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Abstract

We study the equilibration properties of isolated ergodic quantum systems initially pre-
pared in a cat state, i.e a macroscopic quantum superposition of states. Our main re-
sult consists in showing that, even though decoherence is at work in the mean, there
exists a remnant of the initial quantum coherences visible in the strength of the fluc-
tuations of the steady state. We back-up our analysis with numerical results obtained
on the XXX spin chain with a random field along the z-axis in the ergodic regime and
find good qualitative and quantitative agreement with the theory. We also present and
discuss a framework where equilibrium quantities can be computed from general statis-
tical ensembles without relying on microscopic details about the initial state, akin to the
eigenstate thermalization hypothesis.
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1 Introduction

Upon encountering the quantum statistical ensembles for the first time, one is often struck
by the strong similitude they share with their classical counterpart. Indeed, quantum en-
sembles such as e.g the Gibbs ensemble, appear like a mere transcription of classical ones
where one would have replaced the possible classical configurations by the eigenstates of the
Hamiltonian. An explanation dating back to the early days of quantum mechanics [1, 2] is
that, assuming ergodicity, the off-diagonal elements undergo a dephasing that time-averages
to zero given that the different frequencies of the Hamiltonian are incommensurate. Thus, in
the mean steady-state, purely quantum mechanical features such as superposition of state and
entanglement are lost : this is a decoherence effect. Furthermore, the previous years have seen
the development of a general framework known as the eigenstate thermalization hypothesis
(ETH) which explains the emergence of statistical ensembles from a given set of assumptions
on the spectral properties of the observables of the system [3–6] . The validity or invalidity of
the ETH has been tested numerically in a certain number of studies [6–10].

Therefore, one could legitimately ask what is the consequences of having purely quantum
features such as superposition of states and entanglement in the initial state of the system
on the final equilibrium properties, if there are any at all? In this work, we intend to prove
that, even if on average information about the quantum coherence of the initial state is lost
at equilibrium, there is a remnant of the latter visible in the fluctuations around the stationary
state. This phenomenon was already seen in a model of stochastic fermionic chain on a discrete
lattice [11,12] and we provide here the generalization of these results to any ergodic quantum
system.

In the context of ETH, one important assumption is that the initial states considered must
have an energy comprised in a narrow energy shell. This assumption is tightly bound with
having initial states which fulfill a cluster decomposition [13] constraint, i.e that the typical
coherence length is small compared to the size of the system. Within this hypothesis, the
fluctuations of the state around its average value scale like the inverse of the dimension of the
Hilbert space and are thus exponentially suppressed as one increases the system size [14].

We are interested in situations where these hypothesis are relaxed, i.e for which the initial
state of the system can be a superposition of states which have energies largely spread across
the spectrum or equivalently that entangle large part of the system together. This typically
happens for cat states which are quantum superposition of macroscopically distinct states -see
fig.1. Cat states have attracted humongous interest from the physics community in the recent
years [15–20] as their creation, stabilization and manipulation constitute key steps towards
quantum computing and simulation. Working in the Hamiltonian basis, we will see that such
states present non trivial, possibly non-local fluctuations of the off-diagonal components in the
steady-state that are fixed by the initial quantum coherences.

This paper is organized as follows : First, we introduce our definition for quantum ergod-
icity and following it, compute first and second order correlation functions for elements of the
density matrix. In a second part, we show that these results are in qualitative and quantitative
agreement with numerical results obtained in a quantum ergodic spin chain. We then discuss
a more general framework where the equilibrium ensembles don’t depend on the fine struc-
ture of the initial states and discuss connection with ETH. We finally end by some concluding
remarks and perspectives.
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Figure 1: a. Traditional situation where the set of initial states all belong to a narrow
energy window centered around E0. b. Typical situation we will consider in this
paper where we have a cat state made of a quantum superposition 1/

p
2(|Φ1〉+ |Φ2〉)

2 Ergodic hypothesis and equilibrium state

In classical physics, ergodicity is the hypothesis that at long-times, when the system reaches
equilibrium, there is an equivalence between the time average of quantities and an ensemble
average over a microcanonical distribution. The microcanonical distribution stipulates that,
at fixed energy for an isolated system, the probability of all microscopic configurations are
equal. Physically, the equivalence between the two averages comes from the assumption that
at long-time the system explores isotropically all the degrees of freedom available under the
constraint of fixed energy.

This work is devoted to the formulation and study of a similar quantum ergodic hypothesis :
Let ρ0 be the density matrix containing information about the initial conditions of the system.
Given a set of conserved observables, Ĥ1, Ĥ2, · · · Ĥn, an accessible state is defined as a density
matrixρ such that there exists a unitary U commuting with all the Ĥi and fulfilling Uρ0U† = ρ.
The quantum ergodic hypothesis asserts that in the long-time equilibrium state, all accessible
density matrices have same probability weight or equivalently, that time average of elements of
ρt is equivalent to ensemble average over all possible unitary evolution U that commutes with
the conserved quantities. For simplification, in this paper, we will consider a unique conserved
quantity Ĥ but generalization to a set of mutually commuting observables is straightforward.

Let us introduce some notations. We call G the group formed by all the unitaries such that
[U , Ĥ] = 0. We call |Eνi

i 〉 the eigenvector corresponding to energy Ei for Ĥ where νi is an index
accounting for possible degeneracies. We will call di the dimension of the subspace associated
to energy Ei . Because of the commutativity of the U ’s with H, the group G can be decomposed
as a direct product of SU(di) : G = ×iSU(di). Alternatively, this means that in the eigenbasis
of the Hamitonian, U can be written in blocks indexed by i with an element U (i) of SU(di) in
each block. This constitutes a fundamental representation of G. We also introduce the decom-
position of ρ0 into different sectors ρ(i, j)0 defined as ρ(i j)

0 =
∑

νi ,ν j
tr(ρ0 |E

νi
i 〉 〈E

ν j

j |) |E
νi
i 〉 〈E

ν j

j |
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and ρ0 =
∑

i, j ρ
(i, j)
0 .

ρ0 =















�

ρ(11)
�

︸ ︷︷ ︸

d1×d1

�

ρ(12)
�
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d2×d1

· · ·

�

ρ(21)
�

︸ ︷︷ ︸

d1×d2

�

ρ(2,2)
�

︸ ︷︷ ︸

d2×d2
...

