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Abstract

We study quantum many-body systems with a global U(1) conservation law, focusing
on a theory of N interacting fermions with charge conservation, or N interacting spins
with one conserved component of total spin. We define an effective operator size at
finite chemical potential through suitably regularized out-of-time-ordered correlation
functions. The growth rate of this density-dependent operator size vanishes algebraically
with charge density; hence we obtain new bounds on Lyapunov exponents and butterfly
velocities in charged systems at a given density, which are parametrically stronger than
any Lieb-Robinson bound. We argue that the density dependence of our bound on the
Lyapunov exponent is saturated in the charged Sachdev-Ye-Kitaev model. We also study
random automaton quantum circuits and Brownian Sachdev-Ye-Kitaev models, each of
which exhibit a different density dependence for the Lyapunov exponent, and explain
the discrepancy. We propose that our results are a cartoon for understanding Planckian-
limited energy-conserving dynamics at finite temperature.
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1 Introduction

There is a conjectured universal “bound on chaos" [1] in many-body quantum systems: loosely
speaking, a suitably defined out-of-time-ordered correlator (OTOC) at finite temperature is
constrained to obey

tr
�p
ρ[A(t), B]†

p
ρ[A(t), B]

�

®
1
N

eλL t , (1.1)

at sufficiently small t > 0, with ρ ∼ exp[−H/T] the thermal density matrix at temperature T ,
and with Lyapunov exponent

λL ≤ 2πT. (1.2)

(We work in units with ħh = kB = 1.) Originally, this rather abstract inequality was moti-
vated by observations about quantum gravity [2]; indeed, saturation of (1.2) is believed to be
achieved only by gravitational theories (described by many-body systems, in accordance with
the holographic principle). However, from at least a heuristic perspective, this inequality is
also sensible physically: at low temperature, the dynamics is restricted to increasingly few ther-
mally activated degrees of freedom. The dynamics must necessarily slow down accordingly,
and (1.2) (ignoring the precise 2π prefactor) is simply fixed by the Heisenberg uncertainty
principle:

ħh®∆E∆t ∼
T
λL

. (1.3)

This is one manifestation of a conjectured “Planckian" bound on quantum dynamics and ther-
malization, whereby the fastest time scale (at least, of thermalization) in a low temperature
quantum system is 1/T . Heuristic evidence for quantum dynamics being limited by the time
scale ħh/kBT has arisen in many fields ranging from holographic field theories [3,4] to quantum
critical theories [5,6], strongly correlated electrons [7–10] and quark-gluon plasma [11].

Of course, the argument (1.3) is far from rigorous, and strictly speaking there are plenty
of counter-examples to (1.1), e.g. in free fermion models [1,12]. Is it possible, at least under
certain circumstances, to prove that quantum dynamics truly must slow down at low energy?
More broadly, can we show unambiguously that quantum dynamics has to slow down in any
kind of constrained subspace? While this might seem intuitive, and there is certainly evidence
for this [13–15], proving such a statement has been notoriously challenging, and very few
rigorous results are known. The standard approach for constraining quantum dynamics is
based on the Lieb-Robinson theorem [16], which applies to operator norms and holds in every
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state. By construction, therefore, Lieb-Robinson bounds are not useful at finding temperature-
dependent bounds on quantum dynamics [17]. While recently these techniques have been
improved to obtain temperature-dependent bounds on the velocity of information scrambling
in one dimensional models [15], the resulting bounds depend on multiple microscopic model
details.

It is almost certain that a rigorous derivation of (1.2), even in restricted models, is quite
challenging without physical assumptions about thermalization. Clearly, a qualitatively im-
portant feature of low temperature dynamics is that it is restricted to low energy states in the
Hilbert space. In this paper, we elect to study a simpler way to restrict dynamics to exponen-
tially small parts of Hilbert space. Rather than cooling a system down to low temperature,
we elect to study a system with a conserved U(1) charge, and in a highly polarized state with
very low charge density n� 1; here n denotes the probability that any lattice site is occupied.
Elementary combinatorics demonstrates that exponentially small fractions of quantum states
have n � 1, even at infinite temperature. We will show explicitly how these constraints on
accessible states qualitatively modify bounds on quantum dynamics and OTOC growth. In
Section 3, we will show that in models where a Lyapunov exponent is well-defined,

λL ≤ λ∗n
γ , (1.4)

where the exponent γ > 0 depends on basic details about the model (number of terms in
interactions). There is a universal bound

γ≥
1
2

, (1.5)

valid for every theory; however, in certain cases, we can do parametrically better. (1.4) implies
that in every theory with a U(1) conservation law (and a discrete Hilbert space), at least some
kinds of quantum scrambling always become parametrically slow. The way which we derive
this result is inspired by [12], which conjectured a similar phenomenon for energy conserving
dynamics at finite temperature. However, our work will be more precise.

To understand the origin of the generic bound (1.5), let us recall that the growth of out-
of-time-ordered correlators comes from the “size" of operators increasing (see Section 2 for
details). Consider for simplicity a model of fermions, with creation and annihilation operators
c†

i and ci . The simplest possible growth mechanism for a time evolving annihilation operator
is (schematically)

ci(t) = ci +
∑

j,k,l

Ji jkl c
†
j ckcl t + · · · . (1.6)

Now, at low density, the second term above can only survive an expectation value if c†
j acts on

a state where site j is occupied. The fraction of states in the thermal ensemble where this site
is occupied is n. So one might naively expect λL ∼ n is the fastest possible operator growth,
since each power of t will come with a factor of n (we can only add c†

j and ck in “pairs",
by charge conservation). However, since OTOCs such as (1.1) contain two commutators, the
leading order density-dependent contribution to the OTOC will be

1

tr(pρc†
i
p
ρci)

tr

 

p
ρ
∑

j,k,l

Ji jkl c
†
l c†

kc j t ×
p
ρ
∑

j,k,l

Ji jkl c
†
j ckcl t

!

∼ nt2. (1.7)

This suggests that (1.5) is actually the optimal bound on OTOC growth. We will show that
this argument is correct. In particular, in Section 4, we find that the n dependence of (1.4)
is saturated by the charged Sachdev-Ye-Kitaev (SYK) model [18, 19]. Thus, (1.4) cannot be
parametrically improved.
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At the same time, we will see that the density dependence of (1.4) is qualitatively different
in two models of quantum dynamics with time-dependent randomness: the Brownian SYK
model [20,21] (Section 4) and a quantum automaton circuit (Section 5). In these models, the
value of γ effectively doubles: γ→ 2γ. As we will carefully explain, the discrepancy between
the Hamiltonian quantum dynamics and the random time-dependent quantum dynamics is
that the former relies on many-body quantum coherence effects, while the latter does not.
This slowdown in effectively classical operator growth processes relative to quantum-coherent
operator growth processes is reminiscent of the quadratic speed up of quantum walks over
classical random walks [22,23].

