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Abstract

We discuss symmetry fractionalization of the Lorentz group in (2+1)d non-spin quantum
field theory (QFT), and its implications for dualities. We prove that two inequivalent non-
spin QFTs are dual as spin QFTs if and only if they are related by a Lorentz symmetry
fractionalization with respect to an anomalous Z2 one-form symmetry. Moreover, if the
framing anomalies of two non-spin QFTs differ by a multiple of 8, then they are dual as
spin QFTs if and only if they are also dual as non-spin QFTs. Applications to summing over
the spin structures, time-reversal symmetry, and level/rank dualities are explored. The
Lorentz symmetry fractionalization naturally arises in Chern-Simons matter dualities
that obey certain spin/charge relations, and is instrumental for the dualities to hold
when viewed as non-spin theories.
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1 Introduction

Symmetry fractionalization in quantum field theory (QFT) is a general phenomenon where
some massive particles (anyons) transform in projective representations of certain zero-form
global symmetry G, while local operators are in linear representations of G. In other words,
the massive particles, or more precisely the line operators, carry fractional symmetry charges.
The fractional quantum Hall effect is a classic example where the anyons carry fractional U(1)
charges (see e.g. [1]).

The symmetry fractionalization is particularly interesting when the symmetry group is
taken to be the Lorentz group SO(D)Lorentz in D dimensional Euclidean spacetime. The projec-
tive representations of the Lorentz group are classified by H2(SO(D)Lorentz, U(1)) = Z2, where
the nontrivial projective representation corresponds to the fermion. An example of Lorentz
symmetry fractionalization in (3+1)d is discussed in [2–5] for the pure U(1) gauge theory.
The theory has line operators given by combinations of the Wilson lines (electric particle) and
the ’t Hooft lines (magnetic monopole), and they transform under the U(1) electric and the
U(1) magnetic one-form global symmetries [6]. The different fractionalizations of Lorentz
symmetry (without time-reversal) correspond to different ways of changing the spin of the
particles by 1

2 [2, 3]. For instance, the following transformation relates different symmetry
fractionalizations:

Wilson lines are bosons→Wilson lines with even/odd charges are bosons/fermions .

These different choices correspond to activating different backgrounds of the U(1)×U(1) one-
form symmetry expressed in terms of certain discrete gravitational background fields [4]. Dif-
ferent symmetry fractionalizations can have different ’t Hooft anomalies. For instance, in the
Maxwell theory with vanishing θ angle, the theory is known to have a gravitational anomaly
if both the basic electric and magnetic particles are fermions (as opposed to bosons) [4,7–10],
which originates from the anomaly of the one-form symmetry [6].1 As we will see later, all of
the above features have counterparts in (2+1)d.

In this paper, we discuss symmetry fractionalization for the Lorentz group of bosonic/non-
spin (2+1)d QFT with a Z2 one-form symmetry. We will focus on time-preserving Lorentz
symmetry, so the theory does not need to be time-reversal invariant. More specifically, the
Lorentz symmetry fractionalization is realized by activating a nontrivial Z2 one-form symme-
try background using the Lorentz group background fields. The Lorentz symmetry fractional-
ization modifies the spins and statistics of the anyons (while leaving the local operator data

1See [9,11–13] for related works in (3+1)d.
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invariant), and defines a nontrivial map F from a non-spin QFT to another:

F : non-spin QFT→ non-spin QFT . (1.1)

We will call F the fractionalization map. In some special cases, F maps the non-spin QFT back
to itself and can become a zero-form global symmetry of the theory (see Section 2.2 for the
example of the twisted Z2 gauge theory). If the theory does not have a Z2 one-form symmetry,
then the fractionalization of Lorentz symmetry is unique and there is no non-trivial map F.

In (2+1)d, non-spin topological quantum field theories (TQFT) are described by modular
tensor category [14–17].2 The data of modular tensor category are characterized by fusions
and braidings of the anyons, which obey stringent constraints such as the pentagon and the
hexagon identities. The symmetry fractionalization in (2+ 1)d TQFT has been systematically
studied in [18–23]. Applying the Lorentz symmetry fractionalization to a non-spin TQFT, the
fractionalization map F produces another non-spin TQFT where the spins of some anyons are
shifted by 1

2 , while the other TQFT data (such as the fusion algebra and the Hopf braiding
of anyons) remain invariant. We will discuss various examples of non-spin TQFTs related by
Lorentz symmetry fractionalizations.

The fractionalization map has an interesting connection to dualities between spin and non-
spin QFTs. There are examples of QFTs that are dual as spin theories, but inequivalent as non-
spin theories. For example, the Z2 gauge theory (Z2)0 and the Spin(8)1 Chern-Simons theory
are two such non-spin QFTs. What is the relation between two such non-spin QFTs? In Section
4.1, we prove our main theorem: two inequivalent non-spin QFTs are dual as spin QFTs if and
only if they have a Z2 one-form symmetry and are related by the corresponding fractionalization
map. Moreover, if the framing anomalies of two non-spin QFTs differ by a multiple of 8, then they
are dual as spin QFTs if and only if they are also dual as non-spin QFTs.

We further discuss uplifts of a spin TQFT to non-spin TQFTs in (2+1)d. Starting from a spin
TQFT, one obtains 16 distinct non-spin TQFTs by summing over the spin structures weighting
with different invertible spin TQFTs. We show that the 16 non-spin TQFTs are pairwise related
by a fractionalization map, therefore there are only 8 distinct TQFTs when viewed as spin
theories. We further explore the implications of our theorem for time-reversal symmetry and
level/rank dualities of non-spin TQFTs.

Rather than being a mathematical artifact, the Lorentz symmetry fractionalization arises
naturally in Chern-Simons matter dualities in (2+1)d. In many infrared dualities, the boson
and fermion fields obey certain spin/charge relation in the ultraviolet. In these cases, the du-
alities can be formulated without choosing a spin structure, despite the appearance of fermion
fields in the Lagrangian. The spin/charge relation implies that the gauge bundle in the ultra-
violet is twisted by the Lorentz group. In the infrared, this results in a fractionalization map
for the TQFTs when viewed as non-spin theories. The presence of the fractionalization map
resolves some seeming mismatches of the dualities when viewed as non-spin theories.

The rest of the paper is organized as follows. In Section 2, we define and explore various
basic properties of the fractionalization map. Various examples of fractionalization maps on
TQFTs are presented in Section 2 and 3. In Section 4, we prove our main theorem on the
relation between spin dualities and the fractionalization map. We apply our theorem to time-
reversal symmetry and level/rank dualities for non-spin TQFTs. In Section 5, we discuss the
implication of the fractionalization map for non-spin Chern-Simons matter dualities. Appendix
A reviews the ZN gauge theories in (2+1)d. In Appendix B we discuss the relation between
the spin duality map and the Z2 one-form symmetry. In Appendix C we discuss another map
between non-spin QFTs related to different ways of summing over the spin structures in (1+1)d
and (2+1)d.