. . .















.

We will now illustrate how our quantum ergodic hypothesis allow to compute equilibrium
quantities. We begin by considering the average of ρ denoted by E[ρ0] with respect to the
ensemble average we just introduced. By definition :

E[ρ0] =

∫

G
dη(U)Uρ0U†. (1)

η is the natural measure on G, that is dη(U) =
∏

i dη(i)(U (i)) with dη(i) the Haar measure,
i.e the unique invariant measure on SU(di). The physical interpretation of this expression is
exactly the one we discussed before : The average evolution is given by summing over all
possible evolutions that preserve the spectrum of the Hamiltonian with the probability weight
of each of them distributed uniformly with respect to the Haar measure. Making use of the
decomposition in sectors of ρ0, we have :

E[ρ0] =
∑

i

E[ρ(i,i)0 ] +
∑

i 6= j

E[ρ(i, j)0 ] (2)

=
∑

i

∫

G
dη(i)(U (i))U (i)ρ(i,i)0 U (i)† +

∑

i 6= j

∫

G
dη(i)(U (i))dη( j)(U ( j))U (i)ρ(i, j)0 U ( j)†.(3)

By the left invariance of the Haar measure we have that for i 6= j, ∀U (i) ∈ SU(di),
U (i)E[ρ(i, j)0 ] = E[ρ(i, j)0 ] which is only true if E[ρ(i, j)0 ] = 0. For i = j, Schur lemma tells us that

E[ρ(i, j)0 ] must be proportional to the identity. The proportionality coefficient is determined by
taking the trace so that we get :

E[ρ0] =
∑

i

1
di
I(ii)tr(ρ(ii)0 ). (4)

Thus, in average, as one expects from decoherence, information about ”off-diagonal” correla-
tions between different energy sectors is lost. However, we will see in what follows that there
is actually a remnant of the latter when one goes to higher order correlations.

Before going on, let’s notice two extreme cases of interest : the first case is when all the
energy levels are non-degenerate. Then, E[ρ0] is just the diagonal ensemble, i.e the density
matrix in which one has set all the off-diagonal components to zero. The second case is when
there is only one energy sector that is the whole Hilbert space itself. We then have E[ρ0] =

1
d I.

In this case, the density matrix states tells us all states with the same energy E have the same
probability weight, i.e it is the microcanonical ensemble. Fully-degenerate spectrum corre-
sponds in general to chaotic or non-integrable systems, so one should expect that the diagonal
ensemble describes accurately the steady state of such systems [14]. However, in practice, we
know that equilibrium states of isolated system are accurately described by the microcanonical
ensemble which corresponds to the steady-state of a fully degenerate spectrum. To go from
the first ensemble to the second is not a trivial task which requires additional assumptions. We
will discuss this point in more details in the section 4.
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The second moment of elements of the density matrix is by definition :

E[ρ⊗2
0 ] =

∫

G
dη(U)U⊗2ρ⊗2

0 U†⊗2, (5)

with X⊗n ≡ X ⊗ · · · ⊗ X
︸ ︷︷ ︸

n times

. This quantity can be computed by generalizing arguments used for the

mean. Again, it relies on the decomposition of ρ⊗2
0 into sectors

(ρ⊗2
0 )

(i1, j1,i2, j2) ≡
∑

νi1,νi2,ν j1 ,ν j2
tr(ρ⊗2

0 |E
νi1
i1

, E
νi2
i2
〉 〈E

ν j1
j1

, E
ν j2
j2
|) |E

νi1
i1

, E
νi2
i2
〉 〈E

ν j1
j1

, E
ν j2
j2
| and identi-

fying the invariant objects under the action of U ⊗ U . We simply state the result and present
the full derivation in app.A:

E[ρ⊗2
0 ] =

∑

i1

1
di1(di1 + 1)

((tr(ρ(i1)0 ))
2 + tr((ρ(i1)0 )

2))I(i1,i1,i1,i1)
(2)

+
1

di1(di1 − 1)
((tr(ρ(i1)0 ))

2 − tr((ρ(i1)0 )
2))I(i1,i1,i1,i1)

(1,1) (6)

+
∑

i1 6=i2

1
di1 di2

(tr(ρ(i1 i1)
0 )tr(ρ(i2 i2)

0 )I(i1 i2 i1 i2) + tr(ρ(i1 i2)
0 ρ

(i2 i1)
0 )I(i1 i2 i2 i1)),

where the different identities are defined as :

I(i1,i1,i1,i1)
(2) =

∑

νi1 ,ν′i1

1
4
(|E

νi1
i1

, E
ν
′
i1

i1
〉+ |E

ν
′
i1

i1
, E
νi1
i1
〉)(〈E

νi1
i1

, E
ν
′
i1

i1
|+ 〈E

ν
′
i1

i1
, E
νi1
i1
|) (7)

I(i1,i1,i1,i1)
(1,1) =

∑

νi1 6=ν
′
i1

1
4
(|E

νi1
i1

, E
ν
′
i1

i1
〉 − |E

ν
′
i1

i1
, E
νi1
i1
〉)(〈E

νi1
i1

, E
ν
′
i1

i1
| − 〈E

ν
′
i1

i1
, E
νi1
i1
|) (8)

I(i1,i2,i1,i2) =
∑

νi1 ,νi2

|E
νi1
i1

, E
νi2
i2
〉 〈E

νi1
i1

, E
νi2
i2
| , (9)

I(i1,i2,i2,i1) =
∑

νi1 ,νi2

|E
νi1
i1

, E
νi2
i2
〉 〈E

νi2
i2

, E
νi1
i1
| . (10)

The subscripts (2) and (1, 1) refers respectively to the symmetric and antisymmetric irreducible
representations of SU(di)⊗ SU(di). The important point is that contrary to (4), (6) contains
information about quantum superposition of states both in the case where they belong to
the same sector (line 1 of (6)) but also when the superposition involves states belonging to
different sectors (line 3 of (6)). Thus, two initial states having the same diagonal elements may
relax to the same density matrix in average but present differences at the level of fluctuating
quantities, providing a signature of the presence or the absence of initial quantum coherences.

One can carry this procedure to get access to higher moments but their explicit expression
becomes more and more involved. We present the general formula in the app.B.