2 Preliminaries

2.1 Hilbert space

In this paper, we study quantum many-body systems with Hilbert space

H = (C2)⊗N . (2.8)

We interpret each copy of C2 = span(|0〉, |1〉) as consisting of either an empty site |0〉 or an
occupied site |1〉. We define the density operators

ni = |1i〉〈1i| , (2.9)

which measure whether the site i = 1, . . . , N is occupied, together with the total conserved
charge

Q =
N
∑

i=1

ni . (2.10)

The Hilbert space H can be written as the direct sum of subspaces with a fixed number of up
spins:

H =
N
⊕

N↑=1

HN↑ , (2.11)

with

HN↑ = span

¨

|n1n2 · · ·nN 〉 :
N
∑

i=1

ni = N ↑
«

. (2.12)

Let U(t) be a time-dependent unitary transformation on H. In this paper, we are interested
in studying the growth of operators when

[U(t),Q] = 0, (2.13)

namely charge is conserved. The fact that charge is conserved means that the dynamics
will separate the Hilbert space into N + 1 sectors corresponding to the allowed values of
Q = 0, 1, . . . , N . In this paper, we will be interested in quantum dynamics in subspaces when
Q and N are taken to be very large, while the ratio

n=
Q
N

(2.14)

is held fixed. We will refer to n as the charge density, and focus on the limit n� 1.
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2.2 Operator dynamics and operator size

This paper is about operator growth: intuitively, given an operator such as ni which initially
acts on only a finite number of sites (in this case 1), how much does time evolution scramble
the information in ni? Put another way, how complicated is the operator ni(t)? To answer
this question carefully, we introduce a new formalism, following [24]. Let B denote the space
of operators acting on H. For any operator A∈ B, time evolution is defined by

A(t) := U(t)†AU(t). (2.15)

It is useful to write elements A∈ B as “kets" |A) to emphasize linearity of quantum mechanics
on operators, which will play a critical role in this paper. When t is a continuous parameter
(i.e. we are not studying quantum circuit dynamics) we can also define the Liouvillian

d
dt
|A(t)) := L(t)|A(t)). (2.16)

It is obvious that charge conservation places some constraints on operator growth. An
operator which takes states of charge Q to states of charge Q′ will do so at all times. However,
at finite n, there are O(exp(N)) such operators, so this constraint is not immediately useful or
physically illuminating.

The purpose of this paper is to present a better way of thinking about operator growth
in such systems, at a given density n. To do so, it is helpful to switch to a (grand) canonical
perspective, and think about fixed chemical potential µ rather than fixed charge Q. Let

ρ =
e−µQ

(1+ e−µ)N
, where µ := lim

β→0
βµ (2.17)

denote the (grand) canonical density matrix at chemical potentialµ, normalized so that tr(ρ) = 1.
Here we introduce the dimensionless chemical potential µ, which is the physically meaningful
quantity in the infinite temperature limit. Note that

n=
1

1+ eµ
. (2.18)

Given ρ, we now define the following inner product on B:

(A|B) := tr
�p
ρA†pρB

�

. (2.19)

For any value of µ, the length of an operator, which we define as (A|A), does not grow:

(A(t)|A(t)) = (A|A) (2.20)

since [ρ, U] = 0 following (2.13).
Equipped with this inner product, we are now ready to define a physically useful notion

of operator size and operator growth at finite µ. There are two possible interpretations of H,
either in the language of spin models with a conserved z-spin, or in the language of fermion
models with conserved charge. A non-local Jordan-Wigner-type transformation can convert
between the two, but operator dynamics is not invariant under this transformation. For almost
every quantum system [25], dynamics will only appear local in one language. So while there
are clear similarities between how we talk about operator size and operator growth for a
bosonic system vs. fermionic system, we must discuss each separately.

Let us first describe the physics when we interpret the Hilbert space in terms of bosonic
degrees of freedom. First consider a single copy of C2 – i.e. a single site. There are 4 linearly
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independent operators acting on this two level system, forming the span of the operator vector
space Bi . With respect to the inner product (2.19), an orthogonal set of them is

|1) = |0〉〈0|+ |1〉〈1|, (2.21a)

|X+) = |1〉〈0|, (2.21b)

|X−) = |0〉〈1|, (2.21c)

|n) = (1− n)|1〉〈1| − n|0〉〈0|. (2.21d)

The lengths of these operators are

(1|1) = 1, (2.22a)

(X+|X+) = (X−|X−) =
e−µ/2

1+ e−µ
, (2.22b)

(n|n) =
e−µ

(1+ e−µ)2
. (2.22c)

For reasons that will become clear as we go through this paper, we define the size “superoper-
ator" S as a linear transformation on Bi:

S|1) = 0|1), (2.23a)

S|X+) = |X+), (2.23b)

S|X−) = |X−), (2.23c)

S|n) = 2|n). (2.23d)

Note also the useful identity
e−µ/2

1+ e−µ
=
Æ

n(1− n) . (2.24)

If instead, the degrees of freedom are fermions, then on a single C2 the four orthogonal
operators are 1, c, c†, c†c − n, where c and c† are usual creation and annihilation operators
obeying

{c, c†}= 1. (2.25)

The generalization of (2.22) holds. The definition of size is now slightly more intuitive, as it
counts the number of creation and annihilation operators: now denoting |n) = c†c − n:

S|1) = 0|1), (2.26a)

S|c) = |c), (2.26b)

S|c†) = |c†), (2.26c)

S|n) = 2|n). (2.26d)

Thus far we have defined the size superoperator acting on a single Hilbert space, but it is
straightforward to extend it to the N -body Hilbert space. Letting |T a) (a = 1, . . . , 4) denote
the four orthogonal operators above with length La given in (2.22) and size Sa given in (2.23)
or (2.26) on a single two-level system, we observe that the following is an orthogonal basis
for B:

B =
N
⊗

i=1

span{T a
i } := span{| ⊗i T a

i )}. (2.27)

The length of each operator is

(⊗i T
a
i | ⊗i T a

i ) =
N
∏

i=1

La,i . (2.28)
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Size is then defined as

S| ⊗i T a
i ) =

� N
∑

i=1

Sa,i

�

| ⊗i T a
i ). (2.29)

Let Qs denote a projector onto many-body operators of size s. Due to (2.20), we may define
the probability that the operator A has size s at time t to be

Ps(t) :=
(A(t)|Qs|A(t))

(A|A)
. (2.30)

See [26] for a different interpretation of size at finite density or temperature.
The probability that an operator has size s is related to the more convential out-of-time-

ordered correlation functions (OTOCs) which have been used to probe many-body chaos. As
a simple example, let us consider a fermionic system, and ask for the typical magnitude of the
normalized OTOC

Ci j(t) =
tr
�p
ρ[c†

i ci , c j(t)]†
p
ρ[c†

i ci , c j(t)]
�

tr
�p
ρc j
p
ρc†

j

� (2.31)

for different spins i. Since [c†
i ci , ci] = −ci and [c†

i ci , c†
i ] = c†

i , we conclude that this commutator
will be non-vanishing whenever an operator string has either a ci or c†

i on site i. Therefore,

N
∑

i=1

Ci j(t)≤
(c j(t)|S|c j(t))

(c j|c j)
. (2.32)

If the operator c j(t) did not have any strings with c†
i ci on any site, then (2.32) would be

an equality. We conclude that just as in the uncharged models [24, 27], a typical OTOC Ci j
between a randomly chosen fermion i and our initial fermion j is non-vanishing only when
the average operator size of c j(t) is large. However, crucially, this is when the operator size is
measured with respect to the non-trivial inner product (2.19) at finite µ.

