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Abstract

The structure of solids and their phases is mainly determined by static Coulomb forces
while the coupling of charges to the dynamical, i.e., quantized degrees of freedom of
the electromagnetic field plays only a secondary role. Recently, it has been speculated
that this general rule can be overcome in the context of cavity quantum electrodynamics
(QED), where the coupling of dipoles to a single field mode can be dramatically en-
hanced. Here we present a first exact analysis of the ground states of a dipolar cavity
QED system in the non-perturbative coupling regime, where electrostatic and dynamical
interactions play an equally important role. Specifically, we show how strong and long-
range vacuum fluctuations modify the states of dipolar matter and induce novel phases
with unusual properties. Beyond a purely fundamental interest, these general mecha-
nisms can be important for potential applications, ranging from cavity-assisted chemistry
to quantum technologies based on ultrastrongly coupled circuit QED systems.
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1 Introduction

In QED, the relevant dimensionless coupling parameter is the finestructure constant
αfs = EC/Eph. It can be expressed as the ratio between the Coulomb energy, EC = e2/(4πε0d),
of two electrons at a distance d and the energy Eph = cħh/d, which is needed to create a
photon confined approximately to the same region in space. The small value of αfs ' 1/137
already suggests that the quantized modes of the electromagnetic field play a minor role in the
physics of atoms, molecules and solids, as confirmed by more rigorous calculations. However,
this argument does not necessarily hold in structured electromagnetic environments, such as
nanoplasmonic systems or LC circuits, where the energy of a photon can be tuned indepen-
dently of its wavelength. In this case the coupling between an electric dipole and a quantized
field mode is characterized by an effective parameter α= αfs(Z/Z0) [1,2], which can be con-
siderably enhanced by increasing the impedance of the mode, Z , compared to the value in
free space, Z0. This raises an important fundamental question: Can the properties of matter
be influenced by such an artificially boosted coupling to the quantized field, and, if so, how
would the properties change?

In view of a growing number of experimental setups where α ∼ O(1) can potentially be
reached [3–6], this question has lately gained additional relevance and first observations of
cavity-induced modifications of chemical reactions [7], phase transition points [8,9] and elec-
tric transport [10] have been reported. Moreover, the regime α ¦ 1 [11–13] is already ac-
cessible in circuit QED, where artificial atoms in form of superconducting two-level systems
are coupled to microwave resonators [14, 15]. Already now, such systems offer many in-
triguing possibilities for investigating basic principles of light-matter interactions in unprece-
dented coupling regimes. However, due to the complexity of the problem, our understanding
of strong-coupling induced modifications of real and artificial matter is still rather poor, even
on a conceptual level. In particular, while detailed analytical and numerical computations
have already been performed for single molecules in cavities [16–20] or small circuit QED
systems [21–24], equivalent calculations are no longer feasible for real materials, strongly
correlated electronic systems or larger superconducting devices. The analysis of such sys-
tems has thus been constrained to idealized collective-spin models [2,25–30] or to moderate
coupling regimes (α < 1) [31–41], where in realistic models no significant modifications of
ground and thermal states are expected yet [2, 16, 43–47]. Consequently, still little is known
about few- and many-body effects that arise from the direct competition between short-range
electrostatic interactions and a non-perturbative coupling to an extended dynamical mode.

In the following analysis we address this open theoretical problem by considering the con-
ceptually simplest scenario of a lattice of interacting two-level dipoles coupled to a single cavity
mode. While this prototypical cavity QED system has been the primary workhorse for mod-
elling light-matter interactions in quantum optics and solid-state physics for many decades, its
ground state properties are, surprisingly, still unknown. Here we use exact numerical calcula-
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Figure 1: Setup. (a) N anharmonic dipoles with transition dipole moment ~µ, ar-
ranged in a two-dimensional lattice with coordinates ~ri ⊥ ~µ and lattice constant a,
are coupled to a single mode of an LC resonator with frequency ωc = 1/

p
LC and

impedance Z =
p

L/C � Z0. The anharmonic dipoles are approximated as two-
level systems with transition frequency ωd . In such a setup, the coupling parameter
g/ωc = ~µ · ~E0/ (ħhωc)∝

p
α¦ 1 between a single dipole and a single photon, where

~E0 is the electric field per photon, can reach values of order unity. (b) The dipole-
dipole interactions Ji j depend on the distance D between the metallic plates because

of screening effects [see (d)], and differ from the bare values J0
i j = J0/

�

�~ri − ~r j

�

�

3
of the

dipole system in free space [see (c)]. The screening effects become more important
for small D where they strongly reduce the magnitude and range of Ji j .

tions to evaluate, without any approximations, the non-perturbative effect of vacuum fluctua-
tions on the ground states of strongly-correlated dipolar systems. This analysis confirms, first
of all, the existence of so-called superradiant [25–27] and subradiant [2, 23] phases, which
already appear in the analysis of simple collective spin models. However, we also observe the
formation of completely new phases of dipolar matter and cavity-induced ordering mecha-
nisms, which have not been discussed in the literature before. By that, we are able to provide
a first complete phase diagram for the ‘vacua’ of dipolar cavity QED in elementary lattice
geometries. This study also reveals that there is still a wealth of unexplored phenomena in
cavity and circuit QED, which may soon become accessible with further experimental advances
in these fields.

