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Abstract

We consider Lindblad equations for one dimensional fermionic models and quantum
spin chains. By employing a (graded) super-operator formalism we identify a number
of Lindblad equations than can be mapped onto non-Hermitian interacting Yang-Baxter
integrable models. Employing Bethe Ansatz techniques we show that the late-time dy-
namics of some of these models is diffusive.
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1 Introduction

Weak couplings to an environment can have very interesting effects on the dynamics of many-
particle quantum systems. In particular they can result in desirable non-equilibrium steady
states [1–5]. In order to arrive at a tractable theoretical description it is customary to employ
a Markovian approximation that assumes that the characteristic times scales associated with
the environment are much shorter than those of the many-particle system of interest. The
absence of a back action of the system onto its environment then facilitates a well defined
mathematical description of open many-particle systems. In the quantum case this a priori
results in a Markovian quantum stochastic many-particle system [6–9], which is however dif-
ficult to analyze. The customary approach is therefore to focus on the dynamics averaged over
the environment, which leads to a description by the Lindblad master equation [10] for the
time-dependent reduced density matrix ρ(t)

dρ
d t
= i[ρ, H] +

∑

a

γa

�

LaρL†
a −

1
2
{L†

a La,ρ}
�

. (1)

Here H is the system Hamiltonian, La are jump operators that encode the coupling to the en-
vironment and γa > 0. While much progress has been made in analyzing Lindblad equations
for many-particle systems by employing e.g. perturbative [11, 12] and matrix product states
methods [13–16] it clearly is highly desirable to have exact solutions in specific, and hope-
fully representative, cases. In the context of master equations for classical stochastic many
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particle systems an example of such a solvable paradigm is the asymmetric simple exclusion
process [17–22]. In the quantum case it has been known for some time that certain Lind-
blad equations describing many-particle systems can be represented by Liouvillians that are
quadratic in fermionic or bosonic creation and annihilation operators, which makes it possi-
ble to solve them exactly by elementary means [23–26]. Very recently examples of Lindblad
equations with Liouvillians related to interacting Yang-Baxter integrable models have been
found [27–29]. This opens the door for bringing quantum integrability methods to bear on
obtaining exact results for the dynamics of open many-particle quantum systems. An obvious
question is whether the known cases are exceptional, or whether there are other examples of
Yang-Baxter integrable Lindblad equations. In this work we report on the results of a search
for integrable cases among a particular class of Lindblad equations for translationally invariant
many-particle quantum systems.

2 Lindblad equations for lattice models

We now turn to the precise definition of the class of quantum master equations we will be
interested in. We consider one dimensional lattice models with local Hilbert spaces that can
include bosonic as well as fermionic degrees of freedom. A basis of the local Hilbert space is
formed by N bosonic and M fermionic quantum states

|α〉 j , α= 1, . . . , N +M . (2)

We denote the fermion parity of the state |α〉 j by εα

εα =

¨

0 if α is bosonic

1 if α is fermionic
. (3)

An orthonormal basis of the full Hilbert space HL on an L-site chain is then given by the states

|α〉 ≡ ⊗L
j=1|α j〉 j , α j ∈ {1, . . . , N +M} . (4)

We define the fermion parity of the states (4) by

εα =
L
∑

j=1

εα j
. (5)

A basis of the space of linear operators acting on site j is then provided by

Eαβj = |α〉 j j〈β | , α,β ∈ {1, . . . , N +M} . (6)

These are often referred to as Hubbard operators. Their fermion parity is εα + εβ mod 2, i.e.

they are fermionic if either the state |α〉 or the state |β〉 is fermionic. The operators Eαβn act
on the states |α〉 as

Eαβn |α〉= (−1)(εα+εβ )
∑n−1

j=1 εα jδβ ,αn
|α′〉 , α′ = α1, . . . ,αn−1,α,αn+1, . . . ,αL . (7)

Minus signs are acquired when moving fermionic operators past fermionic states. The opera-
tors defined in this way either commute or anticommute on different sites

Eαβj Eγδk = (−1)(εα+εβ )(εγ+εδ)Eγδk Eαβj , k 6= j . (8)
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For later convenience we define a graded permutation operator on sites j and j + 1

Π j, j+1 =
∑

α,β

(−1)εβ Eαβj Eβαj+1 . (9)

It acts on states as

Π j, j+1|β〉 j|α〉 j+1 = (−1)εαεβ |α〉 j|β〉 j+1 , (10)

i.e. it permutes the states and generates a minus sign if both states are fermionic.

2.1 A useful decomposition for N = n2
B + n2

F , M = 2nBnF for integer nB, nF

The general local Hilbert space VN+M introduced above has N bosonic and M fermionic basis
states. If N and M are such that they can be expressed as N = n2

B + n2
F and M = 2nBnF for

integer nB, nF it is possible to express VN+M as a graded tensor product of two n = nB + nF -
dimensional spaces VN+M = Vn⊗Vn. Here nB and nF are the numbers of bosonic and fermionic
basis states of Vn. Denoting the basis of Vn by {|1〉, . . . , |n〉} we can express the N + M basis
states of VN+M as

|α〉= |eα〉 ⊗ |ᾱ〉 , α= 1, . . . , N +M , (11)

where 1≤ ᾱ, eα≤ n are related to α by

ᾱ= α mod n+ nδα mod n,0 , eα=
j α

n+ 1

k

+ 1 . (12)

We note that α = n(eα − 1) + ᾱ and that the fermion parities are related by εα = εeα + εᾱ.
Defining operators

eeeα
eβ

j = |eα〉 j j〈eβ | , eᾱβ̄j = |ᾱ〉 j j〈β̄ | , (13)

we may express Eαβj in the form

Eαβj = |α〉〈β |= |eα〉|ᾱ〉〈β̄ |〈eβ |= (−1)εeβ (εᾱ+εβ̄ ) eeeα
eβ

j eᾱβ̄j . (14)

We will use this decomposition in several models considered below. In the purely bosonic case
M = 0 such decompositions are possible for N = n2 with integer n.

2.2 Super-operator formalism for Lindblad equations

We now consider a Lindblad equation (1) with a Hamiltonian H and jump operators La acting
on HL defined above. We are ultimately interested in cases where the Hamiltonian density and
La have local expansions in terms of the Eαβj . To start with we will assume for simplicity that
all jump operators are bosonic. The cases where some of the jump operators are fermionic will
be discussed later. The reduced density matrix can be expressed in terms of the basis states
defined above as

ρ =
∑

α,β

ρα,β |α〉〈β | . (15)

The matrix elements are related to particular Green’s functions of the operators Eαβj

ρα,β = (−1)
∑L−1

j=1

∑L
k= j+1 εβ j

�

εβk
+εαk

�

Tr
�

ρ EβLαL
L . . . Eβ1α1

1

�

. (16)
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In terms of components the Lindblad equation reads

d
d t
ρα,β = i

∑

γ

ρα,γHγ,β −Hα,γργ,β

+
∑

a

γa

¦∑

γ,δ

�

La

�

α,γργ,δ
�

L†
a

�

δ,β −
1
2

∑

γ

�

L†
a La

�

α,γργ,β +ρα,γ

�

L†
a La

�

γ,β

©

,

(17)

where we have introduced the following notations for the matrix elements of an operator O

〈α|O|β〉=Oα,β . (18)

We can view the density matrix as a state in a (N+M)2L dimensional Hilbert spaceHS =HL⊗HL
with basis states

|α〉 |β〉〉= |α1〉1 . . . |αL〉L |β1〉〉1 . . . |βL〉〉L . (19)

