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Abstract

We present divERGe, an open source, high-performance C/C++/Python library for func-
tional renormalization group (FRG) calculations on lattice fermions. The versatile model
interface is tailored to real materials applications and seamlessly integrates with exist-
ing, standard tools from the ab-initio community. The code fully supports multi-site,
multi-orbital, and non-SU(2) models in all of the three included FRG variants: TU2FRG,
N-patch FRG, and grid FRG. With this, the divERGe library paves the way for widespread
application of FRG as a tool in the study of competing orders in quantum materials.
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1 Introduction

High-performance computing brought many insights into physical problems deemed unsolv-
able by analytic means. Especially the ab-initio treatment of condensed matter systems in the
form of density functional theory, GW and dynamical mean-field approaches is a remarkable
success story [1–7]. Besides the versatility of the methods mentioned above, a key ingredi-
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ent for this success is the availability of optimized libraries, such as ABINIT [8], Quantum
Espresso [9], Vasp [10], BerkleyGW [11], YAMBO [12], TRIQS [13] and many more [14],
leveraging the need to develop complex codes over and over again. If no such public code
is available, each researcher has to implement the method themselves, thus creating a lot of
redundant work with, most likely, sub-optimal outcome. Therefore, it is elemental for the
broad applicability of a method to have a public code available — as well as a documented
knowledge about best practice in implementations.

In the study of correlated materials, the ab-initio-based treatments mentioned above al-
ready incorporates many important features. However superconducting orders from electronic
interactions and other effects of long-range interactions generated during the approximate so-
lution of the many-body Schrödinger equation are only partially, or not at all, included. This
creates the need for methods and codes that allow us to connect to these developments, and ex-
tend the status quo by adding the missing pieces. In computational condensed matter physics,
it has proven efficient to start from an effective low energy description of the material, keeping
only a few relevant bands. The process of how to arrive at such a down-folded model poses the
first obstacle. Subsequently, we still have to solve a model including a few bands, with com-
plicated interactions. To tackle such problems, we often need to introduce approximations,
which should be well controlled. For a broad class of materials, we can utilize pertubative
approaches, such as the random phase approximation (RPA), the parquet approximation [15]
and FRG [16,17]. While the former one includes only specific diagrammatic channels, the lat-
ter two are diagrammatically unbiased, thus being prime candidates for the extension of the
ab-initio machinery; the issue being that implementations of the full equations, incorporating
all their dependencies are beyond our current reach.

In this paper we present divERGe1 — an open source, high-performance (multi-node CPU &
multi-GPU) C/C++/Python library (available at [18]) that implements different flavors of the
FRG [16,17]. The library is based on a general model interface (cf. Section 3), and three differ-
ent computation backends: (i) grid-FRG [19,20], (ii) truncated unity FRG (TU2FRG) [21–23],
and (iii) orbital space N -patch FRG [24–26]. Each performs different approximations of the
central equations, resulting in different numerical complexity, as detailed in Appendix D. This
paper is designed as a hands-on introduction to the usage of divERGe. We therefore briefly
summarize FRG as a numerical method in Section 2, introduce the model structure in Section 3,
explain how the flow equations are solved in Section 4 and how the results are analyzed in
Section 5.

2 Theoretical background

This paper is meant as an introduction into the usage of our library and is not meant to give a
full introduction to functional renormalization group (FRG) as a computational method. For
such an introduction we refer the reader to Refs. [16, 17, 27, 28]. Our library implements a
level-2 truncated FRG in static vertex approximation and optional static self-energy feedback.
This flavor of FRG, often called vertex flow (or RPA+), treats fluctuations from the different
diagrammatic channels on equal footing. It thus allows for a diagamatically unbiased predic-
tion of the phase diagram of a model. The method was widely applied to the 2D Hubbard
model [21,22,25,29–31], and more recently to other, more complex, models [32–51]. For an
overview of the three different flavors of the vertex flow FRG, we refer the reader to Ref. [52].
In the following we briefly explain the type of models that can be studied with divERGe, and
thereafter detail the equations that are solved and give an introduction to the analysis of re-
sults.

1divERGe implements various Exact Renormalization Group examples.
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2.1 General setup

In general, we aim to study arbitrary fermionic models, on arbitrary lattices, with a kinetic
and a two-body interaction contribution. The Hamiltonian (in second quantization) for such
a model reads

H =
∑

12

t12c†
2c1

︸ ︷︷ ︸

T̂

+
∑

1234

V1234c†
3c†

4c2c1

︸ ︷︷ ︸

V̂

, (1)

with numbers denoting a collection of all quantum numbers specifying an electronic single-
particle state. The model initialization from within the code is described in detail in Section 3.

2.2 Flow equations

Once the model is implemented, we solve the flow equations for the three different diagramatic
channels and (optionally) the static self-energy (primed variables are summed over):

dΣΛ1,3(k)

dΛ
=
∑

2,4,k ′
SΛ4,2(k

′) FΛ1,2,3,4(k, k ′, k) , (2)

dΦpp,Λ
1,2,3,4(k1, k2; k3)

dΛ
=

1
2

FΛ1,2,1′,2′(k1, k2; k ′) FΛ3′,4′,3,4(k
′,q P − k ′; k3) L̇Λ1′,2′,3′,4′(k

′,q P − k ′) ,

(3)

dΦph,Λ
1,2,3,4(k1, k2; k3)

dΛ
= FΛ1,4′,3,1′(k1, k ′; k3) F

Λ
3′,2,2′,4(k

′ − q D, k2; k ′) L̇Λ1′,2′,3′,4′(k
′, k ′ − q D) ,

(4)

dΦcph,Λ
1,2,3,4(k1, k2; k3)

dΛ
= −FΛ1,4′,1′4(k1, k ′ − qC ; k ′) FΛ3′,2,3,2′(k

′, k2; k3) L̇Λ1′,2′,3′,4′(k
′, k ′ − qC) ,

(5)

where Matsubara frequency summations over ik′0 are implicit. The full two particle vertex F
is given as

FΛ = U +Φpp,Λ +Φph,Λ +Φcph,Λ , (6)

with U the fully irreducible vertex. The scale derivative of the loop is given in terms of the
single particle Greens-function and the single scale propagator S = G(∂ Λ(G0)−1)G:

L̇Λ1,2,3,4(k1, k2, k3, k4) =
�

SΛ1,3(k1)G
Λ
2,4(k2) + GΛ1,3(k1)S

Λ
2,4(k2)
�

δk1,k3
δk2,k4

. (7)

The non-interacting Green’s function G0 is modified by a multiplicative regulator f (Λ):

G0→ GΛ0 = G0 f (Λ) , (8)

and the interacting Green’s function is given as

GΛ =
�

(GΛ0 )
−1 −ΣΛ
�−1

. (9)

Within divERGe, we employ a sharp cutoff as regulator, i.e., f (Λ) = Θ(|ω| −Λ). This choice
significantly reduces numerical complexity in several parts of the code (see Ref. [52] and Ap-
pendix D).

From the above equations, we immediately find the connections between FRG and other
diagrammatic approaches, such as the RPA and the parquet approximation. If we were to
neglect the flow of all but one channel, we restore the RPA series specific to that channel [28],
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while when comparing with parquet, we find that we miss the multi-loop class of diagrams [53–
55]. These observations motivate a nomenclature as “RPA+” of the FRG flow — we include the
RPA diagrams of all channels and most of the simultaneous cross-insertions of those ladders
as feedback (missing only the multi-loop corrections).

2.3 Analysis of results

The differential equations for the vertices (flow equations) are solved numerically until a di-
vergence of one of the vertex components occurs or the minimal scale is reached. A divergence
is indicative of a phase transition to an ordered state. In that case, the flow is stopped and
from analysis of the vertex, susceptibilities, and linearized gap equations, we can extract in-
formation of the ordered state, see Ref. [52].

3 Creating a model

The central object in a momentum space FRG calculation is a model that includes informa-
tion on kinetics and interactions. Alongside with some more parameters, these two pieces of
information make the required ones to setting up a simulation. For defining a model from a
Hamiltonian, we first have to choose our basis states

|R, o1, s1〉 , (10)

with o1 the combined orbital-site index within a unit cell and R the real-space lattice vector
which connects a site to the reference unit cell. The spin index in z basis is denoted by s1.
While the code technically allows for arbitrary spins, the spin symmetric variant of the flow
equations is only implemented for spin-1/2 particles.

3.1 Required structures

We choose to use a formulation of kinetics based on real space hopping parameters. Quali-
tatively equivalent, the vertices are also passed as real space description in the three distinct
interaction channels. Both must be supplied by the user. The following section explains these
three key ingredients of the code, starting with the overarching diverge_model_t structure:

1 struct diverge_model_t {
2 char name[MAX_NAME_LENGTH ];
3

4 index_t nk[3];
5 index_t nkf[3];
6 mom_patching_t* patching;
7

8 index_t n_ibz_path;
9 double ibz_path[MAX_N_ORBS ][3];

10

11 index_t n_orb;
12 double lattice[3][3];
13 double positions[MAX_N_ORBS ][3];
14

15 index_t n_sym;
16 complex128_t* orb_symmetries;
17 double rs_symmetries[MAX_N_SYM ][3][3];
18

19 index_t n_hop;
20 rs_hopping_t* hop;
21 hamiltonian_generator_t hfill;
22

23 int SU2;
24 index_t n_spin;
25

5
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26 index_t n_vert;
27 rs_vertex_t* vert;
28

29 tu_formfactor_t* tu_ff;
30 index_t n_tu_ff;
31

32 index_t n_vert_chan[3];
33

34 channel_vertex_generator_t vfill;
35 full_vertex_generator_t ffill;
36 greensfunc_generator_t gfill;
37 greensfunc_generator_t gproj;
38

39 char* data;
40 index_t nbytes_data;
41

42 internals_t* internals;
43 };

We will detail the use of all fields within the structure in the following. For initialization of the
diverge_model_t struct, we provide the function2

1 // C/C++:
2 #include <diverge.h>
3 ...
4 diverge_model_t* model =

diverge_model_init ();

1 # Python:
2 import diverge
3 ...
4 model = diverge.

model_init ()

This function returns a pointer (i.e., a handle) to a diverge_model_t structure. It further-
more ensures a sensible default of all optional parameters, but does not set the required ones.
For the destruction of the structure, the function

1 void diverge_model_free( diverge_model_t* model );

is provided.3 The resulting skeleton that initializes the library and a model handle is given in

Example 1 The skeleton of a simple example program using the divERGe C(++) library is
formed by: including the function declarations (ll. 1-2), initializing the library (ll. 5-6), allo-
cating a diverge_model_t structure (l. 7), and freeing resources (ll. 97-98).

1 #include <diverge.h>
2 #include <diverge_Eigen3.hpp >
3

4 int main(int argc , char** argv) {
5 diverge_init( &argc , &argv );
6 diverge_compilation_status ();
7 diverge_model_t* model = diverge_model_init ();

...
97 diverge_model_free( model );
98 diverge_finalize ();
99 }

Example 1. In the diverge_model_t structure, the following data fields must be set

• nk[3]: number of k-points for the vertex in direction of the reciprocal lattice vectors. If
non-zero, periodicity along that direction is assumed: To simulate a 2D model we have
to set nk[2]=0.

• nkf[3]: number of fine k-points around each coarse one in each direction for the loop
integrals. Dimensionality has to match nk[3].

2In general, the Python wrappers discard the diverge_ prefix present in the C functions. We solely describe
the C interface in the following, as the Python interface follows tightly.

3In addition to releasing internally allocated data and the handle, it takes care of releasing all user-allocated
data attached to the diverge_model_t handle.
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• n_orb: number of orbitals and sites in the unit cell.

• lattice[3][3]: Bravais-lattice vectors in 3D. Assumes C-ordering: lattice[0][i]
is i-th component of the first Bravais-lattice vector.