2 Cavity QED of interacting dipoles

We consider a prototypical cavity-QED system as depicted in Fig. 1(a), where N anharmonic
dipoles are coupled to a single quantized mode of an LC resonator [29] with frequency ωc .
We approximate the dipoles by two-level systems with transition frequency ωd , located at
fixed lattice positions ~ri (in units of the lattice spacing a). The dipoles couple to the electric
field ~E of the cavity with a transition dipole moment ~µ ‖ ~E and among each other via static
dipole-dipole interactions. Under these assumptions the quantized dynamics of the system is
described by the Hamiltonian [2] (ħh= 1)

HcQED =ωca
†a+ g

�

a† + a
�

Sx +
g2

ωc
S2

x +ωdSz +
∑

i< j

Ji j

4
σi

xσ
j
x , (1)

where σi
α denote the Pauli operators at site i, Sα =

∑

i σ
i
α/2 are collective spin operators,

and a is the annihilation operator for the field mode. Note that HcQED represents light-matter
interactions in the dipole gauge, where gauge-dependent artefacts in the two-level truncation
can be avoided [48]. For other recent contributions on this topic, see [49–52].
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The cavity affects the dynamics of the dipoles in two different ways. First, in Eq. (1) the
dipole frequency, ωd , and the dipole-dipole couplings, Ji j , already include screening effects
from the metallic boundaries and can differ considerably from their bare values ω0

d and J0
i j

in free space. This behaviour is illustrated in Fig. 1(b-d), which shows that the usual dipole-
dipole interactions, J0

i j = J0/|~ri − ~r j|3, become short-ranged and suppressed as the distance
D between the plates is decreased. This boundary effect can strongly modify the properties
of para- and ferroelectric systems [2,53–56], but it is of electrostatic origin and not the main
focus of this study. Therefore, we simply treat ωd and Ji j as arbitrary model parameters and
investigate the additional modifications induced by the coupling to the dynamical field mode
with frequency ωc ∼ωd . For a sufficiently homogeneous mode, these effects are described by
the collective dipole-field coupling g

�

a† + a
�

Sx , with a single-dipole coupling strength g, and
the associated depolarization shift ∼ S2

x .
We emphasize that the Hamiltonian HcQED represents a minimal consistent extension of

the more commonly used Dicke model in quantum optics. In particular, the inclusion of the
so-called P2-term ∼ S2

x [2, 17, 23, 29, 57] ensures that for ωd → 0 we recover the correct

electrostatic limit, HcQED 'ωca
†a+

∑

i< j
Ji j
4 σ

i
xσ

j
x [see Appendix B], which is not the case in the

aforementioned Dicke model or variants thereof [32,33,41]. Therefore, although being based
on several simplifying assumptions, HcQED still respects all Maxwell’s equations and allows us
to treat electrostatic and electrodynamical interactions in a consistent and transparent manner.
For a more detailed derivation and justification of this model in both cavity and circuit QED
systems see Refs. [2,23].

3 The ground states of cavity QED

The physics of HcQED and variants thereof has been studied extensively in quantum optics
and solid-state physics, but primarily in the regime g/ωc � 1. In this limit, the system
may still feature huge collective Rabi-splittings of ΩR = g

p
N ∼ ωc in the excitation spec-

trum [3, 5, 6], but qualitative changes in the ground and equilibrium states are still only per-
turbative [2,16,45–47]. In turn, preceding studies of HcQED in the non-perturbative coupling
regime, g/ωc ¦ 1, have been restricted to very few spins or the special case of all-to-all inter-
actions Ji j = J [2, 23, 47]. This strongly reduces the computational complexity of the prob-
lem, but also ignores all non-collective correlations, the influence of the lattice geometry and
other essential effects. Here we perform exact, large-scale numerical simulations of finite-sized
dipole systems to obtain the ground states of HcQED without any further approximations [see
Appendix A for details].

Phase diagram. In Fig. 2(a) we first show the ground state phase diagram for N = 26 dipoles
on a square lattice with nearest-neighbor only couplings Ji j = Jδ〈i, j〉 and ωd =ωc . For g = 0
the cavity is completely decoupled and Eq. (1) reduces to the familiar transverse field Ising
(TFI) model. In this limit we observe the expected transition from a disordered paraelectric
to the ordered ferroelectric or antiferroelectric Néel phase when |J | exceeds a critical value
of |J∗| ≈ 0.7ωd , which agrees within a few percent with the transition point of the infinite
system [58].

Although on finite-size systems symmetries cannot be broken spontaneously and the order
parameters are strictly zero, the ordered phases can be uniquely identified through the corre-
lations 〈σi

xσ
j
x〉 between the spins at positions i and j. For that, we define the (normalized)

structure factor

Σx(~k) =
1
N

N−1
∑

i=0

e−i~k·~ri0



σi
xσ

0
x

�

(2)
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Figure 2: Cavity QED ground states on the square lattice. (a) Phase diagram of HcQED.
The symbols track the boundaries between distinct ground states estimated for differ-
ent system sizes N , solid (dotted) lines indicate phase transitions (crossovers). The
insets show sketches of the spin configurations in the corresponding phases. (b) Or-
der parameter correlations for a cut at g/ωc = 4. (c-d) Ground state photon number
(c) and order parameter correlations (d) for the transitions from the paraelectric to
the subradiant phases with 〈a†a〉 ' 0 along the horizontal dashed lines in (a). For
small dipole-dipole interactions, J/ωd , the collective subradiant regime is stabilized
by increasing g/ωc while the spins remain disordered (brown curves). For non-zero
antiferroelectric interactions, J/ωd > 0, the system undergoes a phase transition to
the Néel subradiant phase, where 〈a†a〉 vanishes simultaneously with the onset of
antiferroelectric Néel order, 〈σxσx〉

stag→ 1 (pink curves).

for a momentum ~k in the Brillouin zone of the lattice, and ~ri0 = ~ri − ~r0. In an ordered phase
Σx(~k) shows single peaks at specific momenta ~k∗, which identify the ordering pattern, and the
value of Σx(~k∗) can be used to define the ordering strength. To identify the ferroelectric and
staggered Néel ordered phases, we introduce

〈σxσx〉
ferro = Σx (Γ ) , with Γ = (0,0) ,

〈σxσx〉
stag = Σx (M) , with M = (π,π) , (3)

which are nonzero in the corresponding phases, but vanishingly small elsewhere, as shown
in Fig. 2(b). These correlation measures are related to the second moments of the order
parameters of the respective phases, in particular

〈σxσx〉
ferro =

4
N2




p2
�

,

〈σxσx〉
stag =

4
N2

¬

�

pstag
�2¶

, (4)

where we have introduced the standard order parameters for the ferroelectric and Néel phases,
respectively,

p ≡ 〈Sx〉=
∑

i

σi
x/2,

pstag = pA− pB =
∑

i∈A

σi
x/2−

∑

i∈B

σi
x/2. (5)
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Here, we have decomposed the lattice into two sublattices A and B to capture the staggered
structure of the Néel phase and introduced the sublattice polarizations pI =

∑

i∈I σ
x
i /2.

