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Abstract

We study the holographic dual to c-extremization for 2d (0, 2) superconformal field
theories (SCFTs) that have an AdS3 dual realized in Type IIB with varying axio-dilaton,
i.e. F-theory. M/F-duality implies that such AdS3 solutions can be mapped to AdS2 solu-
tions in M-theory, which are holographically dual to superconformal quantum mechanics
(SCQM), obtained by dimensional reduction of the 2d SCFTs. We analyze the corre-
sponding map between holographic c-extremization in F-theory and I-extremization in
M-theory, where in general the latter receives corrections relative to the F-theory result.
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1 Introduction

A Type IIB supergravity solution with a holomorphically varying axio-dilaton can be given
an F-theory interpretation, whereby the varying axio-dilaton is represented as the complex
structure of a singular elliptic fibration over spacetime. The axio-dilaton undergoes SL(2,Z)
monodromy around the singularities, which in turn encode the 7-branes in the background.
Although such F-theory backgrounds have mainly been studied in the context of Minkowski
solutions, recently AdS solutions were developed that have the hallmark of a holomorphically
varying axio-dilaton. A class of AdS3 solutions of F-theory were obtained in [1,2], generalizing
the constant τ solutions in e.g. [3–12]. The dual field theories are obtained by wrapping D3-
branes on curves, above which the axio-dilaton varies. From the point of view of the 4d N = 4
Super-Yang-Mills (SYM) theory on the D3-branes, this corresponds to a varying complexified
coupling, and the 2d SCFT is obtained by a duality-twist [13–16]. Generalizations of these F-
theory solutions were obtained in [17–20] and the dual field theories were studied in [21,22].

The most concrete avenue for accessing the geometric interpretation of F-theory is through
its duality with M-theory, taken in its low-energy limit as 11d supergravity. The advantage
of the M-theory dual perspective is that the elliptic fibration associated to the varying axio-
dilaton appears as part of the physical spacetime geometry, rather than as an auxiliary space.
There are two ways of dualizing the F-theory solutions, which in terms of dual field theory
realized on D3-branes correspond to either mapping D3-branes to M5-branes or to M2-branes,
depending on whether the T-duality is applied transverse to or along the world-volume of the
D3-branes, respectively. In the former case, the F-theory solutions of [1]map to AdS3 solutions
in M-theory, which are dual to the MSW-strings [23]. Alternatively, by writing the AdS3 as a
constant-sized circle fibration over AdS2, one can dualize along the fiber and obtain an AdS2
solution of M-theory.

Among these AdS3 solutions, the least well-understood are dual to 2dN = (0, 2) supersym-
metry [2], where, unlike for (0, 4)1, a general classification is not known. More importantly,
the central charge of the 2d SCFTs for (0, 2) supersymmetry have to be determined by an ex-
tremization principle. Likewise, the dual M-theory AdS2 backgrounds are holographic duals
to 1d N = (0,2) SCQMs living on the conformal boundary, whose 1d partition function also
requires an extremization. Indeed, in a supersymmetric 2d (0,2) field theory the R-symmetry
U(1)R is in general not uniquely defined. If the theory has other global abelian symmetries,
these may mix with the U(1)R to produce an equally good R-symmetry. On the other hand, if
the field theory flows to a superconformal fixed point in the infrared, this singles out a unique
superconformal R-symmetry. In [24] an extraordinarily simple method for determining the
exact R-symmetry of the fixed point SCFT was obtained, starting from the gauge theory de-

1The most general solutions with varying axio-dilaton and five-form flux dual to 2d (0,4) were determined
in [1].
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scription. The authors of [24] showed that extremizing the central charge c of the field theory
over all admissible R-symmetries exactly identifies the superconformal R-symmetry. This so-
called c-extremization was further developed for compactifications of D3-branes with constant
and varying coupling in [2, 25, 26]. It is closely related to the 4d concept of a-maximization,
which was formulated in [27]. A related concept, which will also play a central role in this pa-
per, is I-extremization. This has been proposed in [28] as a method for determining the exact
R-symmetry of an SCQM, when this theory arises as a compactification of a 3d N = 2 SCFT
on a Riemann surface Σ. Then the topologically twisted index of the 3d theory is expected to
yield the 1d partition function [29–31] after extremization.

The AdS/CFT correspondence implies that equivalent geometric extremization principles
should exist, realizing the gravitational duals of I- and c-extremization. Indeed such geomet-
ric duals were constructed in [32,33] (as well as [34,35] for a-maximization) for backgrounds
where the axio-dilaton is constant. These papers formulate holographic extremization princi-
ples for the geometries in [5,7,36] by determining a parametrization of the Killing vector that
is the geometric counterpart to the R-symmetry, and the conditions for the optimization prob-
lem to be well-defined, as well as the geometric quantity to be extremized. A general proof
of the off-shell holographic correspondence with I- and c-extremization was put forth in [37]
and extended in [38]. A complementary approach using gauged supergravity was pursued
in [39,40].

Whether one takes the geometric or field theoretic point of view, the extremization prin-
ciples generally represent a significant simplification of the problem of determining genuine
supergravity backgrounds or, equivalently, their dual SCFTs. Instead of directly having to
solve a set of coupled (partial) differential equations, we can take the much more technically
tractable approach of optimizing a single function.

In this paper we generalize this approach to include a varying axio-dilaton, which provides
a powerful tool for identifying F-theory AdS3 supergravity solutions that can arise from con-
figurations of D3-branes and 7-branes. Furthermore, from this point of view the duality with
M-theory AdS2 backgrounds not only provides a description where the elliptic fibration asso-
ciated with the varying axio-dilaton is physically manifest, it also implies that in this specific
context holographic I- and c-extremization are dual to each other.

More precisely, we will find that in general the two quantities obtained by extremization
in M/F-theory only agree up to leading order in an expansion in terms of the volume of the
elliptic fiber. Namely, we find

log Z1d =
1

4G2
=
∆φ

12
csugra +O(k0) =

√

√2
3
πN1/2

0 · c1/2
sugra +O(k0) , (1.1)

where k0 is the volume of the elliptic fiber. Here on the left hand side Z1d is the partition
function of the 1d SCQM, which via holography is related to the 2d Newton constant G2 of
the dual M-theory AdS2 solution. On the right hand side csugra is the leading order 2d central
charge of the F-theory AdS3 solution, N0 ∈ N is a certain quantized flux number, while ∆φ is
the size of the circle upon which the 2d SCFT is compactified. The correction terms in (1.1) are
O(k0). In M-theory, this fiber volume is a physical quantity, whereas in F-theory the elliptic fiber
is an auxiliary geometric structure, where only the complex structure has a physical meaning,
and the volume is strictly taken to zero. The correction terms then generically arise because
the M-theory backgrounds include the full backreaction of the 7-branes on the F-theory side,
which in particular break the circle isometry on which we T-dualise.

Let us conclude by making some comments on the physical interpretation of (1.1). The
left hand side is the logarithm of the 1d partition function of the SCQM on a circle. On the
other hand, the first expression involving csugra is precisely the Casimir energy of the 2d (0, 2)
theory placed on a torus, as one might have expected on general grounds. The final expression
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on the right hand side of (1.1) is proportional to c1/2
sugra, with a proportionality constant that

is a fixed number. In particular, this shows that to leading order in k0 the two extremization
principles are dual to each other. We shall see explicit examples, where the O(k0) correction
terms are either zero or non-zero.

The paper is organized as follows: In section 2 we present the details of the supersym-
metric F-theory AdS3 geometries and generalize the method of holographic c-extremization
to accommodate a varying axio-dilaton. In section 3 we review the M/F-duality for the su-
persymmetric AdS2/AdS3 geometries and specialize holographic I-extremization to the case
where the compactification space contains a non-trivial elliptic fibration. We then determine
the map between I- and c-extremization in section 4. In section 5 we consider a large class
of toric examples and apply I/c-extremization to a novel set of M/F-theory setups, and red-
erive a known class of solutions, the elliptic surface universal twist solutions, using this new
framework. For these theories the M- and F-theory computations agree without any correc-
tions. Finally, section 6 contains an analysis of a related known class of M/F-theory solutions,
the elliptic three-fold universal twist solutions, where the M-theory result for 1/G2 receives
corrections compared to the F-theory computation. We conclude in section 7.

2 Holographic c-Extremization in F-Theory

We develop the holographic dual to c-extremization in the context of AdS3 geometries in F-
theory, i.e. Type IIB supergravity with a holomorphically varying axio-dilaton τ, which are
holographically dual to 2d N = (0, 2) SCFTs. To begin with we review the class of geometries
[2], before generalizing holographic c-extremization in Type IIB [32] to encompass these F-
theory geometries.

2.1 AdS3 Backgrounds

We consider holographic duals to 2d (0,2) SCFTs realized in Type IIB with five-form flux and
varying axio-dilaton [2]. The geometry underlying the solutions is AdS3×Y7, and is supported
by RR five-form flux

ds2
10 = L2

10 e−B10/2
�

ds2(AdS3) + ds2(Y7)
�

,

F5 = −L4
10

�

volAdS3
∧ F + ∗7F

�

.
(2.1)

In addition the axio-dilaton varies over the space Y7. Here L10 is an overall length scale,
and B10 and F are a function and a closed two-form on Y7, respectively. The analysis of the
supersymmetry equations reveals that Y7 admits a nowhere vanishing Killing vector ξ, which is
the geometric counterpart to the U(1) R-symmetry of the dual (0, 2) SCFT. The Killing vector
induces a transversely conformally Kähler foliation Fξ. This entails that there is a locally
defined space transverse to ξ, which we will denote by M6, admitting a Kähler metric. The
geometric picture is most straightforward for the case of a quasi-regular Killing vector. By
definition this means that the orbits of ξ close and Y7 is the total space of the circle fibration

S1 Y7

M6

, (2.2)

where the transverse Kähler space M6 is a compact Kähler orbifold. The R-symmetry is then
globally a U(1) symmetry. When the generic orbits do not close, the Killing vector is said to be
irregular. For a more detailed description of the general properties of Fξ we refer the reader
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to [32]. The brane configuration corresponding to these geometries consists of N D3-branes
on R1,1 × C , where C are curves in M6, above which the axio-dilaton varies. The auxiliary
elliptic fiber degenerates over the loci that are subspaces wrapped by the 7-branes, which in
the present case have world-volume W8 = AdS3 × eS, where eS are five-cycles in Y7.