3 Bounds on dynamics

In the limit n � 1, which corresponds to µ � 1, we can estimate the canonical operators
of size s (in our basis) as having length ∼ ns/2. Recall that the “length" here refers to the
Frobenius-like norm of the operator in the finite µ ensemble (2.19), whereas size counts the
number of non-identity operators (with the inner product described above). As we now show,
the fact that the canonical operators of size s have an exponentially small length leads to a
significant slowdown in the dynamics of our operator size.

3.1 Lyapunov exponent

For illustrative purposes, we focus on Hamiltonian quantum dynamics generated by the fermionic
q-body (also called q-local) Hamiltonian (note q must be even)

H(t) = i
q
2

∑

i1<...<iq/2, j1<...< jq/2,

Ji1···iq/2 j1··· jq/2 c†
i1
· · · c†

iq/2
c j1 · · · c jq/2 . (3.33)

If the J are all random, and are appropriately normalized, then this model is the complex SYK
model [18,19,28] described in the next section. But we can also consider a more general class
of models.
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Now let us start with the operator c j , as in our previous discussion. Our goal is to bound
Ps(t). In general, this is a challenging task [24], and requires finding the maximal eigenvalue
of QsLQs′ . For illustrative purposes, it suffices to focus on what happens when s′ = 1 and
s = q− 1. Without loss of generality,1 consider the size 1 operator

O1 =
N
∑

i=1

aici , (3.34)

normalized so that
∑

k

|ak|2 = 1. (3.35)

Observe that

(O1|LTQq−1L|O1)

(O1|O1)
≤

∑

i1,...iq/2−1
j1,..., jq/2

�

�

�

�

�

∑

k

Jki1···iq/2−1 j1··· jq/2 ak

�

�

�

�

�

2 (c†
i1
· · · c†

iq/2−1
c j1 · · · c jq/2 |c

†
i1
· · · c†

iq/2−1
c j1 · · · c jq/2)

(ck|ck)

=
1

(2 cosh µ2 )q−2

∑

i1,...iq/2−1
j1,..., jq/2

�

�

�

�

�

∑

k

Jki1···iq/2−1 j1··· jq/2 ak

�

�

�

�

�

2

. (3.36)

Now, the summation above does not depend on µ. The maximal eigenvalue of Qq−1LQ1
corresponds to maximizing the sum, which can be done independently of µ. Moreover, this
argument did not depend on the choice of sizes s and s′. We conclude that the maximal
eigenvalue of QsLQs′ , denoted as ‖QsLQs′‖, obeys

‖QsLQs′‖ ≤
‖QsLQs′‖µ=0
Ç

cosh|s−s′| µ
2

. (3.37)

Note the square root above, which arises due to the fact that there were two Ls in (3.36).
Therefore, the growth of larger operators from smaller operators is parametrically slowed
down at large |µ|, or when the system becomes low or high density.

Note that (3.37) holds whether or not s < s′ or s > s′. After all, for a charge conserving
system, H commutes with ρ, and so (A|L|B) = −(B|L|A). QsLQs′ and Qs′LQs are transposes,
and have the same maximal singular value (i.e. operator norm).

A quick route to justifying (3.37) is to simply observe from (2.22) that operators of size
r always have their length reduced by a factor of (sechµ2 )

r compared to what we might have
naively expected based on the conventional Frobenius (µ= 0) inner product. Still, the reason
that (3.37) is not trivial is that as we change the value of µ, the definition of |n) also changes,
and so which operators have a given size must also change! After all, we know that the proba-
bility distribution Ps(t) – which does have the µ-rescaled lengths built into it – is a well-defined
probability distribution at any µ, and this would simply be impossible if our procedure was
nothing more than re-scaling the lengths of strings of r c and c† operators by an r-dependent
factor. The remarkable feature of all charge-conserving dynamics is that the operator evolution
proceeds in just the right way so as to ensure the cancellation of two µ-dependent changes to
our prescription: the change in the size-2 operator |n), and the change in the inner product
(2.19).

Having now understood the physics behind (3.37), we can now immediately apply it to
problems of interest. We begin by discussing the Lyapunov exponent of infinite temperature

1We can ignore c†
i contributions as they will always be orthogonal under time evolution, as operators which

change Q by different amounts are always orthogonal.
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fermionic theories of the form (3.33) with a U(1) conservation law, defined by the exponential
growth of (2.31):

Ci j(t)∼
1
N

eλL t (3.38)

for times smaller than the scrambling time t ∼ λ−1
L log N . As we described in (2.32), the

growth of Ci j(t) for generic i and j arises from the growth in effective µ-dependent size of
the operator. Since the growth rates in size have been rescaled by (3.37), and due to charge
conservation operator size can only grow by an even number, we can immediately find the
universal bound

λL ≤
Æ

4n(1− n)λ∗. (3.39)

Here λ∗ is a constant which comes from the µ = 0 bounds, following [24]. The n scaling
above comes from applying (2.24) to (3.37). The point of this paper is not the evaluation of
λ∗, which can be quite challenging, but rather in the universal n dependence of (3.39).

A key ingredient in (3.39) is that operator size can only grow by an even number. In the
fermion language, for example, we understand this as follows: the size 1 operators are ci and
c†

i . Suppose we have an operator A which transitions between the Hilbert spaces HQ1 and
HQ2 at fixed charges Q1 and Q2, as defined in (2.11). Each time we multiply by a product of
creation/annihilation operators of size s, |Q1 −Q2| (mod 2) changes by an amount s (mod 2).
Hence, A(t) will only involve operators whose size is either all even or all odd. This result also
holds in the spin language.

In certain models with all-to-all interactions, including the SYK model, we can parametri-
cally improve upon (3.39). In the SYK model, operator growth in the large N limit is domi-
nated by processes that grow operators by q − 2 c and c† at a time [24, 27]. In this case, we
can strengthen (3.39) to

λL(µ)≤ (4n(1− n))(q−2)/4λ∗. (3.40)

It is interesting that our approach readily leads to density-dependent bounds on Lyapunov
exponents, which appear challenging to derive by other means [29]. We also emphasize that
(3.40) does not depend on the precise choice of operators used in the OTOC.