We will now illustrate these ideas on a concrete numerical example.

3 Numerical results on the XXX spin chain with random field in
the ergodic regime

We test the predictive power of our model on the XXX model with random local fields :

Ĥ =
L−2
∑

j=0

J ~σ j · ~σ j+1 +
L−1
∑

j=0

h jσ
z
j , (11)
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with L the lattice size and σa
j the usual Pauli matrices. The boundaries are open. The h j are

independent random variables distributed uniformly in an interval [−h, h]. The transition from
an ergodic to a localized regime of this model has been studied in [21] and characterized by
the spectral properties of Ĥ. A quantity of particular interest is the mean ratio of consecutive
level spacings known to be close to the one of the Wigner distribution (≈ 0.53) in the ergodic
regime and to the one of the Poisson distribution (≈ 0.38) in the localized regime. For J = 1
and lattice size ranging from 11 to 22, it has bee shown in [21] that the transition between
the two regimes occurred for h ≈ 2.5. Since we are interested in the ergodic regime we will
fix the value of h to 1. We work in the minimal magnetization sector, i.e 0 for L even and 1
for L odd.

Let Ô be an observable. We will compute the time-evolution of O(t)≡ tr(ρtÔ) by using ex-
act diagonalization methods [22–24]. We denote the time-average by
Et[•] ≡ limT→∞

1
T

∫ T
t=0 •d t and will be interested in first and second order correlation func-

tions Et[O(t)], Et[O(t)O′(t)]. Our point will be to show that the time average Et[•] is equiv-
alent to the previously introduced ensemble average over possible unitary evolutions E[•].

We will study a quench situation in which the initial state is expressed in terms of eigen-
values of the Hamiltonian Ĥ from which we remove the XXX coupling between sites L/2−1 and
L/2 (suppose L even for simplicity), i.e Ĥ0 = ĤL+ĤR with ĤL ≡

∑L/2−2
j=0 J ~σ j·~σ j+1+

∑L/2−1
j=0 h jσ

z
j

and ĤR ≡
∑L−2

j=L/2 J ~σ j · ~σ j+1+
∑L−1

j=L/2 h jσ
z
j . The initial states chosen this way have well-defined

energies ER and EL and will be denoted |ER, EL〉. At time t = 0, we switch the Hamiltonian
from Ĥ0 to Ĥ, so that the system is now in an out-of-equilibrium situation.

To illustrate the importance of the presence or absence of initial quantum coherences in
the steady state of the system, we propose to study two different set of initial conditions.
They will be both indistinguishable from the point of view of their mean energy but they
will encode for different off-diagonal quantum coherences which effect will be visible in the
equilibrium fluctuations of the system. Let Emin, Emax be the minimum and maximum energy
of the spectrum and |Φ1〉 ≡ |E1

R, E1
L 〉, |Φ2〉 = |E2

R, E2
L 〉 such that E1

R + E1
L is close to Emin and

E2
R + E2

L is close to Emax. The decomposition of these states in the eigenbasis of Ĥ are shown
in the app.C.

In the protocol I, corresponding to a cat state made of a quantum superposition of two
states with «macroscopically» distinct energies E1

R + E1
L and E2

R + E2
L , the initial state is chosen

to be :

|ψI
0〉=

1
p

2
(|Φ1〉+ |Φ2〉). (12)

In the protocol II, corresponding to a mixed state, the initial state is described by the density
matrix :

ρII
0 =

1
2
(|Φ1〉 〈Φ1|+ |Φ2〉 〈Φ2|). (13)

In both protocols, the reduced density matrices on R and L are the same.
We compute the time-evolution of two observables : HR(t)≡ tr(ρt ĤR) and Q(t) = tr(ρtQ̂),

Q̂ ≡ |Φ1〉 〈Φ2|+ |Φ2〉 〈Φ1|. Note that Q is non-local, in the sense that it has non zero support
on the whole physical space. From formula (4,6) we can deduce the predictions for first and
second moments of these quantities given by ensemble averages in both protocols. Importantly
we have that :

EI[HR] = EII[HR], EI[H2
R] = E

II[H2
R], (14)

EI[Q] = EII[Q] = 0, EI[|Q|2] 6= EII[|Q|2], (15)

6
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Figure 2: Long-time evolution of the different quantities considered. In blue are
the plots corresponding to the cat state (protocol I) while in black are the plots
for the mixed state (protocol II). We see no qualitative difference for HR while the
fluctuations of Q around the mean are suppressed for the second protocol, as the
consequence of the absence of initial quantum coherences. The blue-shaded region
in the top-right panel is the consequence of oscillations occurring on a much shorter
time scale.

meaning that the two protocols can be distinguished by looking at the fluctuations of Q̂. Quali-
tatively, this comes from the fact that the observable Q̂ has non zero projection on off-diagonal
elements of the energy basis of Ĥ. The fluctuations of the latter is precisely what character-
izes the difference between the equilibrium state of protocol I and II. The computations and
detailed expressions of these quantities are provided in app.C.

We show in fig.2, the time-evolution of HR(t) and Q(t) in both protocols for a given realiza-
tion of the disorder. We can clearly see that HR(t) is independent of the protocol, contrarily to
Q(t). The predicted value for the different quantities is also in quantitative arguments with the
simulations (see tab.1). Details on how these values and the confidence intervals are obtained
are given in app.C.

Let us add a remark here. In general because of its high degree of non-locality, it is not
expected that Q might be a suitable observable for experimental measurements. But similar
qualitative statements about fluctuations should apply for any observables that couple the
different energy sectors. For instance, as suggested at the end of [25], one could imagine
doing an interference experiment between two parts of the system far part and look at the
fluctuations of the pattern.

7
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Table 1: Comparison between theoretical and numerical values for the mean and
standard deviation of different quantities of interest.