In these notations we have
|ρ〉=

∑

α,β

ρα,β |α〉|β〉〉 , (20)

and the “wave-functions” ρα,β correspond to Green’s functions in the original problem. The
Lindblad equation (17) can be cast in the form

d|ρ〉
d t
= L|ρ〉 , (21)

where the Liouvillian L for bosonic jump operators La is given by

L= −iH + iH̄ +
∑

a

γa

�

La L†
a −

1
2

�

L†
a La + L†

a La

�

�

. (22)

Here we employ notations such that O =O⊗1 and have defined related operators O = 1⊗O
by

〈〈γ|O|β〉〉= 〈β |O|γ〉 . (23)

One can easily check that taking the scalar product of (21) with the state 〈〈β |〈α| precisely
reproduces (17). A convenient basis for expanding operators O is constructed in terms of
operators eEαβn defined as

eEαβn = 1⊗
�

|α〉〉n n〈〈β |
�

. (24)

These act on basis states according to

eEαβn |α〉|β〉〉 = (−1)(εα+εβ )εα |α〉 eEαβn |β〉〉

= (−1)(εα+εβ )εα(−1)(εα+εβ )
∑n−1

j=1 εβ jδβ ,βn
|α〉‖β ′〉〉 , (25)

where |β ′〉〉 = |β1〉1 , . . . , |α〉n , . . . , |βL〉L and εα has been defined in (5). We note that the
operators Eαβn act on HS as Eαβn ⊗1.

2.3 Fermionic jump operators

If some of the jump operators are fermionic the super-operator formalism needs to be modified.
Let us denote the fermion parity of the jump operator La by εLa

∈ {0,1}. When written in

5
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components the Lindblad equation still takes the form (17). However, the Liouvillian (22) is
now replaced by

L = −iH + iH̄ +
∑

a

γa

�

(−i)εLa La L†
a −

1
2

�

L†
a La + L†

a La

�

�

. (26)

The state representing the density matrix is also modified and now takes the form

|ρ〉=
∑

α,β

ρα,β [(−i)εαP+ + iεβ P−] |α〉|β〉〉 , (27)

where P± are projection operators onto states with even and odd fermion parity respectively

P± =
1± (−1)F

2
, (−1)F =

L
∏

`=1

N+M
∏

α=1
εα=1

(1− 2Eαα` )(1− 2eEαα` ) . (28)

We have
(−1)F |α〉|β〉〉= (−1)εα+εβ |α〉|β〉〉 . (29)

It is straightforward to check that inserting (26) and (27) into the equation

d
d t
|ρ〉= L|ρ〉 , (30)

and expanding it in a basis of states precisely recovers (17). We stress that in our construction
both bosonic and fermionic jump operators can be accommodated as long as any given jump
operator has a definite fermion parity.

3 Lindblad equations as non-Hermitian two-leg ladders

As we are interested in Liouvillians with local densities we focus on jump operators where the
index a runs either over the sites or the nearest-neighbour bonds of a one dimensional ring.

In this setting −iH −
∑

a
γa
2 L†

a La and iH̄ −
∑

a
γa
2 L†

a La describe interactions along the two legs
of the ladder, while

∑

a γa La L̄†
a play the role of interactions between the two legs.

3.1 Single-site jump operators

In translationally invariant situations the most general bosonic single-site jump operator can
be written in the form

` j =
∑

α,β

λαβ Eαβj , (31)

where λαβ = 0 unless (εα + εβ) mod 2 = 0. This generates “interaction terms” between the
two legs of the form

` j`
†
j =

∑

αβ

∑

γδ

λαβ λ
∗
γδ Eαβj

eEγδj . (32)

The other jump operator terms in the Liouvillian generate “generalized magnetic field terms”
acting on the two legs

`†
j` j + `

†
j` j =

∑

β ,γ

ΛβγEβγj +Λγβ eE
βγ
j , (33)

where Λβγ =
∑

αλ
∗
αβ
λαγ.
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3.2 Single-bond jump operators

The most general bosonic jump operator acting on a bond takes the form

L j =
∑

α,β

λαβ Eαβj +λ
′
αβ Eαβj+1 +

∑

α,β ,γ,δ

µαβγδ Eαβj Eγδj+1 . (34)

This gives rise to quartic, cubic and quadratic “interaction terms” in the Liouvillian. The result-
ing explicit expression is presented in Appendix A. The extension to fermionic jump operators
is straightforward.

3.3 General form of the Liouvillian

In the following we will consider Liouvillians of the form

L= −iH + iH̄ +
L
∑

j=1

∑

a

γa

�

L(a)j (L
(a)
j )

† −
1
2

�

(L(a)j )
† L(a)j + (L

(a)
j )

† L(a)j

��

, (35)

where L(a)j are jump operators that act either on site j or the bond ( j, j + 1) and γa > 0. Our
aim is to identify cases which are Yang-Baxter integrable. In practice this means that we need
to check whether any of the large number of integrable Hamiltonians that can be interpreted
as two-leg ladder models can be cast in the particular form (35). An added complication is
that we should allow for general similarity transformations, i.e. consider

L′ = SLS−1 . (36)

The spatial locality of the Hamiltonian density of the various integrable models imposes strong
restrictions on the possible form of S. Transformations of the form

S =
L
∏

j=1

S j , (37)

where S j acts non-trivially only on site j are always compatible with the aforementioned local
structure.

4 Generalized Hubbard models

The first example of a Lindblad equation that is related to an interacting Yang-Baxter integrable
model was presented in Ref. [27], where it was shown that the Lindblad equation for a tight-
binding chain with dephasing noise can be mapped onto a fermionic Hubbard model with
purely imaginary interactions. We now briefly review some results obtained in that work.
We then show that the mathematical structure that underlies the integrability of the Hubbard
model quite naturally leads to a connection with a Lindblad equation.

4.1 SU(2) Hubbard model

The Hubbard Hamiltonian is given by

H = −t
L
∑

j=1

∑

σ=↑,↓

c†
j,σc j+1,σ + c†

j+1,σc j,σ + U
L
∑

j=1

�

n j,↑ −
1
2

��

n j,↓ −
1
2

�

, (38)
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where n j,σ = c†
j,σc j,σ. The model is integrable for any complex value of U/t [41]. In terms of

the notations of section 2.1 we can choose a basis such that

c†
j,↑ = e21

j , c†
j,↓ = ee

21
j , n j,↑ = e22

j , n j,↓ = ee
22
j , (39)

and concomitantly

H(U) = −t
∑

j

�

e21
j e12

j+1 +ee
21
j ee

12
j+1 + h.c.

�

+ U
∑

j

�

e22
j −

1
2

��

ee22
j −

1
2

�

. (40)

4.1.1 Associated Lindblad equation

Let us consider a tight-binding model

H0 = −t
∑

j

e12
j e21

j+1 + h.c. , (41)

coupled to an environment by jump operators

L j = e22
j . (42)

In the super-operator formalism the corresponding Liouvillian (22) is

L(γ) = i t
∑

j

[e12
j e21

j+1 −ee
12
j ee

21
j+1 + h.c.] +

∑

j

γ

�

e22
j ee

22
j −

1
2
(e22

j +ee
22
j )
�

. (43)

This is related to the Hubbard Hamiltonian by [27]

L(γ) = −iU†H(iγ)U −
γL
4

, U =
L/2
∏

j=1

(ẽ11
2 j − ẽ22

2 j ) . (44)