3.2 Butterfly velocity

A more conjectural application of our rigorous result (3.37) is to constrain a suitably defined
butterfly velocity. Consider a d-dimensional fermionic many-body system on a lattice of the
form

H =
∑

local setsX1,X2

JX

∏

i∈X1

c†
i

∏

i∈X2

ci , (3.41)

where the sum X runs over sufficiently local sets (e.g. no two sites in X1,2 are farther than m
sites apart, where m is some O(1) number). Charge conservation means that |X1| = |X2| in
the sum above. Let us define v∗B as follows: in a chaotic system, an operator c j(t) grows such
that a typical OTOC Ci j(t) is order 1 inside a ball of radius v∗B t around site j. We propose for
a generic system that there exists a constant v∗B such that

vB(µ)≤ (4n(1− n))(q−2)/4 v∗B. (3.42)

The exponent q−2
4 above should be understood in the same context as (3.40): in the worst

case scenario, we should set this exponent to 1
2 , however in certain models it may be possible

to improve the exponent to q−2
4 .

To (heuristically) obtain (3.42), we use a technique from [30]. For simplicity, assume
that we have an operator supported at the origin of a d-dimensional lattice, O0, and that all
terms in the Hamiltonian are either single-site fields, or nearest-neighbor interactions. We are
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interested in the weight of this operator on a site j a distance d j from the origin. So, let us
define the superoperator

F =
∑

j

ed jS j , (3.43)

where S j denotes the size of an operator on lattice site j. We now bound

d
dt
(O0(t)|F |O0(t)) = (O0(t)|[F ,L]|O0(t))≤

∑

R,R′
(FR −FR′)(O0(t)|QRLQR′ |O0(t)) , (3.44)

where QR denotes a projection onto operators which have support on site i if and only if i ∈ R.
Then,

d
dt
(O0(t)|F |O0(t))®

∑

R,R′

|FR −FR′ |
2

‖QRLQR′‖µ=0

cosh(q−2)/2 µ
2

((O0(t)|QR|O0(t)) + (O0(t)|QR′ |O0(t))) ,

(3.45)
where we have used the Cauchy-Schwarz inequality and used the µ-dependent inner product
similarly to (3.37). However, this step is not rigorous because we will not prove that nearly
all weight corresponds to sets R and R′ that differ in q− 2 sites (or even just q− 2 fermions in
the operator). Nevertheless proceeding with our argument, the key observation is that spatial
locality on the lattice demands there exists a finite positive constant K such that for any two
sets R and R′ contained in (3.44),

|FR −FR′ | ≤ K min
i∈R∩R′

edi . (3.46)

Moreover, the sum over sets R and R′ which share a union R ∩ R′ = i is finite. Therefore, we
may replace the sum over R and R′ by a sum over lattice sites i:

d
dt
(O0(t)|F |O0(t))®

∑

i

2zKedi
‖QRLQR′‖µ=0

cosh(q−2)/2 µ
2

((O0(t)|Qi|O0(t)))

®
K ′

cosh(q−2)/2 µ
2

∑

i

edi (O0(t)|Qi|O0(t)) =
K ′

cosh(q−2)/2 µ
2

(O0(t)|F |O0(t)) ,

(3.47)

where z is another O(1) constant related to the number of sets X1,2 in H containing site i, and
K ′ is yet another O(1) constant. Hence we conclude that

(O0(t)|F |O0(t))® exp

�

K ′ t

cosh(q−2)/2 µ
2

�

. (3.48)

However, comparing with (3.43), and using Markov’s inequality [30], we conclude that

(O0(t)|Qx |O0(t))® exp

�

K ′ t

cosh(q−2)/2 µ
2

− dx

�

, (3.49)

which implies (3.42).
It is straightforward to generalize these results to spin models, rather than fermionic mod-

els. In models that are not of the form (3.33) and involve couplings with multiple different
“q" (i.e. numbers of fermions), then the q in the above bounds should be replaced with the
smallest value of q > 2 that appears in the Hamiltonian (since q = 2 terms do not grow
operators).
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4 Charged SYK model and its Brownian version

In this section, we consider two versions of the SYK model: one with Brownian motion cou-
plings [20, 21], and one with time-independent couplings. We will see that the behavior of
operator growth in these two models qualitatively differs when n� 1.

4.1 General methodology

The Brownian SYK and the regular SYK have the same form of the Hamiltonian (3.33) with a
different random ensemble for the coupling constants (we upgrade the coupling J → J(t) to
be generally time dependent):

regular 〈J j1... jq(t)J
∗
j′1... j′q
(t ′)〉= δ j1 j′1

. . .δ jq j′q

J2(q/2− 1)!(q/2)!
Nq−1

, (4.50a)

Brownian 〈J j1... jq(t)J
∗
j′1... j′q
(t ′)〉= δ j1 j′1

. . .δ jq j′q
δ(t − t ′)

J(q/2− 1)!(q/2)!
Nq−1

. (4.50b)

Note that in both cases above, J has the units of energy.
We now wish to calculate the Lyapunov exponent at fixed µ = βµ, as we take the infinite

temperature limit β → 0. Unfortunately, neither of the analytically controlled limits of the
SYK model – the strong coupling limit T � J , or the large q limit – can be directly applied
for our problem. After all, we are interested in β = 0 in this paper, invalidating the former
approach. Moreover, if q → ∞, we can expect from (3.40) that for n < 1

2 , the calculation
becomes trivial: λL will vanish at leading order since for any 0 < c < 1, cq → 0 as q →∞.
This means the latter approach also is not directly useful.

Ultimately, we rely on an approximate method, which we expect will miss O(1) factors
for the time-independent SYK model, but will otherwise be accurate. For the Brownian SYK
model, however, our results will be exact. We use the Keldysh formalism with the assumption
of a quasi-particle-like Green’s function

GR(ω)≈
1

ω+µ+ iΓ
, (4.51)

where Γ is the quasi-particle decay rate that will be self-consistently estimated. With the above
approximated form of retarded Green function, we will find the Lyapunov exponent via the
following kinetic equation [19,31,32]:

GR
�

ω+ i
λL

2

�

GA
�

ω− i
λL

2

�

∫

dω′

2π
R(ω−ω′)FR(ω′) = FR(ω) , (4.52)

where FR stands for the vertex function that contains the information of OTOC as a function
of relative time (not the center of mass time which has been characterized by the λL here).
R(ω) is the rung function R = δΣK/δGK obtained in the Keldysh formalism via the input GR

we have in (4.51). We adopt a commonly used approximation [31]

GR
�

ω+ i
λL

2

�

GA
�

ω− i
λL

2

�

≈ 2πδ(ω+µ) ·
1

λL + 2Γ
. (4.53)

Therefore FR(ω)≈ δ(ω+µ), and we have obtained

λL + 2Γ = R(0) (4.54)

here R(0) is the zero frequency component of the rung function.
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Before applying the above formulas to the regular and Brownian SYK, let us clarify the
validity of the approach used here. As is commented in Ref. [33], the above procedure is an
approximation method for regular SYK because (1) in general the determination of the self
energy at IR requires full knowledge of the Green function, not just the IR and UV limits.
Therefore, the prefactor of the quasi-particle decay rate Γ is not expected to be accurate,
while the scaling is still expected to be valid. (2) the approximation (4.53) also introduces
inaccuracy for the prefactor of Γ . However, the above two sources of error will not occur
for the Brownian SYK, because (1) the interaction is localized in time, so the self energy can
be determined by the UV of the Green’s function completely; (2) the relation (4.54) can be
justified when R(ω) = R(0) is a constant in frequency. One way to see this is to rewrite (4.52)
as follows

1

(ω+µ)2 +
�

Γ + λL
2

�2 R(0)

∫

dω′

2π
FR(ω′) = FR(ω) . (4.55)

Integrating over ω for both sides, and eliminating the integral, we obtain (4.54).