Theory E[HR] σHR
σQ

Cat state −7.13 ∗ 10−1 1.51 ∗ 10−1 2.09 ∗ 10−2

Mixed state −7.14 ∗ 10−1 1.51 ∗ 10−1 ≈ 0

Numeric E[HR] σHR
σQ

Cat state −7.14 ∗ 10−1 ± 7.8 ∗ 10−4 1.52 ∗ 10−1 ± 0.3 ∗ 10−2 2.11 ∗ 10−2 ± 0.2 ∗ 10−2

Mixed state −7.14 ∗ 10−1 ± 7.8 ∗ 10−4 1.52 ∗ 10−1 ± 0.3 ∗ 10−2 5.83 ∗ 10−5 ± 1.0 ∗ 10−6

4 Discussion

So far, we were only concerned about the equilibrium state of the system and haven’t gone into
the thermalization properties. Thermalization is stronger as it implies that the steady-state
properties of the system can be described by one of the canonical ensemble of thermodynamics.
In this section, we informally discuss possible links between the theory presented and the
Eigenstate Thermalization Hypothesis (ETH). The ETH conjectures that for any initial state
prepared as mixture of eigenstates of the total Hamiltonian with energies in a narrow window
[E − δE, E + δE], the matrix elements of observables in the energy eigenbasis is given by
Omn = O(E)δmn + e−S(E)/2 fO(E,ω)Rmn with E ≡ (Em + En)/2, ω ≡ En − Em and S(E) the
entropy. It is assumed that O(E) and fO(E,ω) are smooth function of their arguments and that
Rmn is a random variable with zero mean and unit variance.

In the ETH, the role of the initial state is restricted to fixing the energy scales E and ∆E.
The important remark is that, for the cat states, there is no notion of ”narrow window” around
a given energy anymore, hence we don’t expect the ETH to apply. One illustration of that is
the fact that off-diagonal correlations are not exponentially suppressed for cat states.

However the great advantage of the ETH is to explain why one can forget about all micro-
scopic details contained in the diagonal ensemble and instead work with the microcanonical
ensemble ρm ≡

1
d I. It would be great to have an equivalent statement here. A possible way

for obtaining such simplification in our case already discussed in [26] would be the following
: We can suppose that the ”actual” group whose action leaves invariant the stationary state
is not given by the set of all unitaries that commutes with H but rather with an Hamiltonian
H ′ = H+δH with δH a small perturbation which "mixes" the different energy sectors separated
by energy ≈ δH. The microcanonical ensemble is recovered in the case where the spectrum
of H ′ is fully degenerate in the energy window of interest [E − δE, E + δE]. Indeed, in that
case, from (4) we see that the average density matrix is the microcanonical one : E[ρ0] = ρm
and the second moment is E[ρ0 ⊗ρ0] =

2
d(d+1)I{2} (for simplicity, we suppose that the initial

state is a pure state). For the case where the initial state has two peaks E1 and E2 in its en-
ergy spectrum as shown in fig.1, we can conjecture that H ′ is such that it mixes energies in
the interval I1 = [E1 − δE, E1 + δE] and I2 = [E2 − δE, E2 + δE] around E1 and E2 but not
altogether so that the average density matrix is given by : E[ρ0] =

tr(ρ0I1)
d1
I(1)+ tr(ρ0I2)

d2
I(2) with

I(i) =
∑

E∈Ii
|E〉 〈E| and di = tr(I(i)). This has the simple interpretation that, on average at

equilibrium, the mean density matrix is a statistical mixture of a state at energy E1 and a state
at energy E2. The only information retained from the initial state is the weights corresponding
to each energy sector. Similarly, a direct application of (6) shows that at the second order,

8
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the information about the connected correlations between the two energy sectors is contained
in a compact way in tr(ρ0 ⊗ρ0 I(1,2,2,1)) with I(1,2,2,1) =

∑

E∈I1,E′∈I2
|E, E′〉 〈E′, E|. Thus, one

would not need fine information about the initial state to describe the equilibrium properties
of the system. Of course, as with ETH, the range of applicability of these hypothesis is for now
rather elusive and needs to be determined via careful numerical or experimental studies. We
wish to report more on that in future studies.

5 Conclusion

We presented a theoretical framework enabling one to compute equilibrium properties of iso-
lated quantum systems upon an assumption of quantum ergodicity which postulates that time-
averages are equivalent to unitary ensemble averages in the stationary state. We brought spe-
cific attention to the relaxation of cat states, i.e quantum states which are a superposition of
two macroscopically distinct states. We showed both analytically and numerically that a rem-
nant of the initial quantum coherence was visible in the fluctuations around average quantities
in the steady state whose amplitudes can be computed exactly. In the last part, we sketched
a possible framework describing the equilibrium fluctuations in terms of statistical ensembles
that do not require full knowledge of the microscopic details of the initial state.

In non-integrable or integrable systems a subject of debate of the previous decades has
been to determine which conserved quantities were relevant to describe the thermal ensem-
bles determining the local equilibrium properties. The question is of particular relevance for
integrable systems since they comprise in principle a macroscopic number of conserved quanti-
ties [27]. It is now commonly accepted that one should only consider local (or quasilocal [28])
quantities to characterize such ensembles. However, our study stipulates that these ensembles
no longer suffice when one looks at the equilibrium fluctuations of the system. There, addi-
tional information about possibly non-local conserved quantities are required.

Another important affirmation of ETH concerns the notion of typicality [29, 30]. Typical-
ity states that for all pure states that are random superpositions of eigenstates of the energy
window, few-body operators have thermal distributions in the thermodynamic limit. It would
be very interesting to test whether some notion of typicality remains in our case, i.e that the
fluctuations of -possibly non-local- few-body observables are described by typical distributions
in the thermodynamic limit starting from any superposition of states belonging to the macro-
scopically different energy sectors.

Another interesting point is that the equilibrium formulae (4,6) can in principle be applied
to non chaotic or integrable system. Of course, there is no reason for the ergodic property to be
fulfilled anymore so there is no guarantee that they provide the right predictions. For instance,
for finite-size integrable systems, there might be long-lived oscillations that prevents the system
from equilibrating [31, 32]. However one should remark that the various symmetries of the
system that lead to ergodicity breaking are accounted for in the structure of the group. It
would therefore be interesting to see whether this information about degeneracies is enough
to predict quantitatively the time-averaged and amplitudes of oscillating quantities and, if not,
what ingredient needs to be added.
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A Second order fluctuations

In this section we show how to compute formula (6) from the main text , i.e we want to
compute :

E[ρ⊗2
0 ] =

∫

G
dη(U)U⊗2ρ⊗2

0 U†⊗2.

In essence, the calculations will rely on the same mechanics than for order 1 with some twists.
Once again, we define the decomposition of ρ⊗2

0 into different sectors (ρ⊗2
0 )

(i1, j1,i2, j2) as follows
:

(ρ⊗2
0 )

(i1, j1,i2, j2) =
∑

νi1 ,νi2 ,ν j1 ,ν j2

tr(ρ⊗2
0 |E

νi1
i1

, E
νi2
i2
〉 〈E

ν j1
j1

, E
ν j2
j2
|) |E

νi1
i1

, E
νi2
i2
〉 〈E

ν j1
j1

, E
ν j2
j2
| .