4.2 Integrable structure of generalized Hubbard models and associated Lind-
blad equations

The Hubbard model was embedded into the general framework of the Quantum Inverse Scat-
tering Method [40] in seminal work by Shastry [31, 32]. This construction was subsequently
generalized to other classes of integrable models [35–39]. The construction is based on an
R-matrix r12(λ) acting on the tensor product of two graded linear vector spaces V ⊗ V and a
conjugation matrix C acting on V that fulfil the Yang-Baxter relation

r12(λ1 −λ2)r13(λ1 −λ3)r23(λ2 −λ3) = r23(λ2 −λ3)r13(λ1 −λ3)r12(λ1 −λ2) , (45)

as well as the “decorated” Yang-Baxter relation

r12(λ1 +λ2)C1r13(λ1 −λ3)r23(λ2 +λ3) = r23(λ2 +λ3)r13(λ1 −λ3)C1r12(λ1 +λ2) . (46)

In the cases considered below the r12(λ) is given by

r12(λ) =
�

cos2
�λ

2

�

− sin2
�λ

2

�

C1C2

�

Π12 +
sin(λ)

2
[I⊗ I− C1C2] , (47)

where Π12 is a graded permutation operator (9) acting on V ⊗ V and

C = 2π̂−1 , (48)
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where π̂ is a projection operator onto a subspace of V . The R-matrix of an integrable general-
ized Hubbard model is then obtained by gluing together two copies [37,39,41]

R〈12〉〈34〉(λ1,λ2) = r13(λ1 −λ2)r24(λ1 −λ2)

+ α(λ1,λ2)r13(λ1 +λ2)C1r24(λ1 +λ2)C2 . (49)

Here the function α(λ,µ) is given by

α(λ,µ) =
cos(λ−µ) sinh

�

h(λ)− h(µ)
�

cos(λ+µ) cosh
�

h(λ)− h(µ)
� , (50)

where h(µ) is a solution of the equation

sinh
�

2h(λ)
�

= U sin(2λ) . (51)

The local Hamiltonian density of the integrable “fundamental spin model” [40] corresponding
to this R-matrix is

H〈12〉〈34〉 =
d

dλ

�

�

�

�

λ=u0

Π13Π24R〈12〉〈34〉(λ, u0)

= Π13r ′13(0) +Π24r ′24(0) +α
′(u0, u0)Π13r13(2u0)C1Π24r24(2u0)C2 . (52)

Here we have generalized the construction of [37] by taking the logarithmic derivative of the
transfer matrix at a shifted point u0 following Ref. [43, 44]. Importantly the structure of the
Hamiltonians (52) is such that they all can be related to Liouvillians of Lindblad equations. In
the following we discuss a number of examples.

4.3 USW model

As a first application we consider eqn (52) for the case of the Hubbard model R-matrix [44].
The Hamiltonian of these models was first derived by Umeno, Shiroishi and Wadati in [43]
and is of the form

HUSW(U) = −
∑

j

�

e21
j e12

j+1 +ee
21
j ee

12
j+1 + h.c.

�

+
U

cosh (2h(u0))

∑

j

B j, j+1B̃ j, j+1 , (53)

where

B j, j+1 =
�

cos2(u0)
�

e11
j − e22

j

�

− sin2(u0)
�

e11
j+1 − e22

j+1

�

+ sin(2u0)
�

e21
j e12

j+1 − e21
j+1e12

j

��

, (54)

and B̃ j, j+1 is obtained from B j, j+1 by replacing eαβn → ẽαβn . Here u0 is a free (complex) param-
eter and the function h(u) is fixed by the requirement

sinh (2h(u0)) = U sin(2u0) . (55)

We note that the operators eαβj are related to spinful fermion creation and annihilation opera-
tors by (39). The Hamiltonian (53) is SO(4) symmetric [43] and in particular commutes with
the total particle number

N̂ =
L
∑

j=1

e22
j + ẽ22

j . (56)
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4.3.1 Associated Lindblad equation

The USW model is related to a Lindblad equation with a tight-binding Hamiltonian

H0 = −
∑

j

e12
j e21

j+1 + h.c. , (57)

and jump operators

L j = B j, j+1 , (58)

where the parameter u0 is taken to be purely imaginary. In the super-operator formalism the
corresponding Liouvillian (22) is

L(γ) = i
∑

j

�

e12
j e21

j+1 −ee
12
j ee

21
j+1 + h.c.

�

+ γ
∑

j

�

B j, j+1B̃∗j, j+1 − cos2(2u0)
�

. (59)

This is related to the USW Hamiltonian by

L(γ) = −iU†HUSW(u)U − γ cos2(2u0)L , (60)

where the unitary transformation U is given by (44) and the parameter u is purely imaginary
and related to γ by

γ= −i
u

cosh
�

2h(u0)
� . (61)

4.3.2 Differential equations for correlation functions

As the jump operators are Hermitian the Lindblad equation implies the following time evolu-
tion for expectation values of (time independent) operators

d
d t

Tr [ρ(t)O] = −iTr (ρ(t)[O, H0]) +
γ

2

∑

j

Tr
�

ρ(t) [[L j ,O], L j]
�

. (62)

It is straightforward to verify that the jump operators (58) fulfil

[Ln, c j] = 2δn, j−1 sin(u0)
�

cos(u0)c j−1 − sin(u0)c j

�

+ 2δn, j cos(u0)
�

cos(u0)c j − sin(u0)c j+1

�

. (63)

This shows that n-particle Green’s functions fulfil simple, closed evolution equations. This is
analogous to the case of the imaginary-U Hubbard model [27]. For example, the single-particle
Green’s function

G j,k(t) = Tr
�

ρ(t)c†
j ck

�

(64)

has the following equation of motion

d
d t

G j,k =
∑

`,m

K`,mj,k G`,m ,

K`,mj,k = δ j,`δk−1,m

�

i −
γ sin(4u0)

2

�

+δ j,`δk+1,m

�

i +
γ sin(4u0)

2

�

− δ j−1,`δk,m

�

i −
γ sin(4u0)

2

�

−δ j+1,`δk,m

�

i +
γ sin(4u0)

2

�

− 4γδ j,`δk,m cos2(2u0)− 4γδ j,k

�

sin2(u0)M
`,m
j−1 − cos2(u0)M

`,m
j

�

− 4γ
�

δ j−1,k sin(u0) cos(u0)M
`,m
j−1 −δ j,k−1 sin(u0) cos(u0)M

`,m
j

�

. (65)

Here we have defined

M`,m
j = cos2(u0)δ`, jδm, j − sin(u0) cos(u0)

�

δ`, jδm, j+1 −δ`, j+1δm, j

�

− sin2(u0)δ`, j+1δm, j+1 .
(66)
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4.4 Maassarani models

In [33, 34] Maassarani introduced a class of integrable 2n-state models that generalize the
Hubbard model along the lines set out in section 4.2 above. We now discuss these models in
more detail. A basis of the local Hilbert space is given by the tensor product

|a〉 ⊗ |ã〉 , a, ã = 1, . . . , n , (67)

where all states are bosonic, i.e. εa = 0= εã. While these models a priori are generalized spin
models they can be related to interacting fermion models by Jordan-Wigner transformations
as is done for a simple case below. A basis of operators acting on these states is then given by
eab

j ẽã b̃
j . In terms of these (bosonic) operators Maassarani’s Hamiltonian reads

HMa,n(U) =
L
∑

j=1

P(n)j, j+1 + eP
(n)
j, j+1 + U

�

C j eC j − 1
�

, (68)

where

P(n)j, j+1 =
∑

a∈A

∑

b∈B

xabeba
j eab

j+1 + x−1
ab eab

j eba
j+1 ,

C j =
∑

a∈A

eaa
j −

∑

b∈B

ebb
j . (69)