The supersymmetry equations of Type IIB get modified when the axio-dilaton is varying.
The SL(2,Z) self-duality of Type IIB induces a so-called U(1)D symmetry, which acts on the
fermions and supercharges by

U(1)D : γ=
�

a b
c d

�

∈ SL(2,Z) : eiαγ =
|cτ+ d|
cτ+ d

. (2.3)

The action on the fermions with half-integral charge extends the SL(2,Z) by a Z2 to the meta-
plectic group [41]. The duality U(1)-symmetry U(1)D can be gauged, and then defines a line
bundle L, with connection

Q = −
1

2τ2
dτ1 , (2.4)

where τ= τ1 + iτ2. Furthermore, it is convenient to define the one-form

P = i
2τ2

dτ . (2.5)

Supersymmetry implies that τ is preserved by ξ (i.e. Lξτ= 0) and that it varies holomorphi-
cally over the transverse Kähler space. The bundle L is then transversely holomorphic with
the curvature given by

idP = dQ = −iP ∧ P̄ . (2.6)

Next we consider how the geometry of Y7 itself is constrained by supersymmetry. Let η be
the one-form dual to ξ. Choosing a local coordinate z so that ξ= 2∂z , the local expression for
η is given by η= 1

2(dz + P).2 The derivative of the local one-form P then satisfies

dP = ρ6 − iP ∧ P̄ , (2.7)

where ρ6 is the transverse Ricci form. Finally, there is a relation between the scalar curvature
R6 of the transverse Kähler space and the warp factor B10

eB10 =
1
8

�

R6 − 2|P |2
�

. (2.8)

Before proceeding let us summarize all the expressions for 10d fields after having imposed
the supersymmetry equations:

ds2
10 = L2

10 e−B10/2
�

ds2 (AdS3) +
1
4
(dz + P)2 + eB10ds2 (M6)

�

,

F5 = −L4
10

�

volAdS3
∧ F + ∗7F

�

,

F = −2J6 +
1
2

d
�

e−B10 (dz + P)
�

,

dP = ρ6 − iP ∧ P̄ ,

eB10 =
1
8

�

R6 − 2|P |2
�

.

(2.9)

Here J6 is the Kähler form on M6. Notice that all of the 10d fields are completely determined
by the transverse Kähler metric together with the line bundle L. We refer to Y7 satisfying

2Note that we are following the conventions in [32], which are different from the conventions in [2]. The
naming differences are particularly subtle when it comes to the connection one-forms. The reader should be
aware that Phere = −ρthere, Phere = Pthere and (ρ6)here = (R6)there.
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the supersymmetry equations, and therefore having all the properties outlined above, as a
supersymmetric geometry. For constant axio-dilaton P = 0, and the above reduce to the Type
IIB equations in [5].

All of the above results hold off-shell, by which we mean that we merely impose super-
symmetry, without imposing the equations of motion. For supersymmetric geometries the
equations of motion reduce to a PDE on the transverse Kähler space involving the metric and
the connection on the line bundle L. This is referred to as the master equation in [2], and is
given by

�6(R6 − 2|P |2) = 1
2

R2
6 − (R6)µν(R6)

µν + 2|P |2R6 − 4(R6)µνPµP̄ν . (2.10)

Geometries satisfying this equation will be called on-shell, and are solutions of the Type IIB
supergravity equations with varying axio-dilaton, provided that the five-form flux is appropri-
ately quantized. We will return to the flux quantization conditions in a later section.

The F-theory perspective amounts to giving the varying axio-dilaton a geometric interpre-
tation in terms of an auxiliary elliptic fibration

Eτ Mτ
8

M6

. (2.11)

The total space Mτ
8 is Kähler but not Calabi-Yau3. Locally, away from the singular fibers, the

metric on the total space is

ds2(Mτ
8) =

1
τ2

�

(dψ+τ1dφ)2 +τ2
2dφ2

�

+ ds2(M6) . (2.12)

The master equation can then be interpreted as a curvature condition on the total space Mτ
8 .

Taking this view, the master equation is

�8(R8) =
1
2

R2
8 − (R8)µν(R8)

µν , (2.13)

which is precisely the form of the equation for constant axio-dilaton, just in two dimensions
higher.

2.2 Supersymmetric Action

A geometric dual of c-extremization was recently developed in [32] for Type IIB AdS3 geome-
tries with 2d (0,2) duals and constant axio-dilaton. A key step in constructing the geometric
extremization problem was deriving a certain geometric function called the supersymmetric
action. Solutions to the master equation are extrema of this action, and the corresponding
extremal value can be used to compute the central charge of the dual SCFT. In this section, we
generalize this action to backgrounds with varying axio-dilaton.

The Type IIB supergravity equations including varying τ are [2]

Rµν = 2P(µP̄ν) +
1

96
(F5)µσ1···σ4

(F5)
σ1···σ4
ν , d ∗ F5 = 0 , (2.14)

whereµ,ν= 0,1, ..., 9. Writing out the components of the Einstein equations along the internal
space Y7 we obtain

0= R7ab − 2P(aP̄b) +
1
2
∇aB10∇bB10 + 2∇abB10 +

1
4
∇2B10 g7ab −

1
2
(dB10)

2 g7ab

+
1
2

e2B10 Fac F d
b −

1
8

e2B10 F2 g7ab ,
(2.15)

3We will denote spaces which enjoy an elliptic fibration with a superscript τ, indicating the complex structure
of the elliptic fiber.
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where a, b = 1, 2, ..., 7. This arises by extremizing the following action functional

SF =

∫

Y7

e−2B10

�

R7 − 2|P |2 − 6+
9
2
(dB10)

2 +
1
4

e2B10 F2
�

volY7
, (2.16)

with respect to the 7d metric, and generalizes the action functional for constant τ in [7].
Varying the other fields in this action gives rise to the remaining Type IIB equations of motion.

We now specialize to the case where Y7 is supersymmetric. Using the notation introduced
in the previous subsection, the metric on Y7 can be written as

ds2
�

Y7

�

= η2 + eB10ds2 (M6) , (2.17)

where ds2 (M6) is the transverse Kähler metric. Writing out the Ricci scalar we obtain (up to
total derivatives)

R7 = e−B10R6 − 5e−B10 (dB10)
2 −

1
16

e−2B10(dP)2 . (2.18)

Furthermore, the flux term in the action is

1
4

e2B10 F2 = 6−
1
2

e−B10
�

R6 − 2|P |2
�

+
1
16

e−2B10(dP)2 +
1
2

e−B10 (dB10)
2 . (2.19)

Combining these, we find that the action evaluated on supersymmetric geometries is given by

SF =
1
2

∫

Y7

e−3B10
�

R6 − 2|P |2
�

volY7

=

∫

Y7

η∧
�

ρ6 − iP ∧ P̄
�

∧
J2

6

2
.

(2.20)

We may rewrite this in a slightly nicer way as follows. Notice that iP ∧ P̄ is the curvature of
the connection (2.4) and hence is a representative of 2πc1(L). The action only depends on
the cohomology class and not the particular representative, so we can rewrite it in terms of
c1(L) as

SF =

∫

Y7

η∧ (ρ6 − 2πc1(L))∧
J2

6

2
. (2.21)

For fixed R-symmetry vector ξ this function depends only on the transverse Kähler class of the
Kähler form J6, and here also the first Chern class of the line bundle L.

The central charge of the dual 2d (0,2) SCFT is computed from the Brown-Henneaux for-
mula [42]

csugra =
3L10

2G3
, (2.22)

where
1
G3
=

L7
10

G10

∫

Y7

e−2B10volY7
(2.23)

is the effective 3d Newton constant, and G10 is the 10d Newton constant. For an off-shell
supersymmetric geometry the trial central charge is

ctrial =
12(2π)2

ν2
3

SF , (2.24)

where

ν3 =
2(2πls)4

L4
10

. (2.25)
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An F-theory solution necessarily extremizes ctrial over the class of off-shell geometries, and the
central charge of the holographic dual SCFT is determined by

csugra =
12(2π)2

ν2
3

SF

�

�

�

�

�

on-shell

. (2.26)

2.3 Flux Quantization

To have a genuine solution of string theory, the five-form flux must be appropriately quantized.
We now describe how to quantize the flux for off-shell supersymmetric geometries, which is
essential for completing the setup of the extremization problem.

The Type IIB flux quantization conditions are

1
(2πls)4

∫

Sα

F5 = N F
α ∈ Z , (2.27)

with five-cycles Sα ∈ H5(Y7,Z), and the restriction of the five-form flux to Y7 is given by [2]

F5|Y7
=

L4
10

4

�

(dz + P)∧
�

ρ6 − iP ∧ P̄
�

∧ J6 +
1
2
∗6 d

�

R6 − 2|P |2
�

�

. (2.28)

They can also be expressed as

ν3N F
α =

∫

Sα

η∧ (ρ6 − 2πc1(L))∧ J6 . (2.29)

For the flux quantization conditions to be well-defined we have to ensure that the integrals in
(2.27) do not depend on the representatives of the cycles Sα. This is automatic for on-shell
geometries since the master equation is equivalent to F5 being closed. For off-shell geometries
the setup requires some additional care.

To make the flux quantization conditions well-defined we will impose two topological as-
sumptions. Firstly, we require that

H2(Y7,R)∼= H2
B(Fξ)/ [ρ6 − 2πc1(L)] . (2.30)

We have introduced the basic cohomology groups H∗B of the foliation Fξ that are formed by
restricting the exterior derivative to ξ-invariant differential forms. Note that [ρ6−2πc1(L)] is
a closed basic class that is exact in H2(Y7,R) due to (2.7). This condition is most transparent
in the quasi-regular case, where it implies that every cycle in H5(Y7,Z) admits a representative
which is a circle-bundle over a four-cycle in M6.

The first condition by itself is not sufficient for the flux quantization conditions to be well-
defined. The issue resides in the fact that even if we choose representatives Sα and Sβ in the
same homology class and both tangent to ξ, the flux integrals can still be different. To see this
explicitly note that, by the first assumption, any two cycles that differ by the Poincaré dual
(PD) cycle α[ρ6 − 2πc1(L)]PD are homologous. However, for such cycles
∫

Sα

η∧ (ρ6 − 2πc1(L))∧ J6 −
∫

Sβ

η∧ (ρ6 − 2πc1(L))∧ J6 = α

∫

Y7

η∧ (ρ6 − 2πc1(L))2 ∧ J6 .

(2.31)
Therefore the second condition we impose is the vanishing of the integral on the right side,
i.e.

∫

Y7

η∧ (ρ6 − 2πc1(L))2 ∧ J6 = 0 . (2.32)
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Imposing these two conditions on the off-shell geometries ensures that the flux quantization
is indeed well-defined [32]. Furthermore, (2.32) is just the integrated version of the master
equation, which follows by writing the latter as

�6

�

R6 − 2|P |2
�

= (J6 ∧ J6)y
��

ρ6 − iP ∧ P̄
�

∧
�

ρ6 − iP ∧ P̄
��

. (2.33)

Integrating this equation over Y7, the left hand side vanishes using Stokes’ theorem. Using the
identity

[(J6 ∧ J6)y (a ∧ a)]
J3

6

3!
= 2a2 ∧ J6 , (2.34)

we obtain precisely (2.32).

