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Abstract

Quantum corrals can be considered artificial atoms. By coupling many quantum corrals
together, artificial matter can be created at will. The atomic scale precision with which
the quantum corrals can be made grants the ability to tune parameters that are difficult
to control in real materials, such as the symmetry of the states that couple, the on-site
energy of these states, the hopping strength and the magnitude of the orbital overlap.
Here, we systematically investigate the accessible parameter space for the CO on Cu(111)
platform by constructing (coupled) quantum corrals of different sizes and shapes. By
changing the configuration of the CO molecules that constitute the barrier between two
quantum corrals, the hopping integral can be tuned between 0 and -0.3 eV for s- and
p-like states, respectively. Incorporation of orbital overlap is essential to account for the
experimental observations. Our results aid the design of future artificial lattices.
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1 Introduction

The scanning tunneling microscope makes it possible to position adsorbates and vacancies on
surfaces with atomic scale accuracy [1]. This approach has been used to explore the limits of
data storage [2–5], to perform logic operations [6–9], to study chemical reactions at the single
molecule level [10–13], and to study the electronic and magnetic structure of atomically well-
defined structures [14,15].

With respect to studying electronic properties of extended systems, two complementary
approaches have been used. The first approach is based on coupling localized states of either
adatoms, vacancies or dangling bonds, [16–23]. By positioning such species with atomic scale
precision, artificial electronic molecules or lattices can be created and their electronic structure
studied. Initial experiments focused on the evolution of the electronic structure with system
size. However, more complicated and interesting phenomena can also be studied, such as
topological states of matter and Majorana bound states [21,24].

The second approach, following the ideas underpinning the quantum corral, is based on
patterning a 2D electron gas (2DEG) with a (periodic) scattering potential. In particular, the
CO on Cu(111) platform has been used to study the electronic structure of periodic and non-
periodic systems [25–31]. Here, the CO molecules act as repulsive scattering centers for the
surface state electrons of Cu(111) [32]. By placing these scattering centers with atomic scale
accuracy, a large variety of potential energy landscapes can be created for electrons. For ex-
ample, by creating a triangular lattice of CO molecules, the electrons are confined to the anti-
lattice, i.e. a honeycomb geometry [26]. Density of states measurements revealed the emer-
gence of a Dirac cone in the 2DEG, as observed in graphene. Building on this approach, an
electronic Lieb-lattice [27], quasi-crystal [28] and electronic fractal [29] have been realized.
Recently, it was shown that this material platform can also be used to study topological states
of matter [31,33].

One of the advantages of using artificial lattices is that it allows control over parameters
that cannot be controlled easily in real materials. These include the on-site energy, the strength
of the hopping parameter, orbital overlap, and which orbitals couple. However, the values for
the hopping parameter, on-site energy of each electronic site and overlap are not immediately
obvious given a certain configuration of CO/Cu(111). Currently, determining these param-
eters is an involved iterative “reverse engineering" procedure which includes first designing
the lattice and performing a muffin tin calculation to check that the features of interest are
observable, which may take several iterations of design changes. The resulting muffin tin
band structure is compared to the output of a tight binding calculation. The tight binding
parameters are then adjusted such that the tight-binding band structure matches the muffin
tin result [33].

In this work, we systematically investigate the accessible tight binding parameter range for
the CO/Cu(111) platform by coupling quantum corrals into artificial molecules. The report
is arranged as follows. First, a background on the subject is given, and the experimental
details are discussed. We show how changing the size of rectangular and triangular corrals
affects their on-site energy and we determine the effective mass of the confined electrons. We
specifically focus on rectangular and triangular corrals, as these allow for space-filling artificial
lattices. Furthermore, we report experiments on coupling such units into dimers and trimers
and extract the tight binding parameters. We investigated the coupling of both s-like and p-like
orbitals. The coupling strength is adjusted with different methods; both by changing the size
of the potential barrier between the corrals, and by changing the size of the corrals themselves.
Finally, we studied the coupling of orbitals with different symmetries.