• positions[MAX_N_ORBS][3]: positions of each site and orbital — the first n_orb
entries will be used as the positions.4

• SU2: Set to true means that the model is SU(2) symmetric and therefore spins are
implicit.

• n_spin: number of spin quantum numbers (nspin = (S + 1/2) · 2), with the exception
that for SU(2) symmetric systems n_spin should be set to one. If the model is not SU(2)
symmetric the interactions are forcibly symmetrized by the crossing relations (ensuring
that Pauli’s principle holds).

From C(++), setting all nonzero parameters results in Example 2. To access a field (“field”)

Example 2 Setting simple model parameters: A triangular lattice (ll. 8-12) is written directly
to the arrays, whereas the basis of a honeycomb lattice (ll. 13-16) is calculated using the lattice
vectors. Other required and optional parameters are set in lines 18-28.

...
8 // lattice & sites
9 model ->lattice [0][0] = 1.0;

10 model ->lattice [1][0] = cos(M_PI /3.);
11 model ->lattice [1][1] = sin(M_PI /3.);
12 model ->lattice [2][2] = 1.0;
13 Map <Mat3d > positions(model ->positions [0]);
14 Map <Mat3d > latt_vecs(model ->lattice [0]);
15 positions.col(0) = -1./3. * (latt_vecs.col(0) + latt_vecs.col (1));
16 positions.col(1) = 1./3. * (latt_vecs.col(0) + latt_vecs.col(1));
17 // other model parameters
18 index_t nk = 24, nkf = 15;
19 model ->n_orb = 2;
20 model ->n_spin = 1;
21 model ->SU2 = true;
22 model ->nk[0] = model ->nk[1] = nk;
23 model ->nkf[0] = model ->nkf[1] = nkf;
24 model ->n_ibz_path = 4;
25 model ->ibz_path [1][0] = 0.5;
26 model ->ibz_path [2][0] = 2./3.;
27 model ->ibz_path [2][1] = 1./3.;
28 strcpy( model ->name , "graphene" );

...

from Python using the handle (“model”) returned by the routine diverge.model_init(),
one must use model.contents.field. In order to facilitate the interfacing with numpy
arrays, the diverge.view_array function is given. It returns an array view of the chunk of
memory that is input as parameter. Usage is detailed in the Python examples (see the divERGe
repository [18]). Beyond these simple fields, the diverge_model_t struct contains more
complicated members, explained in greater detail in the following.

3.1.1 Kinetics: rs_hopping_t

In spirit similar to Wannier90 [56–58], we define one single hopping parameter through the
following structure:

4The number of orbitals usable in divERGe is limited to MAX_N_ORBS=32768, which should be sufficient for
most calculations, but can be changed by recompiling the library.
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1 struct rs_hopping_t {
2 index_t R[3];
3 index_t o1 , o2, s1, s2;
4 complex128_t t;
5 };

The number of such hopping parameters given in diverge_model_t is n_hop. From C
the struct is initialized using plain malloc, while from Python, using the provided function
diverge.alloc_array(shape, dtype) is required in order to bypass Python’s garbage
collector.5

The value of the hopping parameters can be readily read off from the kinetic part of the
Hamilton operator T̂ as the matrix elements

to1,o2,s1,s2,R = 〈R, o2, s2| T̂ |0, o1, s1〉 , (11)

where oi are the orbitals/sites as specified by positions (and n_orb), si are the spin quan-
tum numbers and R[3] are the shifts in Bravais lattice vectors between o1 and o2. Thereby, the
distance is defined as d = r 2 + R − r 1, if this definition is not obeyed during model creation,
the default symmetry generation provided in divERGe will not work. For SU(2) symmetric
systems, the spin indices s1 and s2 are ignored in the hopping parameter structure and hence a
diagonal spin sector is assumed. In practice, setting hopping parameters for a model amounts
to a loop similar to the one given in Example 3.

Example 3 Determining the nearest and next-nearest neighbor distance (ll. 30-31), allocation
of hopping parameters (l. 33), looping over lattice vectors (l. 34) and site indices (l. 35), and
setting the hopping parameters (ll. 39-42) if the corresponding length matches (ll. 37-38).

...
29 // hopping parameters
30 double t1_dist = positions.col(0).norm(),
31 t2_dist = latt_vecs.col (0).norm();
32 double t1 = 1.0, t2 = 0.1;
33 model ->hop = (rs_hopping_t *) calloc( 1024, sizeof(rs_hopping_t) );
34 for (int Rx=-5; Rx <=5; ++Rx) for (int Ry=-5; Ry <=5; ++Ry)
35 for (int o=0; o<2; ++o) for (int p=0; p<2; ++p) {
36 assert( model ->n_hop < 1024 );
37 double dist = ( latt_vecs.col(0) * Rx + latt_vecs.col (1) * Ry +
38 positions.col(p) - positions.col(o) ).norm();
39 if (fabs(dist - t1_dist) < 1e-5)
40 model ->hop[model ->n_hop ++] = rs_hopping_t{ {Rx,Ry ,0}, o,p,

,→ 0,0, t1 };
41 if (fabs(dist - t2_dist) < 1e-5)
42 model ->hop[model ->n_hop ++] = rs_hopping_t{ {Rx,Ry ,0}, o,p,

,→ 0,0, t2 };
43 }

...

For convenient usage of divERGe as a post-processing tool for ab-initio simulations, we
interface our code to Wannier90 Hamiltonian files (_hr.dat files) with the function

1 rs_hopping_t* diverge_read_W90_C( const char* fname , index_t nspin ,
2 index_t* len );

A call to diverge_read_W90_C6 allocates and fills the rs_hopping_t array and sets
*len to the number of elements that were read. nspin describes the spin quantum numbers
in the _hr.dat file. A default value of nspin = 0 amounts to an SU(2) symmetric model. If
nspin ̸= 0, it must be set as |nspin| = 2S + 1, with S the physical spin (i.e., for S = 1/2 we

5Note that after having initialized the hopping array, one has to make the parameter hop point to the right
location in memory. In the Python interface, this reads model.contents.hop = hoppings.ctypes.data.

6In C++, we provide the simplified diverge_read_W90 (and in Python diverge_read_W90_PY) in order
to not having to deal with the raw pointers.
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have |nspin| = 2). The sign determines whether the spin index is the one which increases
memory slowly (negative) or fast (positive) in the _hr.dat file. Note that the divERGe con-
vention is always (s, o),7 i.e. spin indices walking through memory faster than orbital indices
(‘outer indices’). In Example 3, we could — instead of explcitly looping over hopping pa-
rameters — substitute lines 30-40 with the following function call (given graphene_hr.dat
contains hoppings):

1 model ->hop = diverge_read_W90_C( "graphene_hr.dat", 0, &model ->n_hop );

3.1.2 Interactions: rs_vertex_t

In general, any static two particle-interaction can be written as

V̂ =
∑

1234

V1234c†
3c†

4c2c1 . (12)

Thus in all generality, we can specify the two particle interaction by its dependency on four
orbitals, four spins and three momenta. This scaling in system size with power 3 (or even
4) discourages users from a direct initialization of the four point object (however it is possi-
ble, see Appendix A.4). Luckily, a fair subclass of possible interactions can be formulated as
inter-orbital bilinear vertices in one of the three inequivalent interaction channels [59]. The
simple interface therefore restricts the possible input to such vertices that can be efficiently
represented in real space.8,9 Similar to the hopping parameter definition (cf. Section 3.1.1),
we define the structure for vertices as

1 struct rs_vertex_t {
2 char chan;
3 index_t R[3];
4 index_t o1 , o2, s1, s2, s3, s4;
5 complex128_t V;
6 };

The allocation of the structure is analog to the one of the rs_hopping_t. It differs from the
hopping parameters only in two points: The interaction channel is given as character that can
either be ‘C’ (for crossed particle-hole, i.e., the C-channel), ‘D’ (for direct particle-hole / D)
or ‘P’ (for particle-particle / P) and the user can supply four spin indices instead of two. In
the three interaction channels, the single vertices thus represent the following terms in the
interaction part V̂ of the Hamiltonian:

chan= P : V sa ,sb ,sc ,sd
oa ,ob ,oc ,od

(R)δoa ,ob
δoc ,od

δr oc+R,r oa
≡ Psa ,sb ,sc ,sd

oa ,oc
(R) , (13)

chan= C : V sa ,sb ,sc ,sd
oa ,ob ,oc ,od

(R)δoa ,od
δoc ,ob

δr oc+R,r oa
≡ C sa ,sd ,sc ,sb

oa ,oc
(R) , (14)

chan= D : V sa ,sb ,sc ,sd
oa ,ob ,oc ,od

(R)δoa ,oc
δod ,ob

δr od
+R,r oa

≡ Dsa ,sc ,sd ,sb
oa ,od

(R) . (15)

Notably, each term on the right hand side corresponds to a single rs_vertex_t. Note that
the orbitals are initialized in a channel specific form in this interface. For a code snippet, see
Example 4. Examples for different interactions, such as how to initialize a Hubbard-Kanamori
interaction or a long range Coulomb interaction are given in the examples. As in the case of
hopping parameters, spin indices s1,...,4 are ignored when simulating SU(2) symmetric models.
Moreover, a default spin configuration can be given for non-SU(2) systems as a special case:
For s1 = −1, the spin dependence of a given rs_vertex_t is initialized such that

Is1,s2,s3,s4
= δs1,s3

δs2,s4
, (16)

7Assuming C-style ordering of arrays.
8i.e., without the need to specify three real space vectors.
9For vertices that are native to one interaction channel but have a natural representation in momentum space

rather than real space, using a custom channel_vertex_generator_t can be useful (cf. Appendix A.3).
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Example 4 Setting the interaction parameters: Allocation (l. 48), setting a Hubbard-U on
both sites (ll. 49-50), looping over lattice vectors (l. 51) and sites (l. 52), and setting the
longer ranged vertex elements (ll. 56-59) for the corresponding distance (l. 54). Note how the
interaction parameters closely follow the logic for hopping parameters (cf. Example 3).

...
44 // interaction parameters
45 double V1_dist = positions.col(0).norm(),
46 V2_dist = latt_vecs.col (0).norm();
47 double V0 = 3.6, V1 = 0.1, V2 = 0.05;
48 model ->vert = (rs_vertex_t *) calloc( 1024, sizeof(rs_vertex_t) );
49 model ->vert[model ->n_vert ++] = rs_vertex_t{ ’D’, {0,0,0}, 0,0,

,→ -1,0,0,0, V0 };
50 model ->vert[model ->n_vert ++] = rs_vertex_t{ ’D’, {0,0,0}, 1,1,

,→ -1,0,0,0, V0 };
51 for (int Rx=-5; Rx <=5; ++Rx) for (int Ry=-5; Ry <=5; ++Ry)
52 for (int o=0; o<2; ++o) for (int p=0; p<2; ++p) {
53 assert( model ->n_vert < 1024 );
54 double dist = ( latt_vecs.col(0) * Rx + latt_vecs.col (1) * Ry +
55 positions.col(p) - positions.col(o) ).norm();
56 if (fabs(dist - V1_dist) < 1e-5)
57 model ->vert[model ->n_vert ++] = rs_vertex_t{ ’D’, {Rx ,Ry ,0},

,→ o,p, -1,0,0,0, V1 };
58 if (fabs(dist - V2_dist) < 1e-5)
59 model ->vert[model ->n_vert ++] = rs_vertex_t{ ’D’, {Rx ,Ry ,0},

,→ o,p, -1,0,0,0, V2 };
60 }

...

where I is any of the three channels. This ensures that the initialization of a non-SU(2)
Hubbard-Kanamori interaction is identical to the one in an SU(2) system when crossing is
enforced (see examples). We stress here that if a non-crossing symmetric interaction is ini-
tialized and crossing symmetry enforcement is turned off, the different backends do not have
to give compatible results, as there is an arbitrary freedom of parametrization in the flow
equations. Furthermore, the results in such a simulation are, in general, unphysical (violating
Pauli’s principle).