For finite g/ωc ® 1 the phases do not change considerably, except that in the ferroelectric
state now also the photon number acquires a large expectation value, 〈a†a〉 ' (gN/(2ωc))

2.
Eventually, in the thermodynamic limit N → ∞ the Z2 symmetry of the model [see Ap-
pendix A] is spontaneously broken in the ferroelectric regime leading to a finite spin order
parameter 〈Sx〉 6= 0 and a coherent photonic state with amplitude α ≡ 〈a〉 = g/ωc〈Sx〉 [see
also Appendix B]. In the quantum optics literature one commonly refers to such a phase as
‘superradiant’ [25–27], a notation that we adopt in the following. The anti-aligned Néel phase,
on the other hand, shows a staggered arrangement of dipoles with 〈Sx〉 = 0 in the thermody-
namic limit. While such a state breaks the Z2 symmetry (in a non-trivial way together with
lattice symmetries), the photon sector obeys 〈a〉 = 0, such that we refer to it as ‘subradiant’.
On finite-size systems, this leads to a strongly reduced photon number 〈a†a〉 ' 0 compared to
the fluctuating paraelectric phase [see Fig. 2(c)].

Collective subradiant phase. The paraelectric phase gradually evolves into a new ‘collective
subradiant’ phase with unusual properties for g/ωc ¦ 3. This phase exhibits no order and
〈σxσx〉

ferro ' 〈σxσx〉
stag ' 0 [see Fig. 2(b)]. At the same time, also the photon number 〈a†a〉

vanishes, indicating that all the dipoles are still anti-aligned.
These seemingly contradicting properties can be understood by looking at the limit J ≈ 0

and g/ωc � 1, where we can eliminate the photons using strong-coupling perturbation theory.
The remaining low-energy physics of HcQED is then approximately described by the effective
spin model [2,23]

HS =
∑

i< j

Ji j

4
σi

xσ
j
x + hzSz − Jc

�

S2 − S2
x

�

, (6)

where S= (Sx , Sy , Sz). This Hamiltonian describes Ising interactions with Ji j = Jδ〈i, j〉 subject
to a renormalized ‘transverse field’ hz = ωd exp

�

−g2/(2ω2
c )
�

and with an additional cavity-
mediated collective coupling of strength Jc =ω2

dωc/(2g2)≥ 0 [see Appendix B].
In the considered regime where the collective subradiant state is observed the term∝ Jc

dominates over the exponentially suppressed hz . Thus, for J = 0, the Hamiltonian is mini-
mized by a perfectly anti-aligned state |ψcs〉, which obeys Sx |ψcs〉 = 0 and has maximal total
spin S = N/2. Compared to a Néel-ordered configuration, this highly entangled state repre-
sents an equal superposition of all possible combinations with half of the dipoles pointing along
x and the other half into the opposite direction, without any spatial order. Surprisingly, this
peculiar collective phase survives to a high degree in the presence of competing short-range
interactions (J 6= 0) and it is separated from both ordered phases by a sharp transition.

Although both the collective and the Néel ordered phases are subradiant, a crucial differ-
ence between them is visualized in Fig. 2(c-d). These two plots compare the photon number
〈a†a〉 and 〈σxσx〉

stag for fixed J/ωd , but increasing g/ωc . For a value of J = 0.5ωd the sys-
tem then directly transitions from the paraelectric into the Néel phase. This is signified by an
increase of 〈σxσx〉

stag and simultaneously, or better to say as a consequence of that, also the
photon number vanishes. In the evolution from the paraelectric to the collective subradiant
states, as shown exemplarily for J = 0, the staggered polarization is always vanishingly small,
but the dipoles still completely decouple from the photons for large g/ωc . The formation
of such a collective subradiant phase is thus much more subtle than an interaction induced
spatially ordered anti-alignment of dipoles.

Estimating phase boundaries. After establishing the different phases which appear as vacua
of HcQED on the square lattice, let us in the following estimate their boundaries in the phase di-
agram. The ordered phases (ferroelectric and Néel) are separated from the disordered phases
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Figure 3: Order parameter fluctuations. Fluctuations for the phase transitions be-
tween the disordered and (a) ferroelectric, (b) Néel phases as a function of the
dipole-dipole interaction J/ωd . The peaks are used to estimate the finite-size phase
boundaries J∗(g/ωc , N) [see also Fig. 2(a)]. The dashed vertical lines indicate the
critical point J∗(g = 0) in the thermodynamic limit N →∞ [58]. With increasing
coupling g/ωc , we observe a cavity-induced reduction of |J∗|/ωd and a narrowing of
the critical region, which is estimated by the width of the peaks. (c) The fluctuations
〈|∆pstag|〉 normalized by the height of their peak are plotted against the rescaled dis-
tance from the critical point J∗(g/ωc), where the rescale factor α depends on g/ωc .
We observe a good collapse with the fluctuations in the transverse field Ising limit
g/ωc = 0.

by a phase transition, where the model’s symmetry is spontaneously broken (for N →∞). The
finite-size phase boundaries can be clearly identified by sharp peaks in the order parameter
fluctuations

〈∆O〉= 〈O2〉 − 〈O〉2, (7)

as shown in Fig. 3. The finite-size results for g = 0 agree within a few percent with the
known phase boundaries in the thermodynamic limit. With increasing g we observe a signifi-
cant cavity-induced reduction of the critical coupling strength |J∗(g)| for both ordered phases.
Within the limited range of available system sizes we still see a weak dependence of the phase
boundaries on the particle number N [see Fig. 2(a)], but also for larger N no significant qual-
itative changes of the phase transitions are expected.

Compared to the g = 0 results, where the transitions are known to be continuous and in
the (2+1)D Ising universality class, with increasing g/ωc the width of the peaks in the fluctu-
ations shrinks, which indicates a narrowing of the critical region. Moreover, for the transition
between the ferroelectric and disordered phases, the shape of the fluctuations changes when
g/ωc ¦ 4, while it remains the same (up to rescaling) for the transition between the Néel and
the disordered phases, as shown in Fig. 3(c). Although numerical evidence is still limited, this
behavior indicates a cavity-induced change from a continuous to a first order phase transition
in the ferroelectric case, while the transition into the Néel phase remains continuous for all
g/ωc .