The average of a block is given by :

E[(ρ⊗2
0 )

(i1, j1,i2, j2)] =

∫

G
dη(U)U (i1) ⊗ U (i2)(ρ⊗2

0 )
(i1, j1,i2, j2)U†( j1) ⊗ U†( j2).

We first prove that E[(ρ⊗2
0 )

(i1, j1,i2, j2)] is null except if the tuple { j1, j2} is a permutation of
{i1, i2}. Indeed, suppose it’s not the case : then, there exists a k such that ∀k′, ik 6= jk′ .
For definiteness, say k = 1. From the left invariance of the Haar measure, we then have
∀V (i1) ∈ SU(di1) that :

V (i1) ⊗ I(i2)E[(ρ⊗2
0 )

(i1, j1,i2, j2)] = E[(ρ⊗2
0 )

(i1, j1,i2, j2)]

(V (i1) ⊗ I(i2) − I(i1) ⊗ I(i2))E[(ρ⊗2
0 )

(i1, j1,i2, j2)] = 0,

which implies E[(ρ⊗2
0 )

(i1, j1,i2, j2)] = 0.
We thus learn the important fact that { j1, j2} must be a permutation of {i1, i2} for the

average of the block to be non zero.
There are three possible cases that we will examine separately :

I i1 = i2 = j1 = j2,

II i1 6= i2, i1 = j1, i2 = j2 corresponding to the permutation σ ∈S2 : {1,2} → {1,2},

III i1 6= i2, i1 = j2, i2 = j1 corresponding to the permutation σ ∈S2 : {1,2} → {2,1}.

Case I :

[(ρ⊗2
0 )

(i1 i1 i1 i1)] =

∫

dη(U)U (i1) ⊗ U (i1)(ρ0 ⊗ρ0)
(i1 i1 i1 i1)U†(i1) ⊗ U†(i1).

Let D(i) be the fundamental representation of SU(di). The tensor product representation
D(i)⊗D(i) admits a decomposition onto irreducible representations indexed by Young diagrams.
We denote by {2} the possible partitions of 2, i.e (2) and (1,1). Following the usual convention
for indexation of irreducible representations of the unitary group by Young tableaux, D(2)(i)

corresponds to and the tensor representation that is symmetric under permutation of two
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indices while D(1,1)(i) corresponds to and denotes the antisymmetric representation. We

have [33] :
D(i) ⊗ D(i) = D(2)(i) ⊕ D(1,1)(i).

The representation D(2)(i) preserves the symmetric eigenbasis made of di(di+1)
2 elements

�

�Ei , (2),νi ,ν
′
i

�

≡ 1p
2
(|Eνi

i , E
ν′i
i 〉 + |E

ν′i
i , Eνi

i 〉) for νi 6= ν′i and |Ei , (2),νi ,νi〉 =
�

�Eνi
i , Eνi

i

�

while

the representation D(1,1)(i) preserves the antisymmetric eigenbasis made of di(di−1)
2 elements

�

�Ei , (1,1),νi ,ν
′
i

�

= 1p
2
(|Eνi

i , E
ν′i
i 〉 − |E

ν′i
i , Eνi

i 〉) for νi 6= ν′i .
One can further block-decompose (ρ0⊗ρ0)(i1,i1,i1,i1) according to these basis. Introducing

:

(ρ⊗2
0 )

(i1,i1,i1,i1),(y1,y2)

≡
∑

νi ,ν
′
i ,µi ,µ

′
i

tr((ρ⊗2
0 )

(i1,i1,i1,i1)
�

�

�Ei1 , (y1),νi1 ,ν′i1

¶¬

Ei1 , (y2),µi1 ,µ′i1

�

�

�)

�

�

�Ei1 , (y1),νi1 ,ν′i1

¶¬

Ei1 , (y2),µi1 ,µ′i1

�

�

� ,

with y1, y2 ∈ {2}.
By Schur lemma, we then have than the only non-zero block components ofE[(ρ⊗2

0 )
(i1 i1 i1 i1)]

are the diagonal ones, i.eE[(ρ⊗2
0 )

(i1 i1 i1 i1),((2),(2))] andE[(ρ⊗2
0 )

(i1 i1 i1 i1),((1,1),(1,1))] and these blocks
are proportional to the identity :

E[(ρ⊗2
0 )

(i1 i1 i1 i1),((2),(2))]∝ I(i1,i1,i1,i1)
(2) ,

E[(ρ⊗2
0 )

(i1 i1 i1 i1),((1,1),(1,1))]∝ I(i1,i1,i1,i1)
(1,1) .

Where I(i1,i1,i1,i1)
{2} is the identity matrix associated to the representation D{2}(i1). The propor-

tionality coefficient is determined by taking the trace. Explicitly, we have :

E[(ρ⊗2
0 )

(i1 i1 i1 i1),((2),(2))] =
2

di1(di1 + 1)
tr((ρ⊗2

0 )I
(i1,i1,i1,i1)
(2) )I(i1,i1,i1,i1)

(2)

=
1

di1(di1 + 1)
((tr(ρ(i1)0 ))

2 + tr((ρ(i1)0 )
2))I(i1,i1,i1,i1)

(2)

E[(ρ⊗2
0 )

(i1 i1 i1 i1),((1,1),(1,1))] =
2

di(di − 1)
tr((ρ⊗2

0 )I
(i1,i1,i1,i1)
(1,1) )I(i1,i1,i1,i1)

(1,1) .