We are aware that with this interface, some two particle interactions cannot be encoded. To
circumvent this shortcoming, the code offers the possibility to provide a custom vertex genera-
tion function for the full four point vertex; full_vertex_generator_t (cf. Appendix A.4).

3.2 Optional but recommended: Point group symmetries

When allocating a diverge_model_t structure and inputting all the variables described
above, your code will already run. However, we recommend to also provide divERGe with
the symmetries of the model. Depending on the backend, this will reduce the runtime and
memory footprint or make the results symmetry preserving [52].

The point-group symmetries of the model can be attached to a handle (diverge_model_t)
via two arrays and their length (cf. ls. 15− 17 in the listing on p. 5), i.e.,

1 index_t n_sym;
2 complex128_t* orb_symmetries; // (n_sym , n_spin*n_orb , n_spin*n_orb)
3 double rs_symmetries[MAX_N_SYM ][3][3]; // (n_sym ,3,3)

where rs_symmetries stores the real-space transformations (3×3 matrices M, with r ′ =Mr )
and orb_symmetries stores the transformation behavior of the combined state of spin and
orbit. n_sym is the number of symmetries present in the model. The symmetries can be
directly provided by the user, however this can become cumbersome for multi-orbital and/or
multi-site models. Hence we provide

1 void diverge_generate_symm_trafo( index_t n_spin ,
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2 const site_descr_t* orbs , index_t n_orbs , const sym_op_t* syms ,
3 index_t n_syms , double* rs_trafo , complex128_t* orb_trafo );

to generate both the real space transformation (rs_trafo) and the orbital/sublattice/spin
space transformation (orb_trafo) for a symmetry operation specified by the list of symmetry
operators stored in syms and for orbitals specified by the site descriptors stored in orbs. We
will explain these two structs in the following. First, a single symmetry operator is defined by
the structure

1 typedef struct sym_op_t {
2 char type;
3 double normal_vector[3];
4 double angle;
5 } sym_op_t;

where type specifies the type of symmetry, with possible values ‘R’ (rotation), ‘M’ (mirror), ‘I’
(inversion), ‘S’ (spin rotation), ‘F’ (spin flip), and ‘E’ (identity). normal_vector[3] encodes
the normal vector to the plane in which the symmetry operation acts and angle the angle
of the rotation in degrees (ignored if the operation does not need an angle). To encode, for
example, a mirror in the yz-plane, we can set the following for the structure’s fields:

1 sym_op_t op;
2 op.type = ’M’;
3 op.normal_vector[0] = 1.0;
4 op.normal_vector[1] = 0.0;
5 op.normal_vector[2] = 0.0;
6 op.angle = 0.0;

A rotation by 90◦ around the z axis reads
1 sym_op_t op;
2 op.type = ’R’;
3 op.normal_vector[0] = 0.0;
4 op.normal_vector[1] = 0.0;
5 op.normal_vector[2] = 1.0;
6 op.angle = 90.0;

In the call to diverge_generate_symm_trafo, the parameter n_syms specifies the number
of elementary symmetry operations needed to describe the current symmetry. The order of
application of these elementary operations Oi to some vector v is On−1[On−2[. . . O1[O0[v]]]].

As the symmetry generator also works for tight-binding orbitals with non-trivial angular
dependence, we require the site_descr_t structure, which describes the content of real
spherical harmonics of the tight-binding basis function for each orbital- and site index: orbs
and the number of elements n_orbs.10 The structure is defined as

1 typedef struct site_descr_t {
2 complex128_t amplitude[MAX_ORBS_PER_SITE ];
3 real_harmonics_t function[MAX_ORBS_PER_SITE ];
4 index_t n_functions;
5 double xaxis[MAX_ORBS_PER_SITE ][3];
6 double zaxis[MAX_ORBS_PER_SITE ][3];
7 } site_descr_t;

Again the interface is inspired by the orbital interface of Wannier90 [56–58]. n_functions
gives the number of basis functions required for constructing the orbital and functions gives
the type of spherical harmonic, while amplitude is the complex weight of each of the basis
functions. For example, to generate a p+ orbital, we require a px and a py orbital with weights
of 1/
p

2 and i/
p

2 respectively. In case the coordinate system of the real spherical harmonic
does not align with the coordinate system of the lattice, we also allow for the arguments
xaxis and zaxis which are used to define the x and z axis of the real harmonic, these are

10We stress here that the value n_orbs passed to the symmetry generation routine does not have to equal n_orb
from the model, but only should be if you are planning to use the resulting symmetry transformations directly in
the model.
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optional and, if not changed by the user, the two coordinate systems are assumed to align. The
functions argument is set via enumeration values real_harmonics_t (see Appendix B.2).
The examples include models of various symmetry using both the Python and the C/C++
interfaces.

3.3 Preparing the model for a flow

After the model struct is initialized and filled with user data, internal structures must be gen-
erated. In addition to common internal structures, each backend defines its own internal
structure. Since users may want to do something with the Hamiltonian array, the energies, the
momentum meshes, etc. (common internal structures), the common internal structures are
initialized separately from the backend specific ones. Before starting with these potentially
computationally expensive operations, it is advised to check for obvious errors in the model.
These two steps result in the following lines of code:

1 if (diverge_model_validate( model ))
2 printf("something went wrong!\n");
3 diverge_model_internals_common( model );

After the validity check and initialization of common internals, many codes will in practice call
one of the following functions:

1 void diverge_model_internals_grid( diverge_model_t* m );
2 void diverge_model_internals_patch( diverge_model_t* m, index_t np_ibz );
3 void diverge_model_internals_tu( diverge_model_t* m, double maxdist );

which initialize the backend specific internals for the grid (l. 1), N -patch (l. 2) or the TUFRG
(l. 3) backend. Be aware that in the case of N -patch FRG, a Fermi surface patching is generated
automatically.11 This renders the above function sensitive to the model’s chemical potential µ.
Users are thus expected to adjust the value of µ (see Section 3.4) before the backend specific
internals are set, but after the common ones, since the call to

1 void diverge_model_internals_common( diverge_model_t* m );

contains the diagonalization of the Hamiltonian. This also implies that the Hamiltonian can-
not be changed after calling this function.12 Changing the default Hamiltonian generated by
diverge is easiest accomplished by writing a custom Hamiltonian generator that, as a first step,
calls the default Hamiltonian generator (see Appendix A.5).

3.4 Some convenience functions

Often times, one wishes to perform simulations of a model at several values of chemical poten-
tial µ or filling ν (where in our convention, ν = 0 corresponds to a completely empty model
and ν= 1 to a completely filled one). Three convenience functions are defined in divERGe to
perform tasks related to changing µ or ν of a given model:

1 double diverge_model_get_filling( diverge_model_t* model ,
2 const double* E, index_t nb );
3 double diverge_model_set_filling( diverge_model_t* model ,
4 double* E, index_t nb , double nu );
5 void diverge_model_set_chempot( diverge_model_t* model ,
6 double* E, index_t nb , double mu );

For all of them, the energy buffer (E) may be NULL (or None from Python), allowing for usage
of the internally constructed energy arrays (and number of bands) instead of E and nb. The
function diverge_model_set_filling, aside from setting µ correctly, returns the value µ
that was needed to fill the model to ν (at T = 0).

11This behavior can be changed by manually generating the patching structure before calling the function
diverge_model_internals_patch, see Appendix A.1.

12Under the assumption of using the default Green’s function generator.
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1 #!/usr/bin/env python3
2 #coding:utf8
3 import diverge.output as do
4 import matplotlib.pyplot as plt
5

6 M = do.read(’model.dvg’)
7

8 fig = plt.figure(layout="constrained", figsize =(3,2))
9 xvals = do.bandstructure_xvals(M)

10 plt.plot( xvals , do.bandstructure_bands(M), c=’navy’ )
11 plt.xticks(do.bandstructure_ticks(M), [r’$\Gamma$ ’,r’$M$’,r’$X$’,r’$\

Gamma$ ’])
12 plt.xlim( xvals[0], xvals [-1] )
13 plt.ylabel( r’$\epsilon_b ({\bf k})$’ )
14 fig.savefig(’bands.pdf’)

Listing 1: Simple Python script to plot the band structure of a divERGe model file
saved in model.dvg. The resulting plot, under the assumption of a three-band Emery
model, is shown in Fig. 1.

Furthermore, some of the internal structures may be accessed from outside through
1 double* diverge_model_internals_get_E( const diverge_model_t* model );
2 complex128_t* diverge_model_internals_get_U( const diverge_model_t* model );
3 complex128_t* diverge_model_internals_get_H( const diverge_model_t* model );
4 double* diverge_model_internals_get_kmesh( const diverge_model_t* model );
5 double* diverge_model_internals_get_kfmesh( const diverge_model_t* model );

Note that in advanced use cases (when, e.g., the standard Hamiltonian generator is overwrit-
ten), the first three of those functions are not guaranteed to return meaningful results.

Lastly, the user can access point group symmetrization routines for use on arbitrary arrays
of certain shape and data type:

1 double diverge_symmetrize_2pt_coarse( diverge_model_t* model ,
2 complex128_t* buf , complex128_t* aux );
3 double diverge_symmetrize_2pt_fine( diverge_model_t* model ,
4 complex128_t* buf , complex128_t* aux );
5 double diverge_symmetrize_mom_coarse( diverge_model_t* model ,
6 double* buf , index_t sub , double* aux );
7 double diverge_symmetrize_mom_fine( diverge_model_t* model ,
8 double* buf , index_t sub , double* aux );

The _fine (_coarse) functions act on arrays where the momentum dimension is equivalent
to the fine (coarse) momentum mesh. In case the auxiliary buffers (aux) are provided, they
must be of the same shape as the main buffer (buf). If they are NULL, internal allocations
are performed. We offer symmetrization of 2-point functions [_2pt, shape (nk, nb, nb)], and
diagonal functions [_mom, e.g. energy arrays, shape (nk,sub)].

3.5 Model output

Before performing the flow (see Section 4), which usually presents the computationally most
expensive task, it is advised to check whether the model is implemented correctly. Notably,
this step is often computationally cheap enough to be performed on a local machine. We allow
for models to be written to disk via

1 char* diverge_model_to_file( diverge_model_t* m, const char* name );
2 char* diverge_model_to_file_finegrained( diverge_model_t* m, const char*

name , const diverge_model_output_conf_t* cfg );

Using the second function, users can achieve fine-grained control over optional output such as
the momentum meshes, or the dispersion and orbital-to-band matrices in the primitive zone.
As return value, the above functions give the MD5 checksum of the output file as a string.
Details on the binary file format and optional output parameters are given in Appendix C.1.
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Figure 1: Band structure of a three-band Emery model plotted with the script given in
Listing 1. The model parameters (and the file model.dvg) are those from the Emery
example: examples/python_tutorial/emergent-3-model-details.py in
the git repository of divERGe [18] (or Appendix E.1).

As part of divERGe, we ship the Python library diverge.output that reads all divERGe
output files, including the model file and postprocessing files (see Section 5). Plotting the band
structure of a model merely requires a few lines of Python: Listing 1 contains all the code that
produces the band structure plot of a three-band Emery model shown in Fig. 1.

The steps described in Sections 3.3 to 3.5 are practically illustrated as a code snippet in
Example 5.

Example 5 Preparing a model for the flow: Validation (l. 62) precedes setting the common
internals (l. 67), the filling (l. 68), and the TUFRG specific internals (l. 69). We also showcase
model output to a file setting some of the non-default parameters (ll. 70-74).

...
61 // check!
62 if (diverge_model_validate(model))
63 diverge_mpi_exit(EXIT_FAILURE);
64 // finalize model and save to disk
65 double filling = 0.6,
66 ffdist = 2.1;
67 diverge_model_internals_common( model );
68 diverge_model_set_filling( model , NULL , -1, filling );
69 diverge_model_internals_tu( model , ffdist );
70 diverge_model_output_conf_t cfg =

,→ diverge_model_output_conf_defaults_CPP ();
71 cfg.E = true;
72 cfg.npath = -1;
73 cfg.kf_ibz_path = 1;
74 diverge_model_to_file_finegrained( model , "graphene_model.dvg", &cfg

,→ );
...