The evolution from the paraelectric to the collective subradiant regimes, on the other hand,
does not show any trend towards a non-analytic behaviour in our analysis. Since also both of
these regimes do not break any symmetries, we expect this evolution to be better described
by a smooth crossover, instead of a sharp phase transition. As such there is no well-defined
transition line and in our plots we use the characteristic peak in the polaron photon number
〈a†a〉polaron to define a crossover boundary [see Appendix F]. For this crossover we observe a
non-negligible dependence on N , which in detail depends on the observable that is used to
define the boundary. In the non-interacting case J = 0 the evolution of the crossover bound-
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ary can be numerically estimated also for much larger values of N [see Appendix F]. These
simulations further support a smooth crossover between the paraelectric and the subradiant
phase, but do not yet provide a conclusive picture about the behaviour of this crossover in the
limit N →∞.

Finally, let us emphasize that HcQED describes the coupling of all dipoles to a single cavity
mode with fixed properties, in particular, a fixed interaction region. Simply increasing N does
not represent a well-defined thermodynamic limit, while a rescaling of the coupling constant,
g → g/

p
N , would render the dipole-field coupling non-perturbative. Therefore, the finite-

size phase diagrams discussed so far and in the following are already representative for the
practically relevant scenarios, where small or mesoscopic ensembles of dipoles are coupled to
a field mode localized within a tiny mode volume.

4 Order and fluctuations

From the analysis above we can extract two basic cavity-induced many-body effects, namely
the stabilization of phases with pre-existing order and the suppression of fluctuations in the
disordered phase through the formation of highly entangled collective states. One thus ex-
pects that also in general cavity-induced modifications will be most significant in situations
where strong fluctuations occur already in the bare system. As a prototypical example we now
consider the ground state phases of HcQED for repulsive dipoles on a triangular lattice [see
also Fig. 6], where we again assume nearest-neighbor interactions Ji j = Jδ〈i, j〉. In this con-
figuration the dipole-dipole interactions are strongly frustrated and lead, for g = 0, to large
fluctuations (in Sx) even in the ordered ground states at J > 0. As shown in the correspond-
ing full phase diagram in Fig. 4(a), under this condition completely new cavity-induced phases
appear at sufficiently large g/ωc .

To understand these observations, let us first summarize the established results of the
frustrated TFI model at vanishing coupling g = 0. In the classical limit J/ωd →∞, the strong
frustration prevents the spins from ordering even at zero temperature and the model exhibits
an exponentially large (in N) ground-state manifold with a finite T = 0 entropy density [59].
However, quantum fluctuations from a transverse field, i.e. the termωdSz in Eq. (1), select an
ordered subset of states in an “order-by-disorder" (OBD) process [60]. As shown in the inset
in Fig. 4(a), the selected three-sublattice (3SL) antiferroelectric state [61,62] can be depicted
as an arrangement of anti-aligned dipoles on two of the sublattices (in the Sx direction), while
on the third sublattice the dipoles align (paraelectrically) with the transverse field and do
not point in any particular direction according to Sx . This phase is thus characterized by a
long-range 3SL order, while it still exhibits strong fluctuations in Sx [see Fig. 4(c), left panel].
When the interaction strength J is decreased below a critical value, the 3SL phase eventually
becomes unstable towards a disordered, paraelectric phase. The phase transition is continuous
and features an emergent O(2) symmetry, such that the universality class is not of Ising, but
of XY type [61,62].

To investigate the properties of this system for g/ωc > 0, we compute the correlations
corresponding to 3SL order

〈σxσx〉
3SL = Σx(K), with K = (±4π/3, 0) , (8)

and find an extended region above a critical line J∗(g) where they become large. This indi-
cates the stability of the 3SL phase also in the presence of the cavity mode [see Fig. 4(a-b)].
Similar to the square lattice case, increasing the coupling to the cavity reduces the critical
value J∗(g), which we estimate by maxima in the fluctuations 〈∆|p3SL|〉 for the complex 3SL
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Figure 4: Cavity QED ground states on the triangular lattice. (a) Phase diagram of
HcQED for a system of N = 24 dipoles. The insets show illustrations of the spin config-
urations in the corresponding phases. Solid (dotted) lines indicate phase transitions
(crossovers). The dashed lines show phase boundaries estimated from the effective
spin model HS with hz = 0 [Eq. (6)] and show good agreement with the exact phase
boundaries from HcQED for large g/ωc . The red dashed line indicates a transition
between superradiant phases with different values of Sx , which appears for larger
lattices. The shown boundary is estimated for HS with hz = 0 and N = 36 [see also
Fig. 5]. (b) Observables for a cut at g/ωc = 4. The correlations 〈σxσx〉

3SL reveal
spin ordering above a critical interaction strength J∗(g) which is estimated by a peak
in 〈∆|p3SL|〉. The photon number 〈a†a〉 clearly discriminates the transition between
the sub- and superradiant 3SL phases. (c) Polarization histograms in the 3SL nor-
mal, subradiant, and superradiant phases (from left to right). The solid line in the
left panel shows, as a comparison, the expected histogram for a single paraelectric
sublattice. (d) Photon number fluctuations. The maxima are used to track the phase
boundaries to the 3SL superradiant phase, where the fluctuations show a non-zero
value.

order parameter
p3SL = pA+ pB e−i4π/3 + pC ei4π/3, (9)

where the lattice was decomposed into the three sublattices A, B, C .
For J < J∗(g) we observe the crossover between the paraelectric and the collective sub-

radiant phase also for the triangular lattice, since the geometry becomes irrelevant in this
regime. While the formation of such a homogeneous state is hindered by the 3SL order above
the transition line J > J∗(g), we discover a new type of ‘3SL subradiant’ regime for g/ωc ¦ 3.
This regime is characterized by a finite order, 〈σxσx〉

3SL > 0, and is thus separated from the
collective phase by a sharp transition line [see Fig. 4(a-b)]. At the same time it differs from
the normal 3SL phase in terms of its vanishing photon number, 〈a†a〉 ' 0, which indicates
strongly reduced polarization fluctuations. This difference can be clearly seen in the ground
state distribution of Sx -values in the two regimes, as shown in Fig. 4(c): while the polarization
distribution is broad in the normal 3SL phase, it is pinned to a single value of Sx = 0 deep
in the subradiant regime. This behavior can be intuitively explained, by adopting again the
simplified picture of a 3SL state, where the fluctuating dipoles on one sublattice participate
in the formation of a collective subradiant configuration, similar to the state |ψcs〉, while the
two Sx -polarized sublattices remain unaffected. Note, however, that this is only an oversim-
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plified picture of the actual state, where correlations among different sublattices do not vanish
completely.