=
1

di(di − 1)
((tr(ρ(i1)0 ))

2 − tr((ρ(i1)0 )
2))I(i1,i1,i1,i1)

(1,1)

Case II : We look at :

E[(ρ⊗2
0 )

(i1 i2 i1 i2)] =

∫

dη(U)U (i1) ⊗ U (i2)(ρ⊗2
0 )

(i1 i2 i1 i2)U†(i1) ⊗ U†(i2)

for i1 6= i2.
Since D(i1) and D(i2) are two irreducible representations of SU(di1) and SU(di2), the tensor

product D(i1) ⊗ D(i2) is an irreducible representation of SU(di1)× SU(di2).
The proof comes from Schur orthogonality relation :
Let D1 and D2 be two irreducible representations over vector spaces V1 and V2 : D1 : G1→ End(V1),

D2 : G2→ End(V2).
If G1 and G2 are finite, we show that the tensor product representation D⊗ = D1⊗D2 : G1×G2→

End(V1⊗ V2), defined for any couple (g1, g2) ∈ G1× G2 by D⊗(g1, g2) = D1(g1)⊗ D2(g2)
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is again irreducible. Indeed the Schur orthogonality relation for an irreducible representation
states (with normalized measure with respect to the group volume) that :

∫

dη(g)|χ(g)|2 = 1,

where χ(g) is the character of the representation. Then :
∫

dη(g1 × g2)|χ⊗(g1 × g2)|2 =

∫

dη(g1)|χ1(g1)|2
∫

dη(g2)|χ2(g2)|2

= 1

and the representation D⊗ is again irreducible.
By Schur lemma, we then have that E[(ρ⊗2

0 )
(i1 i2 i1 i2)]∝ I(i1 i2 i1 i2) where I(i1 i2 i1 i2) is the iden-

tity defined by : I(i, j,k,l) ≡
∑

νi ,ν j ,νk ,νl
|Eνi

i , E
ν j

j 〉 〈E
νk
k , Eνl

l | . As before, we take the trace to de-
termine the proportionality coefficient, we get :

E[(ρ⊗2
0 )

(i1 i2 i1 i2)] =
tr(ρ(i1 i1)

0 )tr(ρ(i2 i2)
0 )

di1 di2

I(i1 i2 i1 i2).

Case III : We look at :

E[(ρ⊗2
0 )

(i1 i2 i2 i1)] =

∫

dη(U)U (i1) ⊗ U (i2)(ρ⊗2
0 )

(i1 i2 i2 i1)U†(i2) ⊗ U†(i1).

Let M be an element of M ∈ L(Hi ,H j)⊗ L(Hk,Hl) and σ ∈S2. We define the right action of
σ on M , M ·σ as :

(M ·σ)α1β1α2β2
= Mα1βσ(1)α2βσ(2)

.

As it will be useful later, we define in the same way, the left action σ ·M acting on M as :

(σ ·M)α1β1α2β2
= Mασ(1)β1ασ(2)β2

.

We then have that :

E[(ρ⊗2
0 )

(i1 i2 i2 i1)] =

∫

dη(U)U (i1) ⊗ U (i2)(ρ⊗2
0 )

(i1 i2 i2 i1)U†(iσ(1)) ⊗ U†(iσ(2))

E[(ρ⊗2
0 )

(i1 i2 i2 i1)] ·σ = (

∫

dη(U)U (i1) ⊗ U (i2)((ρ⊗2
0 )

(i1 i2 i2 i1).σ)U†(i1) ⊗ U†(i2)),

where σ is here the permutation {1,2} → {2,1}.
Applying Schur lemma as before then leads to :

E[(ρ⊗2
0 )

(i1 i2 i2 i1)] ·σ =
tr((ρ⊗2

0 )
(i1 i2 i2 i1).σ)

di1 di2

I(i1 i1 i2 i2),

E[(ρ⊗2
0 )

(i1 i2 i2 i1)] =
tr(ρ(i1 i2)

0 ρ
(i2 i1)
0 )

di1 di2

I(i1 i2 i2 i1),

=
tr((ρ⊗2

0 )I
(i1 i2 i2 i1))

di1 di2

I(i1 i2 i2 i1).

Regrouping the results for all three cases proves (6) of the main text :
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E[ρ⊗2
0 ] =

∑

i1

1
di1(di1 + 1)

((tr(ρ(i1)0 ))
2 + tr((ρ(i1)0 )

2))I(i1,i1,i1,i1)
(2)

+
1

di1(di1 − 1)
((tr(ρ(i1)0 ))

2 − tr((ρ(i1)0 )
2))I(i1,i1,i1,i1)

(1,1)

+
∑

i1 6=i2

1
di1 di2

(tr(ρ(i1 i1)
0 )tr(ρ(i2 i2)

0 )I(i1 i2 i1 i2) + tr(ρ(i1 i2)
0 ρ

(i2 i1)
0 )I(i1 i2 i2 i1)).

B General formula at any order

In this section, we wish to compute the generalization of the formula for the mean and second
order correlation of density matrix elements to higher order, i.e :

E[ρ⊗n
0 ] =

∫

G
dη(U)Tr(U⊗nρ⊗n

0 U†⊗n). (16)

This is equivalent to knowing the generating function Z(A) defined as

Z(A)≡
∫

G
dη(U)etr(AUρ0U†),

which is reminiscent of the Harish-Chandra Itzykson Zuber integral [34] except that the group
G upon which the integration is performed is not an unitary group so we can’t directly use that
result.

To compute (16), we will rely on the same approach than for the mean and the second order
correlations, i.e we will first decompose ρ⊗n

0 into different sectors transforming according to
different combination of U (ik) and identify the different invariants under such transformations.
In spirit, it will be close to the proof of the invariant theory presented in the appendix of [11].
We introduce once again the block decomposition of ρ⊗n

0 into (ρ⊗n
0 )

(i j) ≡ (ρ⊗n
0 )

(i1 i2···in, j1 j2··· jn)

defined by :

(ρ⊗n
0 )

(i1 i2···in, j1 j2··· jn)

=
∑

νi1 ,··· ,νin ,ν j1 ,··· ,νn

tr(ρ⊗n
0 |E

νi1
i1

, · · · , E
νin
in
〉 〈E

ν j1
j1

, · · · , E
ν jn
jn
|) |E

νi1
i1

, · · · , E
νin
in
〉 〈E

ν j1
j1

, · · · , E
ν jn
jn
| .

The average of a block is given by :

E[(ρ⊗n
0 )

(i j)] =

∫

U∈G
dη(U)U (i1) ⊗ U (i2) · · · ⊗ U (in)(ρ⊗n

0 )
(i j)U†( j1) ⊗ U†( j2) · · · ⊗ U†( jn) .