Before describing our results, we discuss the similarities and differences between quantum
corrals and real atoms. Artificial lattices built using CO/Cu(111) can be thought of as systems

2

https://scipost.org
https://scipost.org/SciPostPhys.9.6.085


SciPost Phys. 9, 085 (2020)

ℓ = ±0 ℓ = ±1 ℓ = ±2

nr = 1

nr = 2

Re(Ψ)

0

+

_

(a)

ℓ = ±0 ℓ = ±1 ℓ = ±2

nr = 1

nr = 2

|Ψ|2

0

+

(b)

s - like

p - like

(c) Experimental

Figure 1: Modeling a circular quantum corral with the particle-in-a-box model. (a)
The real part of the wavefunction enclosed in a circular well, showing its shape for
different quantum numbers. (b) |Ψ|2, which is proportional to the differential con-
ductance in STM. (c) Differential conductance maps of a small quantum corral at two
energies; -0.17 V and 0.21 V. These correspond to the ` = 0, n = 1 (1s) and ` = 1,
n= 1 (1p) states.

of coupled quantum corrals. The first quantum corral was created in 1993, by positioning Fe
atoms in a (nearly) circular ring on Cu(111) [1]. The electronic behavior within the corral can
be readily understood in terms of a particle-in-a-box model [1,34]. Fig. 1(a) shows wavefunc-
tions of a particle-in-a-circular-box for a combination of the first few quantum numbers. For
circular corrals, the wavefunctions are characterized by the principle and angular quantum
numbers, n, `, respectively. n − 1 defines the number of nodal lines in the radial direction
from the center, while ` defines how many nodes occur angularly. For non-circular symmet-
ric corrals, the angular momentum quantum number is not well-defined. However, the wave
functions of circular, rectangular and triangular corrals exhibit alternation of sign and nodal
line patterns that are reminiscent of nodal planes in atomic orbitals [30]. The lowest energy
state has no nodal lines, the second lowest has one, etc. [35,36]. Based on these similarities,
we refer to these states of the quantum corral as s-like and p-like, respectively. The nodal line
pattern of a particular state of the quantum corral can be visualized by mapping the differ-
ential conductance at the energy corresponding to that state. In principle, the spin quantum
number ms is also common between a 2D particle-in-a-box and a real atom, because ms only
describes whether an electron has spin +1

2 or −1
2 , and is a general property of electrons.

In contrast to 2D quantum corrals, three quantum numbers appear for real atoms. The
magnetic quantum number is not present in 2D systems. However, as we show below, px - and
py -like states do emerge in rectangular corrals [30]. Furthermore, the allowed values of the
quantum numbers are different for quantum corrals and real atoms. For example, circular 2D
quantum corrals feature 1p-type states (see Fig 1a,b), whereas in real atoms a 1p state does
not exist.

In addition to Fe atoms, a variety of other adsorbates can be used as scattering centers.
Because of the ease and reliability with which they can be manipulated, CO molecules are
often used [6, 37, 38]. Carbon monoxide molecules on the Cu(111) surface are imaged as
depressions with standard metallic tips [39]. A DFT study has suggested that this is due to
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destructive interference of the protruding orbital of oxygen atom with the states in the tip [40].
Throughout this document, we show the designs of various corrals and indicate copper

atoms as orange dots and CO molecules as black dots with shading that represents the apparent
size of the CO molecule as viewed in STM. Corral dimensions are reported in terms of the
Cu(111) lattice constant a = 0.2556 nm [41].

1.1 Tight binding description of dimers and trimers

To create artificial dimers, we construct two connected corrals with an opening between them
to accommodate coupling. Fig. 2(a) shows an example of a structure consisting of two coupled
rectangular corrals.

The tight binding parameters of interest are the on-site energy, ε, the nearest and next-
nearest neighbor hopping parameters, t1 and t2 (not present for dimers) respectively, and
the overlap integral, s [42, 43], see Fig. 2. It was previously reported that the next-nearest-
neighbor hopping integral can be non-negligible in artificial lattices [27,29–31,33]. To deter-
mine the magnitude of t2, we also constructed and characterized trimers, see Fig. 2(c).