2.4 The Complex Cone and the Geometric Extremization Problem

Having set up the abstract extremization problem, we now turn to the question of how to
parametrize the class of off-shell supersymmetric geometries over which we extremize the
action, by constructing a complex cone associated to Y7 that allows us to parametrize the
space of R-symmetry vectors on Y7.

Consider the cone C(Y7) with metric

ds2(C(Y7)) = dr2 + r2ds2(Y7) , (2.35)

where r ∈ R>0. As for the constant axio-dilaton case, we can consider the natural, locally
defined (4,0)-form on the cone that is given by

Ω(4,0) = eize3B10/2r3
�

dr −
ir
2
(dz + P)

�

∧Ω6 . (2.36)

However, this form does not extend to a global form unless the duality bundle L is trivial,
i.e. the axio-dilaton is constant. To see this note that (2.7) implies that eiz transforms as a
local section4 of K−1

M6
⊗L−1, whereas Ω6 is a local section of KM6

. The object Ω(4,0) therefore

transforms as a local section of L−1. Since L admits a global holomorphic section its dual
does not, unless L is trivial. In particular, Ω(4,0) is not globally defined as a form, when the
axio-dilaton varies.

To circumvent this issue we use the auxiliary elliptic fibration introduced in (2.11), where
the complex structure of the elliptic fiber encodes the axio-dilaton. Moreover, we assume that
this fibration has a holomorphic section σ : M6 →Mτ

8 . Since τ is preserved by the Killing
vector we can construct an elliptic fibration5 over Y7 by letting the elliptic fiber be constant
along the orbits of ξ. This gives a 9d space, which we denote by Y τ9 , endowed with the metric

ds2(Y τ9 ) = ds2(Y7) + eB10ds2(Eτ) = η2 + eB10ds2
�

Mτ
8

�

. (2.37)

One can think of Y τ9 as an elliptic fibration over Y7, with the elliptic fibers being invariant along
the Killing vector direction ξ = 2∂z . The differential forms pull back from Y7 to Y τ9 , and as
usual we conflate the forms with their lifts to avoid notational clutter. We can now define the
cone over Y τ9 as

ds2(C(Y τ9 )) = dr2 + r2ds2(Y τ9 ) . (2.38)

This cone admits a natural SU(5) structure, with the (5, 0)-form locally given by

Ω(5,0) = eize2B10 r4
�

dr −
ir
2
(dz + P)

�

∧Ω8 . (2.39)

4We are suppressing the pullbacks in the notation for various bundles.
5This is a fibration in the sense of algebraic geometry, i.e. with a generic fiber being a smooth elliptic curve.
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The fundamental two-form is exactly the same as in [32] and is not relevant for our purposes.
The local holomorphic volume form on Mτ

8 is

Ω8 = P ∧Ω6 , (2.40)

which satisfies
dΩ8 = iP ∧Ω8 . (2.41)

The local holomorphic volume form Ω(5,0) now does extend to a global form, as Ω8 is a section
of KM6

⊗ L and the extra L now cancels with the L−1. In addition, by using (2.41) we can
show that the holomorphic volume form is conformally closed

dΨ = 0 , Ψ ≡ e−2B10 r−7Ω(5,0) , (2.42)

i.e. C(Y τ9 ) has vanishing first Chern class. We find that Ψ is charged under the R-symmetry
vector field

LξΨ = 2iΨ . (2.43)

This implies that ξ is a holomorphic vector field, which is paired with the radial vector field
under the complex structure I(ξ) = −r∂r .

Suppose now that C(Y τ9 ) admits a holomorphic U(1)s action, generated by a set of holo-
morphic vector fields ∂ϕi

, i = 1,2, ..., s. We parametrize the general R-symmetry vector in
terms of these holomorphic vector fields

ξ=
s
∑

i=1

bi∂ϕi
, (2.44)

and choose a basis where Ψ has charge 1 under ∂ϕ1
and charge 0 under the remaining gen-

erators. This fixes b1 = 2, and leaves the remaining bi , i = 2,3, ..., s as free variables to be
extremized over in SF .

We can now summarize the extremization principle in F-theory: The supersymmetic action
SF in (2.21) is a function of the R-symmetry vector ξ defined in (2.44) and the basic Kähler
class [J6] of M6. Imposing the flux quantization conditions (2.29) and the associated topo-
logical constraints (2.30) and (2.32) relate the R-symmetry parameters (bi above) and the
transverse Kähler class parameters. A putative solution extremizes the supersymmetric action
over the remaining free variables. The central charge of the dual SCFT is then computed using
(2.26). We shall exemplify this procedure in section 5.

3 M/F-Duality and Holographic I-Extremization

The axio-dilaton in F-theory can at times be somewhat obscure, as it is not part of the geometry
of the spacetime. To clarify the role of the elliptic fibration, it is often useful to consider a dual
M-theory background. For AdS3 solutions, this could either be a dual AdS3 or AdS2 solution
of M-theory. In the current framework we will dualize to the latter, which in the field theory
corresponds to the circle-reduction to a 1d SCQM. The associated geometric extremization
principle, holographic I-extremization, was studied in [32]. In this section we will apply this
formalism to the class of geometries that are dual to the F-theory backgrounds and study the
extremization principle.
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3.1 M/F-Duality for AdS-Geometries

To begin with, we will briefly summarize M/F-duality, applied to the F-theory AdS3 geometries
discussed in section 2, which are mapped to AdS2 geometries in M-theory.

Any M-theory geometry with an elliptic fibration can be dualized to obtain a corresponding
F-theory geometry with varying axio-dilaton, by first reducing to Type IIA along one cycle of
the elliptic fibration and subsequently T-dualizing along the second cycle. This approach is
valid away from singular fibers, where locally the geometry of the elliptic fiber is

ds2 (Eτ) =
L2

11

τ2

�

(dx +τ1dy)2 +τ2
2dy2

�

. (3.1)

We have introduced an overall M-theory length scale L11 and the periodic coordinates
x ∼ x + 2π∆x and y ∼ y + 2π∆y , where we set ∆x = ∆y . The M-theory background
can be dimensionally reduced on a circle to yield a Type IIA background. Specifically, the two
metrics are related as [43]

ds2
11 = L2

11

�

ls
lp

�4

e4φIIA/3(dx + C1)
2 +

�

lp

ls

�2

e−2φIIA/3ds2
IIA , (3.2)

where ls and lp are the string and 11d Planck lengths, and ds2
IIA, eφIIA and C1 are respectively

the metric, the fluctuating dilaton and the RR one-form potential of Type IIA. Comparison with
(3.1) allows us to immediately identify

C1 = τ1dy , e4φIIA/3 =

�

lp

ls

�4
1
τ2

, ds2
IIA = L2

11

�

ls
lp

�2

e2φIIA/3τ2dy2 + ds2
9 , (3.3)

where ds2
9 is the metric on the 9d space of the Type IIA geometry orthogonal to the y circle.

Dimensionally reducing the M-theory action to that of Type IIA (here it is sufficient to consider
the Ricci scalar term) fixes the period of the circle to be

L11∆x =
l3
p

l2
s

, (3.4)

where we have used 16πG11 = (2π)8l9
p and 16πG10 = (2π)7l8

s for the 11d and 10d Newton
constants, respectively. Hence, we can express the volume of the elliptic fiber in terms of
fundamental length scales as

vol (Eτ) = (2π∆x)2 =
(2π)2l6

p

L2
11l4

s
. (3.5)

Carrying out T-duality along the y circle results in

RIIB =
l2
s

L11∆y
=

l4
s

l3
p

, C0 = (C1)y = τ1 , eφIIB =
ls

ls
lp

L11∆y eφIIA/3
p
τ2

eφIIA =
1
τ2

. (3.6)

This then identifies τ= τ1 + iτ2 = C0 + i e−φIIB .
Applied to the AdS3 F-theory geometries of section 2, the key observation is that we dualize

along the AdS direction by first writing AdS3 as a circle fibration over AdS2 [44]

ds2 (AdS3) =
1
4

�

−r2dt2 +
dr2

r2
+ (dφ + a1)

2

�

=
1
4

ds2 (AdS2) +
1
4
(dφ + a1)

2 , (3.7)

11

https://scipost.org
https://scipost.org/SciPostPhys.9.3.029


SciPost Phys. 9, 029 (2020)

where φ ∼ φ +∆φ is the circle coordinate and a1 = rdt so that da1 = volAdS2
. The F-theory

metric can then be written as

ds2
10 = L2

11e−B11/2
�

ds2 (AdS2) + (dφ + a1)
2 + (dz + P)2 + eB11ds2 (M6)

�

, (3.8)

where we have taken the M/F-theory length scales and warp factors to be related by

L10 =
p

2L11 , eB10 =
1
4

eB11 . (3.9)

T-duality along the φ direction results in

ds2
IIA = L2

11
p
τ2 eB11/2dφ2 + L2

11
e−B11/2

p
τ2

�

ds2 (AdS2) + (dz + P)2 + eB11ds2 (M6)
�

,

e−2φIIA =
l6
p

l6
s
τ

3/2
2 e−B11/2 ,

H = L2
11dφ ∧ volAdS2

,

F2 = L11dτ1 ∧ dφ ,

F4 =
1
2

L3
11volAdS2

∧ F .

(3.10)

Finally, we uplift to M-theory using the metric in (3.2). We find that the M-theory geometries
dual to the AdS3 F-theory geometries in (2.9) are

ds2
11 = L2

11e−2B11/3
�

ds2 (AdS2) + (dz + P)2 + eB11ds2
�

Mτ
8

��

,

G4 = L3
11volAdS2

∧
�

−J8 + d
�

e−B11 (dz + P)
��

,

dP = ρ8 ,

eB11 =
1
2

R8 ,

(3.11)

where J8, ρ8 and R8 denote the Kähler form, Ricci form, and Ricci scalar of the Kähler four-
fold Mτ

8 . This is exactly the space introduced in (2.11) with metric (2.12), which in M-theory
forms part of the physical spacetime. Its Ricci form and scalar are related to the corresponding
M6 quantities as

ρ8 = ρ6 − iP ∧ P̄ , R8 = R6 − 2|P |2 . (3.12)

Notice that the duality determines the period of the φ circle in terms of fundamental length
scales to be

L11∆φ

2π
=

l4
s

l3
p

. (3.13)

3.2 Holographic I-Extremization

In this section we will briefly summarize the central aspects of the general version of holo-
graphic I-extremization, before specializing to elliptically fibered M-theory geometries. We
refer the reader to [32] for a complete account.

