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Abstract

evortran is a modern Fortran library designed for high-performance genetic algorithms
and evolutionary optimization. evortran can be used to tackle a wide range of problems
in high-energy physics and beyond, such as derivative-free parameter optimization, com-
plex search taks, parameter scans and fitting experimental data under the presence of
instrumental noise. The library is built as an fpm package with flexibility and efficiency
in mind, while also offering a simple installation process, user interface and integra-
tion into existing Fortran (or Python) programs. evortran offers a variety of selection,
crossover, mutation and elitism strategies, with which users can tailor an evolutionary
algorithm to their specific needs. evortran supports different abstraction levels: from
operating directly on individuals and populations, to running full evolutionary cycles,
and even enabling migration between independently evolving populations to enhance
convergence and maintain diversity. In this paper, we present the functionality of the
evortran library, demonstrate its capabilities with example benchmark applications,
and compare its performance with existing genetic algorithm frameworks. As physics-
motivated applications, we use evortran to confront extended Higgs sectors with LHC
data and to reconstruct gravitational wave spectra and the underlying physical param-
eters from LISA mock data, demonstrating its effectiveness in realistic, data-driven sce-
narios.
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1 Introduction
Genetic algorithms (GAs) are a class of optimization techniques inspired by natural selection
and evolution. Unlike gradient-based optimization methods, which rely on derivative informa-
tion to navigate the solution space, GAs explore the solution space through stochastic processes
that mimic the principles of biological evolution. A so-called population of candidate solutions,
each represented as an individual, is iteratively evolved over successive generations. Each indi-
vidual is represented by a set of parameters referred to as genes, and the fitness of an individual
is a measure of how well it solves the optimization problem at hand. The fitness is obtained
by computing the so-called fitness function that depends on the genes of the individual.1 In
order to evolve one or a set of populations, a GA applies genetic operations that act on the
individuals:

1. Selection: The selection step involves choosing individuals from the population for re-
production based on their fitness, with fitter individuals having a higher probability of
being selected to reproduce and pass on their genes.

2. Crossover: The crossover (also called mating) step involves combining the genes of two
or more parent individuals to create one or more offspring individuals, with the goal of
producing new solutions that inherit desirable traits from the parent individuals.

3. Mutation: The mutation step introduces random changes to the genes of a subset of the
offspring individuals, ensuring diversity within the population and helping to prevent
premature convergence.

4. Elitism: The elitism step involves preserving a certain number of the fittest individuals
from one generation to the next, ensuring that the best solutions are kept and not lost
due to the stochastic nature of the previous selection, crossover and mutation steps.

In addition to the total number of individuals contained in the populations, a specific GA is
defined by the precise operations performed at each of the four steps and the probabilities
assigned to each of these operations. Different optimization problems often require vastly
different choices for these operations and probabilities. It is therefore essential to have a
flexible framework that allows for easy customization and adaptation to different optimization
tasks.

The stochastic-driven approach allows GAs to explore complex, high-dimensional, non-
convex, discontinuous and noisy solution spaces where traditional methods may struggle due
to premature convergence to local minima or undefined gradients. GAs have shown great po-
tential in several areas of high-energy physics and cosmology. For instance, in string theory
GAs have been used to explore the vast landscape of viable string vacua with phenomeno-
logically consistent properties [1–11]. In particle physics phenomenology, GAs have been ap-
plied to scan the parameter spaces of beyond-the-Standard-Model (BSM) theories in order
to identify regions of parameter space that are compatible with theoretical and experimental
constraints [12–19]. GAs have also played an important role in numerical fitting tasks, such
as in the determination of parton distribution functions [20–23]; in the analyse, reconstruc-
tion and classification of (detector-level) events at particle accelerators [24–27]; and in the
extraction of neutrino oscillation [28–32], astrophysical [33, 34], and cosmological parame-
ters [35–41]. These examples are not intended to be exhaustive, but rather to illustrate the
broad applicability of GAs across both experimental and theoretical fields of physics.