2We will ignore trivial non-spin TQFTs, whose framing anomalies are multiples of 8. They correspond to bosonic
gravitational Chern-Simons terms and thus do not contribute to the dynamics in 3d.
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2 Symmetry fractionalization map

We start with a brief review of symmetry fractionalization in (2+1)d. Consider a (2+1)d
QFT with a zero-form global symmetry G and a one-form global symmetry A. Symmetry
fractionalization in (2+1)d is a phenomenon where the line operators can be in projective
representations of G, while local operators are in linear representations of G. More specifically,
the symmetry fractionalization can be realized by activating theA background field B using the
pullback of an element in H2(G,A) by the G background field [11]. This nontrivial background
for the one-form symmetry inserts the symmetry generator – Abelian anyon– at the junction
of three G defects as specified by the chosen element in H2(G,A) [18,20–22].

The two-form background B attaches those lines that transform under the one-form sym-
metry with the “Wilson surface”

∮

B. For a line with one-form symmetry charge
q ∈ ÒA = Hom(A, U(1)), the symmetry fractionalization specified by η ∈ H2(G,A) attaches
the line with an additional surface that lives the (1+1)d symmetry-protected topological (SPT)
phase q(η) ∈ H2(G, U(1)). From the anomaly inflow mechanism, the SPT phase implies that
the anyon on the line operator acquires an additional projective representation of the G sym-
metry as specified by q(η).

2.1 Lorentz symmetry fractionalization

Consider a non-spin QFT T with an one-form symmetry A = Z2, generated by the anyon a.
Instead of taking the zero-form symmetry G to be an internal symmetry, we will consider the
case when G is the bosonic Lorentz group SO(3)Lorentz. It follows that different symmetry
fractionalizations are classified by H2(G,A) = H2(SO(3)Lorentz,Z2) = Z2[w2] where w2 is the
second Stiefel-Whitney class of the Lorentz bundle.

To change the symmetry fractionalization, we activate the two-form background field
B for the Z2 one-form symmetry using the background field of the bosonic Lorentz group
SO(3)Lorentz:

B = w2 . (2.1)

While the nontrivial background (2.1) does not change the spectrum and correlation functions
of local operators, it does modify the quantum numbers of the line defects, or the anyons. The
line operators carrying the Z2 charges now acquire additional projective representations of the
bosonic Lorentz group SO(3)Lorentz, i.e. the spins of the particles are shifted by 1

2 .
Explicitly, the spin h of an anyon b is shifted by

h[b]→ h[b] +
qa[b]

2
mod 1

=

�

invariant, if b is Z2 even
changed by 1

2 , if b is Z2 odd
,

(2.2)

where qa[b] = 0, 1 mod 2 is the charge of the anyon b under the Z2 one-form symmetry
generated by a.3 The fusion rules, F -symbols, Hopf braiding and other correlation functions
(except those that detect the spin of particles) are the same for different Lorentz symmetry
fractionalizations. Hence, the Lorentz symmetry fractionalization defines a map from one
non-spin QFT T to another non-spin QFT, which will be denoted as Fa[T ]. We will call this

3Our convention for the charge is that if an anyon b has Z2 one-form charge q, then it transforms under the
non-trivial element of the Z2 one-form symmetry by a phase (−1)q. The Z2 charge is fixed by the spins as

qa[b] = 2(h[b] + h[a]− h[ab]) mod 2 , (2.3)

where ab is the fusion of a and b.
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map the fractionalization map with respect to a Z2 one-form symmetry A generated by a. The
operational definition of the fractionalization map is given in (2.2).

In theory with general one-form symmetry A, the classification of Lorentz symmetry frac-
tionalizations is H2(SO(3)Lorentz,A) =

∏

i Z
(i)
2 [w2] with i labelling the independent Z2 gener-

ators in A. The classification corresponds to turning on backgrounds B(i) = w2 for different
Z2 subgroups of the one-form symmetry A. From the definition (2.1), it is clear that the frac-
tionalization map is a homomorphism with respect to the one-form symmetry. Explicitly, let
a1 and a2 be two Z2 one-form symmetries of T , then

Fa2
◦ Fa1

= Fa2a1
. (2.4)

The a2 ∈ F[T ] anyon on the left hand side is the image of a2 ∈ T under the fractionalization
map.

Throughout this paper, the dualities between non-spin theories hold up to some invertible
non-spin TQFTs (such as (E8)1) whose framing anomaly is a multiple of 8. Such invertible non-
spin TQFTs are equivalent to bosonic gravitational Chern-Simons terms 16nCSgrav for some
integer n, and thus do not affect the 3d dynamics. For this reason, we will only consider the
framing anomaly c mod 8.

2.2 Examples: Z2 gauge theories

Before we embark on a general discussion of the fractionalization map, we start with a couple
of simple examples of fractionalization maps of non-spin TQFTs.

Untwisted Z2 gauge theory (Z2)0 = Spin(16)1 Consider the untwisted Z2 gauge theory
(Z2)0, viewed as a non-spin TQFT. Note that the untwistedZ2 gauge theory can also be realized
as the Spin(16)1 Chern-Simons theory. There are four anyons: 1, f , e, m with fusion rules:

f × f = e× e = m×m= 1 , e×m= f , m× f = e , f × e = m . (2.5)

(In the convention of Appendix A, e = W1,0, m = W0,1, and f = W1,1.) There are three

one-form symmetries Z( f )2 ,Z(e)2 ,Z(m)2 generated by f , e, m, respectively. The spins and the Z2
charges are listed below

(Z2)0 = Spin(16)1 :

1 f e m
h 0 1

2 0 0
q f 0 0 1 1
qe 0 1 0 1
qm 0 1 1 0

(c = 0 mod 8) . (2.6)

Here qe = 0,1 mod 2 is the charge with respect to Z(e)2 , and so on.
Now we can apply the fractionalization map (2.2) with respect to each of the three Z2 one-

form symmetries. The fractionalization map with respect to Z(e)2 maps (Z2)0 back to itself, but

exchanging the anyons f and m. Similarly, the fractionalization map with respect to Z(m)2
maps (Z2)0 to itself and exchanges the anyons f and e. The more interesting map is the one
with respect to Z( f )2 : it maps (Z2)0 to Spin(8)1. The anyons and their spins of the Spin(8)1
Chern-Simons theory are

Spin(8)1 :

1 f e m
h 0 1

2
1
2

1
2

q f 0 0 1 1
qe 0 1 0 1
qm 0 1 1 0

(c = 4 mod 8) . (2.7)
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Spin(16)1 = (Z2)0

Spin(8)1
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(Z2)2

Spin(4)1Spin(12)1

Figure 1: The fractionalization maps of Z2 gauge theories. The number next to the
arrow labels the spin of the Z2 line used for the fractionalization map.

The fusion rules of Spin(8)1 are again given by (2.5).
To summarize:

F f [(Z2)0] ←→ Spin(8)1 ,

Fe,m[(Z2)0] ←→ (Z2)0 .
(2.8)

Conversely, we can start with Spin(8)1, and apply the fractionalization map with respect
to its one-form symmetries Z( f )2 ,Z(e)2 ,Z(m)2 . The Spin(8)1 theory has an S3 zero-form symmetry
permuting the three anyons f , e, m. Therefore, the fractionalization maps with respect to the
three one-form symmetries are identical, which take Spin(8)1 back to (Z2)0:

F f ,e,m[Spin(8)1] ←→ (Z2)0 . (2.9)

See the left figure of Figure 1 for the actions of the fractionalization maps.