The extremization principle applies to any supersymmetric M-theory AdS2 geometry with
electric four-form flux

ds2
11 = L2

11e−2B11/3
�

ds2 (AdS2) + ds2
�

Y τ9
��

,

G4 = L3
11volAdS2

∧ F ,
(3.14)
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where the compact internal space Y τ9 admits a natural unit length Killing vector ξ. The leaf
spaces of the transverse foliation Fξ admit a Kähler structure. Following the notation in sec-
tion 3.1 we denote that transverse space by Mτ

8 . Note that this internal space differs from the
F-theory compact space with the auxiliary elliptic fibration by the normalization of the Killing
vector. A detailed comparison of the metrics and normalizations in M- versus F-theory is in-
cluded in appendix A. The warp factor B11 and closed two-form F are defined on the internal
space Y τ9 . These supersymmetric geometries can be put on-shell by imposing the condition

�8R8 =
1
2

R2
8 − (R8)µν(R8)

µν (3.15)

on the transverse space. Clearly, the M-theory duals derived in the previous section belong
to this class of theories. The geometric dual of I-extremization is formulated as follows. For
an M-theory supergravity background to be consistent, the G4-flux has to be quantized before
extremizing, which is well-defined if we impose the topological restriction

H2(Y τ9 ,R) = H2
B(Fξ)/[ρ8] (3.16)

and constraint equation
∫

Y τ9

η∧ρ2
8 ∧

J2
8

2
= 0 . (3.17)

Then flux quantization over all seven-cycles eSI ∈ H7(Y τ9 ,Z) is given by

ν4N M
I =

∫

eSI

η∧ρ8 ∧
J2

8

2
, (3.18)

where we have introduced the positive constant

ν4 =
(2πlp)6

L6
11

. (3.19)

An analogous cone C(Y τ9 ) to the one presented in section 2.4 can be constructed for the present
M-theory geometries. This cone likewise has a globally defined holomorphic (5,0)-form, which
allows for a parametrization of the M-theory R-symmetry vector in terms of a U(1)s action on
the cone, as in (2.44). Note that the holomorphic (5,0)-form on C(Y τ9 ) has charge 1 under the
R-symmetry vector field, so that the first coefficient in the parametrization is b1 = 1 (again,
see appendix A for a discussion of the difference in normalization of the R-symmetry vector in
M- versus F-theory).

Having fixed a complex cone C(Y τ9 ) and imposed the constraint equation (3.17) and flux
quantization (3.18), the supersymmetric action

SM =

∫

Y τ9

η∧ρ8 ∧
J3

8

3!
, (3.20)

can be extremized with respect to the remaining variables in ξ and [J8]. This is a necessary
condition for the geometry Y τ9 to be on-shell, i.e. to satisfy the master equation (3.15). The
effective AdS2 Newton constant of such an on-shell solution is then

1
G2
=

8(2π)2

ν
3/2
4

SM

�

�

�

�

�

on-shell

. (3.21)
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3.3 M-Theory Supersymmetric Action for Elliptic Fibrations

Finally, we specialize the M-theory geometries to those with F-theory duals, i.e. Mτ
8 is an

elliptic fibration over a base M6 with a section σ : M6 →Mτ
8 . We are interested in deter-

mining how the flux quantization conditions (3.18) and supersymmetric action (3.20) depend
on data of the base M6. For this purpose we will here focus on on-shell solutions, which al-
lows us to assume a choice of a regular Killing vector. This in turn ensures that the transverse
Kähler space Mτ

8 is a smooth manifold. We will return to the extremization problem in the
subsequent sections.

The Shioda-Tate-Wazir theorem for elliptically fibered Kähler manifolds [45] asserts6 that
we can decompose the (cohomology class of the) Kähler form on Mτ

8 as

J8 = k0ω0 +
∑

α

kαωα +
∑

i

kiωi ≡
∑

I

kIωI . (3.22)

This decomposition corresponds to three divisor classes, which generate the Picard group of
Mτ

8 . These are: the divisor corresponding to the section σ with its dual (1,1)-form ω0, the
pullback divisors Cα with dual forms denoted by ωα, and finally the resolution divisors (also
referred to as Cartan divisors) Di with dual forms ωi . For a more thorough discussion see [1].
Note that we do not require the Kähler parameters kI to be integers; rather they are real
numbers, which will ultimately be determined by the flux integers. Moreover, the Killing
vector is assumed to be regular, implying a smooth Mτ

8 . We assume for simplicity that the
elliptic fibration is a smooth Weierstrass model and thus only has Kodaira type I1 fibers and
no resolution divisors.

With the expansion (3.22) the supersymmetric action (3.20) becomes

SM =
∑

I JK

kI kJ kK

3!

∫

Y τ9

η∧ρ8 ∧ωI ∧ωJ ∧ωK . (3.23)

The integral in SM can be pushed down to an intersection on the base using adjunction

c1(Mτ
8) = c1(M6)− c1(L) . (3.24)

Furthermore, since the Killing vector is regular, we can integrate out the circle direction, which
we take to have period 2π`, and write the supersymmetric action as

SM = (2π)
2`
∑

I JK

kI kJ kK

3!

∫

Mτ
8

(c1(M6)− c1(L))∧ωI ∧ωJ ∧ωK . (3.25)

We define the intersection numbers

CI JK ≡ (c1(M6)− c1(L)) · CI · CJ · CK =

∫

Mτ
8

(c1(M6)− c1(L))∧ωI ∧ωJ ∧ωK . (3.26)

Using the intersection identity

σ ·Mτ
8
(σ+ c1(L)) = 0 , (3.27)

a short computation shows that

C000 = (c1(M6)− c1(L)) · c1(L) · c1(L) ,
C00α = − (c1(M6)− c1(L)) · c1(L) · Cα ,

C0αβ = (c1(M6)− c1(L)) · Cα · Cβ ,

Cαβγ = 0 ,

(3.28)

6For this to be true we need to impose some topological restrictions, namely h1,0(Mτ
8) = h2,0(Mτ

8) = 0. Also
we assume for simplicity that there are no extra sections, i.e. the Mordell Weil group is trivial. From now on we
assume this to hold.
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which are manifestly intersection numbers on the base M6. Then the supersymmetric action
specialized to elliptic fibrations is given in terms of intersection numbers on the base as

SM = (2π)
2`
∑

I JK

kI kJ kK

3!
CI JK . (3.29)

The flux quantization conditions (3.18) specialized to elliptic fibrations become

ν4N M
I = (2π)

2`
∑

JK

kJ kK

2
CI JK . (3.30)

Finally, observe that the Kähler parameter k0 of the elliptic fiber is exactly the volume of a
(non-singular) fiber

vol(Eτ) =
∫

Eτ

J8 = k0

∫

Eτ

ω0 = k0 . (3.31)

From the discussion of the M/F-duality, specifically using (3.5), we find that k0 is expressed in
terms of fundamental lengths as

k0 =
(2π)2l6

p

L2
11l4

s
. (3.32)

4 I/c-Extremization

We will now compare the extremization procedures in M/F-theory. We will first provide the
map between the two geometric extremization procedures, and then discuss the dual field
theory.

4.1 Geometry

What we have argued so far is that an F-theory AdS3 geometry is characterized by the complex
geometry of the internal space M6 and the axio-dilaton profile. They are conveniently thought
of here in terms of the complex cone C(Y τ9 ), which is a C∗ fibration over an elliptically fibered
base Mτ

8 . An on-shell solution is ultimately determined by imposing a topological constraint,
as well as a choice of quantized flux numbers N F

α ∈ Z, where α= 1, . . . , dim H5(Y7,R), as these
fix the Kähler class parameters of the internal space geometry. Such a solution is then dual
to a 2d (0,2) SCFT living on the conformal boundary of AdS3, for example as written in the
usual Poincaré slicing. The holographic central charge csugra of this theory is computed using
equation (2.26).

Associated to any such F-theory solution is a different global form of AdS3, which is a
circle bundle over AdS2, as in (3.7). Topologically the circle fibration is trivial, with the fiber
coordinate φ having period ∆φ, which a priori is arbitrary. Since the size of the φ circle
in the AdS3 is bounded it becomes part of the internal space, and the remaining conformal
boundary is 1-dimensional. This implies that the associated solutions have an interpretation
as holographic duals to 1d SCQM.

T-dualizing along this circle and uplifting to M-theory, the circle becomes part of the in-
ternal space of the M-theory geometry and, together with the circle introduced in the uplift
from Type IIA to M-theory, it makes up the elliptic fiber Eτ with volume k0. The M-theory
AdS2 geometries obtained in this way are determined by the complex geometry of the internal
space Mτ

8 . An analogous cone construction C(Y τ9 ) exists for the M-theory geometries [32],
which provides a parametrization of the R-symmetry vector. Finding on-shell M-theory so-
lutions amounts to imposing a topological constraint and a choice of flux numbers N M

I ∈ Z,
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where I = 1, . . . , dim H7(Y τ9 ,R), which fix the Kähler class parameters of the internal complex
geometry. The effective AdS2 Newton constant is then computed as in (3.21).

The two supergravity duals each contain a set of parameters that are mapped to each other
through the duality. On either side, the flux quantization conditions come with a dimensionless
combination of length scales characteristic of each theory, namely ν3 in F-theory and ν4 in M-
theory. Furthermore, on the F-theory side we have the circle length ∆φ as an a priori free
parameter, and on the M-theory side we have the fiber volume k0. These parameters are given
in terms of fundamental length scales as

F-theory/IIB :



















ν3 =
2(2πls)4

L4
10

∆φ

2π
=

p
2l4

s

L10l3
p

M-theory :



















ν4 =
(2πlp)6

L6
11

k0 =
(2π)2l6

p

L2
11l4

s

. (4.1)

With L11 = L10/
p

2, we find the following relation

∆φ =
p
ν4

k0
. (4.2)

As T-duality inverts the radius of the circle, ∆φ is indeed expected to be inversely related
to the volume of the elliptic fiber. Given such an M-theory geometry, we can trace through
the duality in the other direction by taking the F-theory limit, corresponding to shrinking the
elliptic fiber to zero size, k0→ 0. This in turn takes ∆φ→∞, decompactifying the φ circle.

Any solution to the topological constraint together with some configuration of flux numbers
makes for a perfectly consistent and physical M-theory solution. However, in this paper we are
not interested in a generic M-theory solution; rather, we wish to find the ones with F-theory
duals, and the map that takes us from one to the other.

For this purpose, it is instructive to compare Kähler classes on the two sides of the duality,
focusing on the k0 dependence on the M-theory side, since the F-theory limit takes k0 to zero.
In other words, we concentrate on the contributions coming from the volume of the elliptic
fibration, which forms part of the physical data in M-theory, and ceases to have a physical
interpretation in F-theory. Consider again the decomposition of the 8d Kähler form J8 in (3.22)

J8 = k0ω0 +
∑

α

kαωα . (4.3)

Recall that ωα are pullbacks from the base M6 and together with ω0 generate the second
integral cohomology of Mτ

8 . Once the M-theory topological constraint is imposed and the
fluxes are properly quantized, the parameters kα depend implicitly on the size of the elliptic
fiber k0. We will see this in examples in later sections. We denote the Kähler parameters of J6
by kα such that

J6 =
∑

α

kαωα . (4.4)

The requirement for mapping a specific M-theory solution to its F-theory dual is that the Kähler
class on Mτ

8 should match that of M6 in the F-theory limit, i.e.