4 Performing the flow

4.1 A single flow step

Given that the user has allocated, filled, and initialized (the internals of) a diverge_model_t
structure, the next step towards performing an FRG flow is through the opaque structure
diverge_flow_step_t (serving as a handle). Allocation of which requires a fully initialized
diverge_model_t structure and must be performed via one of the following two functions:
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1 diverge_flow_step_t* diverge_flow_step_init( diverge_model_t* model ,
2 const char* mode , const char* channels );
3 diverge_flow_step_t* diverge_flow_step_init_any( diverge_model_t* model ,
4 const char* channels );

The second function is valid if and only if a single set of internal structures (corresponding to
a single backend) has been initialized in the model. As users may want to initialize multiple
backends, we provide the first of the two functions for precise control via the mode parameter
(that can be "grid", "patch", or "tu"). In both cases, channels is passed as string and
encodes which interaction channels are included in the FRG flow. If the character ’P’ (’C’,
’D’) is found in the channels string, the respective diagrams are calculated, allowing easy
access to RPA calculations in any of the interaction channels. For systems without SU(2) sym-
metry, one must not include the D-channel without the C-channel and vice-versa. Otherwise,
Graßmann symmetry would be broken. In addition to the interaction channels, the character
’S’ stands for the inclusion of (static) self-energies. Currently, these are only supported in the
TUFRG backend, which is subject to change in future releases.

After the initialization, the diverge_flow_step_t handle serves the purpose of perform-
ing Euler integration steps of the FRG flow [Eqs. (2) to (5)]. One integration step starting at
Λ and going to Λ+ dΛ is calculated by calling

1 void diverge_flow_step_euler( diverge_flow_step_t* step , double Lambda ,
2 double dLambda );

We stress that negative dΛ is required to flow from high Λ to zero. Since users often wish to
loop over flow steps, we provide a simple adaptive integrator. Its usage is explained below.

4.2 Integrating the flow equations

Under the approximations and assumptions taken within the scope of divERGe, the flow
equations are integrated from high scales Λ = ∞ to low scales Λ = 0 until a phase tran-
sition (divergence of a vertex element) is encountered or a minimal Λ is hit. In practice
we “flow” using a construction similar to loop shown in Example 6, where the function call
to diverge_euler_defaults_CPP() returns sensible defaults for many models (cf. Ap-
pendix B.1). This code snippet will integrate the flow equations until a stopping criterion

Example 6 Flow step initialization (l. 78) and cleanup (l. 96), integrator setup (the default
values are reasonable for most models; we change them to showcase the mechanism; ll. 79-
82), and flow loop idiom (ll. 83-88).

...
75 // flow
76 double vmax = 0;
77 double cmax [3] = {0};
78 diverge_flow_step_t* step = diverge_flow_step_init_any( model , "PCD"

,→ );
79 diverge_euler_t eu = diverge_euler_defaults_CPP ();
80 eu.Lambda = 10.0;
81 eu.dLambda = -1.0;
82 eu.maxvert = 10.0;
83 do {
84 diverge_flow_step_euler( step , eu.Lambda , eu.dLambda );
85 diverge_flow_step_vertmax( step , &vmax );
86 diverge_flow_step_chanmax( step , cmax );
87 mpi_printf( "%.5e %.5e %.5e %.5e %.5e\n", eu.Lambda , cmax[0],

,→ cmax[1], cmax[2], vmax );
88 } while (diverge_euler_next( &eu, vmax ));

...
96 diverge_flow_step_free( step );

...
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1 #!/usr/bin/env python3
2 #coding:utf8
3 import diverge.output as do
4 import matplotlib.pyplot as plt
5 import numpy as np
6

7 # helper function to map a complex array to colors
8 def complex_cmap( ary ):
9 A = ary.flatten ()

10 C = plt.cm.hsv( np.angle(A)/(2*np.pi)+0.5)
11 C[:,3] *= np.abs(A) / np.abs(A).max()
12 return C.reshape ((*ary.shape , 4))
13

14 M = do.read(’honeycomb.cpp.mod.dvg’)
15 O = do.read(’honeycomb.cpp.out.dvg’)
16

17 K = O.P_qV [0][1]
18 vector_colors = complex_cmap( O.P_qV [0][3][1:3] )
19 # select eigenvectors [1:3] and map to colors
20

21 fig , axs = plt.subplots( 2, 4, sharex=True , sharey=True ,
22 layout="constrained", figsize =(3 ,3) )
23 for idx in range (2):
24 for o1 in range (2):
25 for o2 in range (2):
26 ax = axs[o1,idx *2+o2]
27 ax.scatter( *M.kmesh[K,:2].T, c=vector_colors[idx ,:,o1,o2], s=70, lw=0

)
28 ax.set_aspect (1); ax.set_xticks ([]); ax.set_yticks ([])
29 ax.set_title( r’$\Delta ^{%i}_{%i%i}({\bf k})$’ % (idx+1,o1+1,o2+1),
30 fontsize =9 )
31 fig.savefig( ’patch.pdf’ )

Listing 2: Python code to produce Figure 2 from the output generated by examples/
c_cpp/honeycomb.cpp [18]. As the vertex eigenvectors for the honeycomb lattice
Hubbard model are complex in general, we must declare a helper function to plot
these complex arrays (complex_cmap). We select the eigenvectors at indices 1 and
2; those are the ones corresponding to dx y - and dx2−y2-wave superconducting gaps.

is met.13 After each integration step the snippet outputs the channel and vertex maxima, as
well as the current value of the integration scale Λ. The step-width is adjusted to keep the
error tangible while at the same time being efficient (cf. Appendix B.1). Note that when se-
lecting only a specific channel in the flow step initialization, the FRG flow amounts to an RPA
calculation in that channel (with formfactors accounting for non-channel-specific long range
interactions).

We specifically chose to leave control to the user regarding the flow loop, as it is never
performance critical and there are many things that can be done at each step of perform-
ing the flow. For example, vertices may be accessed through diverge_flow_step_vertex.
The indices etc. of the returned array are of course backend dependent. Nonetheless,
one can use it to, e.g., track specific components of the vertex. If the selfenergy is in-
cluded, we additionally provide functions to adjust the filling after each step by calling
diverge_flow_step_refill, leading to a quasi-canonical description. Note that this quasi-
canonical description may be ill-defined in many cases and is therefore not enabled by default.
For further usage see the online documentation14 as well as the examples.

13Usually either a channel becoming larger than a predefined value or a minimal scale.
14https://frg.pages.rwth-aachen.de/diverge.
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Figure 2: Visualization of the dx y and dx2−y2 superconducting gap func-
tions of the honeycomb lattice Hubbard model calculated in N -patch FRG
(examples/c_cpp/honeycomb.cpp [18] or Appendix E.2). The plot is generated
with the small Python script presented in Listing 2. We encode the complex phase
as color, and the magnitude as opacity. Notice how most of the orbital weight of the
gap function is on the off-diagonal elements ∆12(k) and ∆21(k).

5 Post processing and output

After integration of the flow equations and reaching a stopping criterion of the FRG flow, sus-
ceptibilities, vertex eigenvectors or solutions to linearized gap equations may provide physical
insights to the system [20,28,40,51,52]. Depending on the backend, the functions

1 void diverge_postprocess_and_write( diverge_flow_step_t* s,
2 const char* name );
3 void diverge_postprocess_and_write_finegrained( diverge_flow_step_t* s,
4 const char* name , const diverge_postprocess_conf_t* cfg );

perform an optimized set of these post-processing tasks and write the results to disk. Note
that we take the same approach as for diverge_model_t (cf. Section 3.5) in how the default
behavior can be changed by calling the fine-grained function with an additional configuration
structure. Details on the available parameters and file formats are found in Appendix C.2, a
practical example is given in Example 7.

All post-processing and model (cf. Section 3.5) files can be read into Python classes using
the library diverge.output. The file type is automatically recognized. As a demonstration,
we plot the (negative) leading P-channel eigenvectors of a honeycomb lattice Hubbard model
close to van Hove doping (the parameters are equivalent to those given in Fig. 4 (b) of Ref. [52],
at filling ν= 0.6). The few lines of Python in Listing 2 (mostly matplotlib) result in the visual
representation of the two degenerate superconducting dx y - and dx2−y2-wave states shown in
Fig. 2.
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Example 7 Doing post-processing given a flow step instance. The default parameters (l. 90)
can be changed (ll. 91-93) and passed to the post-processing routine (l. 94). The code ob-
tained from merging the snippets given in Examples 1 to 7 can be found in examples/c_cpp/
honeycomb_tutorial.cpp [18].

...
89 // post processing
90 diverge_postprocess_conf_t out =

,→ diverge_postprocess_conf_defaults_CPP ();
91 out.tu_storing_relative = true;
92 out.tu_storing_threshold = 0.8;
93 out.tu_which_solver_mode = ’s’;
94 diverge_postprocess_and_write_finegrained( step , "graphene_post.dvg",

,→ &out );
...

6 Conclusion

In this paper, we presented in detail the usage of the divERGe library. We focused on explaining
the interface for in- and output as well as the backend implementations. For applications of
this framework on physical systems, see Refs. [19,20,23,26,35,48,51,60]. We believe that the
flavors of FRG realized in divERGe represent a sophisticated drop-in replacement for RPA in
many applications in which qualitative predictions of correlated phases are wanted. As such,
the divERGe library has a promising future as an extension of the ab-initio pipeline. We be-
lieve that the library presented here significantly ameliorates the usability of FRG as a method
to study competing orders in solid state systems and hence massively increases the reach and
popularity of FRG in the scope of ab-initio as well as model calculations. In the future, we hope
that the tight connection of divERGe to Wannier90 allows to extend high-throughput mate-
rials databases [61–63] to FRG, paving the way for systematic characterization of competing
electronic orders in quantum materials. Moreover we plan to further entangle divERGe with
the existing ecosystem by, e.g., providing wrappers for interaction parameters obtained from
first principle codes [64].

The publication of this framework can however only be seen as a first step and many
possible future extensions are imaginable: First and foremost, the code in its current form does
not treat the frequency dependence, which would allow us to introduce retardation effects on
the two-particle level. This will not only require to “just implement” the frequency dependence,
but smarter representations of the frequency content of the high-dimensional vertex functions
have to be found. First steps in this direction have been recently taken [65–68]. Once this has
been achieved, the usage as a post-DMFT tool becomes available through the DMF2RG route
and related proposals [69–72]. Secondly, while a significant amount of time has been spent
with the optimization of the backends, reducing computational effort remains a continuous
challenge we strive to address.
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A Advanced initialization

The following fields of the diverge_model_t are not required to be filled by the user. In
fact, we highly recommend to only use these if you know what you are doing. No guarantees
for correctness of the results can be given anymore as some of these options override key
functions.

A.1 Fermi surfaces: mom_patching_t

The N -patch FRG backend of divERGe relies on the assumption that the model is defined on
a fixed momentum space given by nk (chosen to sufficient accuracy). Patching of the Fermi
surface as well as momentum integration of the loops happens on this momentum grid. We can
therefore guarantee, e.g., general operation for nontrivital Hamiltonians or usage with Green’s
functions instead of Hamiltonians. In practice, the requirement of a fixed momentum mesh
simplifies many aspects of an N -patch FRG calculation. For example, the structure to define a
patching is as simple as follows:

1 struct mom_patching_t {
2 index_t n_patches;
3 index_t* patches;
4 double* weights;
5

6 index_t* p_count;
7 index_t* p_displ;
8

9 index_t* p_map;
10 double* p_weights;
11 };

It includes the total number of patches (n_patches), the indices of these patches referencing
the coarse momentum mesh (patches), the weights assigned to each of the patches for Bril-
louin zone integrals (weights), and a detailed description of the refinement for each of the
patches (p_count, p_displ, p_map, p_weights).15

In the codebase, several convenience functions that simplify usage of the mom_patching_t
struct are defined. For example, Fermi surfaces can be found automatically using the following
function:

1 void diverge_patching_find_fs_pts_C( diverge_model_t* m, double* E,
index_t nb , index_t n_pts_ibz , index_t n_pts_search , index_t **
fs_pts_ptr , index_t* n_fs_pts_ptr );

Notice how the routine operates on arbitrary energies and number of bands.16 The resulting
vector is allocated and written to *fs_pts_ptr, with its size saved in *n_fs_pts_ptr.17 To

15The first two arrays, p_count and p_displ, serve as descriptors for the third and fourth array: For a given
patch index p, the slice p_displ[p]:p_displ[p]+p_count[p] of the arrays p_map and p_weights describes
all indices corresponding to the refinement of patch p as well as their weights, respectively.