Twisted Z2 gauge theory (Z2)2 = U(1)2 × U(1)−2 Consider the non-spin Z2 gauge theory
(Z2)2 with a Dijkgraaf-Witten twist [24]. It is equivalent to the semion-antisemion theory
U(1)2 × U(1)−2. We will label the lines Wne ,nm

by their electric and magnetic charges ne and
nm (see Appendix A for our conventions). There are four anyons, the trivial line 1 = W0,0,
the electric line W1,0, the magnetic line W0,1, and the dyonic line W1,1. The fusion rules are
Wne ,nm

Wn′e ,n′m
=Wne+n′e ,nm+n′m

, which is the same as (2.5). The spins and the Z2 charges are

(Z2)2 :

(ne, nm) (0, 0) (1, 1) (1, 0) (0, 1)
h 0 1

4 0 3
4

q(1,1) 0 1 1 0
q(1,0) 0 1 0 1
q(0,1) 0 0 1 1

(c = 0 mod 8) . (2.10)

The fractionalization maps with respect to the three one-form symmetries Z(1,1)
2 ,Z(1,0)

2 ,Z(0,1)
2

are
F(1,1)[(Z2)2] ←→ Spin(12)1 ,

F(1,0)[(Z2)2] ←→ (Z2)2 ,

F(0,1)[(Z2)2] ←→ Spin(4)1 .

(2.11)
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The Spin(N)1 TQFT with N = 0 mod 4 has four anyons 1, f , e, m with fusion rules (2.5). The
spins and their charges with respect to the one-form symmetries Z( f )2 ,Z(e)2 ,Z(m)2 are

Spin(N)1 (N = 0 mod 4) :

1 f e m
h 0 1

2
N
16

N
16

q f 0 0 1 1
qe 0 1 N

4
N
4 − 1

qm 0 1 N
4 − 1 N

4

(c =
N
2

mod 8) . (2.12)

Note that the fractionalization map with respect to m exchanges the spin 1
4 line with the spin

−1
4 line, which is the time-reversal symmetry of (Z2)2.

Conversely, the fractionalization maps of Spin(4)1 and Spin(12)1 are

F f [Spin(4)1] ←→ Spin(12)1 , F f [Spin(12)1] ←→ Spin(4)1 ,

Fe,m[Spin(4)1] ←→ Fe,m[Spin(12)1] ←→ (Z2)2 .
(2.13)

See the right figure of Figure 1 for the actions of the fractionalization maps.

2.3 Framing anomaly

Since the symmetry fractionalization activates the one-form symmetry background A, the
anomaly of the one-form symmetry gives rise to an anomaly of the zero-form symmetry G
through symmetry fractionalizations [11]. In the case of the Lorentz symmetry fractionaliza-
tion (2.1), the one-form symmetry anomaly gives rise to the framing anomaly. Here we discuss
the change of the framing anomaly under the fractionalization map.

Suppose theory T has a Z2 one-form symmetry, then the symmetry is generated by a spin
p
4 line for some integer p, and the ’t Hooft anomaly of the one-form symmetry is captured by
the (3+1)d SPT term: [25]

2π
p
4

∫

M4

P(B) , (2.14)

where B is the two-form background Z2 gauge field and P is the Pontryagin square operation
[26] (see, for example, [11, 27, 28] for physics reviews). If we set B = w2(SO(3)Lorentz), the
(3+1)d SPT becomes 2π p

4

∫

M4
P(w2). The latter is related to the first Pontryagin class p1

by [29]
p1 = P(w2) + 2w4 mod 4 , (2.15)

where 2w4 is regarded as a mod 4 class via the inclusion map Z2 ,−→ Z4. It is known that
w4

1 + w2
2 + w4 = 0 on any closed four-manifold [30]. On an oriented four-manifold, we then

have
P(w2) = −p1 mod 4 . (2.16)

Hence under the fractionalization map, F[T ] gains the following (3+1)d SPT for the framing
anomaly:

−2π
p
4

∫

M4

p1 = −
p

48π

∫

M4

trR∧ R . (2.17)

In other words, the framing anomaly is changed by

∆c ≡ c(F[T ])− c(T ) = −2p mod 8 . (2.18)
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2.4 General case

Consider a 3d non-spin theory T with a Z2 one-form symmetry generated by a symmetry line
operator of spin p

4 mod 1 for some integer p [25]. The Z2 gauge theory (Z2)−2p has a Z2
one-form symmetry line whose spin is − p

4 mod 1. The latter acts nontrivially on lines carrying
electric charges. We can therefore gauge the diagonal Z2 one-form symmetry of T × (Z2)−2p.
The gauged theory is dual to T [25,31]

T ←→
T × (Z2)−2p

Z2
. (2.19)

The Z2 one-form symmetry on the left hand side is described on the right hand side by the
Z2 one-form symmetry generated by the magnetic line in the Z2 gauge theory (Z2)−2p, which
also has spin p

4 mod 1 (since it has zero electric charge, this line survives the Z2 quotient on
the right hand side).

If we apply the fractionalization map on (2.19), it acts on the right hand side using the
spin p

4 line of (Z2)−2p, which gives a closed form expression for F[T ]:

F[T ] ←→
T × Spin(−4p)1

Z(s)2

, (2.20)

where we have used F[(Z2)−2p] ↔ Spin(−4p)1 from Section 2.2. The gauged one-form

symmetry Z(s)2 is generated by the tensor product of the spin p
4 line of T and the spin − p

4
line in the spinor representation of Spin(−4p)1. The superscript (s) is to remind the reader
that the Z2 symmetry involves the line in the spinor representation of Spin(−4p)1. Note that
Spin(−4p)1 ↔ Spin(4p)−1 (up to trivial TQFTs of c ∈ 8Z such as (E8)1). Indeed, the chiral
central charge of the right hand side is c(T )− 2p, consistent with the general rule (2.18).

Let us comment on some properties of the fractionalization map using the expression
(2.20):

• The fractionalization map F leaves the theory invariant if and only if the Z2 one-form
symmetry is generated by a line of integer spin (i.e. if the one-form symmetry is non-
anomalous [25]):

F[T ] ←→ T , (p = 0) . (2.21)

This can be seen from (2.20) using T = T ×(Z2)0
Z2

.

• When the theory has multiple Z2 one-form symmetries, the fractionalization maps with
respect to Z2 lines of different spins produce different theories. Since the spin can take
at most four distinct values, the fractionalization map can at most connect 4 non-spin
theories. In Figure 1 we have shown examples of fractionalization maps that connect 2
and 3 different non-spin theories.

• The Z(s)2 quotient on the right hand side of (2.20) gauges the diagonal one-form symme-
try that acts non-trivially on the fermion line f of Spin(−4p)1 in the vector representa-
tion. Thus F[T ] is related to T by attaching the Z(s)2 odd lines in T with the fermion line
f of Spin(−4p)1 in the vector representation. The correlation functions of the fermion
lines f are trivial (except for the dependence on the framing of the lines [32]). It follows
that the correlation functions of F[T ] can only differ from T by the statistics of the lines.
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2.5 Map on the 2d chiral algebras

3d TQFTs are associated with 2d chiral algebras. It is then natural to ask what is the operation
on the chiral algebra that corresponds to the fractionalization map. The Z2 one-form sym-
metry in 3d corresponds to a Z2 simple current in the chiral algebra, i.e. primary operators
with Abelian fusion algebra [33–35]. Gauging a one-form symmetry in 3d corresponds to an
extension of the chiral algebra by the Z2 simple current [36,37]. Thus, using (2.20), the frac-
tionalization map induces the following operation on the chiral algebra: first we tensor it with
the chiral algebra of Spin(−4p)1 (4p right-moving 2d Majorana fermions), and then take the
Z2 extension of the tensor product chiral algebra. Note that there can be multiple 2d chiral
algebras that correspond to the same 3d TQFT. Here we only describe a map that corresponds
to the 3d fractionalization map.