J6 = lim
k0→0

J8 = lim
k0→0

∑

α

kαωα . (4.5)

In geometric terms we are collapsing the elliptic fiber, while keeping the volume of the total
space bounded. The metric on Mτ

8 , with Kähler form J8, then under appropriate convergence
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conditions tends to a (singular) metric on M6, with Kähler form J6. This implies that the 8d
and 6d Kähler parameters are related by

kα = kα +O(k0) . (4.6)

This ansatz for the decomposition of the 8d Kähler form results in an M-theory topological
constraint equation, which can be expanded order by order in k0 to give

k0

∫

Y7

η∧ (c1(M6)− c1(L))2 ∧ J6 +O(k2
0) = 0 . (4.7)

The lowest order term is exactly the constraint equation for the F-theory geometries that was
independently derived in section 2.3. Since this equation must be satisfied order by order in
k0, the F-theory constraint equation is thus built into its dual M-theory solution by imposing
that J8 satisfy (4.5). Requiring the higher order terms to vanish constrains the form of (4.6).

For every M-theory flux integer N M
α ∈ Z there exists an F-theory flux integer N F

α ∈ Z,
where the M-theory seven-cycle is exactly the corresponding F-theory five-cycle with the elliptic
fibration. The requirement (4.5) ensures that in dual solutions these flux configurations match
on the nose, i.e. we have N M

α = N F
α ≡ Nα ∈ Z. In a sense, this condition expresses the fact

that every D3-brane is simply converted to an M2-brane.
When determining an on-shell F-theory solution, imposing the Nα flux quantization con-

ditions and the topological constraint determine the complex geometry of Y7 by fixing the
R-symmetry vector and the Kähler parameters of M6. In M-theory there is an additional dis-
tinguished flux integer N M

0 ≡ N0, which has no F-theory analog, as it arises from the section σ
of the elliptic fibration, i.e.

ν4N0 =

∫

Y7

η∧ρ8 ∧
J2

8

2
. (4.8)

The distinguished flux integer does not map to any flux integer present in F-theory; rather,
expanding in orders of k0, we find that its leading contribution is determined by the Type IIB
φ circle length and the central charge as

N0 =
�

∆φ

2π

�2 csugra

24
+O(k0) . (4.9)

This additional flux quantization condition is matched by the extra Kähler parameter k0 in the
compact space of the M-theory geometry. In practice, as we shall see in examples, fixing this
additional flux number then fixes the period ∆φ7. Hence, imposing the M-theory topologi-
cal constraint and flux quantization conditions determines the decomposition of J8 and the
internal space geometry Y τ9 .

The map from holographic I-extremization in M-theory to c-extremization in F-theory is
completed by considering the relation between the two actions. Before imposing the topolog-
ical constraint or flux quantization, the dual supersymmetric actions are related as

SM = 2k0SF +O(k2
0) . (4.10)

The factor of 2 comes from the relative rescaling of the Killing one-form η (see appendix A for
a discussion of the relative normalizations in M- versus F-theory). The on-shell central charge
of the 2d SCFT is then formally related to the AdS2 Newton constant by

1
G2
=
∆φ

3
csugra +O(k0) . (4.11)

7The expressions in (1.1) and (4.9) might suggest an alternative interpretation of the flux parameter N0 in a
sub-class of solutions in terms of a momentum along a circle compactification of a black string. However, for the
full class of solutions we consider, the parameter N0 is a flux on the M-theory side, which to our knowledge does
not (in general) have an interpretation as a momentum.
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The reason this should only be read as a formal expression for the AdS2 Newton constant is
that the N0 flux quantization condition has not been imposed, thus leaving in factors of k0.
Since a Kähler parameter of the internal space still appears explicitly in the equations, it cannot
be understood as a physical quantity. From the above, we can thus conclude that holographic
I-extremization in M-theory does not in general equal holographic c-extremization in F-theory.
In other words, extremizing 1/G2 does not necessarily correspond to finding an extremum for
csugra.

This result generalizes the relation derived in [46], where the AdS2 is considered as arising
directly in Type IIB by writing AdS3 as the total space of a circle fibration. The effective Newton
constants are then related by dimensional reduction on this circle

G3 =
∆φ

2
G2 , (4.12)

where the factor of 1/2 here arises as the length of the φ circle in the AdS3 metric (3.7).
Equation (4.11) takes into account corrections from the 7-branes and exactly reduces to the
supergravity result in (4.12) when the elliptic fibration is trivial.

Interestingly, for many cases that we study later in this paper, the O(k0) terms are in fact
absent in (4.11), even for a non-trivial elliptic fibration, so that (4.12) holds exactly. This is
true for all the toric examples in section 5. As a proof of concept, we therefore also consider
a known set of solutions, the universal twist solutions with elliptic three-fold factor, in section
6, which do have non-zero subleading terms.

4.2 Field Theory

Finally, we comment on the physical interpretation of (4.11) in terms of the holographically
dual field theories. First recall how the two field theory duals are constructed. On the F-theory
side, the dual field theories are realized on D3-branes along R1,1 × C , where C are curves in
F-theory compactifications, above which the axio-dilaton profile is non-trivial. This induces a
varying coupling τ of the 4d gauge theory on the D3-branes, and the 2d (0,2) field theory
along R1,1 acquires a dependence on the U(1)D duality line bundle L [13–16, 21]. T-duality
along a circle in the D3-brane world-volume gives rise to a configuration of D2-branes, which
uplift in M-theory to M2-branes wrapped on the curves C , i.e. the M2-branes realize a 1d
SCQM.

While AdS2 holography is still very much under development, it is natural to identify minus
the logarithm of the partition function of the 1d theory with the renormalized supergravity
action. As shown in [32] we may thus identify

log Z1d =
1

4G2
. (4.13)

If we consider the 1d SCQM as arising directly from a circle reduction of the 2d (0,2) SCFT, or,
equivalently, from duality with M-theory on a trivially fibered torus, then we can use (4.12)
and the standard Brown-Henneaux relation [42] to deduce that

log Z1d =
1

4G2
=
∆φ

8G3
=
∆φ

12
csugra . (4.14)

Of course this is precisely equation (4.11), without the O(k0) correction terms. The partition
function on the left hand side of (4.13) is defined by putting the 1d SCQM on a circle. On the
other hand, we have also effectively reduced from 2d to 1d on the φ circle. Physically one
might then anticipate some relation between the 1d partition function and the 2d partition
function, where the 2d (0,2) theory is put on a torus T2. We note that this is indeed precisely
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the case: putting a 2d CFT on a torus leads to a Casimir energy contribution to the partition
function

ZT2(Casimir) = exp
�

r1

r2

c
12

�

, (4.15)

where r1, r2 are the lengths of the circles in the T2, and c is the central charge. We should
then also recall that ∆φ is dimensionless, but may be written as

∆φ =
2πRIIB

L11
, (4.16)

where RIIB is the dimensionful Type IIB φ circle length and L11 is the overall dimensionful
length scale in M-theory. The right hand side of (4.14) may then be identified with (the
logarithm of) this Casimir contribution to the T2 partition function. Recall here that in the
M-theory solution ∆φ depends on the additional M-theory flux number N0, while the central
charge csugra depends only on the F-theory data, which does not include N0. In the above iden-
tification, the extra parameter N0 determines, via ∆φ, the geometry of the T2 on which the
2d (0, 2) SCFT is placed. Notice then that the 2d (0, 2) theory itself does not depend on the
integer N0, while the 1d SCQM that it reduces to does depend on N0. It would be interesting
to understand this in more detail, and in particular whether the integer N0 has a simple 1d in-
terpretation. In addition, a study of the supersymmetric Casimir energy [47], its S1-reduction,
and the holographic duals, would be of interst and may shed light on subleading corrections.

We will exemplify these general insights by considering several classes of solutions in the
next two sections. In section 5 we study M/F-theory dual holographic setups, where the re-
lation (4.11) holds precisely, without any O(k0) corrections. We contrast this in section 6,
where we study solutions where there are non-trivial corrections as predicted by (4.11). The
key difference between these two sets of solutions is that in the former, the elliptic fiber is
restricted to a complex curve, whereas in the latter the fibration is non-trivial over a complex
surface, which results for instance in non-trivial terms of the type c1(L)2, which contribute the
higher order terms in k0.

5 Toric Fibrations over a Curve

In this section, we consider a class of toric geometries fibered over a complex curve or an el-
liptically fibered surface, where we can derive explicit formulas for the off-shell M/F-theory
extremization problem. We show that, for these geometries, I- and c-extremization are equiv-
alent without any corrections in k0, the volume of the elliptic fiber. Moreover, we apply the
formalism to the cases referred to in the literature as the universal and baryonic twists.

5.1 Toric Fibration

We are interested in geometries where the compact part of the space consists of a toric five-
manifold fibered over either, in the case of F-theory, a Riemann surface Σ with genus g or, in
M-theory, an elliptic surface

Eτ Bτ4

Σ

. (5.1)

We start with a review of the properties of the toric fiber, which we denote by Y5. We
require that the cone C(Y5) is complex and Kähler, i.e. that Y5 is Sasaki, and that C(Y5) admits
a global holomorphic (3,0)-form. Such cones are called Gorenstein and the geometry of such
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toric Kähler cones has been extensively studied in e.g. [34,48]. For our purposes, the essential
feature of the fibered toric geometries is that all relevant quantities turn out to be expressible
in terms of (derivatives of) a master volume of the fiber

V ≡
∫

Y5

η∧
ω2

2
, (5.2)

whereω is the Kähler form on the space transverse to η in Y5. Moreover, for a fixed Gorenstein
toric Kähler cone C(Y5), there is a simple explicit expression for V in terms of the toric data.
The master volume is a function of the inward pointing primitive normals to the d ≥ 3 facets
of the polyhedral cone va ∈ Z3, with a = 1, ..., d , as well as the transverse Kähler parameters
λa and trial R-symmetry vector ~b = (b1, b2, b3). The master volume is given by

V(~b, {λa}, {~va}) =
(2π)3

2

d
∑

a=1

λa
λa−1[~va, ~va+1,~b]−λa[~va−1, ~va+1,~b] +λa+1[~va−1, ~va,~b]

[~va−1, ~va,~b][~va, ~va+1,~b]
.

(5.3)
Here [·, ·, ·] denotes a 3 × 3 determinant, and we cyclically order ~v0 = ~vd , ~vd+1 = ~v1, with
similar identifications for the λa. Note that two of the Kähler class parameters are redundant,
so that V is effectively only a function of d − 2 of the d Kähler class parameters λa.