16Similar to other divERGe routines, passing NULL for the energy array makes the library operate on the model
internals.

17A wrapper for C++ returning an std::vector<index_t> instead of allocating and filling an array at
*fs_pts_ptr and setting its length at *n_fs_pts_ptr as well as a wrapper for Python returning a numpy
array is defined due to the inconvenient way of dealing with pass-by-pointer.

19

https://scipost.org
https://scipost.org/SciPostPhysCodeb.26


SciPost Phys. Codebases 26 (2024)

generate the patching struct from the Fermi surface indices (which can of course be modified
before the struct generation), we provide

1 mom_patching_t* diverge_patching_from_indices( diverge_model_t* m,
2 const index_t* fs_pts , index_t n_fs_pts );

In addition, automatically refining the integration regions and re-symmetrizing those refined
integration meshes is available via

1 void diverge_patching_autofine( diverge_model_t* mod , mom_patching_t*
patch , const double* E, index_t nb, index_t ngroups , double alpha ,
double beta , double gamma );

2 void diverge_patching_symmetrize_refinement( diverge_model_t* mod ,
mom_patching_t* patch );

We advise users to consult the documentation and/or source code in case they wish to use
those functions.

To automate the procedure of generating a patching with the energies calculated from the
hopping parameters supplied, the default examples leave model->patching untouched and
instead only call

1 void diverge_model_internals_patch( diverge_model_t* m, index_t np_ibz );

Note that this call requires the common internal structures (cf. Section 3.3) to be set.

A.2 Formfactor expansions: tu_formfactor_t

The tu_formfactor_t structure is filled automatically when calling
1 void diverge_model_internals_tu(diverge_model_t* mod , double dist);

This call ensures that all form-factors for each site/orbital on the lattice that have a length
smaller than dist are included. Precisely, global and local point-group symmetries are re-
spected by this type of truncated unity [23]. The structure that is filled is exposed to the user
and reads

1 struct tu_formfactor_t {
2 index_t R[3];
3 index_t ofrom , oto;
4 double d;
5 index_t ffidx;
6 };
7 index_t n_tu_ff;

where R[3] is the Bravais-lattice vector18 corresponding to the form-factor. The bond connects
the orbital/site indexed by ofrom with the one indexed by oto which is located in the unit
cell shifted by R[3]. d is the absolute distance between ofrom and oto+R[3]. ffidx is
always constructed by the code itself, it enumerates all possible exponentials generated by the
different form-factors, which usually are far less than the form-factors themselves.

For fine-grained control over form-factors, the generation step can be bypassed by set-
ting a nonzero value for n_tu_ff. This transfers responsibility of allocating and filling the
tu_formfactor_t struct to the user. The code will then only sort it into the standardized
form and set ffidx. As minimal requirement, each site/orbital must possess the on-site form-
factor, i.e. ([0,0,0],o1,o1,0.0,0).

A.3 Custom channel based vertex generation

To allow for user-defined channel based vertex input, the model can be equipped with a func-
tion pointer that will be called instead of the default channel generation. The pointer is ex-
pected to have the form

18Given in units of the lattice vectors.
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1 int (* channel_vertex_generator_t)(diverge_model_t* model , char channel ,
complex128_t* buf);

the return value tells whether the buffer has been touched (1) or not (0). If it has been touched,
it is expected to contain the corresponding vertex channel in the order (nk, n_spin, n_spin,
n_orb, n_spin, n_spin, n_orb). Note that this function does not offer more versatility than
the default vertex generator, but can be used to implement interaction profiles that have a
natural representation in momentum space, rather than real space.

A.4 Custom full vertex generation

In cases where the user requires more versatility for the vertex initialization, they can attach
a full vertex generator function of the form

1 void (* full_vertex_generator_t)(const diverge_model_t* model ,
2 index_t k1 , index_t k2, index_t k3, complex128_t* buf);

to the model structure. The function is expected to return the full vertex at a specific momen-
tum combination in buf, as the full two-particle interaction is in general far too large to store.
We expect the user to not make use of parallelism within their full vertex generator, as the
function is called in parallel by divERGe. The index order is expected to be (n_spin, n_orb,
n_spin, n_orb, n_spin, n_orb, n_spin, n_orb). We do not encourage users to employ a
custom full vertex generator.

A.5 Custom Hamiltonian generation

The custom Hamiltonian generator can be useful if, e.g., the Hamiltonian is present as data
rather than hopping elements. It must be of the form

1 void (* hamiltonian_generator_t)(const diverge_model_t* model ,
2 complex128_t* buf);

Upon return, the Hamiltonian is stored in the buffer assuming an ordering of (prod(nk*nkf),
n_spin,n_orb, n_spin,n_orb). Another use case of a custom Hamiltonian generator is
modifying the Hamiltonian that is generated using the default Hamiltonian generator. In this
case, one would write a function that calls the default generator first, i.e.,

1 void custom_hamilton_generator( const diverge_model_t* model ,
2 complex128_t* buf ) {
3 diverge_hamilton_generator_default( model , buf );
4 // do something with model and buf , or any global variable
5 }

and attach it to the model handle as custom Hamiltonian generator hfill.

A.6 Custom Green’s function generation

Analogously, the Green’s function generator is of the structure
1 greensfunc_op_t (* greensfunc_generator_t)(const diverge_model_t* model ,
2 complex128_t Lambda , gf_complex_t* buf);

The function is expected to provide the Greens function at Λ and Λ∗ in buf in the index order
(±Λ, prod(nk*nkf), n_spin,n_orb, n_spin,n_orb). If gfill is set the Greens function is
generated with the user defined greens-function generator, which can be useful for simulation
of models where only a subspace of orbitals is correlated.19

In addition to changing gfill, the user may also set another Green’s function generator,
gproj. If this one is set, divERGe calculates L = L(G)− L(Gproj). This functionality is used

19Example found in examples/c_cpp/t2g_subspace.cpp [18].
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to remove certain subspaces from the kinetics.20 It can also be used to isolate the effects of
individual bands in the calculation. We note that when using a sharp frequency cutoff, we
formally replace the regulator f (Λ) by

GΛ = Gproj
0 + (G0 − Gproj

0 )Θ(|ω| −Λ) , (A.1)

where Gproj
0 ≡ T is the propagator in the target space and G0−Gproj

0 ≡ R the propagator in the
remote space (everything except the target space). This choice of the cutoff restricts the two
particle propagator to the high energy sector while the Greens function is not restricted [59,
74]. One can easily prove that with this regulator, terms of the form
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, (A.2)

are contained in the FRG flow, where we choose to implement the last expression for in-code
simplicity.

B Additional structures

B.1 Controlling the flow: diverge_euler_t

We include an adaptive Euler integrator in the library that allows fine-grained control over the
integration of the flow equations. In practice, the flow loop will often be given as

1 diverge_euler_t euler = diverge_euler_defaults; // or change the defaults
2 double vmax = 0.0;
3 do {
4 diverge_flow_step_euler( step , euler.Lambda , euler.dLambda );
5 diverge_flow_step_vmax( step , &vmax );
6 // do something with the vertices here
7 } while (diverge_euler_next( &euler , vmax ));

Notice how the next Λ and dΛ are generated using the function diverge_euler_nextwithin
the condition of the while loop: It returns 1 if a next step should be performed, and 0 if the
flow should be terminated. We offer control over the termination conditions and integrator
through the diverge_euler_t structure as follows:

1 struct diverge_euler_t {
2 double Lambda;
3 double dLambda;
4 double Lambda_min;
5 double dLambda_min;
6 double dLambda_fac;
7 double dLambda_fac_scale;
8 double maxvert;
9 double maxvert_hard_limit;

10 index_t niter;
11 index_t maxiter;
12 index_t consider_maxvert_iter_start;
13 double consider_maxvert_lambda;
14 };

The meaning of each of the parameters is explained in the following:

20Example found in examples/c_cpp/t2g_cfrg.cpp [18].
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• Lambda: starting scale Λ of the flow — should be larger than the bandwidth (default:
Λ= 50)

• dLambda: starting step-width dΛ of the flow, has to be negative. A rough estimate is
given by dΛ≈ −0.1Λ (default: dΛ= −5)

• Lambda_min: stopping value Λmin of Λ if no divergence is hit — has to be nonzero due
to the finite energy resolution of the simulation (default: Λmin = 10−5)

• dLambda_min: minimal allowed step-width dΛmin serving as a lower bound b on the
step-width (default: dΛmin = 10−6)

• dLambda_fac: defines an upper bound B for the step-width as Bfac = dΛfac ·Λ (default:
dΛfac = 0.1)

• dLambda_fac_scale: additional scaling factor dΛfac−sc for the calculation of the width
of the next step, used as an upper bound B for step-width: Bfac−sc = dΛfac−sc/Vmax · Λ
(default: dΛfac−sc = 1.0)

• maxvert: stopping condition such that the flow is halted when Vmax > maxvert, i.e.,
the maximal element of the vertex reaches maxvert (default: maxvert= 50)

• maxvert_hard_limit: Hard limit for the stopping condition — especially important
if consider_maxvert_iter_start is set (default: 104)

• niter: current number of performed flow steps (gets updated with each call to the
step-width function diverge_euler_next)

• maxiter: maximal number of performed flow steps (default: −1, thus ignored)

• consider_maxvert_iter_start: number of steps for which the stopping condition
is ignored, usefull when starting with long range interactions (default: −1, thus ignored)

• consider_maxvert_lambda: Λ starting from which the stopping condition is active
(default: −1.0, thus ignored).

After performing an Euler step from Λ to Λ + dΛ, the next step-width dΛ is calculated as
dΛ = max[min(Bfac, Bfac−sc), b], i.e., taking into account all the upper and lower bounds de-
fined above. Moreover, the multiple halting conditions are checked and the return value of
diverge_euler_next is chosen accordingly.

B.2 Encoding of real harmonics: real_harmonics_t

The enumeration real_harmonics_t encodes each real harmonic up to the g-shell such that
the orbitals can be easily set up for use as function in site_descr_t. Following Refs. [75,
76], we define real harmonics as

Sl,m =











(−1)mp
2
(Yl,m + (−1)mYl,−m) , m> 0 ,

Yl,0 , m= 0 ,
1p
2i
(Yl,m − (−1)mYl,−m) , m< 0 ,

(B.1)

in terms of the spherical harmonics Yl,m. Our naming convention is orb_ followed by the letter
of the shell (s,p,d,f,g) and the value of m where the negative values are indicated by an
‘m’ and positive values by an underscore ‘_’. Alternatively, all harmonics up to the d-shell are
accessible by their name.
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1 typedef enum real_harmonics_t {
2 orb_s = 0,
3

4 orb_pm1 = 1,
5 orb_p_0 = 2,
6 orb_p_1 = 3,
7 orb_py = 1,
8 orb_pz = 2,
9 orb_px = 3,

10

11 orb_dm2 = 4,
12 orb_dm1 = 5,
13 orb_d0 = 6,
14 orb_d1 = 7,
15 orb_d2 = 8,
16 orb_dxy = 4,
17 orb_dyz = 5,
18 orb_dz2 = 6,
19 orb_dxz = 7,
20 orb_dx2y2 = 8,
21

22 orb_fm3 = 9,
23 orb_fm2 = 10,
24 orb_fm1 = 11,
25 orb_f_0 = 12,
26 orb_f_1 = 13,
27 orb_f_2 = 14,
28 orb_f_3 = 15,
29

30 orb_gm4 = 16,
31 orb_gm3 = 17,
32 orb_gm2 = 18,
33 orb_gm1 = 19,
34 orb_g_0 = 20,
35 orb_g_1 = 21,
36 orb_g_2 = 22,
37 orb_g_3 = 23,
38 orb_g_4 = 24
39 } real_harmonics_t;

C File formats

divERGe uses binary files as output for the model and postprocessing data.21 Their file for-
mats are defined below. Python classes that read divERGe output files are distributed in the
diverge.output library. Note that we are well aware of the HDF5 library [77], but for
high portability and reduction of dependencies decided against using it and instead imple-
mented a very lightweight I/O based on the C standard library functions fopen(), fwrite(),
fclose() (or their MPI counterparts).

