q)/qx may extrapolate either to zero (insulating) or to a small finite value
(metallic); moreover, superconducting correlations decay rapidly to zero with the distance x .
Intermediate (incommensurate) dopings are much more difficult to assess; however, we ob-
tain that a metallic stripe with λ = 8, coexisting with superconductivity, can be stabilized in
the whole doping range between δ = 1/12 and δ = 1/8. Also for δ > 1/8 we have indica-
tions of superconducting stripes, even if we cannot exclude that, for a sufficiently large lattice
size, a suitable striped state leading to an insulating ground state may be found. Finally, for
0.20® δ ® δc = 0.27, uniform superconductivity is present. Our results indicate that the best
place to observe a suppression of superconductivity due to stripes is indeed 1/8 doping. In
addition, we foresee that sizable effects should be also visible at δ = 1/6.

One important aspect of our calculations is that stripe order is driven by spin and not by
charge. Indeed, as discussed in the text, if we only include modulations in charge, but not in
spin, no stripe order can be stabilized in the variational optimization; instead, a striped ground
state is reached when only spin modulations are included in the variational state.
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