5 Order by cavity-induced disorder

A very surprising finding in the case of a triangular lattice is the appearance of an additional su-
perradiant phase for antiferroelectric dipole interactions [blue region in Fig. 4(a)]. As shown
by the histogram in Fig. 4(c), also in this phase the polarization is well-defined, but assumes
non-zero values Sx = ±1, 2, . . . , and consequently, 〈a†a〉 = (g/ωc Sx)

2 � 1. Although this
value is much smaller than in the regular superradiant phase, this property is completely un-
expected, since, at first sight, in this regime both the direct dipole-dipole as well as the cavity-
induced interactions would favor a fully anti-aligned configuration. As shown in Fig. 4(d) the
transition into this phase is associated with a sharp peak in the photon-number fluctuations,
〈∆a†a〉, which also remain finite within this phase.

To further investigate the properties of this new type of superradiant states we focus on
the relevant regime g/ωc � 1, where, as shown above, we can eliminate the photons using
strong-coupling perturbation theory to obtain the effective spin model HS [Eq. (6)]. Although
it is derived under the assumption Ji j → 0, a comparison with full numerical simulations up
to N = 24 shows that HS accurately reproduces the qualitative features of HcQED for large Ji j ,
as long as g/ωc ¦ 3 [see Fig. 4(a)].

As already discussed above, the regular OBD process on the frustrated, antiferroelectric
Ising interactions (for g/ωc ® 3) is driven by the perturbation with a transverse field ∝ Sz
[i.e. HS with artificially set Jc = 0], which stabilizes the normal 3SL phase. On top of that, the
cavity-mediated collective term∝ Jc can induce a crossover into the 3SL subradiant regime.
The appearance of a superradiant phase suggests that this hierarchy no longer holds for large
J/ωd and g/ωc ¦ 3. In this regime, the transverse field hz is already strongly (exponentially)
suppressed and the cavity-mediated collective term ∝ Jc is the dominant perturbation on
the Ising interactions. Its quantum fluctuations select a distinctly ordered subset of states
compared to the regular OBD process and yield a superradiant phase with a different 3SL
ordering pattern.

A common way to analyze different ordering patterns on the triangular lattice is to look at
the distribution of the 3SL order parameter

p3SL =
�

�p3SL
�

�eiθ (10)

in the complex plane [see also Appendix E]. In Fig. 5(a) we use this method to represent
the different ground-state structures in the normal, the subradiant and the superradiant 3SL
phases. The large values of 〈|p3SL|〉 show that all three phases exhibit 3SL order, as also seen
from 〈σxσx〉

3SL in Fig. 4(b), but with different levels of fluctuations. Even more, the pattern
for the superradiant phase differs qualitatively from the other two plots, in particular the
positions of the largest peaks are shifted, and indicate a configuration where dipoles in one
sublattice are (almost) fully polarized in Sx , while dipoles on the other two sublattices are
equally, but only partially polarized along the opposite direction. For N = 24 this ordering
leaves a residual net polarization Sx = ±1.

Within the effective spin model we can investigate the superradiant phase also for larger
lattices and find that this residual polarization increases with the system size and leads, with in-
creasing ratio J/Jc , to a whole series of superradiant phases, characterized by
|Sx | = 1, 2,3, . . . , Smax

x [see Fig. 5(b)]. The maximum value Smax
x obtained in the OBD limit

Jc/J → 0 can be calculated from first order degenerate perturbation theory [see Appendix D]
and is plotted in Fig. 5(c) for different (regular) triangular clusters of up to N = 48 sites.

10

https://scipost.org
https://scipost.org/SciPostPhys.9.5.066


SciPost Phys. 9, 066 (2020)

Re(p3SL)

Im
(p

3S
L
)

Re(p3SL) Re(p3SL) OBD 0.02 0.04
Jc/J

0.0

0.5

1.0

1.5

2.0

2.5

3.0

|S
x
|

N = 12
N = 24
N = 36
N = 48

12 242730 3639 4548
N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
m

ax
x

Jc/J → 0
δ � 0.07

0.00 0.01
P (p3SL)

0.00 0.02
P (p3SL)

0.00 0.02
P (p3SL)(a) (b) (c)

3SL N 3SL Super3SL Sub

Figure 5: Cavity-induced OBD mechanism in the large coupling limit from the ef-
fective spin model. (a) Sublattice polarization distribution of the complex order pa-
rameter p3SL for the normal, subradiant, and superradiant 3SL phases (from left to
right) for N = 36 spins. The large value of 〈|p3SL|〉 in all panels indicates strong
3SL order for all these phases, while the different positions of the maxima (indicated
by the red circles) show that the ordering pattern for the superradiant phase differs
from the others. The fluctuations around the maxima identify the strongly distinct
nature of the unpolarized sublattice in the normal and subradiant 3SL phases. (b)
The ground state Sx sector cascades from a N -dependent maximal value Smax

x to zero
in the 3SL subradiant regime when Jc/J is increased. (c) Maximal ground state po-
larization Smax

x , achieved in the OBD limit Jc/J → 0, as a function of system size N .
The dashed line shows the expected behavior for a polarization density δ ' 0.07.

From this analysis we can extract a linear scaling for the maximal ground state polarization
Smax

x = δ · N and the photon number 〈a†a〉 = (gδ · N/ωc)
2 with a polarization density of

δ ' 0.07. Interestingly, very similar distributions of p3SL and a finite net polarization (although
at a much smaller value of δ) have been previously discussed in connection with supersolidity
in frustrated spin systems [63–67], where magnetic and superfluid order parameters coexist.
While outside the scope of the current study, this connection between superradiance and su-
persolidity in cavity QED is a particularly exciting direction to explore further. Finally, we want
to point out that the interplay between short-range and cavity-mediated collective interaction,
such as in HS , has been a source to observe unexpected superradiant and supersolid phases in
experiments with cold atoms in cavities [68,69]. While the interactions and the nature of the
phases in these systems are different, interesting connections between the different models
might be explored in future works.