C.1 Model output file

To control the contents of the model file beyond their defaults, we provide the structure
diverge_model_output_conf_t, which is defined as

1 typedef struct diverge_model_output_conf_t {
2 int kc;
3 int kf;
4 int kc_ibz_path;
5 int kf_ibz_path;
6 int H;
7 int U;

21No output is generated for flow information, as the user themselves are responsible for looping over integration
steps, i.e., flowing.
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8 int E;
9 int npath;

10 } diverge_model_output_conf_t;

The individual elements control optional storage of (and are treated as boolean variables in-

model output header: (128 × int64_t)
white: physical parameters (variable)

technical parameters
non-input physical parameters

optional output (patching / finegrained)
reserved for future use

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566

676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127

magic number (’D’+’M’==145)
name [displ,size]

dimension
nk

nkf
n_patches

patches [displ,size]
weights [displ,size]
p_count [displ,size]
p_displ [displ,size]

p_map [displ,size]
p_weights [displ,size]
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ibz_path [displ,size]
n_orb

lattice (double[3][3])

positions [displ,size]
n_sym

orb_symmetries [displ,size]
rs_symmetries [displ,size]

n_hop
hop [displ,size]

SU2n_spin n_vert
vert [displ,size]

n_tu_ff
tu_ff [displ,size]

n_vert per channel (C , D, P )
data [displ,size]

reciprocal lattice (double[3][3])

k-mesh [displ, size]
kf-mesh [displ, size]
Hamiltonian [displ, size]
eigenvectors [displ, size]
eigenvalues [displ, size]
k-mesh IBZ path [displ, size]
kf-mesh IBZ path [displ, size]bandstructure config (npath) fin

egr
ain

ed
ou

tpu
tco

ntr
ol

band structure [displ, size]

offsetof(rs_hopping_t,...)

sizeof(rs_hopping_t)

offsetof(rs_vertex_t,...)

sizeof(rs_vertex_t)

offsetof(tu_formfactor_t,...)

sizeof(tu_formfactor_t)file format version [displ, size]
health check bit field

Figure 3: File format header for the files written by diverge_model_output.
The data is preceded by a header (written in binary form) consisting of 128 64-
bit (signed) integer numbers (index_t). If not specified else, all header vari-
ables are of the index_t type. The data section following the header contains
all arrays specified through their displacement (displ) and size (given in bytes).
Datatypes vary according to the array: char (name, data, file format version),
double (weights, p_weights, ibz_path, positions, rs_symmetries, k-mesh,
kf-mesh, eigenvalues, band structure), index_t (patches, p_count, p_displ,
p_map), rs_vertex_t, rs_hopping_t, tu_formfactor_t, and complex128_t
(everything else). More specific information on the array shapes is found in the
diverge.output library.
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ternally if not specified else)

• kc: store coarse momentum mesh

• kf: store fine momentum mesh

• kc_ibz_path: if an IBZ-path has been set, stores the points in the coarse mesh on the
path

• kf_ibz_path: if an IBZ-path has been set, stores the points in the fine mesh on the
path

• H: store the Hamiltonian on the fine mesh

• U: store the orbital-to-band transformations on the fine mesh

• E: store energies on the fine mesh

• npath: integer value. If nonzero, use this value as if diverge_output_set_npath
had been called, but with precedence. Allows control over the number of points on the
band structure path (if > 0), or, using the internal fine k-mesh and the path constructed
from there (cf. kf_ibz_path, if −1).

The binary model output file consists of a 128×64 bit header followed by data. A graphical
representation of the file format for model output (i.e. its header) is documented in Fig. 3.
To read an array from the output file, one must look up the displacement and size from the
header. A simple C example program reading an array from a divERGe model file is shown in
Listing 3.

1 #include <stdio.h>
2 #include <stdint.h>
3 #include <stdlib.h>
4

5 int main(void) {
6 FILE* f = fopen("model.dvg", "rb");
7

8 // header
9 int64_t header[128];

10 fread(header , sizeof(int64_t), 128, f);
11

12 // we want to read the array specified by [88, 89]
13 double* energies = (double *) malloc(header[89]); // allocate memory (

size)
14 fseek(f, header[88], SEEK_SET); // set offset
15 fread(energies , 1, header[89], f); // read
16

17 // do something with the array here
18 printf("read energiy array of size (%lu)\n", header[89]/ sizeof(double))

;
19

20 free(energies);
21 fclose(f);
22 }

Listing 3: C example program that reads the dispersion array from a divERGe model
output file (model.dvg) to illustrate how to deal with the file format from languages
that are not Python.
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C.2 Postprocessing output files

The heterogenous nature of postprocessing options for the different backends suggests specific
file formats for each of them. A definition of the respective file headers is given in the following
subsections. To control what will be stored, we provide the diverge_postprocess_conf_t
struct, which is defined as

1 typedef struct {
2 bool patch_q_matrices;
3 bool patch_q_matrices_use_dV;
4 int patch_q_matrices_nv;
5 double patch_q_matrices_max_rel;
6 char patch_q_matrices_eigen_which;
7 bool patch_V;
8 bool patch_dV;
9 bool patch_Lp;

10 bool patch_Lm;
11

12 char grid_lingap_vertex_file_P[MAX_NAME_LENGTH ];
13 char grid_lingap_vertex_file_C[MAX_NAME_LENGTH ];
14 char grid_lingap_vertex_file_D[MAX_NAME_LENGTH ];
15 int grid_n_singular_values;
16 bool grid_use_loop;
17 char grid_vertex_file[MAX_NAME_LENGTH ];
18 char grid_vertex_chan;
19

20 char tu_which_solver_mode;
21 double tu_storing_threshold;
22 bool tu_storing_relative;
23 index_t tu_n_singular_values;
24 bool tu_lingap;
25 bool tu_susceptibilities_full;
26 bool tu_susceptibilities_ff;
27 bool tu_selfenergy;
28 bool tu_channels;
29 bool tu_symmetry_maps;
30 } diverge_postprocess_conf_t;

• patch_q_matrices: assemble a list of all possible momentum transfers qX in each of
the interaction channels X and save the vertices V (qX , kX , kX ′) in this representation
(default: true)

• patch_q_matrices_use_dV: use the differential vertex instead of the vertex for gen-
eration of the q_matrices (default: false)

• patch_q_matrices_nv: how many eigenvectors to store in the q_matrices. If <0,
do not perform an eigen decomposition, if ==0, store all eigenvectors. (default: 0)

• patch_q_matrices_max_rel: restrict the analysis only to those qX where the relative
vertex norm is greater than this value (default: 0.9)

• patch_q_matrices_eigen_which: choose which eigenvalues and -vectors to store:
’M’agnitude, ’P’ositive, ’N’egative, or ’A’lternating (default: ’M’)

• patch_V: include the full vertex in the output (default: false)

• patch_dV: include the differential vertex in the output (default: false)

• patch_Lp: include the particle-particle loop in the output (default: false)

• patch_Lm: include the particle-hole loop in the output (default: false)

• grid_lingap_vertex_file_P: store the q P = 0 vertex to this file if not "" (default:
"")
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• grid_lingap_vertex_file_C: store the qC = 0 vertex to this file if not "" (default:
"")

• grid_lingap_vertex_file_D: store the q D = 0 vertex to this file if not "" (default:
"")

• grid_n_singular_values: Number of singular values to be stored from the lineaized
gap solution (default: 20)

• grid_use_loop: Solve linearized gap equation for vertex times loop (default: true)

• grid_vertex_file: name of the file into which the vertex should be stored. Requires
a lot of disk space! (default: "" — which means nothing will be saved)

• grid_vertex_chan: if grid_vertex_file is non-empty chooses the channel in
which the vertex is stored (options are ’P’,’C’,’D’,’V’, default: ’0’)

• tu_which_solver_mode: specifies routine to diagonalize channel — possible values
are ’e’ (force eigensolver), ’s’ (force SVD) and ’a’ (auto). The default is ’a’ which
checks whether the channel at q is hermitian and then decides whether to use an eigen-
value decomposition or an SVD

• tu_storing_threshold: absolute value above which eigenvalues/singular values are
stored (default: 50, should be smaller or equal to maxvert)

• tu_storing_relative: consider tu_storing_threshold as a relative maximum
instead of an absolute value, i.e., store all eigen/singular values and vectors if they are
above the product of tu_storing_threshold and the maximum eigen/singular value
for the channel over all q (default: false)

• tu_n_singular_values: number of singular values stored from the solution of the
linearized gap equation (default: 1)

• tu_lingap: evaluate linearized gap equation in each channel (default: true)

• tu_susceptibilities_full: calculate susceptibility in orbital basis q , o1−4, s1−4 (de-
fault: false)

• tu_susceptibilities_ff: calculate susceptibility in TU-native mixed orbital/bond
basis q , o1,3, b1,3, s1−4 (default: false)

• tu_selfenergy: store selfenergy if included in the calculation (default: false)

• tu_channels: store full channels from tu simulation Requires a lot of disk space!
(default false)

• tu_symmetry_maps: store symmetry transformation for one vertex leg (i.e., eigenvec-
tor; default false)

C.2.1 Grid FRG backend

The (binary) grid output file consists of a 64× 64 bit header that is described in Fig. 4. This
header is followed by the output data.

C.2.2 N-patch backend

The (binary) N -patch output file consists of a 128× 64bit header that is described in Fig. 5.
This header is followed by the output data.
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grid output header: (64 × int64_t)
all displacements/sizes in units of 64bit

technical parameters
white: input physical parameters (variable)

internal physical quantities
output arrays

reserved for future use

01234567891011121314151617181920

21

60616263

...

magic number (’P’==80) Nk (nk)
Nb (nb)

Nf f (nff)
SU2formfactors [displ, size]

susceptibility [displ, size]
linearized gap [displ, size]
susceptibility [displ, size]

linearized gap [displ, size]
susceptibility [displ, size]

linearized gap [displ, size]
Nv (grid_n_singular_values)

Nk ⋅Nb
2

file format version [displ, size]magic number (’P’==80)

P

C

D

Figure 4: Specification of the file format for grid-FRG postprocessing output files.
The header (64 signed 64-bit integers) is followed by data indexed by the displace-
ment/size information. Note that, unlike model output files (cf. Fig. 3), displacement
and size information is given in units of 64 bits, i.e., 8 bytes. For grid-FRG, the user
has control over saving the susceptibilities for each interaction channel as well as the
solutions of a linearized gap euqation at qX = 0.

N-patch output header: (128 × int64_t)
all displacements/sizes in units of 64bit

technical parameters
optional output

reserved for future use

01234567891011121314151617181920212223

24

124125126127

...

magic number (’V’==86)vertex (V ) [displ, size]
PP-loop (LPP) [displ, size]

PH-loop (LPH) [displ, size]
diff. vertex (dV ) [displ, size]

channelusing dV ?
Nq

serialized V (q, k, k′)
channelusing dV ?