A tight binding calculation of a dimer, taking into account only the lowest energy state of
each corral, results in the following expressions for the two states of the dimer

E+ =
ε1 + t1

1+ s
, (1)

E− =
ε1 − t1

1− s
, (2)

where the subscript indicates the sign with which the states of the corral are added. The
values of E+ and E− can be directly extracted from differential conductance spectra acquired
at suitable positions above the dimer (taking the shape and extent of the wavefunction into
account). Since the spatial confinement of the electrons in the dimer is different from those
of isolated corrals (there is an extra available area when the barrier between two corrals is
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Figure 2: Coupling quantum corrals. (a) Example placements of CO molecules
(black) on Cu(111) (orange) to produce a dimer, a lone corral and a trimer. White
ovals roughly represent the spatial extent of the wave functions of the individual
quantum corrals. (b) and (c) show the molecular orbital diagrams for a dimer and
a trimer, respectively. Red represents a positive value of the wavefunction and blue
negative.
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removed), the on-site energy is different for coupled and individual corrals. The resulting set
of two equations with three unknowns (1 and 2) cannot be solved. To determine values of ε1,
t1 and s, we include calculations and measurements on a trimer, as represented in Fig. 2(c).
We make the assumption that the overlap integral is the same for the dimer and trimer.

In the case of a trimer, there are three energy states that correspond to bonding, non-
bonding and antibonding orbitals in molecules, as illustrated in Fig. 2(e). The energies of
these three states are given by equations 3, 4 and 5, respectively.

E1 =
ε1 + ε2 − 4st1 + t2 −

q

(−ε1 − ε2 + 4st1 − t2)2 − 4(1− 2s2)(ε1ε2 − 2t2
1 + ε2 t2)

2(1− 2s2)
, (3)

E2 = ε1 − t2 , (4)

E3 =
ε1 + ε2 − 4st1 + t2 +

p

(−ε1 − ε2 + 4st1 − t2)2 − 4(1− 2s2)(ε1ε2 − 2t2 + ε2 t2)
2(1− 2s2)

, (5)

where t2 is the next-nearest-neighbor hopping parameter, ε1 is the on-site energy of each of
the outer two atoms (the same as in the dimer) and ε2 is the on-site energy of the central
atom, see Fig. 2(c). Since E1, E2 and E3 are also observable in experiment, we now have a
system of five equations (1 to 5) and five unknowns. This allows us to obtain all tight binding
parameters ε1, ε2, s, t1, and t2.

2 Methods

All experiments were performed at T ≈ 4.5 K in ultra-high vacuum with a ScientaOmicron
LT-STM. A Cu(111) surface was prepared by several repetitions of sputtering with Ar+ and
annealing at 550◦ C. Carbon monoxide was leaked into the microscope chamber with a direct
line of sight onto the Cu(111) crystal mounted in the microscope head to achieve a suitable
coverage. Manipulation of carbon monoxide molecules was performed in feedback with a bias
voltage of 20 mA and a current setpoint of approximately 50 nA, depending on the config-
uration of the tip apex. STM images were acquired in constant current mode. Differential
conductance spectra and maps were acquired with the tip at constant height and using a stan-
dard lock-in amplifier technique. The frequency and amplitude of the applied modulation was
271 Hz and 10 mV r.m.s. respectively. Integration time for signal acquisition was 50 ms during
spectra and 20 ms during maps. All differential conductance spectra shown have been aver-
aged over several measurements acquired at the same position, and divided by an average of
several spectra taken on bare Cu(111) with the same tip apex to minimise the LDOS contri-
bution from the tip [26]. In each spectrum shown, the faded points represent the data after
the aforementioned procedure, while the solid line represents the moving average of the same
data.

Muffin tin calculations were performed to corroborate and supplement the experimental
data. This technique is well-established, and has been used before to simulate results on the
CO/Cu(111) platform with reasonable accuracy [27,29–31,33].
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3 Results

3.1 Individual Corrals

We first characterize rectangular corrals. Note that because of the triangular symmetry of
the underlying substrate, it is not possible to build perfectly square corrals. Fig. 3a shows the
schematic structure and dI

dV spectra of a rectangular corral with size 8
p

3a×14a. Spectra taken
at different positions exhibit peaks at different positions, corresponding to specific eigenstates.
For example, the lowest energy level (approximately -0.3 V) has the highest local density of
states (LDOS) in the center of the corral (black), whereas the next highest energy level (-
0.1 V) is mainly observed away from center (at red, blue and green sites). The differential
conductance maps reveal the spatial extent of these states, see the top row in Fig. 3b. The
corresponding simulated maps are shown in the bottom row of the same figure. In the case
of degenerate levels, the modulus squared of the relevant eigenfunctions were summed. The
simulations are in excellent agreement with the experimental observations.