4.2 Time-independent (regular) SYK

We first study the time-independent (regular) SYK model. The first step is to obtain Γ self-
consistently. By definition, we have iΓ = −ΣR(ω→−µ), and the retarded self energy can be
obtained via Schwinger-Dyson equations (see Appendix A) and the the assumed form of GR.
In the limit β → 0 at fixed βµ= µ and Γ , we have

ΣR(t)≈ −iΘ(t)
J2

(2cosh µ2 )q−2
e−(q−1)Γ teiµt , (4.56)

whose ω→−µ component is

ΣR(ω→−µ) =
J2

(2cosh µ2 )q−2

−i
(q− 1)Γ

. (4.57)

Now, equating the above expression with −iΓ , we obtain

Γ ≈
J

p

q− 1(2 cosh µ2 )
q−2

2

. (4.58)

However, as we commented above, we should not trust the constant prefactor in Γ for general
q.2 What is important is the dependence on J and µ, therefore for the rest of this subsection
we will drop the unimportant prefactors.

Next, we compute the rung function

R(t) =
δΣK

δGK
= (q− 1)

J2

2q−2

�

GK
21(t)G

K
12(−t)

�

q−2
2 ∼ J2 e−(q−2)Γ |t|

(2cosh µ2 )q−2
. (4.59)

Thus, the J and µ dependence for its zero frequency component is given as follows

R(ω→ 0)∼
J2

Γ (2cosh µ2 )q−2
∼

J

(2cosh µ2 )
q−2

2

. (4.60)

Recall that within our approximation method, the Lyapunov exponent (4.54) is a linear com-
bination of R(0) and Γ , so we conclude that

λL ≈ R(0)− 2Γ ∼
J

(2cosh µ2 )
q−2

2

. (4.61)

2The prefactor is expected to be accurate only at q→ 2.
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In terms of charge filling n, we have

λL(n) = (4n(1− n))(q−2)/4λL

�

1
2

�

, (4.62)

which saturates our general bound (3.40).

4.3 Brownian SYK

Next, we will move to the Brownian SYK where we will see a different scaling w.r.t cosh µ2 .
The computational logic for Brownian SYK is the same as for the regular SYK model; the
only difference is that the interaction is uncorrelated in time. As a consequence, the two
approximations in the above section become exact. For example, the self energy

ΣR(t) = −iΘ(t)
Jδ(t)

(2cosh µ2 )q−2
e−(q−1)Γ teiµt = −iΘ(t)

Jδ(t)

(2 cosh µ2 )q−2
(4.63)

only relies on the UV behavior of the Green’s function. Its Fourier transform3 is a constant:

ΣR(ω) = −i
J

2q−1 coshq−2 µ
2

. (4.64)

Thus,

Γ := iΣR(−µ) =
J

2q−1 coshq−2 µ
2

. (4.65)

Comparing with (4.58), we notice that the power law exponent of cosh µ2 is twice that of the
regular SYK model.

Similarly, the rung function

R(t) = (q− 1)
Jδ(t)
2q−2

�

GK
21(t)G

K
12(−t)

�

q−2
2 = (q− 1)Jδ(t)

1

(2 cosh µ2 )q−2
, (4.66)

R(ω→ 0) =
(q− 1)J

(2 cosh µ2 )q−2
. (4.67)

The Lyapunov exponent λL = R(0)− 2Γ is therefore obtained as follows

λL = (q− 2)
J

2q−2

1

(2cosh µ2 )q−2
∝ (n(1− n))(q−2)/2 . (4.68)

As commented before, this formula for the Brownian SYK is exact4, and we also note that the
power is twice the result in the regular SYK.

4.4 Physical comparison between regular SYK and Brownian SYK

Let us now give a few physical arguments for the discrepancy between the Brownian/regular
SYK models, as we believe this physics is somewhat universal (especially in models related to
holographic gravity).

3Note the expression involves a discontinuous function Θ(t) multiplying a delta function δ(t), and we need to
take the average of Θ(t) from two sides.

4At µ = 0, the result is consistent with Ref. [21] where the Lyapunov exponent is obtained using a completely
different method.
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In the regular SYK model, we can loosely think of the density-dependence of λL as follows.
Consider a Taylor expansion of a time evolving operator, which looks schematically like

c†
1(t) = c†

1 + it[H, c†
1] + · · · ∼ c†

1 + it
∑

j2,..., jq

J1, j2,..., jq c j2 · · · c j q
2
c†

j q
2+1
· · · c†

jq
+ · · · . (4.69)

In the first term of the Taylor series above, the operator has increased in size by q−2 c and c†.
By the formalism we developed above in (2.22), we know that each additional c and c† leads
to an effective change in length of order n1/4. Recognizing that each subsequent commutator
with H adds q−2 more fermions, we can immediately see that the coefficient of c1(t) at order
tk has length nk(q−2)/4, which immediately implies (3.40).

Alternatively, if we are at low density n, then we can ask how many states there are which
have a fermion on sites j2, . . . , j q

2
– the second term in (4.69) will annihilate any state where

even one of those sites is unoccupied. At low density, the fraction of such states is n per site.
So we might estimate the disorder-averaged average size to be

〈(c1(t)|S|c1(t))〉 ≈ n

 

1+ t2
∑

j2,..., jq

|J1, j2··· jq |
2 × (q− 1)n(q−2)/2 + · · ·

!

. (4.70)

Again, the series above will be a function of tn(q−2)/4.
In the Brownian SYK, due to the time-dependent disorder average in (4.50b), we would

instead find

〈(c1(t)|S|c1(t))〉 ≈ n

 

1+ t
∑

j2,..., jq

|J1, j2··· jq |
2 × (q− 1)n(q−2)/2 + · · ·

!

. (4.71)

Here, the series is a function of tn(q−2)/2, which heuristically explains the doubling of the
Lyapunov exponent.