Nq

serialized V (q, k, k′)
channelusing dV ?

Nq

serialized V (q, k, k′)

file format version [displ, size](diagonalized) Pvertex
(diagonalized) Cvertex
(diagonalized) Dvertex

vertex(
(Nk,Nb,Nb ), (Nk,Nb,Nb ), 2

)

values (Nv )vectors (Nv,Nk,Nb,Nb, 2) yes
no

N
k

N
b q

eig
en? N
v

k descriptor
array of

Nk × int64_t

q0 q1 q2

contiguous arrays of (shape) × double

Nq blocks (q0, q1,… , qNq )

V (q, k, k′)
serialization

Figure 5: Specification of the file format for N -patch FRG postprocessing output
files. The header (128 signed 64-bit integers) is followed by data indexed by the
displacement/size information. Note that, unlike model output files (cf. Fig. 3),
displacement and size information is given in units of 64 bits, i.e., 8 bytes. For N -
patch FRG, the user has control over saving the vertex (V ), the loops (LPP, LPH),
the differential vertex (dV ), and a channel native representation of the vertices op-
tionally eigen-decomposed. As the N -patch representation of channel native inter-
actions is non-trivial, the data is further serialized with a sketch on how to read the
individual matrices or eigenvalues/-vectors on the bottom right. The Python library
diverge.output automatically deserializes those objects.

C.2.3 TUFRG backend

The (binary) TUFRG output file consists of a 128 × 64bit header that is described in Fig. 6.
This header is followed by the output data.
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tu output header: (128 × int64_t)
white: physical parameters (variable)

technical parameters
non-input physical parameters

optional output (finegrained)
reserved for future use

01234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465

66676869707172737475767778798081828384858687888990919293949596979899100101102103104105106...
122123124125126127

magic number (’T’==84)n_orb n_spin
prod(nk) prod(nk)*prod(nkf)

nkibz SU2n_orbff n_bondsn_sym
mi_to_ofrom [displ,size]

mi_to_oto [displ,size]
mi_to_R [displ,size]

bond_sizes [displ,size]
bond_offsets [displ,size]

idx_ibz_in_fullmesh [displ,size]
P_len [displ, size]
off_P [displ, size]

P_type [displ, size]
P_val [displ, size]
P_vec [displ, size]
C_len [displ, size]
off_C [displ, size]

C_type [displ, size]
C_val [displ, size]
C_vec [displ, size]
D_len [displ, size]
off_D [displ, size]

D_type [displ, size]
D_val [displ, size]
D_vec [displ, size]

Sgap_sc [displ,size]
Ugap_sc [displ,size]
Vgap_sc [displ,size]

Sgap_mag [displ,size]
Ugap_mag [displ,size]
Vgap_mag [displ,size]

Sgap_charge [displ,size]

Ugap_charge [displ,size]
Vgap_charge [displ,size]
suscPp [displ,size]
suscMa [displ,size]
suscCh [displ,size]
suscPp_ff [displ,size]
suscMa_ff [displ,size]
suscCh_ff [displ,size]
self_energy [displ,size]
P_ch [displ,size]
C_ch [displ,size]
D_ch [displ,size]
pp_bubble [displ,size]
ph_bubble [displ,size]
mi_map_len [displ,size]
mi_map_off [displ,size]
mi_map_idx [displ,size]
mi_map_pref_in_in [displ,size]
mi_map_pref_in_out [displ,size]
version [displ, size]

magic number (’T’==84)total filesize

Figure 6: File format header for the file written by
diverge_postprocess_and_write if TU backend is used. The data is pre-
ceded by a header (written in binary form) consisting of 128 64-bit (signed) integer
numbers (index_t). If not specified else, all header variables are of the index_t
type. The data section following the header contains all arrays specified through
their displacement (displ) (given in bytes) and size (given in number of elements
with the respective type). All arrays are of complex128_t type but mi_to_ofrom,
mi_to_oto, mi_to_R, bond_sizes, bond_offsets, idx_ibz_in_fullmesh,
all arrays containing off or len in their name and mi_map_idx which are of
type index_t. More specific information on the array shapes is found in the
diverge.output library.

D Implementational details

This chapter specifies design choices for the critical parts of each of the backends. We do not
discuss the implementation itself, but rather the basic ideas. Furthermore, the parallelization
strategy is explained for each of the backends.
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D.1 Grid FRG backend

Conceptually, the process of solving the FRG flow equations on a fixed momentum Bravais grid
for all vertex indices is simple. Achieving sufficient performance for simulations on nontrivial
two- and three-band models requires splitting the vertex buffers on more than one computation
node (via MPI). The main bottleneck is then given by the available memory size, but also by
computation of the contractions. For parallelization, the vertices are reordered such that a
channel-native representation is obtained and the contractions reduce to many matrix products
(along q) that are distributed across all compute nodes with MPI, then branching to cuBLAS
(GPU) or parallel BLAS (CPU) calls. The reordering procedure, while simple on one node,
involves multiple communication steps on a multi-node architecture.

Fundamentally the Grid backend scales with O(N4
k N6

o N6
s ) in computation time and with

O(N3
k N4

o N4
s ) in memory, with bottlenecks usually being communication, memory size, and

batched matrix matrix products.

D.2 N-patch backend

N -patch FRG inherently breaks momentum conservation and thereby rotational symmetries
of the system, which is due to the structure of the method itself: If all momenta are fixed to
the Fermi surface k1,2,3, the fourth momentum is not always. One approximates the vertex
element with one momentum away from the Fermi surface by fixing it to the closest point on
the Fermi surface.

The patching procedure and pinning of momentum points to a grid is discussed in Ap-
pendix A.1.

Fundamentally the N -patch backend scales with O(N4
p N6

o N6
s ) in computation time and

with O(N3
p N4

o N4
s ) in memory, with Np the number of momentum patches. Since the objects

involved are not extremely huge in memory, they are copied onto all MPI ranks of a calcula-
tion. The computational work is distributed using MPI and OpenMP on CPUs as well as CUDA
on GPUs, with the main issue on both architectures being memory locality (since the vertex
products cannot be written as matrix multiplications).

D.3 TUFRG backend

For the TUFRG backend, the most expensive components for usual models are the loop calcu-
lation and the projections. For the projections, the implementation follows Ref. [23], with a
slight improvement — the calculation of the expression is split into two parts. We recapitulate
the general formula for the projection from C to P:

P̂[Ĉ−1[C]]b1,b3
o1,o3
(qP)

s2,s4
s1,s3
= δo1+b1,o3+b′3

δo3+b3,o1+b′1
δB1−B′1,B′3−B3

ei(B′3−B3)q P C
b′1,b′3
o1,o3
(B′3 − B3)

s4,s2
s1,s3

.
(D.1)

Here, we already inserted the form-factor bonds. In a first step, we calculate C
b′1,b′3
o1,o3
(B′3−B3)

s4,s2
s1,s3

,
which technically is a Fourier Transformation onto a restricted mesh. In a second step we
multiply out the the vertex in real-space with the prefactors. These are calculated in advance
and require only little memory. In the standard form this is parallelized with OpenMP; when
enabling MPI, the calculation is split along different q and at the end of step one a call to
MPI_Allreduce is performed. If GPUs are available, the second step is performed with a
hand-written kernel.
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For the calculation of the loop we utilize a Fourier transformation trick [55, 78, 79] in
combination with a sharp frequency cutoff. This leads to

Lph;b1,b3
o1,o3

(qX )
s4,s2
s1,s3
=
∑

R

e−iRqX
�

Gs1,s3
o1;o3
(Λ,−R− B1 + B3)G

s2,s4
o1+b1;o3+b3

(Λ,R)

+ Gs1,s3
o1;o3
(−Λ,−R− B1 + B3)G

s2,s4
o1+b1;o3+b3

(−Λ,R)
�

, (D.2)

and for the particle-particle channel

Lpp;b1,b3
o1,o3

(q P)
s2,s4
s1,s3
=
∑

R

e−iRq P
�

Gs1,s3
o1;o3
(−Λ,R− B1 + B3)G

s2,s4
o1+b1;o3+b3

(Λ,R)

+ Gs1,s3
o1;o3
(Λ,R− B1 + B3)G

s2,s4
o1+b1;o3+b3

(−Λ,R)
�

, (D.3)

with the usual definition of the Green’s function as

G−1 = (G−1
0 −Σ)

−1 . (D.4)

Again, the implementation uses OpenMP for parallelization over orbitals, spins and bonds. An
optimized version for MPI (based on FFTW-MPI) is provided at compile time. In case of GPU
usage, a hand written kernel is used for the calculation of the Green’s function products and
combined with calls to cuFFT.

The flow product is evaluated using GEMM calls, which are distributed along the coarse
momentum index and offloaded to GPUs if available. Depending on the chosen model and
parameters, the leading scaling is either the loop O(NqNk log(NqNk)N2

f f N2
o N4

s ), the flow step

matrix products O(NqN3
f f N3

o N6
s ) or the the interchannel projections O(N2

o N3
f f N4

s Nq). Further-

more, memory usage of a calculation scales with O(NqN2
o N2

f f N4
s ).

Analogously, we use Fourier transformations for the calculation of the static self-energy,

dΣs1;s3
o1;o3
(R, 0)

dΛ
= −

1
2π

∑

ν=±Λ

�

Gs2;s4
o2;o4
(R+ B1 − B3,ν)δo1+b1,o2

δo3+b3,o4
P b1,b3

o1,o3
(R+ B1 − B3,ν)s2;s4

s1;s3

+ Gs2;s4
o2;o4
(−R− B1 + B3,ν)δo1+b1,o4

δo3+b3,o2
C b1,b3

o1,o3
(−R− B1 + B3,−ν)s4;s2

s1;s3

+δo1+b1,o3
δo4+b4,o2

δB1,−Reik ′B4 Gs2;s4
o2;o4
(k ′,ν)Db1,b4

o1,o4
(0)s3;s2

s1;s4

�

. (D.5)

D.4 Scaling and runtime

To give potential users a better feeling of what can and cannot be done with divERGe we
present scaling plots and give reference runtimes for a three band Emery model. The form-
factor cutoff distance is set to 1.2 and the number of coarse and fine momentum points is
varied, see Fig. 7. We observe a significant speedup when computing on GPUs, though the
GPU speedup is not optimal (bottlenecks: host-device communication and parts of the algo-
rithms that run on CPUs). The CPU algorithm has its main bottleneck in communication,
precisely in the calculation of the loop (via FFTW-MPI).

Note that the momentum resolutions treated in Fig. 7 are way beyond what is necessary
for most calculations. A fully converged (3 orbitals, 127 formfactors, 322 momentum points
and (32×55)2 integration points for the loop) standard calculation (reaching Λ= 10−3) on a
single JURECA DC-GPU node (4 NVIDIA A100 GPUs) takes around 5 Minutes.

E Example codes used in this manuscript

The data used in Fig. 1 (and Listing 1) were generated using the Python code given in Ap-
pendix E.1. Figure 2 (plotted via Listing 2) contains data generated using the C++ code from
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# MPI ranks (×16 cores)
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a
CPU: AMD EPYC 7742

Nk = (1600)2

Nk = (4800)2

Nk = (12800)2

1 2 3 4
number of GPUs

b
GPU: NVIDIA A100

Figure 7: Performance analysis of the TU2FRG backend of divERGe for a three-orbital
model. We vary the total number of momentum points (Nk) and the number of MPI
ranks (a) or GPUs (b). The computational cost for large Nk is dominated by FFTs,
i.e. O(Nk log Nk)≈O(Nk) (faint lines). The largest system (orange) exceeds on-GPU
memory and hence suffers slightly from host-device data transfer.

Appendix E.2. Both codes are part of the online examples in divERGe’s git repository [18].
The code used in the example blocks is available in the git repository as examples/c_cpp/
honeycomb_tutorial.cpp. The code for the performance analysis in Fig. 7 can be found in
performance/t2g_model.c.