6 Conclusions

In summary, we have addressed the many-body problem in cavity QED, which arises from the
interplay between short-range electrostatic interactions and the non-perturbative coupling to
a common cavity mode. Based on exact numerical calculations, we have obtained a first com-
plete phase diagram for the ‘vacua’ of cavity QED covering the full range of dipole-field inter-
action strengths, from vanishingly small to ultrastrong. By taking the influence of short-range
dipole-dipole interactions in different lattice geometries fully into account, we have shown
how the competition between conventional and cavity-induced correlations can lead to the
formation of several novel phases, which have no direct counterparts in the collective Dicke-
type models [25–27, 30] usually studied in quantum optics, nor in regular solid-state spin
systems. Although we focused here on the conceptually simplest case of two-level dipoles,
the basic mechanisms identified in this work, i.e. the cavity-induced reduction of fluctuations,
extended subradiant states without order, or a cavity-induced OBD process, will also be rele-
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vant in various other strongly interacting cavity QED systems [36–38,40–42], where so far the
analysis of ground states has been constrained to mean-field methods or perturbative coupling
regimes.

While the most interesting regime of light-matter interactions, g/ωc > 1, is not accessible
in cavity QED experiments with atoms and molecules today, recent advances in the fabrication
of electromagnetic resonances with Z/Z0 > 50 [13,70] show that this regime is by no means
out of reach. Of immediate relevance are our findings for the field of circuit QED, where equiv-
alent models can also be obtained with alternative galvanic coupling schemes, and values of
g/ωc > 1 [11,12] have already been demonstrated for single superconducting two-level sys-
tems. The extension of these experiments to larger arrays of superconducting qubits coupled
directly and via microwave modes will provide a natural platform to explore the new phases
and physical mechanisms identified in this work. Such systems are currently developed for
quantum simulation and quantum annealing schemes [71], where ultrastrong coupling ef-
fects, similar to what we have analyzed here, can find direct practical applications [72].

Acknowledgements

We thank Alessandro Toschi for stimulating discussions and feedback on the manuscript.

Funding information This work was supported by the Austrian Academy of Sciences (ÖAW)
through a DOC Fellowship (D.D.) and by the Austrian Science Fund (FWF) through the DK
CoQuS (Grant No. W 1210) and Grant No. P31701 (ULMAC). The computational results
presented have been achieved [in part] using the Vienna Scientific Cluster (VSC).

A Numerical simulations

The numerical results in this manuscript have been achieved by Exact Diagonalization using a
Lanczos algorithm [73,74] on regular clusters with a finite number of N two-level systems [see
Fig. 6]. To reduce finite-size effects we use periodic boundary conditions along both directions
of the square and triangular lattices and, to study genuine two-dimensional properties we
only use clusters with an aspect ratio ε = 1, i.e. the loops around both periodic directions
have equal length. To fit the antiferroelectric phases with a two (three) sublattice structure,
we only consider square (triangular) clusters with N mod 2 = 0 (N mod 3 = 0). Here, it is
worth mentioning that the subradiant states discussed in this work cannot exist on clusters
with odd N , where the possible total polarizations Sx are half-integers, so that a subradiant
state with fixed Sx = 0 cannot be obtained.

The Hilbertspace H is kept finite by additionally introducing a photon-number cutoff nmax
ph

for the cavity mode in HcQED, such that a† |nmax
ph 〉 ≡ 0 and dim[H] = 2N

�

nmax
ph + 1

�

. nmax
ph

has to be chosen large enough to achieve accurate results throughout the different regimes of
the external parameters [see Appendix C for a thorough discussion]. It can also be favorable
to transform HcQED into the polaron frame, which describes a distinct basis, where, in some
regimes, a much smaller cutoff than in the original frame can be sufficient [see Appendix B].

To further reduce the Hilbertspace dimension, we use the Z2 symmetry of HcQED, given by

the operator S = e−iπ(a†a+Sz), together with the lattice translational and point-group symme-
tries to block-diagonalize H.
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N = 16 N = 26

N = 24 N = 36 N = 39 N = 48

Figure 6: Some of the finite-size clusters used in the simulations. The top (bottom)
row shows square (triangular) clusters. The black dots are the sites of the finite-size
clusters, the yellow background illustrates the Wigner-Seitz cell. The yellow lines
indicate the nearest-neighbor bonds.

B Polaron transformation & effective spin model

In the ultrastrong coupling regime it can be convenient to transform HcQED [Eq. (1)] into a
frame of displaced photon number states (polarons) by applying the unitary operator
U = eg/ωcSx(a†−a). The Hamiltonian HcQED transforms into

eHcQED = UHcQEDU†

=ωc a†a+
∑

i< j

Ji j

4
σi

xσ
j
x +ωd USzU†, (11)

since a(†)→ a(†)− g/ωc Sx is displaced proportional to Sx . Within this formulation, it becomes
obvious that the correct electrostatic limit HcQED ' ωca

†a +
∑

i< j
Ji j
4 σ

x
i σ

x
j is achieved for

ωd → 0, since the depolarization shift in Eq. (1) exactly cancels the additional terms ∝ S2
x

from the transformation of a†a.
The Hamiltonian Eq. (11) can also be advantageous to study superradiant phases, because

the photon number 〈a†a〉polaron in this polaron frame ignores the part from the direct coupling
to the polarization Sx and remains much smaller than in the standard frame, in particular
for superradiant phases. Therefore, a substantially lower photon number cutoff nmax

ph can be
sufficient for precise numerical simulations, with the disadvantage of having to deal with a
dense photonic Hamiltonian, when ωd 6= 0.

Also, the polaron photon number, which can be computed by
〈a†a〉polaron =




(a† −α)(a−α)
�

with α = g/ωc Sx in the standard frame, can be a useful
observable. In particular, we use characteristic peaks in the polaron photon number to iden-
tify the crossover regime between the paraelectric and collective subradiant phases [see Ap-
pendix F].