3 More examples

3.1 U(1)±2 Chern-Simons theory

Consider the U(1)2 Chern-Simons theory, viewed as a non-spin TQFT. There are only two
anyons 1, s, with s× s = 1 generating a Z2 one-form symmetry. Their spins and Z2 charges qs
are

U(1)2 :
1 s

h 0 1
4

qs 0 1
(c = 1 mod 8) . (3.1)

The fractionalization map modifies the spin of s from 1
4 to 1

4 +
1
2 =

3
4 . We therefore end up

with the U(1)−2 Chern-Simons theory:

U(1)−2 :
1 s̄

h 0 3
4

qs̄ 0 1
(c = −1 mod 8) . (3.2)

Conversely, the fractionalization map of U(1)−2 is U(1)2. In summary,

Fs[U(1)2] ←→ U(1)−2 , Fs̄[U(1)−2] ←→ U(1)2 . (3.3)

3.2 Spin(N)1 Chern-Simons theory

Let us first review the anyons in the (non-spin) Spin(N)1 Chern-Simons theory. See, for ex-
ample, Appendix C of [38] or Table 1-3 of [15] for reviews. The TQFT is described by N chiral
Majorana edge fermions in 2d.

• If N is odd, there are three anyons 1, f ,σ with fusion rules:

f × f = 1 , f ×σ = σ× f = σ , σ×σ = 1+ f . (3.4)

There is a Z2 one-form symmetry generated by the spin 1
2 line f . The spins and the Z2

charges of the anyons are

Spin(N)1 (N : odd)
1 f σ

h 0 1
2

N
16

q f 0 0 1
(3.5)

For example, Spin(1)1 is the non-spin Ising TQFT, and Spin(3)1 = SU(2)2.
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• If N = 0 mod 4, there are four anyons 1, f , e, m. The one-form symmetry is Z2×Z2. The
spins and the Z2 charges are given in (2.12). The fusion rules are given in (2.5). For
example, Spin(16)1 = (Z2)0.

• If N = 2 mod 4, there are four anyons 1, f , a, ā, obeying the fusion rules

f × f = a× ā = 1 , a× f = ā , ā× f = a , a× a = ā× ā = f . (3.6)

The one-form symmetry is Z4. The spins and the charges of the Z2 one-form symmetry
subgroup (generated by f ) are

Spin(N)1 (N = 2 mod 4) :
1 f a ā

h 0 1
2

N
16

N
16

q f 0 0 1 1
. (3.7)

For example, Spin(2)1 = U(1)4.

Fractionalization map For any N , the fractionalization map with respect to the spin 1
2 line

f is
F f [Spin(N)1] ←→ Spin(N + 8)1 . (3.8)

The chiral central charge of Spin(N)1 is c = N
2 mod 8, which is shifted as (2.18) under the

fractionalization map. If N = 0 mod 4, the one-form symmetry is Z2 ×Z2, so there are other
Z2 symmetries that we can perform the fractionalization map. This was discussed in (2.13).

4 Application I: TQFT duality

In this section we apply the fractionalization map to dualities between spin and non-spin
TQFTs. We also discuss implications of the fractionalization maps for time-reversal symme-
try and level/rank dualities.

Since the Lorentz fractionalization map only changes the line operators data but not those
of the local operators, its action is most drastic in TQFTs. For this reason we will focus on TQFTs
in this section. However we emphasize that the discussions and conclusions of this section can
be generalized straightforwardly to the case of general bosonic QFTs in 3d, and the dualities
can be infrared dualities instead of exact dualities. In the generalization to bosonic quantum
field theory, the framing anomaly in the following discussions can be defined by the coefficient
of the parity-odd contact term in the stress tensor two-point function [39,40]. This coefficient
can only be changed by a multiple of 8 by adding the bosonic gravitational Chern-Simons term
16nCSgrav with integer n.

4.1 Lifting spin dualities with the fractionalization map

A non-spin QFT gives rise to a spin QFT by tensoring with the invertible spin TQFT {1, f }where
f is the transparent fermion line of spin 1

2 . The TQFT {1, f } can be described by the spin Chern-
Simons theory SO(L)1, whose chiral central charge c = L/2 depends on L but not the line op-
erators. It can also be expressed as the gravitational Chern-Simons term SO(L)1↔−LCSgrav
and the transparent fermion line f (in the vector representation of SO(L)) is identified with a
gravitational line. In particular, SO(L)1 × SO(L′)1↔ SO(L + L′)1↔−(L + L′)CSgrav.
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Lemma 1 Suppose two non-spin QFTs T1,T2 are dual as spin QFTs, i.e.

T1 × SO(0)1 ←→ T2 × SO(L)1 , (4.1)

where L = 2∆c = 2(c(T1)− c(T2)) to balance the difference in chiral central charge of T1,T2.
We will show the following:

• ∆c ∈ 2Z.

• If ∆c 6∈ 8Z, then T1,T2 must have a Z2 one-form global symmetry generated by a line of
spin ±∆c/8, respectively.4

With Lemma 1, we prove our main theorem:

Theorem 1 Let T1,T2 be two non-spin QFTs with ∆c = c(T1)− c(T2).

• When ∆c /∈ 8Z, the two non-spin QFTs T1,T2 are dual as spin QFTs (4.1) if and only if

F[T1] ←→ T2, T1 ←→ F[T2] , (4.2)

with respect to the Z2 one-form symmetries in Lemma 1.

• When∆c ∈ 8Z, T1,T2 are dual as spin QFTs (4.1) if and only if they are dual as non-spin
QFTs, i.e. T1↔ T2.

The proof relies on summing over the spin structures in a spin QFT (see Section 4.2 for
more details). For our application, it is sufficient to know the result for the spin Chern-
Simons theory SO(M)1. In SO(M)1, changing the spin structure by a classical Z2 gauge field
can be identified with changing the background for the Z2 magnetic symmetry generated by
exp(iπ

∮

wSO(M)
2 ) [31, 41]. Thus summing over the spin structures in SO(M)1 produces the

non-spin Chern-Simons theory Spin(M)1. In particular, the fermion line of SO(M)1 in the vec-
tor representation also belongs to the lines in Spin(M)1, while there are new lines of Spin(M)1
in the spinor representations (for even M there are two such lines related by charge conjuga-
tion, and they have spin M

16 mod 1).
Summing over the spin structures in the duality (4.1) (without tensoring with extra invert-

ible spin TQFT SO(r)1) produces the following duality for non-spin QFT:

T1 × (Z2)0 ←→ T2 × Spin(L)1 , (4.3)

where we used the property that T1,T2 themselves are independent of the choice of the spin
structure.