Here the two sets A and B form an arbitrary partition of {1, . . . , n} and xab are arbitrary complex
parameters. In the following we will simply set them equal to 1. The operators eP(n)j, j+1 and eC j

are of the same forms as P(n)j, j+1 and C j respectively but with the replacement eab
j → eeab

j .
Maassarani’s models are related to Lindblad equations with Hamiltonians

H(n)0 = −
∑

j

�

∑

a∈A

∑

b∈B

eba
j eab

j+1 + eab
j eba

j+1

�

, (70)

and jump operators
L j = c − C j , (71)

where c ∈ R is a free parameter. In the superoperator formalism the corresponding Liouvillian
is

LMa,n(γ) = −i(H(n)0 − eH
(n)
0 ) + γ

∑

j

�

C j eC j − 1
�

, (72)

where eH(n)0 is of the same form as H(n)0 but with eab
j replaced by eeab

j . This is related to Maas-
sarani’s Hamiltonian by

LMa,n(γ) = iUHMa,n(−iγ)U† , U =
L/2
∏

j=1

eC2 j . (73)

4.4.1 3-state Maassarani model

The simplest Maassarani model is obtained by considering a local Hilbert space of three bosonic
states. Choosing a decomposition A= {1}, B = {2, 3} gives

H(3)0 = −
∑

j

e21
j e12

j+1 + e31
j e13

j+1 + h.c. . (74)
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In order to fermionize this model we embed it into an enlarged Hilbert space with four states
per site, and then employ the results of section 2.1. This gives

e12
j = e12

j ee11
j , e13

j = e11
j ee

12
j . (75)

Finally we carry out a Jordan-Wigner transformation

e21
j =

j−1
∏

`=1

(1− 2n`,↑)c
†
j,↑ , ẽ21

j =
L
∏

`=1

(1− 2n`,↑)
j−1
∏

`=1

(1− 2n`,↓)c
†
j,↓ . (76)

After these transformations the Hamiltonian H(3)0 can be written in the form

H(3)0 = −P
∑

j,σ

�

c†
j+1,σc j,σ + h.c.

�

P , (77)

where

P =
L
∏

j=1

(1− n j,↑n j,↓) (78)

is a projection operator that ensures that all sites are at most singly occupied. The Hamiltonian
(77) can be viewed as the U →∞ limit of the Hubbard model and is sometimes referred to
as the t − 0 model. In terms of the fermionic operators the jump operator takes the form

L j = 1− 2(1− n j,↑)(1− n j,↓) + c . (79)

Choosing c = 1 we have
L j|0〉= 0 , L jc

†
j,σ|0〉= 2c†

j,σ|0〉 , (80)

which shows that the bath acts on the charge degrees of freedom. The Hamiltonian part
H(3)0 has a free fermionic spectrum [45,46], but the creation operators of the non-interacting
fermion degrees of freedom are related to the c†

j,σ in a non-local way [47,48]. As a result the
single-particle Green’s function does not obey a simple evolution equation. The time evolution
is again given by the general expression (62), where the relevant commutators are

[[Ln, c j,σ], Ln]P = −4c j,σδ j,n P ,

P[c j,σ, H(3)0 ]P = P
�

− (c j+1,σ + c j−1,σ)− c†
j,σ̄c j,σ(c j+1,σ̄ + c j−1,σ̄)

�

P . (81)

4.4.2 4-state Maassarani model

In the 4-state case we can express the eab
j in terms of two species of Pauli operators, cf. 2.1.

Choosing A= {1,2, 3} and B = {4} we then can interpret H(4)0 as the Hamiltonian of a two-leg
spin ladder model

H(4)0 =
L
∑

j=1

�

σ+j σ
−
j+1τ

+
j τ
−
j+1 +σ

−
j σ
+
j+1τ

−
j τ
+
j+1 +

1
4
(σ+j σ

−
j+1 +σ

−
j σ
+
j+1)(1−τ

z
j)(1−τ

z
j+1)

+
1
4
(τ+j τ

−
j+1 +τ

−
j τ
+
j+1)(1−σ

z
j )(1−σ

z
j+1)

�

. (82)

The jump operators become (setting again c = 1 in (71))

L j =
1
2
(1−σz

j )(1−τ
z
j) . (83)
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4.4.3 Bethe Ansatz solution

The Maassarani models have been solved by Bethe Ansatz in Ref. [49]. Without loss of gener-
ality we restrict our discussion to the case where the sets A and B in (69) are given by

A= {1,2, . . . , p} , B = {p+ 1, p+ 2, . . . , n} . (84)

The exact eigenstates of HMa,n(U) are then labelled by good quantum numbers as follows. The
operators

Qa =
L
∑

j=1

eaa
j , Q̃a =

L
∑

j=1

ẽaa
j , a = 1, . . . , n , (85)

commute with HMa,n(U) and with one another. Hence their eigenvalues Na, Ña can be used as
good quantum numbers. Following Ref. [49] we introduce integers

NA =
p
∑

a=2

Na , NB =
n
∑

a=p+1

Na , ÑA =
p
∑

a=2

Ña , ÑB =
n−1
∑

a=p+1

Ña , (86)

and N ≥ NA+ NB + ÑA+ ÑB. We then define sets

MA = {1, . . . , NA} , MB = {NA+ 1, . . . , NA+ NB} ,

M̃A = {NA+ NB + 1, . . . , NA+ NB + ÑA} ,

M̃B = {NA+ NB + ÑA+ 1, . . . , NA+ NB + ÑA+ ÑB} , (87)

and finally introduce two non-intersecting ordered sets of integers 1≤ a j ≤ N ≤ L

AA = {a j| j ∈MA} , ÃA = {a j| j ∈ M̃A} , AA∩ ÃA =∅ , AA∪ ħAA ≡ A . (88)

By ordered we mean that a j < a j+1 if a j , a j+1 ∈ AA and similarly for ÃA. The eigenstates
of the Liouvillian LMa,n(γ) are then given in terms of rapidities {k1, . . . , kN}, {Λ j| j ∈ MB},
{bm|m ∈ M̃B} and integers {n1, . . . , nÑB−Ñn−1

}, {n̄1, . . . , n̄NB−Nn
} subject to the following set of

Bethe Ansatz equations [49]

eik j L = e2πiΦ
∏

l∈MB

Λl − sin k j + γ

Λl − sin k j − γ
, j ∈ [1, N]\A ,

N
∏

j=1
j /∈A

Λm − sin k j + γ

Λm − sin k j − γ
= e2πiΨ

∏

l∈MB
l 6=m

Λm −Λl + 2γ
Λm −Λl − 2γ

, m ∈MB , (89)

bÑB+Ñn
`

=
ÑB−Ñn−1
∏

j=1

e
2πi

n j
ÑB , 1≤ n1 < · · ·< nÑB−Ñn−1

≤ ÑB , ` ∈ M̃B ,

eik j(L−NB) = (−1)NA−1e2πi mα
NA , mα ∈ [1, NA] , j ∈ AA ,

eik j(L−ÑB−Ñn) = (−1)ÑA−1e
2πi m̃α

ÑA , m̃α ∈ [1, ÑA] , j ∈ ÃA , (90)

where we require arg(b`)< arg(b`+1) and the phases Φ and Ψ are given by

e2πiΦ = (−1)ÑB+Ñn−1
∏

m∈M̃B

bm

∏

j∈M̃A

e−ika j ,

e2πiΨ = (−1)N−NA−ÑA

∏

j∈MA

e−ika j

∏

m∈M̃A

eikam

∏

`∈M̃B

b−1
`

NB−Nn
∏

s=1

e2πi n̄s
NB ,

1≤ n̄1 < · · ·< n̄NB−Nn
< NB . (91)
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The corresponding eigenvalues of LMa,n(γ) are

E = 2i
∑

j∈MB∪M̃B

cos k j − 2γ(NB + ÑB + Ñn) . (92)