For rectangular quantum corrals, there are two quantum numbers that determine the en-
ergy of the system and the shape of the wavefunction; nx and ny . By comparing the experi-
mental data to the results of the particle-in-a-box model, we can assign wave functions to the
differential conductance maps and peaks in differential conductance spectra. For the first few
energy levels, we may draw an analogy to real atoms based on the number of nodal lines in
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Figure 3: Differential conductance measurements on rectangular and triangular
quantum corrals. (a) dI/dV spectroscopy acquired at the positions marked in the
inset figure. (b) Top: experimental differential conductance maps (of size 6 nm ×
6 nm) acquired at the energies stated; bottom: |Ψ|2 calculated according to the parti-
cle in a box model. The quantum numbers are labeled above each peak in the dI/dV
and above each LDOS map. (c), (d) same as (a) and (b) but for triangular quantum
corral. The images depict an area of 6.25 nm × 6.25 nm.
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Ψ that intersect the center of the corral. The nx = 1, ny = 1 (no nodal lines) resembles an
atomic s-orbital. Similarly, the nx = 1, ny = 2 (and nx = 2, ny = 1) (one nodal line) and
nx = 2, ny = 2 (two nodal lines), have a similar nodal line structure as p- and d−type orbitals
in atoms. The next highest state is the 2s-like state.

We now apply the same procedure to triangular corrals. An equilateral triangular corral is
constructed with side lengths 12

p
3a. dI

dV spectroscopy was conducted at different positions,
see Fig. 3c. The lowest energy peak is observed at approximately -0.27 eV and has the highest
amplitude in the center of the corral (s−like). state. The second energy level is mainly localized
near the corners (p-like orbital). dI

dV maps acquired at the peaks observed in the dI
dV spectra

are shown in Fig. 3d. For a particle-in-a-triangular-box, there are two quantum numbers; p
and q. The calculated eigenfunctions corresponding to the first four energy levels are shown
in the bottom row of Fig. 3b. For the first two states, there is excellent agreement between
experimental and simulated maps. The energy difference between the third (p = 2, q = 0)
and fourth (p = 5/3, q = 2/3) lowest energy states of a particle in a triangular box is small.
Consequently, both states contribute to the experimentally observed contrast at V = 0.17 V.

3.2 Corral size and on-site energy

We now consider how altering the size of a corral affects the energies of the lowest levels,
i.e. the on-site energies. We first focus on rectangular corrals. Fig. 4a shows a series of
rectangular quantum corrals that were constructed. Differential conductance spectra acquired
at the centers of the corrals are shown in Fig. 4b. As the corral is reduced in size, the ground
state shifts to higher energies. The second peak for S1 at higher energies corresponds to a 2s-
like orbital, vide infra. Note that peaks become progressively broader with increasing energy.
We attribute this to two factors. First, the scattering potential of the CO molecules is finite
(0.9 eV with respect to the onset of the surface state band when a radius of 0.3 nm is used).
Hence, electrons with higher energy effectively experience a lower barrier height. Secondly,
the number of CO molecules per unit area is larger for smaller corals, resulting in an increased
coupling between surface and bulk states [44].

To rationalize the experimental observations, we model our system using a particle-in-
a-box model with finite potential barriers of height V0 = 0.9eV [36]. For a 2-dimensional
rectangular box with finite barriers, the energies are given by

E = V0 −
2ħh2

m∗

 

u2
nx

L2
x
+

u2
ny

L2
y

!