5.2 F-Theory c-Extremization for Toric Fibrations

In this section, we consider the fibration of Y5 over a Riemann surface Σ, and derive the F-
theory c-extremization equations specialized to this class of geometries. The fibration of Y5
over Σ can be parametrized as follows. The toric manifold is equipped with an isometric U(1)3

action, generated by a set of holomorphic vector fields ∂ϕi
, i = 1, 2,3. We choose three line

bundles O(ni) on the Riemann surface so that, topologically, the compactification space is
defined to be the total space of the associated bundle

Y7 =O(~n)×U(1)3 Y5 . (5.4)

For simplicity we shall assume that the axio-dilaton varies only over the Riemann surface Σ.
That is, taking the F-theory perspective, the variation of the axio-dilaton is captured by an
auxiliary elliptic fibration as in (2.11), where the total space that we will consider is

Y τ9

Eτ Bτ4 Y7

Σ

p∗(π)

π pσ

. (5.5)

Recall that the manifold Y τ9 is obtained by pulling back the elliptic fibrationπ to Y7 as in section
2.4. The existence of a global holomorphic (5,0)-form on C(Y τ9 ) places certain restrictions on
~n. We may construct such a global (5, 0)-form by first noting that C(Y5) admits a global (3,0)-
form Ω(3,0). The (3, 0)-form has an explicit eiϕ1 dependence, since it has R-charge 2. On Bτ4
there is a local (2, 0)-form Ξ(2,0), which is a local section of KBτ4

. We have

KBτ4
= KΣ ⊗L , (5.6)

where L is the duality line bundle, whose connection depends on the variation of the axio-
dilaton as introduced in section 2 and

deg(KBτ4
) = 2g − 2+ degL . (5.7)
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The holomorphic volume form on C(Y τ9 ) is constructed as

Ω(5,0) = Ω(3,0) ∧Ξ(2,0) , (5.8)

where Ω(3,0) is twisted over Σ as in (5.4). Since eiϕ1 is a section of O(n1), we can ensure that
Ω(5,0) is a global non-vanishing form by taking

n1 = 2− 2g − degL . (5.9)

The twist is implemented at the level of the forms by introducing a connection Ai on each
O(ni) with curvature Fi = dAi . The curvatures satisfy

∫

Σ

Fi

2π
= ni ∈ Z . (5.10)

The fibration in (5.4) amounts to making the replacements

η → ηtwist ≡ η+ 2
3
∑

i=1

wiAi ,

ω → ωtwist ≡ω+
3
∑

i=1

(dx i ∧ Ai + x i Fi) ,

J6 → J6twist =ωtwist + AvolΣ ,

(5.11)

where wi are the moment map coordinates restricted to Y5 and x i are global functions on
Y5 invariant under the U(1)3 action (see [48] for further details). Note that the frequently
appearing combination

[ρ6 − 2πc1 (L)] → [ρ6 − 2πc1 (L)]twist = [b1dηtwist] (5.12)

also obtains an Ai dependence under the twist. With these replacements the supersymmetric
action is

SF =

∫

Y7

ηtwist ∧ [ρ6 − 2πc1(L)]twist ∧
J2

6twist

2!

=

∫

Y7

ηtwist ∧ b1dηtwist ∧
(ωtwist + AvolΣ)

2

2!

= A

∫

Y5

η∧ρ6 ∧ω+ 2π
3
∑

i=1

ni

∫

Y5

η∧ω∧ (x iρ6 + b1wiω) ,

(5.13)

where we have abused notation and denoted the forms η and ρ6 and their restrictions to Y5
by the same symbol. To get the second equality we used the F-theory relation (5.12), which
effectively reduces the expression to its constant axio-dilaton counterpart. The action is then
identical to the case without the auxiliary elliptic fibration, apart from the fact that n1, given
in (5.9), depends on the degree of the duality line bundle. As mentioned above, the action
can be rewritten in terms of derivatives of the master volume (5.3). Since we have shown that
the F-theory action reduces to the constant axio-dilaton case, except for the dependence of n1
on the duality line bundle, we can read off the result from [48]

SF = −A
d
∑

a=1

∂ V
∂ λa

− 2πb1

3
∑

i=1

ni
∂ V
∂ bi

. (5.14)
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Under the twist the constraint equation becomes

0=

∫

Y7

ηtwist ∧ [ρ6 − 2πc1(L)]2twist ∧ J6twist

= A

∫

Y5

η∧ρ2
6 +

∫

Y7

ηtwist ∧ (b1dηtwist)
2 ∧ωtwist

= A

∫

Y5

η∧ρ2
6 + 2π

3
∑

i=1

ni

∫

Y5

η∧ρ6 ∧ (x iρ6 + 4b1wiω) .

(5.15)

In terms of the master volume the equation is

A
d
∑

a,b=1

∂ 2V
∂ λa∂ λb

− 2πn1

d
∑

a=1

∂ V
∂ λa

+ 2πb1

d
∑

a=1

3
∑

i=1

ni
∂ 2V
∂ λa∂ bi

= 0 . (5.16)

Finally, we turn our attention to the flux integers. There are two types of five-cycles in Y7. The
first type are torus invariant three-cycles Sa ⊂ Y5 fibered over Σ, which schematically will be
written as (Sa → Σ). The second is Y5 itself. The latter does not receive any contributions
from the Riemann surface, since the curvatures Fi and c1(L) integrate to zero on Y5. We find

ν3N =

∫

Y5

η∧ρ6 ∧ω= −
d
∑

a=1

∂ V
∂ λa

. (5.17)

For the other class of five-cycles, the flux quantization conditions are given by

ν3Ma =

∫

(Sa→Σ)
ηtwist ∧ [ρ6 − 2πc1(L)]twist ∧ J6twist

=

∫

(Sa→Σ)
ηtwist ∧ b1dηtwist ∧ (ωtwist + AvolΣ)

= A

∫

Sa

η∧ρ6 + 2π
3
∑

i=1

ni

∫

Sa

η∧ (2b1wiω+ x iρ6)

=
A

2π

d
∑

b=1

∂ 2V
∂ λa∂ λb

+ b1

3
∑

i=1

ni
∂ 2V
∂ λa∂ bi

.

(5.18)

The extremization procedure now amounts to explicitly solving the topological constraint
(5.16) and flux quantization conditions (5.17) and (5.18) for the Kähler parameters A,λa
and R-symmetry vector bi and subsequently extremizing the action (5.14) with respect to the
remaining free parameters.

5.3 M-Theory I-Extremization for Toric Fibrations

In this section, we establish the I-extremization procedure dual to the c-extremization for
fibered toric geometries set up in the previous section. In the context of M-theory, we are
considering the physical compactification space

Y τ9

Eτ Bτ4

Σ

π
σ

. (5.19)
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Here we view Y τ9 as the space Y5 fibered over the elliptic surface Bτ4 . This is achieved in the
same way as in (5.4), but the vector bundle O(~n) is now pulled back from Σ to Bτ4 . The cone
C(Y τ9 ) also admits a non-vanishing holomorphic volume form precisely if

n1 = 2− 2g − degL . (5.20)

This geometric setup fits into the framework of [49]. In what follows we will make use of the
formulas for toric fibrations over a general complex surface derived in that paper and specialize
them to the elliptic surface case. We make the following ansatz for the Kähler form on Bτ4

JBτ4
= k0ω0 +

�

A+
k0 degL

2

�

volΣ . (5.21)

In other words, we are assuming that the Kähler class on the elliptic surface is just a linear
combination of the base and the fiber class. One can also derive similar formulas for a more
general ansatz where Cartan divisors are added. The choice of the shift of A by k0 degL/2 is
convenient in order to compare to the F-theory parameters at the end of this section. Using
the ansatz the volume of the elliptic surface is

vol(Bτ4 ) =

∫

Bτ4

J2
Bτ4

2
= −

k2
0 degL

2
+

�

Ak0 +
k2

0 degL
2

�

= Ak0 , (5.22)

where we used
∫

Bτ4

ω2
0 = −degL ,

∫

Bτ4

ω0 ∧ volΣ = 1 . (5.23)

Furthermore, the curvature integrals specialize to
∫

Σ

Fi = 2πni ,

∫

Eτ

Fi = 0 , (5.24)

and Fi ∧ F j = 0 for dimensional reasons. With these results the M-theory constraint equation
reduces to

A
d
∑

a,b=1

∂ 2V
∂ λa∂ λb

− 2πn1

d
∑

a=1

∂ V
∂ λa

+ 2πb1

d
∑

a=1

3
∑

i=1

ni
∂ 2V
∂ λa∂ bi

= 0 , (5.25)

which is exactly the same as the F-theory constraint given in (5.16). The M-theory supersym-
metric action becomes

SM = −Ak0

d
∑

a=1

∂ V
∂ λa

− 2πk0 b1

3
∑

i=1

ni
∂ V
∂ bi

. (5.26)

Let us now focus on the flux quantization conditions. The seven-cycles fall into two classes,
where the cycles in the first class are obtained by fibering Y5 over a two-cycle in the base, and
the second class contains three-cycles in Y5 (associated with toric divisors on the cone) fibered
over the entire base. The flux integer corresponding to fixing a point in Σ and quantizing over
the cycle Y5 ×Eτ is

ν4N = −k0

d
∑

a=1

∂ V
∂ λa

. (5.27)

The quantization conditions associated to fibrations of toric three-cycles over Bτ4 are

ν4Ma =
Ak0

2π

d
∑

b=1

∂ 2V
∂ λa∂ λb

+ k0 b1

3
∑

i=1

ni
∂ 2V
∂ λa∂ bi

. (5.28)
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There is one final cycle we need to consider, arising from the section of the elliptic fibration.
Geometrically this is the space Y5 fibered over Σ and the corresponding flux number is given
by

ν4N0 = −
�

A−
k0 degL

2

� d
∑

a=1

∂ V
∂ λa

− 2πb1

3
∑

i=1

ni
∂ V
∂ bi

. (5.29)

Notice that, combining the expressions for the flux numbers, the supersymmetric action can
be rewritten as

SM = k0ν4

�

N0 +
1
2

N degL
�

. (5.30)

This toric setup provides an instructive example of the M/F-theory relations we have de-
scribed in section 4. In the ansatz for the Kähler class (5.21) we have explicitly included the
k0 corrections to the Kähler class on the base of the elliptic fibration. Indeed, the parameter A
is precisely the F-theory Kähler parameter on Σ and the relation

lim
k0→0

JBτ4
= lim

k0→0

�

k0ω0 + JΣ +
k0 degL

2
volΣ

�

= JΣ (5.31)

holds. The way to derive the explicit form of the correction term is to start with a general
ansatz for the Kähler form on Bτ4 and impose that the O(k2

0) terms in the M-theory constraint
equation cancel. In this way the constraint equation reduces just to the linear term, which is
precisely the F-theory constraint equation. Moreover, the flux integers Ma and N also match on
both sides if we take into account the relation ν3 = ν4/2k0, as well as the fact that the master
volume functions differ by a factor of 2. The detailed comparison of metrics and normalization
in M- versus F-theory is discussed in appendix A.