Using strong-coupling perturbation theory for g/ωc � 1 and projecting onto the lowest-
energy sector without polaronic excitations |0〉polaron

ph , the last term in eHcQED can be approxi-
mated as [2,23]

ωd USzU† 'ωde
− g2

2ω2
c Sz −

ω2
dωc

2g2

�

S2 − S2
x

�

, (12)
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where we have introduced the total spin operator S= (Sx , Sy , Sz). Within this approximation,
we thus obtain the effective spin model HS given in Eq. (6). It is important to note that the
eigenstates in the original basis |Ψ〉= e−g/ωcSx(a†−a) |Ψ〉spin⊗|0〉

polaron
ph , and the photon number

〈a†a〉 = g2/ω2
c 〈|Sx |〉2 is generally non-zero in the standard basis. Note that the approximate

expression in Eq. (12) has been derived for non-interacting dipoles Ji j = 0.

C Photon number cutoff

In this appendix we discuss the implications of introducing a photon number cutoff nmax
ph to ob-

tain a finite Hilbert space. This cutoff has to be chosen large enough such that the true ground
state in the full Hilbert space only shows negligible deviations (up to some defined precision)
when it is projected into the restricted Hilbert space. Appropriate values for nmax

ph strongly
depend on the chosen external parameters, i.e., for parameters belonging to a superradiant
phase much larger cutoffs have to be chosen than for parameters belonging to a subradiant
phase.

For the simulations in this work we choose nmax
ph large enough, such that doubling this

cutoff does not change the measured observables. In Fig. 7 we show an analysis of the de-
pendence of observables on nmax

ph for a square lattice configuration with N = 16 dipoles and
a constant coupling g/ωc = 2. For antiferroelectric interactions, J/ωc > 0, a small cutoff
nmax

ph = 64 is already sufficient to obtain converged results in all observables, since the average

photon number 〈a†a〉 remains small. Contrarily, for ferroelectric interactions, J/ωc < 0, the
average photon number and its fluctuations become large [see Fig. 7(a)] when the superradi-
ant regime is entered. Then, a too small cutoff yields false results not only for 〈a†a〉, but also
for pure dipole observables [see Fig. 7(c)-(f)]. The distribution of the photon number a†a in
the ground state [see inset in Fig. 7(a)] reveals, that a cutoff nmax

ph ¦ 400 would be sufficient
for a simulation with these particular external parameters.

In Fig. 7 we also show results obtained from the polaron frame with Hamiltonian eHcQED.
In this formulation, a much smaller cutoff is already enough to obtain converged results in the
ferroelectric regime, since the polaron photon number 〈a†a〉polaron remains small even in the
superradiant phase [see Fig. 7(b)].

D OBD simulations

The classical Ising model, which is obtained from HcQED or HS for J →∞, is strongly frus-
trated on the triangular lattice with nearest-neighbor interactions and does not order even at
zero temperature T = 0. It features an exponentially large (in N) ground-state manifold, with
an extensive T = 0 entropy S ≈ 0.323kBN [75]. This ground-state manifold can be destabi-
lized by quantum fluctuations from other interaction terms, such as a transverse field or the
cavity-mediated collective coupling ∝ Jc in HS, when a particular subset of states, with the
softest response to the fluctuations, is selected. If the set of the selected states is ordered, this
process is termed “order by disorder” [60], and for a perturbation with a transverse field this
mechanism is known to induce a 3SL ordered phase [61,62].

To study the OBD process from the collective coupling∝ Jc in Eq. (6) in the J/Jc →∞
regime, we restrict the Hilbertspace of the system to the degenerate, classical ground-state
manifold, and define the effective Hamiltonian

HOBD = −PJ

�

S2 − S2
x

�

PJ . (13)
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Figure 7: Scaling of observables with the photon number cutoff. Different symbols in-
dicate different photon number cutoffs nmax

ph used in the simulations. The red hexagon
shows results of a simulation in the polaron frame, while all other symbols represent
simulations in the standard frame. (a) Photon number and (b) polaron photon num-
ber, (c-d) order parameter correlations for the (c) ferroelectric, and (d) Néel phase,
(e-f) fluctuations of the (e) polarization, (f) staggered polarization. The inset in (a)
shows the ground state distribution of the photon number a†a for J/ωd = −0.5, as
indicated by the vertical dashed line, for nmax

ph = 64 (4096) in blue (green) color.

Here, PJ is the projector onto the classical ground-state manifold. The low-energy eigenvec-
tors of HOBD yield the states stabilized by the OBD mechanism (in the sense of a first-order
degenerate perturbation theory), from which we can compute the observables, as shown in
Fig. 5. The advantage of this approach is that, compared to a full simulation of HS, larger
system sizes N can be simulated.

E Histograms of the three-sublattice order parameter

In this appendix we illustrate the properties of the 3SL order parameter histograms in the
complex plain. A (classical) state with sublattice polarizations ~p = (pA, pB, pC) gives a single
peak in the histogram according to the axes defined in Fig. 8(a). While this identification is
not unique for any ~p, the strength of the 3SL ordering

�

�p3SL
�

� is given by the distance of the
peak from the center, and the angle θ (in the complex plain) indicates different types of 3SL
ordering patterns. In particular, states of type ~p = (0, 1,−1) with two fully, but oppositely
polarized, and a non-polarized sublattice (zero net polarization), give peaks at the centers of
the hexagonal boundaries of the histogram. The six different peaks correspond to the possible
permutations of the three sublattices. States of type ~p = (1,1,−1), where all sublattices are
fully polarized, one of them oppositely to the others (non-zero net polarization) have peaks at
the vertices of the hexagonal boundary. The six peaks correspond to the possible permutations
of the sublattices and the inversion of the polarization ~p→−~p.