, (6)

where m∗ = 0.42me, the effective mass of the Cu(111) surface state electrons, and Lx and L y
correspond to the length of the box in the x and y direction, respectively [36]. The variables
unx

and uny
take the role of quantum numbers. Their values are the solutions to the following

set of three equations (where i denotes the x or y direction of the rectangular box)

ui =
Ç

u2
0i
− v2

i , (7)

ui = vi tan(vi) , (8)

ui = −vi cot(vi) , (9)

with ui =
p

2m∗(V0−E)Li
2ħh , u0i

=
p

2m∗V0 Li
2ħh , and vi =

p
2m∗ELi

2ħh . No analytical solutions exist for
these equations and one has to rely on graphical or numerical methods [36]. The solutions
are given by the values of ui where function (7) intersects function (8) or (9), and are denoted
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Figure 4: (a) Geometries of the rectangular corrals investigated. (b) dI
dV spectra

taken at the centers of the rectangular corrals shown in (a). (c) On-site energy as
a function of u2

nx
/L2

x + u2
ny
/L2

y . Green and red points represent experimental data
for s- and p- like states respectively. Light red and light green points represent the
energies calculated using a muffin tin model. Solid lines represent a linear fit to the
experimental data. (d)-(f) Same as (a)-(c) but for triangular corrals.

uni
. For a given V0, Li and effective mass, the values of uni

are fixed, and can be thought of
as analogous to the quantum number in the energy equation that describes a particle in a
2D rectangular box with infinite barriers. To calculate the values of un, we use V0 = 0.9
eV [27, 29–31, 33] and m∗ = 0.42me [45, 46]. The values of Lx and L y are determined by
assuming that the dimensions of the boxes are defined by the edges of the CO molecules
which have a diameter of 0.6 nm [27,29–31,33].

Figure 4c shows a plot of the on-site energy versus u2
nx
/L2

x +u2
ny
/L2

y for the lowest and sec-
ond lowest states. Dark (light) green and red (light red) correspond to experimental (muffin
tin) data of s-and p-like states, respectively. The experimental energies were determined by
fitting Gaussian curves to each peak and finding the centers. The muffin tin-derived energies
were calculated with the aforementioned values for V0, m∗ and CO diameter. For both states,
the energy depends linearly on u2

nx
/L2

x + u2
ny
/L2

y . From the gradient, we determine the effec-
tive electron masses to be 0.48 ± 0.01me and 0.46 ± 0.01me for the s-like and p-like states,
respectively. These values are close to the effective electron mass of the unconfined surface
state electrons.

A small offset is visible between the lines for the s− and p-like data, which we attribute to
the fact that the confining potential is effectively lower for higher energy states.
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We applied a similar procedure to triangular corrals. Figure 4d shows the geometry of
several triangular corrals that were realized, and Fig. 4e shows spectra acquired at the centres.
The states of triangular corrals shift to higher energies the smaller the corral becomes. The data
can be rationalized using a particle-in-a-box model using infinite barriers (analytical solutions
for triangular corrals with finite barriers have not been reported). The energy eigenvalues of
a particle in an equilateral triangular box are given by

Ep,q =
h2

2
p

3m∗A
(p2 + pq+ q2), (10)

where p, q are the quantum numbers, h is Planck’s constant, m∗ is the effective electron mass
and A is the area of the triangle [35,47,48]. As shown in Fig. 4f, the experimentally determined
on-site energy depends linearly on the inverse surface area, in agreement with equation (10).

3.3 Coupling Corrals

We now turn to coupled quantum corrals and show how tight-binding parameters can be ex-
tracted from experimental data. After a dimer is constructed (example shown in Fig. 5a), dI

dV
spectra are acquired on two positions. We do this to make use of the different spatial localiza-
tion of the E+ and E− states. Specifically, the anti-bonding E− state has a node between the
two corrals (the position denoted by an orange dot in the inset of Fig. 5a). Only the bonding
E+ state appears in the differential conductance spectrum taken at that site and we can fit the
spectrum with a single Gaussian. Conversely, the anti-bonding E− state has higher intensity at
the outer regions of the dimer (red dot in Fig. 5a).

Differential conductance maps were acquired at approximately the energies of the centers
of each of the two peaks. The state at lower energy is delocalized over the entire structure,
whereas the state at higher energy has a node between the two corrals. This is reminiscent of
bonding and anti-bonding molecular orbitals, respectively.