4.4.4 String solutions and vanishing of the Liouvillian gap in the thermodynamic limit

The first two sets (89) of the Bethe Ansatz equations are the same as for the Hubbard model
with imaginary interactions strength and twisted boundary conditions. This ensures that the
“k-Λ string solutions” constructed in [27] are valid solutions for the n-state Maassarani models
as well. A k-Λ string of length m corresponds to the following pattern of rapidities

k(m)α, j = arcsin(iΛ(m)α − (m− 2 j + 2)γ′) ,

k(m)α, j+m = π− arcsin(iΛ(m)α + (m− 2 j + 2)γ′) ,

Λ
(m)
α, j = iΛ(m)α + γ(m+ 1− 2 j) , 1≤ j ≤ m . (93)

Here the string centres Λ(m)α are real and γ′ = −γ sgn(Λ(m)α ).
We now take NA = ÑA = 0 and consider a Bethe Ansatz state with a single k-Λ string of

length m� L. The corresponding eigenvalue of the Liouvillian is

ε= 4Im
Ç

1− (i|Λ(m)α | −mγ)2 − 4γm . (94)

In the framework of the string hypothesis the equation that fixes the allowed positions of the
string centres Λ(m)α is obtained my “multiplying out the string” [50], which gives

exp

 

i L
2m
∑

j=1

k(m)j

!

= e2πim(2Φ+Ψ) . (95)

Taking logarithms this can be cast in the form

sgn(Λ(m))
�

π− arcsin(iΛ(m) +mγ) + arcsin(iΛ(m) −mγ)
�

=
2π
L

�

J (m)α +ϕ
�

, (96)

where we have defined
ϕ = m(2Φ+Ψ) mod 1 . (97)

For even lattice lengths L the J (m)α are integers with range

−
L + 1− 2m

2
−ϕ < J (m) <

L + 1− 2m
2

−ϕ . (98)

We now focus on the particular sequence of string states characterized by integers

J (m)α =
L
2
−m−α , α= 1,2, · · · � L . (99)

In the limit of large system sizes L� 1 the corresponding string centres follow from (96)

Λ(n)α =
mγL

π(m+α−ϕ)
+O(1) . (100)

Substituting this into our expression (94) for the eigenvalue of the Liouvillian gives

ε(m)α = −
2π2

mγL2
(m+α−ϕ)2 +O(L−4) . (101)

This shows that in the large-L limit we have a band of Liouvillian eigenstates with eigenvalues
that scale as L−2. This establishes that the Liouvillian gap vanishes in the thermodynamic
limit. Moreover, the scaling with system size suggests that the corresponding eigenmodes
are diffusive. Our calculation does not rule out the existence of eigenstates with gaps that
approach zero faster than L−2.
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4.5 GL(N , M) Maassarani models

As we already mentioned above in section 4.2 the Shastry-Maassarani construction can be
generalized to graded magnets based on GL(N , M). Following Ref. [37] we consider the class
of Hamiltonians

HgMa(U) =
∑

j

Π
(n)
j, j+1 + eΠ

(n)
j, j+1 + U

�

C j eC j − 1
�

, (102)

where

Π
(n)
j, j+1 =

∑

k 6=N ,K

�

EkN
j ENk

j+1 − EkK
j EKk

j+1 + (−1)εk(ENk
j EkN

j+1 + EKk
j EkK

j+1)
�

,

C j = 1− 2EKK
j − 2ENN

j , K = N +M . (103)

We can relate this to a Lindblad equation with Hamiltonian

H0 = −
∑

j

Π
(n)
j, j+1 , (104)

and jump operators
L j = 1− C j . (105)

4.5.1 3-state GL(1,2) model

The simplest example is the 3-state model based in GL(1, 2). Like in the case of the 3-state
Maassarani model considered above we may represent the Hamiltonian in terms of canonical
spinful fermion creation and annihilation operators by identifying the three states per site as

|1〉 j = |0〉 j , |2〉 j = c†
j,↑|0〉 j , |3〉 j = c†

j,↓|0〉 j . (106)

Then H0 can be represented as

H0 = −P
L
∑

j=1

�

c†
j,↑c j+1,↑ − S+j S−j+1 + h.c.

�

P , (107)

where P is the projection operator on singly occupied sites (78) and S+j = c†
i,↑c j,↓. This de-

scribes correlated hopping of the up fermions, whereas the down fermions can only move
through spin-flip processes. The jump operator is

L j = 2n j,↑ − 1 . (108)

5 Other integrable two-leg ladder models

The generalized Hubbard models considered above are all related to Lindblad equations with
a single jump operator on each bond by virtue of their integrability structure. There are many
other integrable models that can be represented as two-leg ladders and a question we have
investigated at some length is whether some of them can be associated with Lindblad equations
as well.
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5.1 GL(N 2) magnets

We now consider generalized spin models on a local Hilbert space with N2 bosonic states. A
well-known class of integrable models is obtained by taking [51,52]

HGL(N2) =
L
∑

j=1

N2
∑

α,β=1

Eαβj Eβαj+1 , (109)

where Pj, j+1 =
∑N2

α,β=1 Eαβj Eβαj+1 is a permutation operator acting on nearest-neighbour lattice
sites

Pj, j+1|γ〉 j|δ〉 j+1 = |δ〉 j|γ〉 j+1 . (110)

The Hamiltonian H is GL(N2) symmetric and hence

[H,Qα,β] = 0 , Qα,β =
L
∑

j=1

Eαβj . (111)

5.1.1 Representation as a 2-leg ladder

The permutation models can be viewed as 2-leg ladders by employing the decomposition of
section 2.1 for M = N . This provides a representation of the permutation operator as a tensor
product

Pj, j+1 =





N
∑

α,β=1

eeαβj eeβαj+1









N
∑

γ,δ=1

eγδj eδγj+1



 . (112)

It is clear from the representation (112) that

[H, Jαβ] = 0= [H, eJαβ] = 0 , (113)

where

eJαβ =
L
∑

j=1

eeαβj , Jαβ =
L
∑

j=1

eαβj , α,β = 1, . . . N . (114)

These operators are related to the GL(N2) symmetry generators by

Jαβ =
N
∑

γ=1

QN(γ−1)+α,N(γ−1)+β , eJαβ =
N
∑

γ=1

QN(α−1)+γ,N(β−1)+γ . (115)

5.1.2 Associated Lindblad equation

Consider now a Lindblad equation with Hamiltonian H0 and two sets of jump operators {L j}
and {`αβj }

H0 =
N
∑

α,β=1

λαβ Jαβ , L j =





N
∑

ᾱ,β̄=1

eᾱβ̄j eβ̄ ᾱj+1



 , `
αβ
j = eαβj . (116)

Noting that L†
j L j = 1 we conclude that the corresponding Liouvillian is

L=
N2
∑

α,β=1

fαβQα,β + γ
L
∑

j=1

�

Pj, j+1 − 1
�

, (117)
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where

N2
∑

α,β=1

fαβQα,β =
N
∑

ᾱ,β̄=1

−iλᾱβ̄[J
ᾱβ̄ − eJ ᾱβ̄] + γᾱβ̄

�

QN(ᾱ−1)+ᾱ,N(β̄−1)+β̄ −
J β̄ β̄ + eJ β̄ β̄

2

�

. (118)

By construction the first term in (117) commutes with the second, which is γHGL(N2). As
HGL(N2) is invariant under all global GL(N2) rotations U we conclude that (117) is integrable
for choices of γαβ and λαβ such that

U
N2
∑

α,β=1

fαβQα,βU† =
N2
∑

α=1

gαQα,α , gα ∈ C . (119)

5.1.3 Twisting the boundary conditions

As we have mentioned above, in general we need to consider similarity transformations when
trying to ascertain whether a Lindblad equation is related to an integrable Hamiltonian. A
simple example is provided by considering a Lindblad equation with vanishing Hamiltonian
and jump operators