1The fitness function in GAs does not necessarily depend solely on the genes of a single individual. It can
also incorporate external parameters that change over time to simulate environmental changes, or depend on the
genes of a subset or the entire population to define a relative fitness value. This allows for more complex selection
mechanisms, such as competitive or cooperative fitness evaluation, but also increases the number of calls of the
fitness function. evortran supports such generalized fitness functions, but for brevity, all examples in this paper
will assume the most common case, where the fitness function maps the genes of each individual directly to a
fitness value without further dependencies.
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GAs often require significant computational costs in terms of evaluations of the fitness
function due to their stochastic nature, and they may converge slower to the optimal solution
compared to derivative-based techniques, such as gradient descent, especially when a high
degree of precision is required. This highlights the need for fast and scalable implementa-
tions of GAs to make them suitable for large-scale high-dimensional optimization problems.
Several well-established libraries exist already that provide implementations of GAs across dif-
ferent programming languages. In Python, popular open-source packages include DEAP [42],
a flexible evolutionary computation framework, and PyGAD [43] that supports training deep
learning models created with Keras. GA framworks in C and C++ which provide efficient
and customizable implementations are, for instance, CMAES [44] GAUL [45], EO [46] and
OpenGA [47]. Furthermore, PGAPack is a general-purpose GA framework written in C and
using the Message Passing Interface (MPI) for parallelization [48]. In the Fortran ecosystem, a
well-known optimization library based on GAs is Pikaia [49], which was originally developed
for astrophysical applications and recently has become available as a modern Fortran package
converted to free-form source and with a new object-oriented user interface [50].

While several GA libraries with varying degree of flexibility exist, evortran was devel-
oped to provide a modern Fortran-based alternative that balances performance and ease of
use. Like Pikaia, it is available as a Fortran package manager (fpm) [51,52] package, mak-
ing the compilation, installation and integration into other Fortran programs seamless. Com-
pared to C/C++ libraries, evortran offers a more user-friendly interface, while still making
use of the increased computational performance of a low-level programming language. In
addition, its main optimization routines can be accessed from Python via lightweight wrap-
pers, allowing seamless integration into Python-based workflows and outperforming native
Python implementations. One of the key strengths of GAs is their inherently modular struc-
ture, which allows for straightforward and efficient parallelization, operating on individuals
in parallel across one or more populations. To take advantage of this property, evortran in-
cludes support for parallel execution using OpenMP, which significantly reduces the runtime
on multi-core systems. This makes evortran and attractive choice for computationally inten-
sive optimization problems in scientific computing. Moreover, evortran is designed with a
modular structure that allows new GA operations for selection, crossover, mutation and selec-
tion to be easily added, such that the library can naturally grow and evolve over time. Finally,
evortran stands out due to its flexible design which allows users to work at different ab-
straction levels: (1) the user can operate on individuals directly, (2) the user can evolve whole
populations, (3) and the user can evolve a set of populations in parallel with the possibility of
periodically migrating individuals in between the populations.

The migration approach is particularly useful for optimization problems where the goals is
not only to find the globally optimal solution but also to identify multiple diverse solutions with
sufficiently good fitness (see also Ref. [19]). This feature is relevant for a variety of optimiza-
tion tasks encountered in high-energy physics. For example, in studies of the phenomenology
of BSM theories, one often performs extensive parameter space scans involving models with a
large number of free parameters, while at the same time different sets of theoretical and exper-
imental requirements constrain the allowed parameter space (see, e.g. Refs. [12,13,15–17]).
These scans are constrained by experimental measurements, which come with their own un-
certainties. In such contexts, the goal of the parameter scan is not merely to find a single
best-fit point, but rather to identify all distinct regions of parameter space that satisfy the
imposed constraints within the uncertainties. The migration-based approach of evortran is
especially well-suited to this task, as independently evolving populations can converge to dif-
ferent viable regions of the parameter space. This enables a more comprehensive exploration
and characterization of phenomenologically acceptable solutions which might be missed in
simple random scans or when using gradient-based optimization methods.
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The outline of the paper is as follows: in Section 2, we describe the design and core func-
tionality of the evortran library in detail. Section 3 provides user instructions, including
installation steps and usage guidelines. In Section 4, we present example applications that
illustrate the capabilities of the library, focusing on well-known benchmark functions for opti-
mization problems in Section 4.1 and on realistic physics applications in Section 4.2. Finally,
Section 5 contains our conclusions. Readers who are already familiar with GAs and are pri-
marily interested in how to install and use evortran may wish to skip directly to Section 3.