Next, a trimer is constructed from the same-sized units as the dimer. To determine the
experimental values of E1, E2 and E3, we again exploit the different spatial distributions of
these three states. Muffin tin calculations show that the intensity of the E2 state is very low
at the center corral. Hence, the two peaks in the differential conductance spectrum taken at
this position (gray curve in Fig. 5d) can be assigned to E1 and E3, respectively. The obtained
energies can then be used in the fitting procedure of the spectrum acquired at a corral at the
end of the trimer (red curve in Fig. 5c and d). Taking these values and solving equations 1 to
5 results in the tight binding parameters listed in Table I.

Table 1: Tight binding parameters extracted from Fig. 5.

Parameter Value
ε1 −0.22± 0.02 eV
ε2 −0.23± 0.01 eV
s 0.5± 0.3
t1 −0.14± 0.06 eV
t2 −0.02± 0.03 eV

The on-site energy of the individual corral of this size is -0.19± 0.02 eV, see Fig. 4c. We
find an on-site energy of −0.22± 0.02 eV and −0.23± 0.01 eV for the sites in the dimer and
central site in the trimer, respectively. This lowering of the on-site energy can be understood
from the increased area that is available due to the removal of the CO molecules to couple
the sites. Two CO molecules have been removed from the barrier, i.e. an additional area of
2×π(0.3)2 = 0.56 nm2 is available for the electrons. The magnitude of the overlap integral,
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Figure 5: (a) dI
dV spectra on two different positions of a dimer. Locations indicated

by dots in the inset. (b) Differential conductance maps were acquired at the approx-
imate energies where the maxima of the peaks lie. (c) Bottom: dI

dV spectra acquired
at the positions shown in corresponding colors in the top left diagram. LDOS maps
(from muffin tin calculations) at E1 = -0.26 eV, E2 = -0.22 eV, E3 = -0.18 eV, respec-
tively. (d) Gaussian fitting procedure applied to the same two spectra to find the
energies of interest. The shaded regions in each plot represent the individual Gaus-
sians, which when summed, lead to the curves represented by dashed lines. The
centers of the Gaussians correspond to E1, E2 and E3 (labeled).

s, is significant and therefore must be included in tight binding parameters to yield accurate
answers.

The same experiments and simulations were performed for coupling triangular corrals.

3.4 Tuning parameters

We now systematically investigate how the tight binding parameters depend on changing the
gap width between corrals for both s- and p-like states. For this, we created dimers out of
rectangular quantum corrals with dimensions 6

p
3a × 10a (same as in the previous section)

and 8
p

3a × 14a. (Note that to calculate the area from these dimensions, the area that the
CO molecules occupy must be subtracted). First, two corrals of equal size were constructed
directly next to each other with the barrier fully closed; that is to say that the same barrier
configuration that separates the two corrals separates the corrals from their surroundings.
Fig. 6a shows the schematic of a lone corral with dimension 8

p
3a× 14a, and the dimer with

a full wall of CO molecules separating the corrals. The second column shows spectra taken at
the positions marked in the designs. The peaks associated with the s-type orbitals occur at the
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Figure 6: (a) From left to right, first the geometry of the coupled corral is shown.
The second column demonstrates coupling of s-like orbitals: dI

dV spectra acquired at
the positions indicated by the color code and corresponding dI

dV maps taken at the
indicated energies. The third column focuses on coupling of p-like orbitals.

same energy for the two systems, indicating that there is virtually no coupling between the
corrals in the dimer with this barrier configuration (the hopping parameter is zero). The same
observation is made for the p-type states (right hand side of the figure). This is significant
because it has been assumed that coupling of electronic sites to the surrounding 2DEG plays a
large role in broadening [31]. Our experiments provide an upper-limit to the coupling strength
across a ‘full barrier’: any potential splitting of the bonding and antibonding states is smaller
than the energy resolution of our experiments. A muffin-tin calculation using small broadening
finds a peak splitting of 11 meV (suggesting an upper limit of the coupling strength of 6 meV).

Next, CO molecules are removed from the center of the barrier, see Fig. 6b-d. As described
before, dI

dV spectra were acquired at the barrier between the corrals, and near the outer edge.
By fitting Gaussian curves and finding their centers, we determine the energy level spacing
between the bonding and anti-bonding states. Differential conductance maps were taken to
verify the resemblance of these states to bonding and antibonding orbitals. The difference in
energy between the two states increases with increasing gap width in the CO barrier between
the two corrals. Furthermore, the states shift down in energy due to the effectively larger area
that the electrons can occupy.