L j =





N
∑

ᾱ,β̄=1

ei(ϕβ̄−ϕᾱ)eᾱβ̄j eβ̄ ᾱj+1



 , ϕᾱ ∈ R . (120)

The corresponding Liouvillian is

L = γ

L
∑

j=1





N
∑

eα,eβ ,ᾱ,β̄=1

ei(ϕβ̄−ϕᾱ−ϕeβ+ϕeα)eᾱβ̄j eβ̄ ᾱj+1 ee
eαeβ
j ee

eβ eα
j+1 − 1





= γ

L
∑

j=1

N2
∑

α,β=1

�

Eαβj Eβαj+1ei(φβ−φα) − 1
�

, (121)

where we have used the decomposition 2.1 and fixed the phases φα by

φβ −φα = ϕβ̄ −ϕᾱ +ϕeα −ϕeβ , (122)

whereα,β , ᾱ, β̄ , eα, eβ are related by (12). To relate this to the GL(N2)Hamiltonian we consider
the canonical transformation

U Eαβj U† = Eαβj e−i(φα−φβ ) j , (123)

under which the Liouvillian transforms as

ULU† =
L
∑

j=1

N2
∑

α,β=1

�

Eαβj Eβαj+1 − 1
�

, (124)

where we have imposed twisted boundary conditions

EβαL+1 = Eβα1 e−i(φα−φβ )L . (125)

We conclude that the Liouvillian is related to the integrable GL(N2) Hamiltonian with twisted
boundary conditions

ULU† = γHGL(N2)

�

�

�

�

twisted bc
. (126)

The integrability of twisted boundary conditions in the GL(N2)models is well known [53–55].
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5.1.4 Example: GL(4) spin ladder

As a specific example let us consider the GL(4) case

H = J
L
∑

j=1

Pj, j+1 +
h
2

�

Q1,1 +Q2,3 +Q3,2 +Q4,4
�

, (127)

where we have added a particular generalized magnetic field term. Using 2.1 we can express
this in terms of two species of Pauli operators, cf. [42]

H =
1
4

L
∑

j=1

J
�

σ j .σ j+1 + 1
� �

τ j .τ j+1 + 1
�

+ h
�

σ j .τ j + 1
�

. (128)

The related Lindblad equation has no Hamiltonian and two sets of jump operators

L j =
1
2

∑

a=x ,y,z

σa
jσ

a
j+1 + 1 , {`(a)j = σ

a
j |a = x , y, z} . (129)

The corresponding Liouvillian is

L= γ
L
∑

j=1

�

Pj, j+1 − 1
�

+ γ′
L
∑

j=1

(σx
j eσ

x
j −σ

y
j eσ

y
j +σ

z
j eσ

z
j − 3) . (130)

After a local basis rotation around the y-axis

τx
j = −eσ

x
j , τ

y
j = eσ

y
j , τz

j = −eσ
z
j , (131)

this maps onto (128) (up to a constant contribution) if we identify γ= J/4 and h= −γ′.

5.2 GL(n2
B + n2

F |2nBnF) magnets

We now turn to particular graded magnets, where we have n2
B+n2

F bosonic and 2nBnF fermionic
states at a given site of the lattice, where nB,F ∈ N0. A much studied family of integrable mod-
els is given by [52,56–61]

H =
∑

j

Π j, j+1 +
∑

j

∑

α

λαEααj , (132)

whereΠ j, j+1 is a graded permutation operator (9) and λα are generalized chemical potentials.
The case nB = nF = 1 gives the EKS model (a.k.a. supersymmetric extended Hubbard model).
We now employ the decomposition 2.1 and choose a tensor product basis for the local Hilbert
space as

|α〉= |eα〉 ⊗ |ᾱ〉 , εα = εeα + εᾱ , α, ᾱ= 1, . . . , nB + nF , (133)

where α= (nB + nF )(eα− 1) + ᾱ. The Eαβj ’s can then be expressed as

Eαβj = (−1)εeβ (εᾱ+εβ̄ ) eeeα
eβ

j eᾱβ̄j , (134)

which in turn leads to the following decomposition of the graded permutation operator

Π j, j+1 =





nB+nF
∑

eα,eβ=1

(−1)εeβeeeα
eβ

j e
eβ eα
j+1









nB+nF
∑

ᾱ,β̄=1

(−1)εβ̄ eᾱβ̄j eβ̄ ᾱj+1



 . (135)
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5.2.1 Associated Lindblad equation

Consider now a Lindblad equation with no Hamiltonian and Hermitian jump operators

L j =
N
∑

ᾱ,β̄=1

(−1)εβ̄ eᾱβ̄j eβ̄ ᾱj+1 . (136)

Noting that
L†

j L j = 1 , (137)

we conclude that the corresponding Liouvillian is

L= γ
L
∑

j=1

(Π j, j+1 − 1) . (138)

We can slightly generalize this by following the construction for the GL(N2) case, e.g. we can
add a Hamiltonian

H =
nB+nF
∑

ᾱ=1

λᾱ

L
∑

j=1

eᾱᾱj . (139)

5.3 Integrable spin ladder model of Refs [62,63]

The Hamiltonian of this model can be cast in the form of a two-leg spin ladder [42]

H(J) =
1
4

L
∑

j=1

�

�

σ j .σ j+1 + 1
� �

τ j .τ j+1 + 1
�

+ J
�

σ j .τ j + 1
�

+
�

σ j .τ j + 1
� �

σ j+1.τ j+1 + 1
�

−
�

σ j .τ j+1 + 1
� �

τ j .σ j+1 + 1
�

�

. (140)

5.3.1 Associated Lindblad equation

The Hamiltonian (140) is related to a Lindblad equation with no Hamiltonian part and a set
of Hermitian jump operators

L j = σ j ·σ j+1 + 1 , A(a)j =
∑

b,c

εabcσ
b
jσ

c
j+1 , B(a)j = σ

a
j +σ

a
j+1 , a = x , y, z . (141)

After a local basis rotation
τa

j → τ
y
j τ

a
jτ

y
j , a = x , y, z , (142)

and setting the γ parameters to be equal for all jump operator terms we arrive at a Liouvillian

L= 4γH(−4)− 12Lγ . (143)

6 A comment on scaling limits

A standard way of generating integrable QFTs is by taking appropriate scaling limits of in-
tegrable lattice models. A paradigmatic example is the scaling limit of the Hubbard model,
which gives rise to the integrable Yang-Gaudin model. An interesting question is whether
we can carry out an analogous construction for our integrable Liouvillians and arrive at non-
unitary integrable QFTs. The answer seems to be negative. Let us consider a lattice model
with Hamiltonian

H0 = −t
∑

j

c†
j c j+1 + c†

j+1c j −µ
∑

j

c†
j c j , (144)
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where c j and c†
j are annihilation and creation operators of spinless fermions, and jump oper-

ators
L j = n j = c†

j c j . (145)

These give rise to a Liouvillian

L = −iH0 + i eH0 + γ
∑

j

n j ñ j −
1
2
(n j + ñ j) , (146)

where H̃0 is of the same form as H0 but written in terms of fermion annihilation and creation
operators c̃ j and c̃†

j . The sign difference between H̃0 and H0 can be removed by a canonical
transformation

c̃ j → c̃ j(−1) j . (147)

In analogy of what we do in order to obtain the Yang-Gaudin model from the Hubbard model
we now consider the scaling limit

t →∞ , a0→ 0 , ta2
0 fixed. (148)

In this limit lattice fermion operators are replaced by continuum fields

c j '
p

a0Ψ↑(x) , c̃ j '
p

a0Ψ↓(x) , x = ja0 . (149)

The Liouvillian becomes

L =
h

i(2t +µ)−
γ

2

i

∫

d x
∑

σ

Ψ†
σ(x)Ψσ(x)

+ i ta2
0

∫

d x
∑

σ

Ψ†
σ(x)∂

2
x Ψσ(x) + γa0

∫

d xΨ†
↑(x)Ψ↑(x)Ψ

†
↓(x)Ψ↓(x) . (150)

A problem now occurs in the first term. If γ were purely imaginary, as is the case for the
Hubbard model, we could tune the chemical potential in such a way to ensure that the prefactor
remains finite in the scaling limit. This would leave us with a Yang-Gaudin model at a finite
density, but with imaginary interaction strength. However, given that γ is real and positive we
cannot take γ →∞, but must keep it finite in order to describe states with finite real parts
of their “energies”. This means that the only scaling limit is trivial as the interaction term
disappears. This would appear to be a more general feature, independent of integrability.