More generally, patterns of type ~p = (0, m,−m) yield peaks at angles
θl = π/6+ lπ/3, l ∈ {0, . . . , 5}, with a radius proportional to m, as shown in Fig. 8(b). A com-
parison with the full histograms for the normal and 3SL subradiant regimes [c.f. Fig. 5(a)]
shows that the maxima for those phases correspond to such a pattern with maximal m= 1, as
indicated by the red dots. Furthermore, we want to note that fluctuations of the non-polarized
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Figure 8: 3SL order parameter histogram in the complex plain. (a) A classical state
with sublattice polarizations ~p = (pA, pB, pC) gives a point in the histogram accord-
ing to the three axes shown in black. The blue dots at the centers of the hexago-
nal boundary correspond to states of type ~p = (1,−1, 0). The orange dots at the
vertices of the hexagonal boundary correspond states of type ~p = (1,1,−1). (b)
The classical ordering pattern ~p = (0, m,−m) (with zero net polarization) yields
six peaks along the axis connecting the center to the centers of the boundary faces
[θl = π/6+ lπ/3, l ∈ {0, . . . , 5}], where the radius is proportional to the sublattice
magnetization m. The red circles show the positions of the maxima found in the full
histograms of the 3SL normal and 3SL subradiant phases. (c) The classical ordering
pattern ~p = (1,−1/2 − ε,−1/2 − ε) gives six peaks along the axis connecting the
center with the vertices of the outer hexagon [θl = lπ/3, l ∈ {0, . . . , 5}]. The radius
of the peaks increases with ε. The red circles show the positions of the maxima found
in the full histograms of the 3SL superradiant phase.

sublattice lead to a broadening of the six single peaks parallel to the edges of the hexagonal
boundary, as seen for the normal 3SL phase. The strength of these fluctuations can be further
used to distinguish the normal and the fluctuation-free subradiant 3SL regimes [c.f. Fig. 5(a)].

On the other hand, patterns of type ~p = (1,−1/2− ε,−1/2− ε) with a ground state po-
larization |Sx | = 2εN/3 have peaks at angles θl = lπ/3, l ∈ {0, . . . , 5}, with a large non-zero
radius, which depends on ε, as shown in Fig. 8(c). The red circles show the positions of the
maxima found in the full histograms of the 3SL superradiant phase, which has a non-zero net
polarization |Sx |= 2 (N = 36) [c.f. Fig. 5(a)]. We want to note, that all sublattice patterns of
type ~p = (m,−n,−n) yield peaks with θl = lπ/3.

F Estimating crossover boundaries

In contrast to phase transitions with an abrupt change in the behavior of the order parameter
(in the thermodynamic limit), crossovers between two regimes of states with different physi-
cal properties show a smooth change (if any) in all of the observables, since the ground state
evolves smoothly. Therefore, the crossover region, or a ‘boundary’ between the two regimes,
can typically not be determined uniquely, but depends on the chosen observable and the fea-
ture used to estimate the boundary.

To estimate a boundary between the paraelectric regime and the collective subradiant
regime, we use maxima in the polaron photon number 〈a†a〉polaron, as shown in Fig. 9(a).
In comparison, the standard photon number 〈a†a〉 is a bad estimator for the crossover when
J/ωc < 0, where the proximity to the superradiant phase spoils its characteristic features in
the narrow collective subradiant regime.

Based on this definition, we observe a shift of the boundary to larger g/ωc with increasing
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Figure 9: Crossover between paraelectric and collective subradiant regimes. (a) Po-
laron photon number on an N = 16 (open symbols) and an N = 26-sites (filled sym-
bols) square lattice for constant values of J/ωd . We use the peak positions, indicated
by the dashed vertical lines for N = 26, to estimate the crossover boundary between
the paraelectric (Para) and the collective subradiant (CS) regimes [c.f. Fig. 2(a) and
Fig. 4(a)]. (b-d) System size dependence of the crossover boundary for J = 0. The
polaron photon number (b) and normal photon number (c) do not show any trend
towards a non-analytic behaviour with system size N , which would be a sign for a
phase transition. (d) We utilize the maxima in (b, c) to estimate the dependence of
the crossover boundary g∗/ωc with N . Characteristic for a crossover, the boundary
depends on the choice of the observable used to define it.

the system size N [see also Fig. 2(a)]. The achievable system sizes in exact diagonalization
are too small to make reliable predictions about the fate of the collective subradiant phase
in the limit N → ∞ in general. However, for the non-interacting case J = 0 much larger
system sizes can be analyzed, as shown in Fig. 9(b-d). Both the polaron and normal photon
number increase with system size, but their characteristic shape remains unchanged, so that
we do not observe any trend towards a non-analytic behaviour (also for other observables)
when increasing N , making a phase transition scenario very unlikely. Again, we can use the
maxima in these observables to estimate the size dependence of the crossover boundary as
shown in Fig. 9(d). While this boundary depends on the choice of observable used to define
it, we find a stable collective subradiant phase for all considered system sizes at large enough
g/ωc , consistent with the analysis in [23].

Nevertheless, these numerical results do not provide a conclusive picture about the fate
of the collective subradiant phase in the limit N →∞. In this respect it is important to em-
phasize, that this thermodynamic limit is also not properly defined for the single-mode model
used in this work, where HcQED is super-extensive. For finite systems, the single-mode ap-
proximation is, however, expected to capture the main results and our analysis can be directly
applied to most near-term experiments, where intermediate-scale systems, far away from the
thermodynamic limit, will be realized.

Because of the similarity with the evolution from the paraelectric to the collective subra-
diant regimes, we also expect the evolution from the normal to the subradiant 3SL regime to
be described by a crossover instead of a sharp phase boundary. We characterize the regimes
by a distinct strength of the polarization fluctuations 〈∆|p|〉, since the polarization fluctuates
strongly in the 3SL normal regime and becomes pinned to Sx = 0 in the 3SL subradiant regime
[see Fig. 4(b)]. We, therefore, define the boundary by a rather sharp drop in 〈∆|p|〉 and esti-
mate its location for constant J/ωd by a peak in the negative gradient of 〈∆|p|〉 with respect
to the coupling g/ωc [see Fig. 10].
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Figure 10: Crossover between the normal 3SL and subradiant 3SL regimes. The
polarization fluctuations (a), and their gradient with respect to g/ωc (b) are shown
for constant J/ωd = 1. The crossover boundary is estimated by a sharp drop in the
fluctuations 〈∆|p|〉, where the polarization distribution becomes strongly pinned to
the single value Sx = 0. As shown in the right panel, we compute the boundary
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parameter g/ωc (indicated by the dashed vertical line).
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