The most natural interpretation of the experimental data for the system without barrier,
Fig. 6d, is to use a particle-in-a-rectangular-box model. In this picture, the lower energy state
corresponds to the ground state with quantum numbers nx = 1 and ny = 1. The second state
is the nx = 2, ny = 1 state, etc. However, it is also possible to interpret the results in the
framework of two coupled quantum corrals. The lowest energy state of the rectangle can be
thought of as the bonding combination of s-like orbitals of the two quantum corrals. Similarly,
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Figure 7: (a) The size of the gap in the barrier between the two corrals (red arrow)
is the distance between the closest CO molecules in the barrier (gray arrow), minus
two times the apparent size of the CO molecules (gray circle, blue arrow, 0.3 nm).
(b) From left to right: gap dependence of the hopping parameter, the on-site energy
and overlap for s-like states, respectively. Dark and right colors represent data from
rectangular corrals with sizes 8

p
3a × 14a and 6

p
3a × 10a, respectively. (c) Same

as (b) but now for p-like states.

the second lowest state would be the anti-bonding combination.
The bonding combination of the px -like states, where x is the horizontal direction, shows

vertical nodal lines at the centers of the individual corrals and enhanced intensity in the barrier
region between the corrals (see right hand side of Fig. 6). The nodal line pattern of the map at
higher energy can be rationalized by assuming that both the anti-bonding px -like state as well
as the py -like state contribute to the contrast. The energy difference between p-like bonding
and antibonding states is larger than for the s-like states.

Similar experiments were performed for coupled 6
p

3a × 10a dimers (data not shown).
From the available data on both corral sizes, tight binding parameters for coupling of both
s-like and p-like states were derived. The results are shown in Fig. 7. The size of the gap in
the barrier between the corrals is defined as the distance between the closest CO molecules of
the barrier, minus two times the apparent radius of the CO molecules (0.3 nm, see Fig. 7a). For
both s- and p-like states and for both corral sizes, the data points for the hopping parameter (t),
the on-site energy (ε), and the orbital overlap (s) can be fitted with an exponential function
(dotted lines). By tuning the gap width, the hopping parameter can be varied between 0 eV
and ∼ −0.3 eV and ∼ −0.16 eV for s- and p-like states, respectively. We find that the on-site
energy depends on the width of the gap in the barrier. The parameters depend more sensitively
on gap width for the smaller corral. This can be rationalized from the additional area that
becomes available to the confined electrons upon removing CO molecules (the relative increase
in available area is larger for the smaller corral). Finally, the magnitude of the orbital overlap
increases with gap width. Note that for unconfined electrons (infinite gap width) the overlap
should be one. Fig. 7b suggests that at least up to a gap width of ≈ 1.5 nm, the hopping
parameter and overlap are similar for the two different corral sizes.
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Figure 8: (a) Coupled rectangular corrals with a barrier that largely inhibits the
coupling of s and px -type states, while coupling of py -like states is clearly observed.
x and y directions are specified in the figure. (b) Differential conductance spectra
taken at the positions indicated in (a). (c) Differential conductance maps taken at
the indicated energies. (d-f) same as (a-c) but for coupled triangular corrals.

3.5 State selective coupling

Since CO molecules can be removed selectively, it becomes possible to create geometries that
allow coupling of p-type states only. Consider the geometries of coupled rectangular and tri-
angular corrals shown in Fig. 8a and d. The amplitude of s-type wave functions is small at
the position of the gaps in the barrier. Hence, coupling of s-type states should be small. In
contrast, p-type states have significant amplitude at these positions and consequently these
states should couple strongly. We first focus on the rectangular corrals. Fig. 8b shows differ-
ential conductance spectra taken at the positions indicated in Fig. 8a. A total of three peaks
are observed. The amplitude of each peak differs from position to position. The peak at
lowest energy corresponds to the ground state, i.e. it involves s-type states. At the energies
corresponding to the s-type states, we only observe one peak, indicating that these states do
not couple (coupling strength below the detection limit of our experiment). In contrast, the
spectrum of the barrier region (gray) features a peak around 90 mV, whereas the spectrum
taken at the corner of the corral (blue) has a peak at 170 mV. The corresponding differential
conductance maps, Fig. 8c, reveal that the spatial extent of these states can be understood
by considering coupling of py -type states. For the triangular corral, similar observations are
made. This confirms the idea that artificial lattices allow coupling between sites by one type
of state only [49]. Note that this provides a degree of freedom that is not available in real
materials.