Ultimately, therefore, the difference between the Lyapunov exponents of the regular SYK
model and the Brownian SYK model is the role of quantum coherence effects. Randomness in
time, and not among the different coupling constants J , was responsible for the decoherence
in the Brownian operator growth. This is analogous to the quadratic speed-up of coherent
quantum walks over incohererent quantum walks, the latter of which behave identically to
classical random walks [22,23]. Our universal bound (3.40) will be saturated by models, like
SYK, with highly quantum coherent dynamics. It cannot be parametrically improved.

4.5 Butterfly velocity

We can generalize the discussions above to a spatially local version of the SYK model as intro-
duced in [34,35]. Consider the Hamiltonian

H =
∑

x ,y

Sx y i
q
2

∑

i1<...<iq/2, j1<...< jq/2,

J x y
i1···iq/2 j1··· jq/2

c†
x ,i1
· · · c†

x ,iq/2
cy, j1 · · · cy, jq/2 , (4.72)

where the hopping matrix Sx y 6= 0 only if x and y are nearest neighbors, or x = y . For
example, in one dimension, we could take

Sx y =







1− 2b x = y
b |x − y|= 1
0 otherwise

. (4.73)
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The coefficients J in (4.72) are defined so that H is Hermitian. On this simple one dimensional
lattice, the eigenvectors of Sx y are plane waves eipx , with eigenvalues

S(p) = 1− 2b (1− cos p) . (4.74)

The growth of OTOCs in space can be characterized by the hopping matrix Sx y above,
which enters the kinetic equation (4.52) in the following way

GR
�

ω+ i
λL

2

�

GA
�

ω− i
λL

2

�

∫

dω′

2π

∑

y

Sx yR(ω−ω′)FR
y (ω

′) = FR
x (ω) . (4.75)

Note that the spatial and temporal dependence are factorized. Therefore, we can directly
diagonalize the hopping S matrix using plane waves on the lattice. Within the approximation
scheme we used before, we have the following p-dependent Lyapunov exponent

λL(p) + 2Γ = (1− bp2)R(0)⇒ λL(p) = λL(0)− bR(0)p2 , (4.76)

where λL(0) := λL(p → 0) denotes the Lyapunov exponent we obtained in the case without
spatial structure, while we remind that R(0) := R(ω → 0) is the zero frequency component
not the momentum.

In the weak coupling, the butterfly velocity is determined by the saddle point of the fol-
lowing Fourier transform5

FR
x (t)∼

∫

dp
2π

eλL(0)t−bR(0)p2 t+ipx ∼ eλL(0)t−x2/4bR(0)t (4.77)

from which we read out
v2

B = 4bλL(0)R(0). (4.78)

Regarding the dependence on the chemical potential/charge filling, we note that R(0) and
λL(0) have the same dependence as we demonstrated in previous sections, therefore we con-
clude that vB scales in the same way as λL, namely

vB(n)

vB(
1
2)
=
λL(n)

λL(
1
2)

. (4.79)

This relation applies both to the regular and Brownian SYK. In particular, for the regular SYK,
the above formula saturates the bound (3.42).

It is easy to show that the discussion above for the nearest neighbor one dimensional lattice
– in particular, the conclusion (4.78), generalizes to any other lattice.

5 Random automaton circuit

In this section, we discuss a random quantum automaton (QA) circuit, composed of N num-
ber of qubits (spin-1

2 degrees of freedom) with a global U(1) symmetry. Under QA dynamics,
states expressed in the number basis (e.g. eigenstates of all Pauli Z operators) are sent to
other eigenstates, without generating quantum superposition. Due to this special property,
QA circuits can be simulated using the classical Monte Carlo algorithm. They have been ex-
tensively used to study quantum dynamics in both integrable and chaotic systems with local
interaction [37–41].

5For strong coupling T � J , there will be additional contributions to this integral [36].
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5.1 Lyapunov exponent

Here, we construct a QA model consisting of k-qubit gates which acts on k qubits randomly
selected in the system. This model has all-to-all interactions, and at each time step, we apply
roughly N/k gates, to ensure extensive scaling of the dynamics in the large N limit. We expect
that under time evolution, this QA model exhibits similar operator growth to a large class
of other random circuit models with U(1) symmetry, including Haar random circuits without
locality [42,43] and the Brownian SYK model above.

In the QA circuit, the k-qubit gate is randomly chosen to be Uk with probability f or the
identity with probability 1− f . The Uk gate is defined in the following way: For the k number
of qubits, if the middle one has |1〉 with the rest k− 1 qubits having total 〈Z〉= 0, Uk will flip
all these k − 1 qubits. It will leave other configurations invariant. The simplest case is k = 3,
where we have

U3 ≡ 1− |011〉〈011| − |110〉〈110|+ |011〉〈110|+ |110〉〈011|. (5.80)

Clearly, this circuit conserves total z-spin, and is U(1)-symmetric. Similarly, if k = 5, our QA
circuit swaps between |00111〉 and |11100〉, |10110〉 and |01101〉, |01110〉 and |10101〉 and
leaves other states invariant.

To understand the operator dynamics, we define the following operator basis for a single
site:

P↑ = |1〉〈1|, (5.81a)

P↓ = |0〉〈0|, (5.81b)

X+ = |1〉〈0|, (5.81c)

X− = |0〉〈1|. (5.81d)

The space of many-body operators is a tensor product of this local basis. Any operator can be
written as a superposition of these basis operators (Pauli string operators).

This choice follows [41] and differs from the choice made in (2.21); however, due to the
non-Hamiltonian nature of the QA circuit, this choice will prove a little more convenient here.
Under the Uk gate, a Pauli string operator maps to another Pauli string operator.

Let PN↑ denote a projector onto the Hilbert space HN↑ defined in (2.11). Consider the
operator dynamics for X+x (t)P

N↑ in the limit n = N ↑/N � 1. In the operator basis defined in

((5.81)), X+x (t = 0)PN↑ can be written as the superposition of Pauli strings with N ↑ P↑s and
N −N ↑−1 P↓s. Under time evolution, the sum of the number of X+ and P↑ remains invariant,
as does the number of X− and P↓ together, due to charge conservation. Furthermore, the
number of X+ is always larger than X− by one. Operator growth can be characterized by
counting the number of X+ in X+x (t), which is 1 at t = 0 and eventually saturates to a value
of order N ↑.