Let us match the one-form symmetry in the dualities (4.1) and (4.3). Since SO(M)1 has the
Z2 fusion algebra for any M , we learn that T1,T2 must have the same one-form symmetry. On
the other hand, the one-form symmetry of Spin(M)1 depends on M mod 4.5 Thus matching
the one-form symmetry in the duality (4.3) implies L = 0 mod 4. It follows that the difference
between framing anomalies of T1,T2 is an even integer:

∆c = c(T1)− c(T2) = L/2 ∈ 2Z . (4.5)

4When ∆c ∈ 8Z, there is a Z2 one-form symmetry generated by an integer spin line if and only if the duality
map in (4.1) mixes with the transparent line of SO(r)1. See Appendix B.

5 The one-form symmetry for Spin(M)1 is given by the center of Spin(M):

A(Spin(M)1) =







Z2 odd M
Z4 M = 2 mod 4
Z2 ×Z2 M = 0 mod 4

. (4.4)
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The duality (4.3) has additional line operators in comparison with the duality (4.1) from
(Z2)0 and Spin(L)1. In particular, (Z2)0 has an electric line e of integer spin that generates
a Z2 one-form symmetry. On the other hand, Spin(L)1 has four lines, two of them are in
SO(L)1 and the other two have spin L

16 mod 1. Thus in order to match the generator of
the one-form symmetry on both sides, if L 6∈ 16Z then theory T2 must have a Z2 one-form
symmetry generated by a line of spin − L

16 mod 1:

∆c =
L
2
/∈ 8Z ⇒ ∃ a Z2 line in T2 of spin h= −

∆c
8

mod 1 . (4.6)

Denoting the spin by p
4 , this corresponds to p = −∆c/2 = −L/4 mod 4. Similarly, if ∆c /∈ 8Z

then T1 must have a Z2 one-form symmetry generated by a line of spin ∆c/8 mod 1. This
concludes the proof for Lemma 1.

We proceed to prove Theorem 1. We can gauge the Z2 one-form symmetry generated by
the integer spin electric line of (Z2)0 in (4.3) and produce a new duality

T1 ←→
T2 × Spin(L)1
Z2

, (4.7)

where we used the property that gauging the Z2 Wilson line in (Z2)0 makes the theory trivial.
When ∆c = L/2 /∈ 8Z, the quotient on the right hand side gauges a diagonal one-form

symmetry, whose generator is the product of the line in T2 of spin − L
16 mod 1 and the line in

Spin(L)1 of spin L
16 mod 1. Thus from (2.20) and Spin(L)1↔ Spin(16− (−L))1, the duality

(4.7) is
T1 ←→ Fa[T2] , (4.8)

where a is the line in T2 of spin − L
16 that generates Z2 one-form symmetry.

When ∆c = L/2 ∈ 8Z, the theory T2 may or may not have a Z2 one-form symmetry
generated by a line of integer spin (see Appendix B). Since Spin(L)1 ↔ (Z2)0, using the
duality (2.19) we find that in both cases

T1 ←→ T2 , (∆c ∈ 8Z). (4.9)

In particular, if T2 has a line a of integer spin, then (4.8) reduces to (4.9) since Fa[T2]↔ T2.
Therefore, assuming the spin duality (4.1), we find that the non-spin QFTs are themselves
dual if and only if their framing anomaly differs by a multiple of 8. It is also necessary since
an invertible non-spin TQFT has framing anomaly a multiple of 8.

4.2 Summing over the spin structures vs. gauging (−1)F

Above we have discussed how a non-spin TQFT gives rise to a spin TQFT by tensoring with an
invertible spin TQFT SO(r)1. Here we discuss the opposite process of uplifting a spin TQFT
to non-spin TQFTs (see, for example, Appendix C of [38] for a review). As we will see, the
resulting non-spin TQFTs are pairwise related by the fractionalization map F.6

Starting with a spin TQFT eT , there are 16 distinct ways to sum over the spin structures. Let
the partition function of eT on a three-manifold with spin structure s be Zs[eT ]. The 16 distinct
ways of summing over the spin structures correspond to weighing the sum by the partition
function of SO(r)1 with different r mod 16:

Z[B(r)] =
∑

s

Zs[SO(r)1]Zs[eT ] , (4.10)

6We thank Nathan Seiberg for discussions on this point.
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T̃ × SO(r)1

T̃

B(r)

B(0)

×SO(r)1
×Spin(r)1

Z2∑
s

∑
s

Figure 2: Starting from a spin TQFT eT , we obtain 16 distinct non-spin TQFTs B(r)
from summing over the spin structures. The 16 B(r) are related by (4.12).

where we denote the resulting non-spin TQFT as B(r), with B(r+16) = B(r). The non-spin TQFT
B(r) has an emergent anomalous Z2 one-form symmetry generated by a spin 1

2 anyon [42].
How are the 16 non-spin TQFTs B(r) related to each other? Let us first rewrite (4.10) as

Z[B(r)] =
∑

b(2)

∑

s1,s2

Zs1
[SO(r)1]Zs2

[eT ] (−1)
∫

(s1−s2)∪b(2) , (4.11)

where b(2) is a dynamical Z2 two-form gauge field coupled to the Z2 one-form connection
s1− s2.7 The right hand side can be interpreted as summing over the spin structures in SO(r)1
and eT separately, and coupling both of them to a dynamical Z2 two-form gauge field b(2).
That is, we gauge the diagonal Z2 one-form symmetry. Hence, the non-spin TQFT B(r) can be
expressed as

B(r) ←→
B(0) × Spin(r)1
Z(v)2

, (4.12)

where the gauged Z(v)2 one-form symmetry is generated by the tensor product of the spin 1
2

lines of B(0) and the spin 1
2 line in the vector representation of Spin(r)1. Importantly, this is

generally a different gauging compared to the closed form expression (2.20) for the symmetry
fractionalization F: the latter involves the line in the spinor representation of Spin(−4p)1.
See Appendix C for more discussions on (4.12) versus the fractionalization map (2.20). We
summarize the relation between the spin TQFT eT and the non-spin TQFTs B(r) obtained from
summing over the spin structures in Figure 2.

There is something special when r = 8. In Spin(8)1, the Z2 lines in the vector and the
two complex conjugate spinor representations all have spin 1

2 , and there is a S3 zero-form
symmetry permuting them. Hence (4.12) for r = 8 coincides with (2.20) for p = 2, and we
find that B(8) is related to B(0) by a fractionalization map F. More generally, we have

B(r+8) ←→ F[B(r)] , (4.13)

where F uses the Z2 one-form symmetry generated by a line of spin 1
2 (in the description

(4.12) this line is the fermion line of Spin(r)1 in the vector representation). For example, if
eT = SO(0)1, then B(r) = Spin(r)1. Indeed, Spin(r)1 obeys (4.13) as discussed in (3.8).

Therefore we have shown that the 16 distinct non-spin TQFTs B(r) are pairwise related by
a fractionalization map F. By Theorem 1, this implies that B(r+8) and B(r) are dual as spin
TQFTs (4.1):

B(r+8) × SO(8)−1 ←→ B(r) × SO(0)1 (4.14)

as spin TQFTs. The above also follows from (4.12) and the spin duality

Spin(r + 8)1 × SO(8)−1 ←→ Spin(r)1 × SO(0)1 , (4.15)

7Note that the difference between any two spin structures is a Z2 gauge field.
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where we have used the fact that Spin(r)1 as a spin TQFT is dual to the fermionic Z2 gauge
theory with level −r ∼ −(r + 8) [31]. We conclude that, when viewed as spin theories, there
are only 8 (instead of 16) distinct TQFTs from summing over the spin structures of a seed spin
TQFT eT .