To each term U (i1) ⊗ U (i2) · · · ⊗ U (in), we associate a standard ordering defined as the tensor
product

U
(m1···mkmax )
so ≡ U (iσ−1(1)) ⊗ U (iσ−1(2)) · · · ⊗ U (iσ−1(n))

≡ U (m1)⊗n1 ⊗ · · · ⊗ U (mn)⊗nk ,

where iσ−1(1) ≤ iσ−1(2) · · · ≤ iσ−1(n), σ ∈
Sn

∏

Snk
, mk = i

σ−1(
∑k

j=1 n j)
and nk is the number of times

U (mk) appears in the tensor product (we have
∑kmax

k=1 nk = n).
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In the same way, we define the permutation σ∗ ∈ Sn
∏

Snk
such that

U†( jσ∗−1(1)) ⊗ U†( jσ∗−1(2)) · · · ⊗ U†( jσ∗−1(n)) is standard ordered.
We can use the same argument as before to show that the average is null unless the j′ks

are a permutation of the ik ’s. We call this permutation γ : jγ(k) = ik. γ is related to σ, σ∗ by
γ= σ∗−1σ. Indeed :

iσ−1(k) = jσ∗−1(k)

ik = jσ∗−1(σ(k))

jγ(k) = jσ∗−1(σ(k)).

Now :

E[(ρ⊗n
0 )

(i j)] =

∫

U∈G
dη(U)U (iσ(σ−1(1))) · · · ⊗ U (iσ(σ−1(n)))(ρ⊗n

0 )
(i j)U ( jσ∗(σ∗−1(1))) · · · ⊗ U†( jσ∗(σ∗−1(n)))

σ ·E[(ρ⊗n
0 )

(i j)] ·σ∗ =
∫

U∈G
dη(U)U

(m1,··· ,mkmax )
so σ · (ρ⊗n

0 )
(i j) ·σ∗U

†(m1,··· ,mkmax )
so .

In general, the tensor product representation which U
(m1,··· ,mkmax )
so belongs to is reducible :

U
(m1,··· ,mkmax )
so = U (m1)⊗n1 ⊗ · · · ⊗ U (mkmax )⊗nkmax .

= ⊕(y1)∈{n1}D
(y1)(U (m1))⊗⊕(y2)∈{n2}D

(y2)(U (m2)) · · · ⊗ ⊕ykmax{nkmax}
D(ykmax )(U (mkmax ))

= ⊕{n1},{n2},···{nkmax}
D(y1)(U (m1))⊗ · · · ⊗ D(ykmax )(U (mkmax ))

≡ ⊕{n} ⊗i D(yi)(U (mi)),

where as before {nk} designates the possible Young tableaux of nk. As we showed before,
the tensor product of two irreducible representations is again irreducible, so the represen-
tations D(y1) ⊗ · · · ⊗ D(ykmax ) of ×iSU(di)nk are irreducible. As before, we decompose further
σ · (ρ⊗n

0 )
(i j).σ∗ into blocks corresponding to these irreducible representations. Denoting by

|Ei , (y),ν〉 the basis elements associated to the irreducible representation of SU(di)n corre-
sponding to the decomposition (y), we have the following decomposition for the blocks :

(σ.(ρ⊗n
0 )

(i, j).σ∗)({y},{y
′})

=
∑

ν1,··· ,νkmaxν
′
1,··· ,ν′kmax

tr((σ · (ρ⊗n
0 )

(i j).σ∗)
�

�

�Em1
, (y1),ν1, · · · , Emkmax

, (ykmax
),νkmax

¶¬

Em1
, (y

′

1),ν
′
1, · · · , Emkmax

, (y′kmax
),ν′kmax

�

�

�)
�

�

�Em1
, (y1),ν1, · · · , Emkmax

, (ykmax
),νkmax

¶¬

Em1
, (y

′

1),ν
′
1, · · · , Emkmax

, (y ′kmax
),ν′kmax

�

�

� ,

where {y} designates the tuple {y j}1≤ j≤kmax
. The averages of these blocks are given by

E[(σ.(ρ⊗n
0 )

(i, j).σ∗)({y},{y
′})]

=

∫

G
D(y1)(U (m1))⊗ · · · ⊗ D(ykmax )(U (mkmax ))(σ.(ρ⊗n

0 )
(i, j).σ∗)({y},{y

′})

D†(y ′1)(U (m
′
1))⊗ · · · ⊗ D†(y ′kmax

)(U (m
′
kmax
)).

As before, by Schur lemma, the average of one of these blocks is non zero only if the two
representations are equivalent, meaning that we must have {y}= {y ′}. Then :

E[(σ.(ρ⊗n
0 )

(i, j).σ∗)({y},{y
′})] = δy ,y ′

∏

k

ω((yk))
d(yk)

tr((σ · (ρ⊗n
0 )

(i j) ·σ∗)({y},{y}))(σ.I(i, j).σ∗)({y},{y}),
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where ω((yk)) is the multiplicity of the Young tableau corresponding to (yk), d(yk) its dimen-
sion and (σ.I(i j).σ∗)({y}{y}) is defined as :

(σ.I(i j).σ∗)({y}{y})

≡
∑

ν1,···νkmax

�

�

�Em1
, (y1),ν1, · · · , Emkmax

, (ykmax
),νkmax

¶¬

Em1
, (y1),ν1, · · · , Emkmax

, (ykmax
),νkmax

�

�

� .

This finally leads us to :

E[ρ⊗n
0 ] =

∑

(i, j)

∑

({y})

∏

k

ω((yk))
d(yk)

tr((σ · (ρ⊗n
0 )

(i j) ·σ∗)({y},{y}))I(i j)({y},{y}) ,

where the sum is over all j ’s that are a permutation of i ’s. Each permutation is characterized
by σ and σ∗.