An interesting feature of these geometries is that, despite including the full backreaction
of the 7-branes in the M-theory background, there are no k0 corrections in the supersymmetric
action, i.e. we find

SM = 2k0SF . (5.32)

This implies that the resulting on-shell solutions will have

1
4G2

=
∆φ

12
csugra (5.33)

on the nose, even though we are considering a non-trivial elliptic fibration. This is precisely
the relation (4.14). We also see that this relation actually holds off-shell. The upshot of
this discussion is that I- and c-extremization are indeed equivalent for toric fibrations over a
Riemann surface.

5.4 Universal Twist: Elliptic Surface

In this section, we focus on a known class of F-theory supergravity solutions found in [2],
the so-called universal twist solution for elliptic surfaces. We apply the holographic I/c-
extremization developed in sections 2 and 3, which allows us to simultaneously re-derive the
central charge of the 2d field theory dual to these F-theory solutions and determine 1/G2 of
their M-theory duals, without ever explicitly solving the master equation.

The universal twist solutions are based on the ansatz

S1 Y7

Σ×M4

, (5.34)
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which assumes that the transverse Kähler space M6 is a product of a complex curve and a
Kähler surface. We are interested in the set of universal twist solutions where the elliptic
fibration is non-trivial only over the complex curve, so that Mτ

8 contains an elliptic surface

Mτ
8 = (Eτ→ Σ)×M4 . (5.35)

This corresponds to choosing the twist parameters ni parallel to the R-symmetry vector, i.e.
we take

ni =
n1

b1
bi , (5.36)

which immediately implies

d
∑

a,b=1

∂ 2V
∂ λa∂ λb

= 8b2
1Vol(Y5) , b1

3
∑

i=1

ni
∂ V
∂ bi

= −n1V . (5.37)

The topological constraint, which must be imposed for either side of the duality, is

8A b2
1 Vol(Y5)− 4πn1

d
∑

a=1

∂ V
∂ λa

= 0 . (5.38)

The M/F-theory flux integers are given by

ν3N = −
d
∑

a=1

∂ V
∂ λa

,

ν3Ma =
A

2π

d
∑

b=1

∂ 2V
∂ λa∂ λb

− n1
∂ V
∂ λa

.

(5.39)

Here we have chosen to write the quantization conditions manifestly as F-theory equations.8

The distinguished M-theory flux integer is N0, which satisfies

ν4N0 = −
�

A−
k0 degL

2

� d
∑

a=1

∂ V
∂ λa

+ 2πn1V . (5.40)

The M/F-theory supersymmetric actions are

SF = Aν3N + 2πn1V ,

SM = Aν4N + 2πk0n1V ,
(5.41)

so that again equation (5.32) holds, on the nose.
With these relations in place, we proceed to impose all common M/F-theory conditions

(i.e. all but the N0 flux quantization) and derive expressions for the supersymmetric actions
that take these conditions into account. We start by rewriting the topological constraint in
terms of the flux integer N as

2A b2
1 Vol(Y5) +πn1ν3N = 0 . (5.42)

8We use the convention that whenever the parameter ν4/ν3 appears in an equation, the volumes V and Vol(Y5)
are implicitly understood to be functions of ~bM/~bF and the equation itself should be understood as an M/F-theory
equation. To write an equation as it appears naturally in the dual description, one simply uses ν3 = ν4/2k0 and
the normalization conventions detailed in appendix A. Equations where neither parameter appears are invariant
under ~bM ↔ ~bF .
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Solving this constraint for A and substituting into the supersymmetric actions yields

SF = −
πn1ν

2
3N2

2b2
1Vol(Y5)

+ 2πn1V ,

SM = −
πn1ν

2
4N2

2b2
1k0Vol(Y5)

+ 2πk0n1V .

(5.43)

We can impose quantization of the Ma by choosing λa ≡ λ. This ensures that the Ma are
quantized as

Ma = −N . (5.44)

This solution implies that the master volume is

V = 4b2
1λ

2Vol(Y5) , (5.45)

and the flux quantization condition for N fixes λ to be

λ= −
ν3N

8b2
1Vol(Y5)

. (5.46)

The supersymmetric actions can then be written as

SF = −
3πn1ν

2
3N2

8b2
1Vol(Y5)

,

SM = −
3πn1ν

2
4N2

8k0 b2
1Vol(Y5)

.

(5.47)

Since Vol(Y5) is extremized for a Reeb vector with r1 = 3, we set the M/F-theory R-symmetry
vector ~bF =

2
3~r = 2~bM . Let ~r∗ denote the extremal Reeb vector, corresponding to a Sasaki-

Einstein metric on Y5. We thus find the actions

SF (~r∗) = −
πn1ν

2
3N2

36Vol(Y5)(~r∗)
,

SM (~r∗) = −
πn1ν

2
4N2

72k0Vol(Y5)(~r∗)
.

(5.48)

The 2d central charge is then given by (2.26) as

csugra =
12(2π)2

ν2
3

SF (~r∗) = −
(2π)3n1N2

6Vol(Y5)(~r∗)
. (5.49)

The AdS2 Newton constant is given by (3.21) as

1
G2
=

8(2π)2

ν
3/2
4

SM (~r∗) = −
4π3n1∆φN2

9Vol(Y5)(~r∗)
=∆φ

csugra

3
, (5.50)

as expected. However, this expression for the Newton constant cannot yet be understood to
reflect a physical quantity due to the presence of ∆φ, which is a parameter of the internal
space. In order for this to constitute a genuine M-theory solution, we still need to impose the
N0 flux quantization condition

N0 = −
πn1ν4N2

72k2
0Vol(Y5)(~r∗)

−
1
2

N degL . (5.51)
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This condition fixes the period ∆φ in terms of the distinguished flux number. We find

∆φ = ±
6
N

√

√

√Vol(Y5)(~r∗) (2N0 + N degL)
−πn1

. (5.52)

The Newton constant of this genuine M-theory solution is then

1
G2
=

8π2N
3

√

√

√−πn1 (2N0 + N degL)
Vol(Y5)(~r∗)

. (5.53)

5.5 Baryonic Twist: Y p,q

We now consider the so-called baryonic twist solutions [2, 48]. For simplicity we present the
computations for Y5 = Y p,q. The Y p,q metrics first appeared in [50] and their toric data was
derived in [51]. The d = 4 ordered inward pointing normal vectors are

v1 = (1,0, 0), v2 = (1, 1,0), v3 = (1, p, p), v4 = (1, p− q− 1, p− q) . (5.54)

The Y p,q metrics have p > q > 0 and the polyhedral cone with vectors va, a = 1, . . . , 4 is
convex. We take the free twist parameters to be n2 = n3 ≡ n for simplicity. As it turns out,
the computational complexity of the problem is highly sensitive to the order in which the
topological condition and flux quantization conditions are imposed, even though the resulting
solution is clearly independent of this choice. We therefore include details of how the sets of
equations are solved on each side of the duality.

We first discuss the F-theory side. We proceed by using (5.54) to explicitly write down an
expression for the master volume V , which is then a function of λa and bi . We then derive
expressions for the constraint, fluxes and action in terms of V and set b1 = 2. We use the
flux quantization conditions for N and M1 to solve for λ4 and A, respectively, and solve the
constraint equation for λ1. Note that λ2,λ3 must necessarily drop out of any final result, since
there are only two independent Kähler parameters. We rescale the fluxes and twist parameters
as

Ma ≡ −n1maN , n≡ −n1s , (5.55)

and immediately rename m1 ≡ m for notational convenience. The remaining fluxes are

m2 = m4 =
(1−m)p+ s

p+ q
, m3 =

(m− 1)(p− q)− 2s
p+ q

. (5.56)

We can then determine the trial central charge, which we do not quote here as the expression is
extremely long. Extremizing with respect to b2, b3 gives the R-symmetry vector ~b = (2, b2, b2)
with

b2 = −2p
p3[2(m−1)2q+(2m−3)s]−2p2[(m−1)2q2+(2m−1)qs+2s2]+pqs[(2m−3)q−2s]−2q2s2

p4(2m−1)+2p3[(2m−1)q+s]+p2[(4m2−6m+3)q2+4mqs+4s2]+2pqs[(3−2m)q+2s]+4q2s2
, (5.57)

and on-shell central charge

csugra =
12N2n1p[(m−1)p−s][p3(2m2−3m+1)+p2((−2m2+3m−1)q−4ms+s)+pqs(2m−3)−2qs2]

p4(2m−1)+2p3[(2m−1)q+s]+p2[(4m2−6m+3)q2+4mqs+4s2]+2pqs[(3−2m)q+2s]+4q2s2
. (5.58)

Note that, for a trivial line bundle with degL = 0, we find that b2 and csugra reduce to (6.6)
and (6.7) in [48].

On the M-theory side we again start by explicitly writing down the master volume V as
a function of λa and bi using (5.54). We then derive expressions for the constraint, fluxes
and action in which we set b1 = 1. Noticing that the constraint equation does not depend
on λ1 and the flux quantization condition for M1 does not depend on λ3, we first solve the
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constraint equation for λ3 and use the M1 flux quantization condition to solve for λ1. We
then solve the N flux quantization condition for A. Note that λ2,λ4 then automatically drop
out of subsequent results, since there are only two independent Kähler parameters. Having
imposed the topological constraint and flux quantization for N and M1, we reproduce the
relations between the fluxes given in (5.56). The trial Newton constant can then be written
down; however, the expression is not quoted here as it is very long. Extremizing with respect
to b2, b3 gives the R-symmetry vector ~b = (1, b2, b2) with

b2 = −p
p3[2(m−1)2q+(2m−3)s]−2p2[(m−1)2q2+(2m−1)qs+2s2]+pqs[(2m−3)q−2s]−2q2s2

p4(2m−1)+2p3[(2m−1)q+s]+p2[(4m2−6m+3)q2+4mqs+4s2]+2pqs[(3−2m)q+2s]+4q2s2
, (5.59)

which is exactly half the corresponding R-symmetry component in F-theory, i.e. we have indeed
found ~bF = 2~bM . The preliminary Newton constant is

1
G2
= 4∆φN2n1p(−mp+p+s)[p3(2m2−3m+1)+p2((−2m2+3m−1)q−4ms+s)+pqs(2m−3)−2qs2]

p4(2m−1)+2p3((2m−1)q+s)+p2((4m2−6m+3)q2+4mqs+4s2)+2pqs((3−2m)q+2s)+4q2s2
=∆φ

csugra

3
. (5.60)

In order for this to correspond to a genuine M-theory solution, we must still impose quantiza-
tion of N0. Solving the flux quantization condition for N0 for k0, the Newton constant in terms
of M-theory fluxes is

1
G2
= 8πN

s

−pn1[2N0+degLN][(m−1)p−s][p3(2m2−3m+1)+p2((−2m2+3m−1)q−4ms+s)+pqs(2m−3)−2qs2]
p4(2m−1)+2p3((2m−1)q+s)+p2((4m2−6m+3)q2+4mqs+4s2)+2pqs((3−2m)q+2s)+4q2s2

. (5.61)

This concludes the discussion of solutions where I- and c-extremization agree exactly across
M/F-theory duality.