E.1 Emery model (Python)

1 #!/usr/bin/env python3
2 #coding:utf8
3 import diverge
4 import numpy as np
5

6 # initialization , needed for MPI compiled library
7 diverge.init( None , None )
8

9 # some parameters
10 params_emery = dict( Ud=3.0, Up=1.0, tdd=0.2, tpp=0.3, tdp =1.0 )
11 params_frg = dict( nk=8, nkf=5, model_output="model.dvg" )
12

13 # we now use the actual model structure
14 model = diverge.model_init ()
15 model.contents.name = b’Emery ’
16 model.contents.n_orb = 3
17 model.contents.SU2 = True
18 model.contents.n_spin = 1
19 model.contents.nk[0] = params_frg[’nk’]
20 model.contents.nk[1] = params_frg[’nk’]
21 model.contents.nkf [0] = params_frg[’nkf’]
22 model.contents.nkf [1] = params_frg[’nkf’]
23

24 # lattice and positions
25 lattice = diverge.view_array( model.contents.lattice , dtype=np.float64 ,

shape =(3,3) )
26 lattice [:,:] = np.eye(3)
27 positions = diverge.view_array( model.contents.positions , dtype=np.float64

, shape =(3,3) )
28 positions [:,:] = np.array( [[0,0,0], [0.5,0,0], [0 ,0.5 ,0]] )
29

30 # get the hopping phase between p orbitals
31 def get_phase( o1 , o2, po1 , po2 ):
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32 if o1 == o2 and o1 == 0:
33 return 1.0
34 elif o1 == 0 and o2 == 1:
35 return -1.0 if po2[0] > 0 else 1.0
36 elif o1 == 0 and o2 == 2:
37 return 1.0 if po2[1] > 0 else -1.0
38 elif o1 == 1 and o2 == 0:
39 dist = po1 -po2
40 return -1.0 if dist [0] > 0 else 1.0
41 elif o1 == 2 and o2 == 0:
42 dist = po1 -po2
43 return 1.0 if dist [1] > 0 else -1.0
44 else:
45 dist = po2 -po1
46 if dist [0] > 0:
47 return -1.0 if dist [1] > 0 else 1.0
48 else:
49 return -1.0 if dist [1] < 0 else 1.0
50

51 # hopping parameters
52 hop_list = []
53 tdd_norm = 1.0
54 tdp_norm = 0.5
55 tpp_norm = 0.5*np.sqrt (2.)
56 for Rx in range(-2,3):
57 for Ry in range(-2,3):
58 for o1 in range (3):
59 for o2 in range (3):
60 dist = np.linalg.norm(lattice [0]*Rx + lattice [1]*Ry +

positions[o2] - positions[o1])
61 phase = get_phase(o1 ,o2,positions[o1],lattice [0]*Rx +

lattice [1]*Ry + positions[o2])
62 if (np.isclose(dist , tdd_norm) and o1 == 0 and o2 == 0):
63 hop_list.append( ( [Rx, Ry, 0], o1 , o2 , 0,0, (-

params_emery[’tdd’]*phase ,0.0) ) )
64 if (np.isclose(dist , tpp_norm) and o1 != 0 and o2 != 0):
65 hop_list.append( ( [Rx, Ry, 0], o1 , o2 , 0,0, (-

params_emery[’tpp’]*phase ,0.0) ) )
66 if (np.isclose(dist , tdp_norm)):
67 hop_list.append( ( [Rx, Ry, 0], o1 , o2 , 0,0, (-

params_emery[’tdp’]*phase ,0.0) ) )
68 hop_array = diverge.alloc_array( (len(hop_list) ,), dtype="rs_hopping_t" )
69 hop_array [:] = hop_list
70 diverge.mpi_py_eprint( "using %i hopping elements" % len(hop_list) )
71 # set the hopping pointer
72 model.contents.hop = hop_array.ctypes.data
73 model.contents.n_hop = hop_array.size
74

75 # vertices
76 vertices = diverge.alloc_array( (3,), dtype="rs_vertex_t" )
77 vertices [0] = ( ’D’, [0,0,0], 0,0, -1,0,0,0, (params_emery[’Ud’],0.0) )
78 vertices [1] = ( ’D’, [0,0,0], 1,1, -1,0,0,0, (params_emery[’Up’],0.0) )
79 vertices [2] = ( ’D’, [0,0,0], 2,2, -1,0,0,0, (params_emery[’Up’],0.0) )
80 # set the vertex pointer
81 model.contents.vert = vertices.ctypes.data
82 model.contents.n_vert = vertices.size
83

84 # set the irreducible path
85 ibz_path = diverge.view_array( model.contents.ibz_path , dtype=np.float64 ,

shape =(4,3) )
86 model.contents.n_ibz_path = 4
87 ibz_path [:,:] = np.array( [ [0,0,0], [0,0.5,0], [0.5,0.5 ,0], [0,0,0] ] )
88

89 # validate the model
90 if diverge.model_validate( model ):
91 diverge.mpi_py_eprint( "invalid model!" )
92 diverge.mpi_exit (1)
93

94 # and initialize internal structures
95 diverge.model_internals_common( model )
96

97 # write to file
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98 checksum = diverge.model_to_file_PY( model , params_frg[’model_output ’],
kf_ibz_path =1, npath=-1 )

99 diverge.mpi_py_eprint( "wrote model to file %s (%s)" % (params_frg[’
model_output ’], checksum) )

100

101 # free resources
102 diverge.model_free( model )
103

104 # we need to accept that MPI requires finalization
105 diverge.finalize ()

E.2 Honeycomb model (C++)

1 #include <diverge.h>
2 #include <diverge_Eigen3.hpp >
3

4 const index_t nk = 1200;
5 const double t = 1.0;
6 const double tp = 0.1;
7 const double U = 3.6;
8 const double V = 0.0;
9 const double V2 = 0.0;

10 const index_t np = 4;
11

12 int main(int argc , char** argv) {
13 // init
14 diverge_init( &argc , &argv );
15 mpi_loglevel_set( 5 );
16 diverge_compilation_status ();
17 diverge_model_t* m = diverge_model_init ();
18

19 // set up honeycomb lattice
20 m->lattice [0][0] = m->lattice [1][0] = sin(M_PI /3.);
21 m->lattice [0][1] = m->lattice [1][1] = cos(M_PI /3.);
22 m->lattice [0][1] *= -1.0;
23 m->lattice [2][2] = 1.0;
24 Map <Mat3d > pos(m->positions [0]);
25 Map <Mat3d > lat(m->lattice [0]);
26 pos.col (0) = -1./3. * (lat.col (0) + lat.col(1));
27 pos.col (1) = 1./3. * (lat.col(0) + lat.col(1));
28 m->n_orb = 2;
29 m->n_spin = 1;
30 m->SU2 = 1;
31 m->nk[0] = m->nk[1] = nk;
32 m->nkf [0] = m->nkf[1] = 1;
33 m->n_ibz_path = 4;
34 m->ibz_path [1][0] = 0.5;
35 m->ibz_path [2][0] = 2./3.;
36 m->ibz_path [2][1] = 1./3.;
37 strcpy( m->name , __FILE__ );
38

39 // find hopping parameters
40 double t_norm = pos.col (0).norm();
41 double tp_norm = 1.0;
42 m->hop = (rs_hopping_t *) calloc(sizeof(rs_hopping_t), 1024);
43 m->vert = (rs_vertex_t *) calloc(sizeof(rs_vertex_t), 1024);
44 m->vert[m->n_vert ++] = rs_vertex_t{ ’D’, {0,0,0}, 0,0, -1,0,0,0, U };
45 m->vert[m->n_vert ++] = rs_vertex_t{ ’D’, {0,0,0}, 1,1, -1,0,0,0, U };
46 for (int Rx=-5; Rx <=5; ++Rx)
47 for (int Ry=-5; Ry <=5; ++Ry)
48 for (int o=0; o<2; ++o)
49 for (int p=0; p<2; ++p) {
50 double dist = (lat.col(0) * Rx + lat.col(1) * Ry + pos.col(p) -

pos.col(o)).norm();
51 if (std::abs(dist - t_norm) < 1e-5) {
52 m->hop[m->n_hop ++] = rs_hopping_t{ {Rx,Ry ,0}, o,p, 0,0, t };
53 m->vert[m->n_vert ++] = rs_vertex_t{ ’D’, {Rx,Ry ,0}, o,p,

-1,0,0,0, V };
54 }
55 if (std::abs(dist - tp_norm) < 1e-5) {
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56 m->hop[m->n_hop ++] = rs_hopping_t{ {Rx,Ry ,0}, o,p, 0,0, tp };
57 m->vert[m->n_vert ++] = rs_vertex_t{ ’D’, {Rx,Ry ,0}, o,p,

-1,0,0,0, V2 };
58 }
59 }
60

61 // set up symmetries
62 m->orb_symmetries = (complex128_t *) malloc(sizeof(complex128_t)*12*4);
63 site_descr_t sites [2];
64 for (int s=0; s<2; ++s) {
65 sites[s]. amplitude [0] = 1.0;
66 sites[s]. function [0] = orb_s;
67 sites[s]. n_functions = 1;
68 }
69 sym_op_t sym;
70 Map <Vec3d > sym_nvec(sym.normal_vector);
71 sym_nvec = Vec3d (0,0,1);
72 sym.type = ’R’;
73 for (int i=0; i<6; ++i) {
74 sym.angle = 60*i;
75 diverge_generate_symm_trafo( 1, sites , 2, &sym , 1, m->

rs_symmetries[m->n_sym ][0],
76 m->orb_symmetries+m->n_sym *4 );
77 m->n_sym ++;
78 }
79 sym.type = ’M’;
80 sym_nvec *= 0.0;
81 for (int i=0; i<6; ++i) {
82 sym_nvec.head (2) = Rot2d(M_PI /6.0 * i).toRotationMatrix () * Vec2d

(1,0);
83 diverge_generate_symm_trafo( 1, sites , 2, &sym , 1, m->

rs_symmetries[m->n_sym ][0],
84 m->orb_symmetries+m->n_sym *4 );
85 m->n_sym ++;
86 }
87

88 // check!
89 if (diverge_model_validate(m))
90 diverge_mpi_exit(EXIT_FAILURE);
91

92 // internals , patching , and saving the model to disk
93 diverge_model_internals_common(m);
94 diverge_model_set_filling( m, NULL , -1, 0.6 );
95 diverge_model_internals_patch( m, np );
96 diverge_model_output_conf_t cfg =

diverge_model_output_conf_defaults_CPP ();
97 cfg.kc = true;
98 cfg.npath = -1;
99 cfg.kc_ibz_path = 1;

100 char* md5 = diverge_model_to_file_finegrained(m, __FILE__ ".mod.dvg",
&cfg);

101 mpi_usr_printf( "md5sum: %s\n", md5 );
102

103 // flow
104 diverge_flow_step_t* s = diverge_flow_step_init( m, "patch", "PCD" );
105 diverge_euler_t eu = diverge_euler_defaults_CPP ();
106 eu.Lambda = 10.0;
107 eu.dLambda = -1.0;
108 eu.maxvert = 10.0;
109 eu.dLambda_fac = 1.0;
110 eu.dLambda_fac_scale = 0.1;
111 double maxvert = 0;
112 double chanmax [3] = {0};
113 do {
114 diverge_flow_step_euler( s, eu.Lambda , eu.dLambda );
115 diverge_flow_step_vertmax( s, &maxvert );
116 diverge_flow_step_chanmax( s, chanmax );
117 printf( "%.5e %.5e %.5e %.5e %.5e\n", eu.Lambda , chanmax [0],

chanmax [1], chanmax [2], maxvert );
118 } while (diverge_euler_next( &eu, maxvert ));
119

120 // post processing
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121 diverge_postprocess_and_write( s, __FILE__ ".out.dvg" );
122

123 // cleanup
124 diverge_flow_step_free( s );
125 diverge_model_free( m );
126 diverge_finalize ();
127 }
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