These 8 spin TQFTs are obtained by gauging the zero-form symmetry (−1)F of eT . In-
deed, there are 8 distinct ways to gauge a Z2 zero-form symmetry in (2+1)d, classified by
Ω3

spin(BZ2) = Z8 [43–46]. The difference between gauging (−1)F versus summing over the
spin structures is that the former does not project out the transparent fermion line, while the
latter does. Consequently, gauging (−1)F of a spin TQFT gives 8 distinct spin TQFTs, while
summing over the spin structures of a spin TQFT gives 16 distinct non-spin TQFTs.

As discussed in [42], summing over the spin structures in (2+1)d gives a non-spin theory
with an anomalous Z2 1-form symmetry generated by a fermion line. On the other hand,
gauging Z2 (−1)F 0-form symmetry in (2+1)d gives a dual Z2 1-form symmetry that is non-
anomalous i.e. the symmetry line is a boson. And one can gauge this 1-form symmetry to
recover the original theory. This boson is the composite of the transparent fermion line present
in spin TQFTs and the fermion line arises from summing over the spin structures.

Let us perform the gauging of (−1)F more explicitly. The Z2 spin SPT in (2+1)d is classified
by r mod 8, whose partition function is [31]:

e−i fr [A(1)] =
Zs+A(1)[SO(r)1]

Zs[SO(r)1]
, (4.16)

where A(1) is the one-form background Z2 gauge field. Starting with a spin TQFT eT , different
ways of gauging (−1)F give 8 distinct spin TQFTs F (r) whose partition functions are

Z[F (r)] =
∑

a(1)
Zs+a(1)[eT ]

Zs+a(1)[SO(r)1]
Zs[SO(r)1]

= Z[B(r)]Zs[SO(r)−1] , (4.17)

where we sum over dynamical Z2 one-form gauge field a(1). That is, the 8 spin TQFTs F (r)
(obtained from gauging (−1)F ) are related to the 16 non-spin TQFTs B(r) (obtained from
summing over the spin structures) as

F (r) = B(r) × SO(r)−1 . (4.18)

Indeed, from (4.14) we have F (r+8) = F (r).
Let us contrast these two operations in a specific example where eT = U(1)1 = SO(2)1.

The (−1)F symmetry is identified with the Z2 subgroup magnetic U(1) zero-form symmetry
[31, 41]. Summing over the spin structures (without tensoring additional SO(r)1) gives the
non-spin TQFT B(0) = Spin(2)1 = U(1)4. On the other hand, gauging the (−1)F zero-form
symmetry (with trivial 3d fermionic Z2 SPT) corresponds to the following Lagrangian

1
4π

ada+
1

2π
ad b+

2
2π

bdc , (4.19)

where a, b, c are all dynamical U(1) gauge fields. Here a is the U(1) gauge field for eT = U(1)1,
b is the dynamical gauge field for the (−1)F symmetry, and c is a multiplier enforcing
b to be a Z2 gauge field. Let us do the following sequence of change of variables:
first a → a − b, then b → b + 2c. The gauged theory is then recognized as
F (0) = U(1)1 × U(1)−1 × U(1)4 = SO(0)1 × Spin(2)1. The latter F (0) is a spin TQFT which
is different from the non-spin TQFT B(0) = Spin(2)1 obtained from summing over the spin
structures. See [20] for further examples of gauging the (−1)F symmetry of spin TQFTs (not
to be confused with summing over the spin structures).
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4.3 Implications for time-reversal symmetry

Let us discuss the implication of Lemma 1 and Theorem 1 for theories with time-reversal
symmetry.

Corollary 1 Let T be a non-spin QFT with framing anomaly c. Suppose it is time-reversal
invariant as a spin QFT, then c ∈ Z. Furthermore,

• If c 6∈ 4Z, then the theory must have a Z2 Abelian anyon of spin c
4 .

• c ∈ 4Z if and only if T is a time-reversal invariant non-spin QFT.

We prove the corollary in the following. Let T ′ (whose framing anomaly is −c mod 8) be
the time-reversal image of the non-spin QFT T . By assumption, T and T ′ are dual as spin
QFTs (4.1). By Lemma 1, ∆c = c − (−c) ∈ 2Z, i.e. c ∈ Z.

The second and the third statements follow directly from Lemma 1 and Theorem 1. When
∆c = 2c 6∈ 8Z the theory has a Z2 one-form symmetry generated by a line of spin ∆c

8 =
c
4 by

Lemma 1. By Theorem 1, T ↔ T ′ if and only if ∆c = 2c ∈ 8Z.
As an application, consider a time-reversal (or particle-hole) invariant fermionic system in

(2+1)d (for instance, it can be a system of electrons). Suppose the system flows to the ten-
sor product of a time-reversal symmetric fermionic theory and an extra emergent intrinsically
bosonic system with c 6∈ 4Z. Then the bosonic system must have an anomalous Z2 one-form
symmetry generated by an Abelian anyon of spin c

4 , or the time-reversal (particle-hole) sym-
metry must be spontaneously broken.

Examples of this are QCD3 with fermions in the tensor representation as discussed in
[31, 47–49]. Let us take for instance the UV theory to be SU(N)0 with one massless adjoint
Majorana fermion. We take N to be even to avoid the standard parity anomaly, and the the-
ory enjoys the time-reversal symmetry. The UV theory has a Z2 subgroup of the ZN center
one-form symmetry, whose ’t Hooft anomaly can be computed by giving the fermion a large
mass (while preserving the one-form symmetry). The resulting theory is SU(N)±N/2 viewed
as a spin TQFT and the Z2 symmetry line has spin ±N−1

4 (N/2)
2 (they differ by the transparent

fermion line which is present in any spin theory). Thus for N = 2 mod 4 the UV theory SU(N)0
with one massless adjoint fermion has an anomalous Z2 one-form symmetry generated by a
semion (or anti-semion). The theory has N = 1 supersymmetry that is expected to be spon-
taneously broken [50], and thus the IR theory is expected to contain a Goldstino, which is
time-reversal invariant.

The theorem we proved implies that if the IR theory contains an extra non-spin QFT whose
one-form symmetry matches that of the UV theory8, and if it preserves the time-reversal sym-
metry, then the bosonic QFT must have framing anomaly

c
4
=

N − 1
4

mod
1
2

for N = 2 mod 4 . (4.20)

Namely, the framing anomaly must be an odd integer. In particular, such non-spin theory
cannot be a non-chiral TQFT with vanishing framing anomaly. This is consistent with the pro-
posal in [47] based on fermion/fermion dualities, where the TQFT U(N/2)N/2,N has framing
anomaly c = (N2+4)/8. It is an intrinsically non-spin TQFT when N = 2 mod 4 where c is an
odd integer, while for N = 0 mod 4 it is an intrinsically spin TQFT where c is a half integer.

8 Here we assume the absence of accidental Z2 one-form symmetries in the IR.
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4.4 Level/rank dualities for non-spin TQFTs

The level/rank duality of Chern-Simons theories is usually phrased as the equivalence of two
spin TQFTs [31, 51–53]. When the two TQFTs can also be formulated as non-spin theories,
our Theorem 1 implies that they are related by a fractionalization map. Furthermore, when
∆c ∈ 8Z, the spin level/rank duality implies that the two TQFTs are also dual as non-spin
theories.