7 Some unsuccessful maps

Most of the integrable ladder models we have considered cannot be associated in a straightfor-
ward way with Lindblad equations. In the following we present some representative examples.

7.1 Perk-Schultz models

As an example we consider the N = 4 Perk-Schultz model [64,65]

HPS = J
∑

j

�

cosh(η)
∑

α

Eααj Eααj+1 +
∑

α6=β

Eβαj Eαβj+1 + sgn(α− β) sinhη Eααj Eββj+1

�

. (151)
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This can be viewed as a q-deformation of the GL(4) Hamiltonian considered above. Using the
decomposition 2.1 we can rewrite HPS as

HPS = J
∑

j

Pj, j+1 +
cosh(η)− 1

4

�

1+σz
jσ

z
j+1

��

1+τz
jτ

z
j+1

�

+
J sinh(η)

4

∑

j

�

σz
j+1 −σ

z
j

��

1+τz
jτ

z
j+1

�

. (152)

As the spectra of σz
j+1−σ

z
j and 1+τz

jτ
z
j+1 are different the term in the second line cannot be

related to a jump operator structure in this representation.

7.2 Higher conservation laws

A well-known way of obtaining integrable spin-ladder models is by considering higher conser-
vation laws [40, 66]. In case of the spin-1/2 Heisenberg XXX chain higher conservation laws
H(k+1) can be obtained from the transfer matrix by taking logarithmic derivatives at the “shift
point”. By construction we have [H(k), H(l)] = 0. The Hamiltonian we want to consider here
is H(b) = H(2) + bH(4) + const [66–68], which takes the form

H(b) = 4
L
∑

j=1

�

(1− b)S j · S j+1 +
b
2

S j · S j+2 + 2b
�

S j−1 · S j+1

� �

S j · S j+2

�

−2b
�

S j−1 · S j+2

� �

S j · S j+1

�

�

. (153)

This can be viewed as a zig-zag ladder model by associating all even (odd) sites with the first
(second) leg, which gives

H(b) =
L/2
∑

j=1

(1− b)σ j ·
�

τ j +τ j+1

�

+
b
2

¦

σ j ·σ j+1[τ j ·τ j+1 +τ j+1 ·τ j+2]

+ σ j ·σ j+1 +τ j ·τ j+1 −τ j ·σ j+1 σ j ·τ j+1 −σ j ·τ j+2 σ j+1 ·τ j+1

©

. (154)

This is asymmetric under leg exchange in a way that precludes a direct relation with a Lindblad
equation.

7.3 Alcaraz-Bariev model

The Alcaraz-Bariev two-parameter families of integrable models [69] come in two classes de-
noted by A± and B± respectively. The B± family contains the Hubbard model as a special limit
and this is the only case in which we succeeded in obtaining an interpretation in terms of a
Lindblad equation. We now discuss why such a relation does not seem to exist in general for
the A± family of models. The Hamiltonian of the A± family can be cast in the form

H(ε)A =
∑

j

T j, j+1 + T (1)j, j+1 + T (2)j, j+1 + gT (3)j, j+1 + cosθ[S j, j+1 − εT (p)j, j+1 + Vj, j+1 − εU j, j+1] , (155)
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where g = (1+ ε)(1− sinθ ) and

T j, j+1 = −e21
j e12

j+1 +ee
21
j ee

12
j+1 + h.c. ,

T (1)j, j+1 = −(e21
j e12

j+1 − e12
j e21

j+1)ee
22
j (ε sinθ − 1) + (ee21

j ee
12
j+1 −ee

12
j ee

21
j+1)e

22
j (sinθ − 1) ,

T (2)j, j+1 = −(e21
j e12

j+1 − e12
j e21

j+1)ee
22
j+1(sinθ − 1) + (ee21

j ee
12
j+1 −ee

12
j ee

21
j+1)e

22
j+1(ε sinθ − 1) ,

T (3)j, j+1 = −e21
j e12

j+1ee
22
j ee

22
j+1 +ee

21
j ee

12
j+1e22

j e22
j+1 + h.c. ,

S j, j+1 = e21
j e12

j+1ee
12
j ee

21
j+1 + h.c. ,

T (p)j, j+1 = −e21
j e12

j+1ee
21
j ee

12
j+1 + h.c. ,

Vj, j+1 = e−2ηe22
j ee

22
j+1 + e2η

ee22
j e22

j+1 ,

U j, j+1 = e22
j ee

22
j + e22

j+1ee
22
j+1 . (156)

Here we have carried out a unitary transformation

Ueab
j U† = eab

j (−1) j(a−b) (157)

on the Hamiltonian given in [69] in anticipation of relating it to a Liouvillian on a Lindblad
equation. We start by noting that we require g = 0 for such an interpretation to be possible.

The reason is that the only way to generate T (3)j, j+1 is as a “cross-term” in ` j`
†
j with

` j = ae21
j e12

j+1 + be12
j e21

j+1 + ce22
j e22

j+1 . (158)

However, such jump operators would also generate an unwanted contribution

|c|2e22
j e22

j+1ee
22
j ee

22
j+1. (159)

As this cannot be cancelled by introducing additional jump operators and does not feature in
H(ε)A we conclude that we must have g = 0. Next we turn to the cubic terms T (1)j, j+1. These
must arise from jump operators of the form

L j = ae21
j e12

j+1 + be12
j e21

j+1 + ce22
j . (160)

These jump operators give rise to inter-species interactions

L j L
†
j = |a|2e21

j e12
j+1ee

21
j ee

12
j+1 + ab∗e21

j e12
j+1ee

12
j ee

21
j+1 + a∗be12

j e21
j+1ee

21
j ee

12
j+1

+ |b|2e12
j e21

j+1ee
12
j ee

21
j+1 + |c|

2e22
j ee

22
j + c∗(ae21

j e12
j+1 + be12

j e21
j+1)ee

22
j

+ ce22
j (a

∗
ee21

j ee
12
j+1 + b∗ee12

j ee
21
j+1) , (161)

and intra-species interactions

L†
j L j = |a|2(1− e22

j )e
22
j+1 + |b|

2e22
j (1− e22

j+1) + |c|
2e22

j − a∗ce12
j e21

j+1 + c∗ae21
j e12

j+1 ,

L†
j L j = |a|2(1−ee22

j )ee
22
j+1 + |b|

2
ee22

j (1−ee
22
j+1) + |c|

2
ee22

j − ac∗ee12
j ee

21
j+1 + ca∗ee21

j ee
12
j+1 .(162)

In order to produce the cubic terms in H(ε)A we require

a = −b , ac∗ = 1− ε sinθ , ca∗ = sinθ − 1 . (163)

Combining these with the requirement that g = 0 leads to

ε= sinθ = 1 . (164)
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In this case the A± model reduces to free fermions. We have also investigated whether carrying
out a similarity transformation SH(ε)A S−1 with

S =
L
∏

j=1

exp
�

ϕe22
j ee

22
j + j

�

ϕ1e11
j +ϕ2e22

j + ϕ̃1ee
11
j + ϕ̃2ee

22
j

��

(165)

may facilitate a Lindblad interpretation. The answer appears to be negative.