Let us first assume k = 3 and define the number of X+ as s. Under random dynamics
governed by our QA circuit, at early time, the most important update rule for the growth of
X+ is P↑X+P↓ → X+X+X−. Notice that the probability for P↑, X+ and P↓ are proportional to
n, s and 1− n respectively. Therefore in the continuous limit, we expect that

ds
dt
∼ ns, (5.82)

which implies s ∼ exp(nt). The Lyapunov exponent λ is proportional to the ratio n. We can
quickly generalize the above argument to any k. Since the probability to find (k − 1)/2 P↑s
(which, at low density, is the limiting constraint) is proportional to n(k−1)/2, the Lyapunov
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exponent obeys

λ∼ n(k−1)/2. (5.83)

In order to compare (5.83) to our general bound (3.40), we observe that the Hamiltonian
which would generate the Uk gate (by applying it for a finite time) is schematically)

Hk ∼ X1 · · ·X k−1
2

P↑k+1
2

X k+3
2
· · ·Xk

∼ (X+ + X−)1 · · · (X+ + X−) k−1
2

n k+1
2
(X+ + X−) k+3

2
· · · (X+ + X−)k

+ n(X+ + X−)1 · · · (X+ + X−) k−1
2
(X+ + X−) k+3

2
· · · (X+ + X−)k , (5.84)

where in the second step, we have switched (temporarily) to the operator basis (2.21). The
operator on the first line is size k + 1, while the operator on the second line is size k − 1 but
with an extra prefactor of n. Hence, (3.40) would predict λL ∼ n(k−1)/4. However, as we have
already seen in Section 4.4, models with all-to-all interactions and time-dependent random
couplings are not coherent enough to saturate (3.40), and their Lyapunov exponents scale
with twice the power of n. Upon accounting for this extra factor of 2, we reproduce (5.83).

We confirm this result numerically by computing OTOCs in the random QA circuit. For
numerical ease, we study the following OTOC:

C i j
XZ(t) = −

tr
¦

PN↑
�

X i(t), Z j

�2©

trPN↑
=
∑

s,s′

�

�〈s|[X i , Z j(−t)]|s′〉
�

�

2

trPN↑

=
∑

s

�

�〈s|Z j(−t)|s∗〉 − 〈s∗|Z j(−t)|s〉
�

�

2

trPN↑
, (5.85)

where |s∗〉= X i|s〉 flips a single spin/bit.
We numerically computed CXZ(t) by averaging over the index i and j of C i j

XZ(t). As shown
in Fig. 1(a) for the case k = 3, CXZ(t) increases exponentially at early times. The Lyapunov
exponent λ is linearly proportional to n when n� 1. In Fig. 1(b), we show that the Lyapunov
exponents of the k = 3, 5,7 QA circuits are consistent with (5.83) for n� 1.

We further computed the two point auto correlation function

C i
O(t) =

tr
�

PN↑Oi(t)Oi

	

trPN↑
. (5.86)

In terms of operator dynamics, this can be understood as the probability for the overlap be-
tween PN↑Oi(t) and Oi under time evolution, which should decay exponentially under the
operator growth. As in the SYK models, we expect this decay rate is proportional to λL. As
shown in Fig. 1(c), we numerically computed the averaged CZ, and observed that

CZ(t)−

�

tr
�

PN↑Z
	

trPN↑

�2

= CZ(t)− (1− 2n)2 ∼ exp(−κt). (5.87)

Note that (1− 2n)2 is the saturation value CZ(∞). As shown in Fig. 1(d), we find that

κ∼ λL ∼ n(k−1)/2. (5.88)
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(a) (b)

(c) (d)

Figure 1: The correlation functions for random QA model with N = 20000 and
f = 0.5. (a) The OTOC CXZ(t) vs time on the semi-log scale. (b) The Lyapunov
exponent λ vs n on the log-log scale for various k.(c) The auto correlator CZ(t) vs
time on the semi-log scale. (d) The exponent κ vs n on the log-log scale for various
k.

5.2 Butterfly velocity

We have also studied the butterfly velocity vB in QA circuits where the degrees of freedom are
arranged in a one-dimensional line [41]. The circuit for k = 5 is shown in Fig. 2; observe
that the Uk gates can now only act on a set of k adjacent degrees of freedom on the line:
|si+1si+2 · · · si+k〉. The QA circuits with k = 3 and k = 7 are constructed in an analogous way.
In this case, there is no Lyapunov exponent due to the spatial locality. Nevertheless, we expect
that

vB ∼ n(k−1)/2, (n� 1). (5.89)

The time-dependent randomness ensures that the n exponent “derived" in (3.42) must be
multiplied by a factor of 2. Numerically, we computed vB by performing data collapse of the
front of CXZ(r, t) ( See the example in Fig. 3(a)). We confirmed this prediction, as shown in
Fig. 3(b).

6 Conclusions

We derived a new bound (3.40) on the growth of operators (as measured by OTOCs in a
suitable (grand) canonical ensemble) in arbitrary many-body quantum systems. We studied
several large N models with U(1) symmetry and showed that in the highly polarized sector with
charge density n� 1, the charged SYK model saturates our bound while the random dynamics
including Brownian SYK model and random quantum automaton circuit do not. Due to the
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Figure 2: The local random QA circuit with 5-qubit gate. A single period of the
circuit consists 5-layers. The block is a 5-qubit gate which randomly picks an identity
operator or U5 gate with equal probability. The dashed box indicates the circuit in
one time step.

(a) (b)

Figure 3: (a) The data collapse for the front of CXZ(r, t) with k = 5 and L = 1000.
The curves at different time in the inset collapse into a single curve when we take
vB = 0.1132. (b) The butterfly velocity vB as a function of n for different k. Different
from the model with all-to-all interaction in Sec. 5.1, we take n≡ N ↓/N for numerical
convenience.

randomness in the time direction, the latter class of models lose the quantum coherence which
allows the SYK model to saturate our bound. The Lyapunov exponents in these two classes of
models satisfy the scaling relation

λ2
L,quantum ∼ λL,classical, (6.90)

and therefore classical systems are much less chaotic than quantum systems. Remarkably,
a similar phenomenon to (6.90) arises in the study of systems with long-range interactions,
where operator growth is much slower in effectively classical models [44,45] than in quantum
coherent models [46–48].

There are a number of interesting applications and extensions of our work, which we briefly
mention. Firstly, it is certainly interesting to try and generalize our results to other kinds of
symmetry groups. An obvious candidate is SU(2) symmetry, which is easily realized in models
of interacting qubits of the kind discussed in this paper. Such systems can approximately be
realized in cold atomic gases [49], and our bounds may be relevant for designing models where
highly entangled and metrologically useful states [50] exhibit very long lifetimes.
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Secondly, we proposed a heuristic “bound" (3.42) on the butterfly velocity vB, which char-
acterizes the growth of operators in a many-body model on the lattice. It would be interesting
to make that argument more rigorous, if possible. More interestingly, it is worth investigating
whether or not the density dependence of the butterfly velocity is captured by (3.42), or by
the random unitary circuit models, which predicts (for a fermionic model such as SYK)

vB ∼ n(q−2)/2. (6.91)

We postulate that, as in [41], the scaling (6.91) is more robust, as it incorporates destructive
interference effects that seem natural for a typical chaotic system.