For example, the spin level/rank dualities imply that the following non-spin Chern-Simons
theories T1,T2 satisfy T1 ↔ F[T2] where the map uses the center Z2 (subgroup) one-form
symmetry:

T1↔ F[T2] :

T1 T2 condition ∆c
U(N)K ,K+N U(K)−N ,−N−K odd N , K NK + 1

SU(N)K U(K)−N even N NK
SO(N)K SO(K)−N even N , K NK/2
Sp(N)K Sp(K)−N any N , K 2NK

. (4.21)

In special cases when∆c ∈ 8Z, the Chern-Simons theories are also dual as non-spin theories:

T1↔ T2 :

T1 T2 condition
U(N)K ,K+N U(K)−N ,−N−K NK = 7 mod 8

SU(N)K U(K)−N even N ; NK = 0 mod 8
SO(N)K SO(K)−N even N , K; NK = 0 mod 16
Sp(N)K Sp(K)−N NK = 0 mod 4

. (4.22)

The above list agrees and generalizes the results of [52]. Substituting the case K = N in the
above list we find the time-reversal invariant bosonic TQFTs as discussed in [52].9

5 Application II: Chern-Simons matter duality

The Lorentz symmetry fractionalization has a natural application to Chern-Simons matter dual-
ities in (2+1)d. In many examples of dualities, the Lagrangian fields obey certain spin/charge
relation. For example, bosons/fermions are even/odd under the Z2 center of the gauge group
G, respectively. Therefore, despite the appearance of fermions in the Lagrangian, the gauge-
invariant local operators are all bosonic and the theory can be formulated on manifolds without
a choice of the spin structure. In these cases, the Chern-Simons matter dualities may be viewed
as non-spin dualities.

More precisely, the gauge group and the Lorentz group has the following global structure

G × Spin(3)Lorentz

Z2
, (5.1)

where Spin(3)Lorentz is the double-cover of the Lorentz group, and the Z2 is the diagonal
subgroup of the center for G and that for Spin(3)Lorentz. In the ultraviolet QFT, there are
generally fermion matter fields that transform non-trivially under the Z2 center of the gauge
group G, so the latter is generally not a one-form symmetry. In the infrared phase when we
give the fermion fields large masses, they decouple and the Z2 center of the gauge group does
not act on any matter fields at low energies. Thus the low energy theory enjoys an emergent

9We remark that such a time-reversal symmetry often combines with a Z2 one-form symmetry into a 2-group
(which is referred to as an H3 obstruction in [54]).
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Z2 one-forms symmetry10 that is inherited from the center of the ultraviolet gauge group. The
twisting (5.1) in the ultraviolet activates a non-trivial background for the two-form background
field B of the one-form symmetry, B = w2(SO(3)Lorentz), implementing the Lorentz symmetry
fractionalization.

Let us consider the following boson/fermion duality [55,56]:

U(1)2 +φ ←→ U(1)− 3
2
+ψ . (5.2)

The left hand side is manifestly a bosonic theory which does not require a choice of the spin
structure. On the right hand side, the fermion ψ has charge +1 and obeys the spin/charge
relation with respect to the dynamical U(1) gauge field, so the right theory is also bosonic.
Therefore, (5.2) can be viewed as a non-spin duality.

By turning on a positive mass square for the boson, the left hand side is gapped to the U(1)2
Chern-Simons theory. This relevant deformation corresponds to turning on a negative mass
for the fermion, which would naively drive the right hand side to the U(1)−2 Chern-Simons
theory. However, as we discussed above, the U(1) gauge group bundle on the right is twisted
in the ultraviolet, which results in a Lorentz symmetry fractionalization (2.1). Consequently,
the right hand side at long distance is actually F[U(1)−2] = U(1)2, which correctly matches
the left hand side when viewed as non-spin TQFTs.11

Another class of examples is the following infinitely many boson/fermion dualities:

Sp(N)k + N f φ in 2N ←→ Sp(k)
−N+

Nf
2
+ N f ψ in 2k . (5.3)

The dualities (5.3) were proposed in [52] as between spin theories. Since the theories with
fermion fields satisfy the spin/charge relation with respect to the dynamical gauge field, (5.3)
can further be viewed as dualities for non-spin theories. Again we turn on a positive mass
square for the boson on the left, which corresponds to the a negative mass for the fermion on
the right. At long distance the non-spin TQFT on the left is the Sp(N)k Chern-Simons theory,
while that on the right it is F[Sp(k)−N ] due to the twisted gauge bundle in the ultraviolet.
Indeed, Sp(N)k↔ F[Sp(k)−N ] as discussed in (4.22).

Similar to [52], the duality (5.3) describes a single bosonic phase transition for N f ≤ N ,
while for larger values of N f there are multiple phase transitions such as in [57] (see also [58]
for other scenarios for large N). The phase transitions here are purely bosonic, in contrast to
those in [52] where additional fermionic lines were involved.

Acknowledgement

We thank Thomas Dumitrescu, Anton Kapustin, Zohar Komargodski, Nathan Seiberg, and Ryan
Thorngren for discussions. We thank Maissam Barkeshli, Nathan Seiberg, and Zhenghan Wang
for comments on a draft. S.H.S. would like to thank Nathan Seiberg for enlightening conver-
sations on spin and non-spin TQFTs that inspired part of this work. The work of P.-S. H. is
supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics,
under Award Number DE-SC0011632, and by the Simons Foundation through the Simons In-
vestigator Award. The work of S.H.S. is supported by the National Science Foundation grant
PHY-1606531, the Roger Dashen Membership, and a grant from the Simons Foundation/SFARI
(651444, NS). This work was performed in part at Aspen Center for Physics, which is supported
by National Science Foundation grant PHY-1607611.

10The one-form symmetry can also be ruined by monopole operators, but this does not arise in the examples we
discuss below.

11If instead we turn on a negative mass square for the boson and a positive mass for the fermion, then both sides
are trivially gapped at long distance.

17

https://scipost.org
https://scipost.org/SciPostPhys.8.2.018


SciPost Phys. 8, 018 (2020)

A ZN gauge theories

The TQFT (ZN )K can be realized as the following U(1)×U(1) Chern-Simons theory [59–61]:

(ZN )K :

∫

�

K
4π

ada+
N
2π

ad b
�

. (A.1)

For even K the theory is non-spin and is the Dijkgraaf-Witten theory [24]. We have the iden-
tification (ZN )K = (ZN )K+2N . The line operators are Wne ,nm

= exp
�

ine

∮

a+ inm

∮

b
�

, labeled
by an electric charge ne ∈ Z and a magnetic charge nm ∈ Z. We will call Wne ,0 the electric lines
and W0,nm

the magnetic lines. The spin of Wne ,nm
is

hne ,nm
=

nenm

N
−

Kn2
m

2N2
. (A.2)

The lines Wne ,nm
and Wne+N ,nm

are identified. For even K , the lines Wne ,nm
and Wne+K ,nm+N are

further identified, and we are left with N2 lines.