6 Universal Twist Solutions: Elliptic Three-fold

We would like to demonstrate that generically 1/G2 and csugra do not match exactly, as in
the examples in section 5, but rather 1/G2 includes higher order corrections in k0 as argued
for in (4.11). These are absent in the F-theory solution, where the volume of the elliptic
fiber is strictly zero. To this end, we consider the (on-shell) universal twist elliptic three-fold
solutions, which were determined in [2]. We will first give a brief summary of the known
F-theory solutions and then provide the corresponding M-theory analysis, and a comparison
of the two.

6.1 F-Theory

The universal twist solutions are based on the product ansatz

S1 Y7

Σ×M4

, (6.1)

where the transverse M6 factorizes as a product of a complex curve and a Kähler surface. To
M6 we associate an auxiliary elliptic fibration Mτ

8 , and assume that the fibration is non-trivial
only over the M4 factor, so that the total space is given by

Mτ
8 = Σ×

�

Eτ→M4

�

. (6.2)

The metrics on Σ and M4 satisfy

ρ4 + dQ = 6JM4
,

ρΣ = −3JΣ .
(6.3)
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Note that we assume that the Killing vector is regular throughout the following, and the period
of the circle coordinate z is 2π`. The volume of Σ is given by

Vol(Σ) =
2π
3
(2g − 2) , (6.4)

which follows from the Gauss-Bonnet theorem. Moreover,

[JM4
] =

π

3

�

c1(M4)− c1(L)
�

. (6.5)

This equation implies that the volume of the circle-fibration over M4, denoted by M5, is

Vol(M5) =
π3`

27

∫

M4

�

c1(M4)− c1(L)
�2

. (6.6)

There are two classes of flux quantization conditions. The first corresponds to the cycle at
fixed coordinates in Σ, which is a copy of M5. The flux integer is

ν3N F = 18Vol(M5) . (6.7)

The second class of flux quantization conditions is obtained as a U(1) fibration over the product
of Σ with two-cycles Cα in M4. They are given by

ν3M F
α = 3π`Vol(Σ)Cα · [JM4

] . (6.8)

Finally, the central charge of the 2d (0,2) theory was computed in [2] to be

csugra =
2π2Vol(Σ)(N F )2

Vol(M5)
. (6.9)

6.2 M-Theory

We start with the F-theory metric on M6 and construct the M-theory solution from it. We will
specialize to the case where M4 = CP2. Consider the Kähler class ansatz

J8 = k0ω0 + xJΣ + yJM4
. (6.10)

The cruical point is that the form of the metrics on Σ and M4 are exactly the same as in the
previous subsection, and we think of the F-theory solution as a 0-th order solution in a suitable
expansion in the volume of the elliptic fiber. We have introduced x and y that parametrize the
Kähler cone of M6 = Σ×M4. Given this parametrization we now compute the Kähler class
of the M-theory solution.

Note that the Kähler class on M4 is

[JM4
] =

π

3
(3− degL)[H] , (6.11)

where [H] is the hyperplane class of CP2. The line bundle associated to the elliptic fibration
lives over M4 and in particular c1(L)2 6= 0. From the M-theory constraint we derive the
following equation

x = y −
3k0 degL

2π(3− degL)
, (6.12)

where
degL= c1(L) · [H] . (6.13)
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This allows us to eliminate the parameter x from the above ansatz. With this we can then
compute the M-theory supersymmetric action

SM =
4π2`(g − 1)

3
k0

�

π2 y2(3− degL)2 − 3πy(3− degL)degLk0 + 2 degL2k2
0

�

. (6.14)

The remaining parameters, y and k0 are fixed by flux quantization in M-theory

ν4N0 =
4π2`(g − 1)

3

�

π2 y2(3− degL)2 − 4πy(3− degL)degLk0 + 3 degL2k2
0

�

,

ν4N M =
4π3`

3
yk0(3− degL)2 + 2π2`(3− degL)degLk2

0 ,

ν4M M =
4π2`(g − 1)

3

�

2π(3− degL)yk0 + 3
�

1−
6

(3− degL)π

�

degLk2
0

�

.

(6.15)

Imposing the flux quantization condition for N M gives

y =
3ν4N M

4π3`(3− degL)2k0
−

3 degL
2π(3− degL)

k0 . (6.16)

Let us briefly digress and examine this expression in more detail. Note that we can substitute
N F into the above to obtain

y =
N M

N F
−

3 degL
2π(3− degL)

k0 . (6.17)

From this expression it is apparent that

lim
k0→0

J8 = JΣ + JM4
(6.18)

holds if N M = N F ≡ N are identified, as expected. Substituting (6.16) into the supersymmetric
action results in

SM =
3(g − 1)ν2

4N2

4π2`(3− degL)2k0
−

6ν4N(g − 1)degL
3− degL

k0 +
35π2`(g − 1)

3
(degL)2 k3

0 . (6.19)

Using (3.21), we determine the leading contribution to the preliminary Newton constant to
be

1
G2
=

24(g − 1)pν4N2

`(3− degL)2k0
+O(k0) . (6.20)

Comparing this with the expression for csugra derived in the previous subsection, we indeed
find

1
G2
=
∆φ

3
csugra +O(k0) . (6.21)

The distinguished flux number N0 is given by

N0 =
3(g − 1)ν4

π2`(3− degL)2k2
0

N2 −
7(g − 1)degL

3− degL
N + 15π2`(g − 1) (degL)2

k2
0

ν4
. (6.22)

Substituting in the duality relations we find

N0 =
�

∆φ

2π

�2 csugra

24
−

7(g − 1)degL
3− degL

N +
15`(g − 1)(degL)2

4

�

2π
∆φ

�2

. (6.23)

30

https://scipost.org
https://scipost.org/SciPostPhys.9.3.029


SciPost Phys. 9, 029 (2020)

In particular, this is an expansion in ∆φ where the quadratic term is proportional to csugra,
again as expected. Finally, we record that

1
G2
=

16π2

81degL
[16π(3− degL)N0 + 3Vol(Σ)N degL+V]

×

√

√

√2(3− degL)N0 − 21Vol(Σ)N degL+ 2V
15(3− degL)Vol(M5)Vol(Σ)

,

(6.24)

where

V=
Ç

4π2(3− degL)2N2
0 + 42πVol(Σ)N0N(3− degL)degL+ 9 [NVol(Σ)degL]2 . (6.25)

As a check on this expression we may formally expand it around the trivial torus fibration with
degL= 0

1
G2
= 8π2N

√

√

√ N0Vol(Σ)
3Vol(M5)

− 5πN2

√

√ Vol(Σ)3

3N0Vol(M5)
degL+O(degL2) . (6.26)

The first term should then match (5.53), and using the expression (6.4) for Vol(Σ) one can
see that this is indeed the case.

7 Conclusions and Outlook

There has been much progress recently in tests of holography for 2d and 1d SCFTs. With
decreasing number of supercharges on either side of the correspondence, the duality becomes
more interesting and harder to study. The class of theories we discussed in this paper have
the minimal amount of supersymmetry, whilst keeping a non-trivial R-symmetry. The U(1) R-
symmetry in 2d and 1d can mix with global U(1) symmetries, and only after applying c- or I-
extremization is the true superconformal R-symmetry determined. The main paradigm in this
paper was to study this problem holographically in the context of Type IIB solutions, where the
axio-dilaton has a non-trivial spacetime-dependent profile – i.e. F-theory. We showed that the
c-extremization of 2d SCFTs obtained from wrapped D3-branes in F-theory compactifications
define a geometric extremization problem in the holographically dual AdS3 solutions. This
allowed us to compute, using an off-shell approach, the central charge of the SCFTs from
holography.

As a counterpoint to the 2d SCFTs, we discussed 1d SCQMs obtained by M2-branes wrapped
on complex curves, and the dual holographic I-extremization principle in M-theory. By M/F-
duality, whereby an elliptic fiber in the M-theory geometry becomes the auxiliary elliptic fibra-
tion of F-theory, these two setups can be related. The F-theory result for the central charge is
obtained by considering the limit in M-theory where the volume of the elliptic fiber is taken
to zero (k0→ 0). As we showed, there are classes of SCFTs where the resulting identification
(1.1) is true without any higher order corrections in k0 – these were discussed in section 5. In
contrast, the class of solutions in section 6 showed that in general there can indeed be correc-
tions to the F-theory expression of the central charge, in order for this to match the 1d partition
function. Whenever both sides agree, the solution has an elliptic fibration that is non-trivial
only over a complex curve. We observed that for elliptic fibrations over higher-dimensional
base manifolds, there are generically correction terms, which arise from non-trivial higher
intersection numbers on the base, e.g. from c1(L)2. This was exemplified in the elliptic three-
folds of section 6.
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Our analysis was largely focused on the geometric side of holography. Much is known
about the wrapped D3-brane theories in F-theory, in terms of central charge computations.
However much less understood is the precise relation between the dimensional reduction of
such 2d SCFTs with the 1d SCQM that arises from the dual M2-brane configuration, and the
associated 1d partition function. Related computations are known for higher (and non-chiral)
supersymmetric theories, but for (0, 2) this remains an exciting open problem.
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A Comparison of Normalizations in M/F-Theory

To streamline the notation in the main text, we implicitly always assume a particular normal-
ization in M-theory and in F-theory. The purpose of this appendix is to explain these normal-
izations. We uniformly denote the compact spaces by Y7 and Y τ9 throughout the paper, despite
the fact that the metrics on these spaces differ depending on whether they appear in F- or
M-theory: the normalization of the Killing vectors ξ differ by a factor of 2

F-theory/IIB : ξ= 2∂z , M-theory : ξ= ∂z . (A.1)

Therefore, the bi coefficients in the parametrization in (2.44) are related by ~bF = 2~bM . The
Killing one-form η is correspondingly normalized as

F-theory/IIB : η=
1
2
(dz + P) , M-theory : η= dz + P . (A.2)

The metrics on the compact spaces are given by

ds2
�

Y7

�

= η2 + eBds2 (M6) , ds2(Y τ9 ) = η
2 + eBds2(Mτ

8) , (A.3)

with the warp factor and normalization of η pertaining to F- or M-theory. Furthermore, we
have also used the same symbol F for the closed two-form appearing in the fluxes F5 in (2.1)
and G4 in (3.14) in F- and M-theory, respectively. It is given by

F-theory/IIB : F = −2J6 + d
�

e−B10η
�

, M-theory : F = −J8 + d
�

e−B11η
�

, (A.4)

with the warp factor, normalization of η and Kähler form pertaining to F- or M-theory. Finally,
in the toric examples of section 5, the volumes V and Vol(Y5) implicitly depend on the R-
symmetry vector ~b so that

V(~bM ) = 2V(~bF ) , Vol(Y5)(~bM ) = 23Vol(Y5)(~bF ) . (A.5)
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