Thirdly, recent work has used similar random circuits to model aspects of quantum grav-
ity. Our work suggests that such analogies could be misleading for understanding short-time
dynamics [21, 27, 35, 51], because the mechanism for the exponential OTOC growth (1.2) is
subtly different in a random circuit versus a holographic model. It would be interesting to
understand better the crossover between the quantum coherent operator growth in the SYK
model, and quantum incoherent operator growth in a random circuit, in particular to bet-
ter understand quantum dynamics in chaotic lattice models. We also comment that random
circuits have more recently been used to model holographic questions on much longer time
scales, including the dynamics of a large and evaporating black hole [52, 53]. Our work has
no obvious relationship to this interesting problem.

Lastly, we note that other authors [54, 55] has recently obtained the following bound for
charged systems at chemical potential µ and temperature T :

λL ≤
2πT

1− |µ|/µc
, (6.92)

where µc is a constant beyond which the (grand) canonical ensemble does not exist. We
believe that this result, while it could be tight, is special to rotating black holes and their
holographic duals. For example, the rotating three-dimensional black hole is dual to a two-
dimensional conformal field theory with holomorphic factorization, in which case T represents
the harmonic mean of the left/right-moving temperatures (each of which controls a separate
Lyapunov bound). In contrast, our result shows that (at least at infinite temperature) dynamics
slows down by going to a constrained part of the Hilbert space. We expect that our results
are much more universal, especially in non-holographic models. It would be interesting to
generalize our result to finite temperature T , in which case a more detailed comparison with
(6.92) could be made, along with other holographic results [56].
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A Details for the regular and Brownian SYK calculations

In this appendix, we provide a few more details about our SYK calculation using the Keldysh
formalism. As shown in Fig. 4, correlators are defined on a doubled Keldysh contour [57].
We introduce (u, d) labels for each contour depending on whether time runs forwards or
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Re(t)

Im(t)

contour fold 1

u

d

u

d contour fold 2

−iβ

−iτ

0

Figure 4: Keldysh contour with multiple contour folds. In this figure, we draw 2
contours, each fold consists of two sides (rails), upper (u) and lower (d) which are
connected on the right end. We connect the different Keldysh contours on the left
via imaginary time evolution, i.e. the state we start with is a thermal equilibrium.

backwards, and also introduce α = 1,2 . . . N for the contour indices. The interaction ver-
tex is diagonal in (u, d) basis, so it will be convenient to first express the self energy in the
(u, d) basis, and later make the basis change to the conventional (K,R, A) as follows:

�

GK GR

GA 0

�

=
1
2

�

1 1
1 −1

��

Guu Gud

Gdu Gdd

��

1 1
1 −1

�

,

�

0 ΣA

ΣR ΣK

�

=
1
2

�

1 1
1 −1

��

Σuu Σud

Σdu Σdd

��

1 1
1 −1

�

. (A.93)

For complex fermions, we need to be careful about the arrows when drawing diagrams.
G(t1, t2) is represented by an arrow from t2 to t1. We then find that

Σab
αβ(t1, t2) = i

�

t1,α, a t2,β , b

�

= ±iJ2(iGab
αβ(t1, t2))(G

ab(t1, t2)αβGba(t2, t1)βα)
q−2

2 , +(−) for α 6= (=)β .
.

(A.94)
Here superscripts a, b ∈ {u, d} label the rail, the + sign is for a 6= b, and the − sign for a = b.
Subscripts α,β = 1 . . . N label the contour index. The sign structure is due to the rule that
each vertex is associated with a coupling constant: −iJ for u vertex, +iJ for d vertex.

Now we are ready to compute the self-energy

ΣR =
1
2

�

Σuu +Σud −Σdu −Σdd
�

, (A.95)

which is diagonal in contour index. To proceed, we use the quasi-particle form (4.53) to obtain
the following Green’s functions, in the limit β → 0 with µ= βµ fixed:

Guu(t)≈ −i

�

Θ(t)
eiµt−Γ |t|

1+ eβµ
−Θ(−t)

eiµt−Γ |t|

1+ e−βµ

�

, Gud(t)≈ i
eiµt−Γ |t|

1+ e−βµ
,

Gdu(t)≈ −i
eiµt−Γ |t|

1+ eβµ
, Gdd(t)≈ −i

�

−Θ(t)
eiµt−Γ |t|

1+ e−βµ
+Θ(−t)

eiµt−Γ |t|

1+ eβµ

�

.

(A.96)

Note the useful combinations

Guu(t)Guu(−t) = Gdd(t)Gdd(−t) = Gud(t)Gdu(−t)≈
e−2Γ |t|

4cosh2 βµ
2

. (A.97)
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Finally we obtain (4.56) for the regular SYK model:

ΣR(t) = −iΘ(t)
J2

(2cosh βµ2 )q−2
e−(q−1)Γ teiµt (regular) . (A.98)

Switching to Brownian SYK, we only need to change the coupling J2 to Jδ(t) and further
simplify, i.e.

ΣR(t) = −iΘ(t)
Jδ(t)

(2cosh βµ2 )q−2
e−(q−1)Γ teiµt = −iΘ(t)

Jδ(t)

(2 cosh βµ2 )q−2
(Brownian) , (A.99)

which is shown as (4.63) in the main text.
Now, we come to the contour index off-diagonal components. The superscripts (u, d) do

not matter any more; the ordering is determined by the subscripts completely. Thus,

ΣK
21(t) = −2iJ2(iG21(t))(G21(t)G12(−t))

q−2
2 , (A.100)

where we consider 21 component (rather than 12) since contour 1 is customarily with smaller
imaginary time, and we denote the imaginary time separation of two contours by τ, i.e.
ψ1(t) = ψ(t), ψ2(t) = ψ(t − iτ). One can also use the Keldysh function GK instead of the
plain one above, which differs by a factor of 2, namely GK

12 = 2G12, GK
21 = 2G21. Therefore

ΣK
21(t) =

J2

2q−2
(GK

21(t)G
K
12(−t))

q−2
2 GK

21(t) . (A.101)

Again, in the limit β → 0 with fixed µ and Γ , we have

GK
21(t)≈ −i

2eµτ

1+ eβµ
eiµt−Γ |t| , GK

12(t)≈ i
2eµ(β−τ)

1+ eβµ
eiµt−Γ |t| , (A.102)

and the following product has a simple expression:

GK
21(t)G

K
12(−t)≈

e−2Γ |t|

(cosh βµ2 )2
. (A.103)

Thus, the rung function

R(t) =
δΣK

δGK
= (q− 1)

J2

2q−2

�

GK
21(t)G

K
12(−t)

�

q−2
2 ≈ (q− 1)J2 e−(q−2)Γ |t|

(2 cosh βµ2 )q−2
(regular) .

(A.104)
Similarly, switching to the rung function for Brownian SYK amounts to changing J2 to Jδ(t)

R(t) = (q− 1)
Jδ(t)
2q−2

�

GK
21(t)G

K
12(−t)

�

q−2
2 = (q− 1)Jδ(t)

1

(2 cosh βµ2 )q−2
(Brownian) .

(A.105)
The above two derivations explain the (4.59) and (4.66) in the main text.
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