3.6 Coupling corrals of different sizes

Finally, we investigate the coupling of two corrals of different sizes, i.e. with different on-site
energies for the s- and p-like states. Fig. 9a shows the arrangement of such a polar dimer,
with the barrier between corrals fully removed to maximize coupling. The dI

dV spectra show
the typical peaks associated with bonding and antibonding states. The corresponding differ-
ential conductance maps reveal that the lower (higher) energy state of the dimer is primarily
localized on the larger (smaller) corral, see Fig. 9b and c. This is in agreement with a tight
binding model of a dimer with constituents with different on-site energy.
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Figure 9: (a) Schematic structure of anisometric dimer consisting of a 6
p

3a × 12a
corral coupled to a 5

p
3a×10a corral. Differential conductance spectra acquired on

positions highlighted in the inset. (b),(c) differential conductance maps of the two
states observed in the dI

dV spectra (energies indicated in the Figure). (d)-(f) same as
(a-c), but now for a 6

p
3a × 12a corral coupled to a 4

p
3a × 8a corral. Inset scale

bar (white) represents a length of 1 nm

In general, electronic states couple if they spatially overlap and if they have a similar energy.
Hence, if the sizes of the two corrals differ sufficiently, it is possible to couple the s-like state of
a smaller corral with a p-like state of a larger corral. We therefore created a dimer consisting
of a 6

p
3a × 12a to a 4

p
3a × 8a corral, see Fig. 9d. The dI

dV spectra reveal two states with
different spatial localization. The corresponding differential conductance maps show that the
lower energy s-like state of the smaller corral couples with a p-like state of the larger corral.
Similarly, the higher energy state can be thought of as an antibonding combination between
s- and p-like states (note the nodal line at interfaces between the two corrals).

4 Conclusion

To conclude, we have studied the coupling of rectangular and triangular quantum corrals into
dimer and trimer structures. These shapes were chosen as they can be used as building blocks
of artificial lattices. The electronic structure of the coupled corrals can be understood using a
tight binding model also used for the coupling of atoms to molecules. Importantly, we inves-
tigated the available tight binding parameter space accessible with the CO/Cu(111) platform,
and showed how these parameters depend on the configuration of the coupled quantum cor-
rals.

We first verified that the particle in a box model provides a good qualitative description of
the electronic structure of rectangular and triangular quantum corrals. We determined the on-
site energies of s- and p- like states of different sized corrals to confirm the relationship between
on-site energy of the corral and box size. From this, we determined the effective masses of
electrons in rectangular corrals to be on the order of 0.48 me and 0.46 me for s- and p- like
states respectively. These values are close to the value for unconfined Cu(111) surface state
electrons (0.42 me). In the triangular case, we used a model that assumed infinite barriers,
preventing us from determining a reliable value for the effective mass.

We outlined a method to extract tight binding parameters (nearest and next nearest neigh-
bor hopping parameters, overlap and on-site energy) by constructing dimers and trimers of
corrals. By removing CO molecules from the barrier between corrals, exponential relation-
ships were found between the tight binding parameters and the size of the gap in the barrier
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between the corrals. The hopping integral can be tuned between 0 and -0.3 eV and -0.16 eV
for s- and p-like states, respectively, by tuning the configuration of CO molecules in the barrier.
In most cases, the overlap is not negligible and this term should be taken into account when
modelling artificial molecules, and lattices. Finally, we showed that in these coupled quantum
corrals, one can control which states couple. For example, by appropriate placement of CO
molecules coupling of s− and px -like states can be inhibited, while allowing coupling of py -like
states. Furthermore, it is possible to couple s- and p-like states.

The results presented here are useful for future work on artificial lattices made using CO
on Cu(111). A hypothetical lattice with certain desired coupling strengths and on-site energies
can be designed by estimating the required unit size and barrier gap width from the trends
reported here.
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