2 Library design and functionality

The design of evortran is centered around flexibility, modularity, and performance, enabling
users to employ GAs using varying degrees of computational resources depending on the com-
plexity and requirements of their optimization tasks. This section outlines the core components
and features of the library, introducing the derived types and utilities that structure the im-
plementation. As already mentioned in Section 1, a key concept underlying evortran is its
multi-layered interface, which allows users to work at different abstraction levels: (1) work
directly on arrays of individuals, (2) handle entire populations of individuals using population-
level methods, and (3) apply evolution strategies acting on one or more populations in parallel
through a migration framework, with optional inter-population exchange of individuals. This
design makes evortran suitable for both fine-grained control and high-level optimization
applications. The subsections that follow below are organized accordingly. We begin by in-
troducing the derived types for the individual and population data structures in Section 2.1
and Section 2.2, respectively, which serve as the most fundamental building blocks of the li-
brary. We then present the available GA operations in Section 2.3, followed by the two key
utilities that implement full population evolution in Section 2.4 and migration-based evolution
in Section 2.5. Finally, we summarize the core numerical tools and auxiliary utilities that are
included in evortran in Section 2.7.

2.1 Individuals

The most fundamental building block of evortran is the individual derived type, which
represents a single candidate solution within a GA. evortran contains two types of indi-
viduals, one for integer valued genes and one for genes that can take continuous values as
floating-point numbers.

2.1.1 Integer individuals

We start by describing the version of individuals with integer-valued genes, hereafter referred
to as integer individuals. The declaration of the individual type for integer individuals is as
follows:

1 type , public :: individual
2 integer :: length
3 integer :: base_pairs
4 integer , dimension (:), allocatable :: genes
5 procedure(func_abstract), pointer , private :: func =>

null()
6 real(wp), private :: fitness = 0.0 e0_wp
7 logical , private :: fitness_calculated = .false.
8 contains
9 procedure , public :: calc_fitness
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10 procedure , public :: get_fitness
11 procedure , public :: reset_fitness
12 end type individual
13

14 interface individual
15 procedure create_individual
16 end interface individual

The components of the derived type are as follows:
- length: The number of genes in the individual. It is set during initialization and must

be greater than 1.
- base_pairs: The number of distinct values that each gene can take. The default is 2,

corresponding to binary genomes where each gene is either 0 or 1.
- genes: An allocatable integer array of size length that stores the genome of the indi-

vidual.
- func: A procedure pointer that points to the fitness function associated with this indi-

vidual. The fitness function is set during initialization.
- fitness: A real number storing the most recently computed fitness value.
- fitness_calculated: A logical flag indicating whether the current fitness value cor-

responds to the current genome. This avoids redundant calls of the fitness function.
To create a new integer individual, users can use the overloaded interface individual, which
wraps the internal create_individual function. This provides a clean and intuitive way to
construct an individual object by specifying the number of genes, a fitness function, the number
of base pairs, and optionally a seed value for the genes at initialization. For example, a typical
initialization might look like:2

1 use evortran__individuals_integer , only : individual
2

3 type(individual) :: ind
4

5 ind = individual(length =10, fit_func=fit_func , base_pairs
=2)

This constructs an individual with 10 binary genes and associates it with the fitness function
fit_func. Since the optional argument seed is not given, the gene values are assigned
randomly within the allowed range. The fitness function must be defined by the user (either
in the main program or in an external module) following the abstract interface defined as:

1 subroutine func_abstract(ind , f)
2 class(individual), intent(in) :: ind
3 real(wp), intent(out) :: f
4 end subroutine func_abstract