B Duality map and the one-form symmetry

Consider two non-spin TQFTs T1 and T2 that are dual as spin TQFTs as in (4.1). In Lemma 1
of Section 4, we showed that if ∆c /∈ 8Z, then T1,T2 must have a Z2 one-form symmetry. In
this appendix, we show that the same is true even when∆c ∈ 8Z provided there is a nontrivial
duality map between the spin theories.

Let gspin be the duality map that maps the anyons of T1× SO(0)1 to those of T2× SO(L)1.
The duality map g preserves the fusion, braiding, and all other correlation functions.

Given two non-spin TQFTs T1,T2 that are dual as spin theories, the duality map gspin in
(4.1) might not be unique. Below we show that if there exits a duality map in (4.1) that mixes
the lines in the non-spin TQFTs with the transparent fermion line (i.e. if gspin does not just
map anyons of T1 to those of T2), then the theory T1,T2 must have a Z2 one-form symmetry.
This is true even when ∆c ∈ 8Z: in such cases the Z2 one-form symmetry is generated by a
line of integer spin.

In the spin duality (4.1), let us assume that there is a line x ∈ T1 that is mapped to a tensor
product of a line y ∈ T2 and the transparent line f under the duality map gspin:

gspin : x −→ y ⊗ f . (B.1)

After summing over the spin structures, the duality map gspin turns into a duality map gnon−spin

between the two non-spin TQFTs in (4.3). The action of gnon−spin on the anyons in T1 follows
from (B.1), where the transparent fermion line f is now in (Z2)0 and Spin(L)1 on the two
sides.

How does gnon−spin act on the new lines of spin 0 from (Z2)0 that are introduced from sum-
ming over the spin structures? For example, consider the image of the electric line e ∈ (Z2)0
on the left hand side of (4.3). The image must involve lines that are not present in T2×SO(L)1,
so it must be of the following form:

gnon−spin : e −→ s⊗ e′ , (B.2)

where e′ is a new line of spin L
16 ∈ Z in Spin(L)1 that generates a Z2 one-form symmetry. Here

s ∈ T2 has integer spin and is a symmetry line (that can be trivial). Next, we braid the lines in
(B.1) and (B.2). Since e, x belong to different parts in the tensor product theory T1×(Z2)0 they
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have trivial braiding. On the other hand, e′, f ∈ Spin(L)1 braids non-trivially. This implies s
must braid non-trivially with y , and in particular s cannot be the trivial line in T2. Thus we
conclude T2 must have a Z2 one-form symmetry generated by the line s of integer spin.

We remark that if a theory T2 has a Z2 one-form symmetry generated by a line of integer
spin, then as a spin TQFT it has a Z2 ordinary symmetry that mixes the lines in T2 with the
transparent fermion line f : for lines y ∈ T2 odd under thisZ2 one-form symmetry, the ordinary
symmetry changes its type into the product of the fusion y · s · f .

C Summing over the spin structures with invertible spin TQFTs in
(1+1)d and (2+1)d

Consider two spin theories eT1 and eT2 differ by an invertible spin TQFT, which can be described
by the SO(r)1 Chern-Simons theory. Let T1,T2 be the non-spin theories obtained by summing
over the spin structures of eT1 and eT2, respectively.12 Both T1 and T2 has an emergent anoma-
lous Z2 one-form symmetry generated by a spin 1

2 fermion line [42]. The discussion in Section
4.2 implies that:

T1 ←→
T2 × Spin(r)1
Z(v)2

, (C.1)

where the gauged Z(v)2 one-form symmetry is generated by the tensor product of the fermion
line in T2 and the fermion line of Spin(r)1 in the vector representation.13

The right hand side of (C.1) can also be interpreted as gauging a zero-form SO(r) symme-
try of T2, as we explain in the following. We first activate a two-form background gauge field
for the Z2 one-form symmetry (generated by the fermion) using w2(SO(r)) of the background
SO(r) = Spin(r)/Z(v)2 bundle. Next, we add a Chern-Simons term SO(r)1 as a local countert-
erm for the SO(r) background gauge field. Finally, we promote the SO(r) gauge fields to be
dynamical. The resulting non-spin theory is the right hand side of (C.1):

T1 ←→ T2 w/ gauging SO(r) symmetry . (C.2)

Note that the transformation (C.1) is different from the fractionalization map in (2+1)d
(2.20):

F : T −→
T × Spin(4p)−1

Z(s)2

, (C.3)

where the gauged Z(s)2 one-form symmetry on the right hand side is generated by the tensor
product of the spin p

4 line of T and the spin− p
4 line in the spinor representation of Spin(4p)−1.

The two-form background gauge field for the Z2 one-form symmetry of T is activated by the
w2(Spin(4p)/Z(s)2 ) of the Spin(4p)/Z(s)2 = Ss(4p) gauge bundle. Thus the fractionalization
map in (2+ 1)d can be interpreted as gauging an Ss(4p) symmetry (with local counterterm
given by the level-one Chern-Simons term):

F in (2+1)d : T −→ T w/ gauging Ss(4p) symmetry . (C.4)

The relation (C.1) has a counterpart in (1+1)d, where the invertible spin TQFT is the Arf
invariant of the spin two-manifold. The action of this invertible spin TQFT is (−1)Arf[s], where

12Theories with a tilde sign are spin, while those without are non-spin.
13We thank Ryan Thorngren for discussions.
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T̃ 2d
2

T̃ 2d
1

T 2d
2

T 2d
1

×(−1)Arf gauge Z2

∑
s

∑
s

T̃ 3d
2

T̃ 3d
1

T 3d
2

T 3d
1

×SO(r)1 gauge SO(r)
∑

s

∑
s

Figure 3: The relation between the two spin theories eT1,2 and the two non-spin the-
ories T1,2 in (1+1)d (left) and in (2+1)d (right). Compared to the main text, the
superscripts “3d" are added for clarity. In the figure on the left, (−1)Arf can be repre-
sented by a (1+1)d spin Z2 gauge theory with action given by the right hand side of
(C.5).

Arf[s] = 0 if s is an even spin structure and 1 if s is odd. Analogous to the SO(r)1 Chern-
Simons theory in (2+1)d, the (1+1)d invertible spin TQFT can be alternatively described by
a Z2 gauge theory coupled to the Arf invariant as follows:

(−1)Arf[s] =
1
2g

∑

a(1)
(−1)Arf[s+a(1)]+Arf[s] , (C.5)

where a(1) is the dynamical Z2 one-form gauge field and g is the genus of the two-manifold.
In other words, this fermionic Z2 gauge theory can be obtained by gauging a Z2 symmetry
of the (1+1)d fermionic SPT phase (−1)Arf[s+a(1)]+Arf[s] of Ω2

spin(BZ2) = Z2 × Z2 (which does

not come from Ω2
spin(pt) = Z2) [46]. Now consider two spin theories eT 2d

1 and eT 2d
2 differ by

this invertible spin TQFT. Sometimes we can sum over the spin structures of eT 2d
1 and eT 2d

2 ,
to obtain two non-spin theories T 2d

1 and T 2d
2 . When this is the case, there is an emergent

non-anomalous Z2 zero-form symmetry in both T1 and T2. The two non-spin theories T 2d
1

and T 2d
2 are related by a Z2 orbifold [42,62–67]:

(1+ 1)d : T 2d
1 ←→ T 2d

2 w/ gauging Z2 symmetry . (C.6)

We compare (C.6) in (1+1)d with (C.2) in (2+1)d in Figure 3.
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