8 Discussion

In this work we have reported our findings for a search for Yang-Baxter integrable Lindblad
equations. We have focused on translationally invariant situations where jump operators act
on bonds or sites of a one dimensional chain. We have derived a superoperator representation
for lattice models with both fermionic and bosonic degrees of freedom, and jump operators
which can be bosonic or fermionic. In this representation the Lindblad equation takes the
form of a imaginary time Schrödinger equation with a non-Hermitian “Hamiltonian” with lo-
cal density, which can be thought of in terms of a two-leg ladder model of interacting spins or
fermions. We have then investigated which Yang-Baxter integrable two-leg ladder models can
be related to such Lindblad equations in a “direct” way. Our main result is that a wide class
of generalized Hubbard models can be interpreted as Liouvillians of Lindblad equations. We
traced this back to their integrability structure, which is based on gluing together certain so-
lutions of the Yang-Baxter equation in a particular way. Some of the corresponding dissipative
models are physically meaningful, an example being the infinite-U Hubbard model subject to
on-site dephasing noise. As the jump operators in this class of models are Hermitian, the com-
pletely mixed state is a steady state in all cases. Using the Bethe Ansatz solution we have shown
for a subclass of generalized Hubbard models that the Liouvillian gap vanishes like L−2 as the
thermodynamic limit is approached. The corresponding eigenstates correspond to particle-like
“excitations” with quadratic dispersions, which suggests that the late-time behaviour in these
models is likely to be diffusive.

We have identified a few Yang-Baxter integrable Lindblad equations that are not general-
ized Hubbard models by showing that certain known integrable Hamiltonians can be cast in
the form of Liouvillians associated with a Lindblad equation. However, in most cases we have
considered such mappings are not possible. As this is often difficult to see we have presented
a non-trivial case of such a failure in the Alcaraz-Bariev two-parameter family of integrable
models.

We stress that in this work we have focused on a particular “direct” relation between Liou-
villians of Lindblad equations and Hamiltonians of Yang-Baxter integrable models. There are
known cases where it is possible to establish such relationships by means of more complicated
(non-local) maps [29]. Moreover, as we pointed out in section 3.3, one ought to allow for sim-
ilarity transformations that maintain locality of the Hamiltonian density in integrable models
when trying to establish relations with Lindblad equations. A systematic way of doing this is
by considering invariances of the Yang-Baxter equation, cf. Chapter 12.2.5 of Ref. [41]. For
example, given a solution R(λ,µ) ∈ End(C⊗C) of the Yang-Baxter equation other solutions
can be obtained as

�

V (µ)⊗ V (λ)
�

R(λ,µ)
�

V−1(λ)⊗ V−1(µ)
�

, (166)

where V (λ) is an invertible n × n matrix. This allows one to introduce additional free pa-
rameters in the resulting Hamiltonian. The latter will generally be non-Hermitian, but this is
not a problem in the present context of Lindblad equations. It would be interesting to pursue
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this line of enquiry further and a good starting point will be the models successfully related to
Lindblad equations in this work.

In this we work we focused on identifying integrable Lindblad equations and only briefly
explored using methods of quantum integrability to obtain physical properties. A good start-
ing point for this is to determine the spectrum of the Liouvillian, which is given in terms of
the solutions of the relevant Bethe Ansatz equations. It is well understood that the nature
of solutions to Bethe Ansatz equations changes quite substantially when a parameter is made
complex, as this results in the “scattering phases” acquiring magnitudes different from unity.
In practice this means that the structure of solutions to the Bethe Ansatz equations, which
is usually encoded in appropriate string hypotheses, must be revisited and typically becomes
more involved. Even in the simplest case of the Hubbard model the structure of Bethe Ansatz
roots for Liouvillian eigenstates with eigenvalues that have large real parts and non-zero imag-
inary parts appears to be non-trivial. We plan to report on this issue in a future publication.
Ultimately one would like to determine the dynamics of general Green’s functions

Tr
�

ρ(t)Eα1β1
j1

. . . Eαnβn
jn

�

(167)

for evolution from a given initial density matrix ρ(0). In some of the cases discussed above
this is relatively simple because the equations of motion for these Green’s functions decouple
and for two-point functions can thus either be integrated numerically or determined from the
exact Liouvillian eigenstates in the two-particle sector [70]. In cases like the 3-state Maassarani
model a more involved analysis is required and it would be interesting to investigate this case
in more detail.
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A Structure of the Liouvillian for the most general jump operator
acting on a bond

The most general two site bosonic jump operator with nearest-neighbour interactions is

L j =
∑

αβ

�

λαβ Eαβj +λ
′

αβ Eαβj+1

�

+
∑

αβγδ

µαβγδEαβj Eγδj+1 . (168)

This gives rise to interaction terms between the two legs of the ladder

L j L
†
j = I(2)j + I(3)j + I(4)j , (169)

where I(n)j involves n Hubbard operators Eαβj , eEαβj . The interaction along a single rung of the
ladder is

I(2)j =
∑

α1β1
α2β2

�

λα1β1
λ∗α2β2

Eα1β1
j

eEα2β2
j +λα1β1

λ
′∗
α2β2

Eα1β1
j

eEα2β2
j+1

+λ
′

α1β1
λ∗α2β2

Eα1β1
j+1

eEα2β2
j +λ

′

α1β1
λ
′∗
α2β2

Eα1β1
j+1

eEα2β2
j+1

�

,

(170)

24

https://scipost.org
https://scipost.org/SciPostPhys.8.3.044


SciPost Phys. 8, 044 (2020)

while the three and four point interactions on a given plaquette are given by

I(3)j =
∑

α1β1γ1δ1
α2β2

µα1β1γ1δ1
Eα1β1

j Eγ1δ1
j+1

�

λ∗α2β2
eEα2β2

j +λ
′∗
α2β2

eEα2β2
j+1

�

+
∑

α1β1
α2β2γ2δ2

µ∗α2β2γ2δ2

�

λα1β1
Eα1β1

j +λ
′

α1β1
Eα1β1

j+1

�

eEα2β2
j

eEγ2δ2
j+1 ,

I(4)j =
∑

α1β1γ1δ1
α2β2γ2δ2

µα1β1γ1δ1
µ∗α2β2γ2δ2

Eα1β1
j Eγ1δ1

j+1
eEα2β2

j
eEγ2δ2

j+1 . (171)

There are also interaction terms along the two legs of the ladder

L†
j L j =

∑

βγ

��

∑

α

λαβλ
∗
αγ

�

Eγβj +
�

∑

α

λ
′

αβλ
′∗
αγ

�

Eγβj+1

�

+
∑

αβγδ

�

fαβγδEαβj Eγδj+1 + h.c.
�

,

L†
j L j =

∑

βγ

��

∑

α

λ∗αβλαγ
�

eEγβj +
�

∑

α

λ
′∗
αβλ

′

αγ

�

eEγβj+1

�

+
∑

αβγδ

�

fβαδγeE
γδ
j+1
eEαβj + h.c.

�

, (172)

where

fαβγδ = λ
∗
βαλ

′

γδ +
∑

η

�

λ∗ηαµηβγδ +λ
′∗
ηγµαβηδ

�

+
1
2

∑

ην

(−1)(εα+εβ )(εη+εγ)µνβηδµ
∗
ναηγ . (173)
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