C More details on the case study

In this appendix, we provide additional details on the numerics presented in the main text. As
a reminder, the Hamiltonian we study is :

Ĥ =
L−2
∑

j=0

J ~σ j · ~σ j+1 +
L−1
∑

j=0

h jσ
z
j ,

with L = 12, J = 1 and h j picked at random between −1 and 1 with the uniform distribution.
We work in the 0 magnetization sector which has a dimension of 924. We choose a seed such
that the mean level spacing of the spectrum is close to the Wigner distribution one : 0.53069.
The minimum energy Emin is −20.944 and the maximum energy Emax is 12.445. The states
|Φ1〉 and |Φ2〉 have respectively energies E1 ≡ −10.753 and E2 ≡ 6.731 with respect to ĤR+ĤL.
One important quantity is the overlap Ovlap these states have with respect to the eigenbasis |i〉
of the total Hamiltonian, i.e Ovlap(i) ≡ | 〈i|Φ1〉 〈i|Φ2〉 |. The maximum of Ovlap in our case is
8.206 ∗ 10−5. We also have that

∑

i Ovlap(i) = 0.00579. The decompositions of |Φ1〉 and |Φ2〉
in the eigenbasis of Ĥ are shown on fig.3.

Figure 3: Decomposition of |Φ1〉 (blue) and |Φ2〉 (red) in the eigenbasis of Ĥ.
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To compute the numerical values, we choose a time window [3000 : 13000] with 2 ∗ 104

points. The different values presented in tab.1 of the main text are given by time average over
this interval :

Et[A(t)] =
1
T

∫ T

0

d tA(t)

σA ≡

√

√

√ 1
T

∫ T

0

(A(t)−Et[A(t)])2 ,

with T the time interval.
The confidence intervalsδ on the mean and the standard deviation are obtained by dividing

T in 10 smaller intervals on which the quantities of interest are computed again. δ then
corresponds to the standard deviation between the results obtained on the 10 samples and the
one computed on the full interval.

The theoretical values for the mean and variances of our different quantities are computed
from equations (4) and (6) of the main text. Recall that for the protocol I, the initial state was
chosen as the pure state 1p

2
(|Φ1〉 + |Φ2〉) and for the protocol II, it was the classical mixture

described by the density matrix ρ0 =
1
2(|Φ1〉 〈Φ1|+ |Φ2〉 〈Φ2|).

For a fully degenerate spectrum, (4,6) gives that the average of a given observable M̂ and
its second order connected correlations are given by :

tr(E[ρ0]M̂) =
∑

i

〈i |ρ0| i〉 〈i| M̂ |i〉

tr(E[ρ⊗2
0 ]M̂ ⊗ M̂)c =

∑

i1 6=i2

| 〈i1 |ρ0| i2〉 |2| 〈i1| M̂ |i2〉 |2.

Below, we explain why there is no difference in the first and second order correlation of ĤR
between protocol I and II while there are for the second order correlation of Q̂.

Mean quantities :

tr(E[ρ(I)0 ]ĤR) =
∑

i

〈i |ρ0| i〉 〈i| ĤR |i〉

=
1
2

∑

i

〈i| (|Φ1〉+ |Φ2〉)(〈Φ1|+ 〈Φ2|) |i〉 〈i| ĤR |i〉 . (17)

Since the overlap between |Φ1〉 and |Φ2〉 is small, we can approximate the previous expression
by :

tr(E[ρ(I)0 ]ĤR) ≈
1
2

∑

i

〈i| ĤR |i〉 〈i| (|Φ1〉 〈Φ1|+ |Φ2〉 〈Φ2|) |i〉

= tr(E[ρ(II)0 ]ĤR).

Similarly :

tr(E[ρ(I)0 ]Q̂) =
∑

i

〈i|Φ1〉 〈Φ2|i〉 〈i|ρ
(I)
0 |i〉

≈ 0

= tr(E[ρ(II)0 ]Q̂).

We see that as far as the mean quantities are concerned, the cat state and the classical mixture
provide the same results.
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Second order fluctuations : From (6), we have that :

tr(E[ρ(I)⊗2
0 ]ĤR⊗ ĤR)

c

=
∑

i1 6=i2

| 〈i1|ρ
(I)
0 |i2〉 |

2 〈i1| ĤR |i2〉 |2

=
1
4

∑

i1 6=i2

| 〈i1 |(|Φ1〉 〈Φ1|+ |Φ1〉 〈Φ2|+ |Φ2〉 〈Φ1|+ |Φ2〉 〈Φ2|)| i2〉 |2| 〈i1| ĤR |i2〉 |2

≈
1
4

∑

i1 6=i2

| 〈i1 |(|Φ1〉 〈Φ1|+ |Φ2〉 〈Φ2|)| i2〉 |2| 〈i1| ĤR |i2〉 |2

≈ tr(E[ρ(II)⊗2
0 ]ĤR⊗ ĤR)

c.

Where in the last line we used the fact that 〈i1|Φ1〉 〈Φ2|i2〉 is non zero only for Ei1 close to E1

and Ei2 close to E2. But this in turns imply that 〈i1| ĤR |i2〉 ≈ 0 .
For Q̂ :

tr(E[ρ(I)⊗2
0 ]Q̂⊗ Q̂)c

=
1
4

∑

i1 6=i2

| 〈i1 |(|Φ1〉 〈Φ1|+ |Φ1〉 〈Φ2|+ |Φ2〉 〈Φ1|+ |Φ2〉 〈Φ2|)| i2〉 |2| 〈i1| Q̂ |i2〉 |2

=
1
4

∑

i1 6=i2

| 〈i1 |(|Φ1〉 〈Φ1|+ |Φ1〉 〈Φ2|+ |Φ2〉 〈Φ1|+ |Φ2〉 〈Φ2|)| i2〉 |2| 〈i1|Φ1〉 〈Φ2|i2〉+ 〈i1|Φ2〉 〈Φ1|i2〉 |2

≈
1
4

∑

i1 6=i2

| 〈i1|Φ1〉 〈Φ2|i2〉+ 〈i1|Φ2〉 〈Φ1|i2〉 |4.

Where to go to the last line we used the fact that if | 〈i1|Φ1〉 〈Φ2|i2〉+ 〈i1|Φ2〉 〈Φ1|i2〉 |2 is non
zero, the Ei1 is close to either E1 or E2 and Ei2 the other way around. This in turn implies that
〈i1|Φ1〉 〈Φ1|i2〉 ≈ 0≈ 〈i1|Φ2〉 〈Φ2|i2〉. This also tells us that

tr(E[ρ(II)⊗2
0 Q̂⊗ Q̂]≈ 0.

We thus see a clear difference in the fluctuations of Q̂ for the two protocols.
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