Thus, the fitness function is a subroutine that takes an individual object as input and com-
putes the fitness value that is returned as the second argument. In contrast to many existing
GA frameworks that maximize the fitness function, evortran is designed to minimize it, and
the fitness function should be defined accordingly. The type real(wp) uses the working pre-
cision wp defined in the module evortran__util_kinds. By default, wp corresponds to

2For brevity, we do not show the statements required to initialize the PRNG here and in the following code
snippets contained in this section. These should be called at the beginning of any program that uses the evortran
library. For details, see the discussion in Section 2.7.1.
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double precision, but it can be changed to quad precision at compile time by providing the
preprocessor flag -DQUAD. Further details on compilation and installation are provided in Sec-
tion 3. The declarations of the procedure associated to the derived type of integer individuals
are as follows:

1 subroutine calc_fitness(this)
2 class(individual), intent(inout) :: this
3 real(wp) :: f
4 end subroutine calc_fitness
5

6 function get_fitness(this) result(f)
7 class(individual), intent(inout) :: this
8 real(wp) :: f
9 end function get_fitness

10

11 subroutine reset_fitness(this)
12 class(individual), intent(inout) :: this
13 end subroutine reset_fitness

These procedures carry out the following tasks:
– calc_fitness: Calculates the fitness with the current gene values by calling the fitness

function if the fitness has not yet been computed.
– get_fitness: Same as calc_fitness, but also returns the computed fitness value.
– reset_fitness: Resets the fitness to zero and marks it as not yet computed, which is

necessary after any genetic operation that modifies the genes of the individual.

2.1.2 Float individuals

In addition to supporting individuals with discrete integer-valued genes, evortran also pro-
vides a derived type for individuals with genes represented by continuous floating-point num-
bers. These float individuals are useful for optimization problems in continuous parameter
spaces. Below is the definition of the derived type used to represent float individuals:

1 type , public :: individual
2 integer :: length
3 real(wp) :: lower_lim = 0.0 e0_wp
4 real(wp) :: upper_lim = 1.0 e0_wp
5 real(wp), dimension (:), allocatable :: genes
6 procedure(func_abstract), pointer , private :: func =>

null()
7 real(wp), private :: fitness = 0.0 e0_wp
8 logical , private :: fitness_calculated = .false.
9 contains

10 procedure , public :: calc_fitness
11 procedure , public :: get_fitness
12 procedure , public :: reset_fitness
13 end type individual
14

15 interface individual
16 procedure create_individual
17 end interface individual

Here, wp is the real kind working precision with which evortran operates, defined in the
module evortran_util_kinds. By default, evortran uses double precision with 15 signif-
icant digits, but the precision can be changed to quadruple-precision with 30 significant digits
at compile time, see Section 3.1. The components of the float individual type are:
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– length: The number of genes in the individual. It is set during initialization and must
be greater than 1.

– lower_lim: the lower bound of the valid range for gene values (default is 0.0).
– upper_lim: the upper bound of the valid range for gene values (default is 1.0).
– genes: a real-valued array of size length that stores the gene values.
– func: a procedure pointer to the fitness function.
– fitness: the cached fitness value.
– fitness_calculated: logical flag indicating whether the fitness has already been

computed.
Furthermore, the derived type for the float individuals are associated to the same procedures
as present in the type for integer individuals, which are described above. New float individual
objects can be created using the generic interface individual, which internally calls the
create_individual function, in the same way as for integer individuals. A float individual
is initialized by providing the gene length, the fitness function, and optionally the lower and
upper bounds for the gene values, as well as a random seed:

1 use evortran__individuals_float , only : individual
2

3 type(individual) :: ind
4

5 ind = individual( &
6 length =10, fit_func=fit_func , &
7 lower_lim =-1.0e0_wp , upper_lim =1.0 e0_wp , seed =0.0 e0_wp)

This creates a float individual with 10 floating-point number genes and associates it with
the fitness function fit_func. The fitness function must be defined by the user using the
same abstract interface as for the integer individuals discussed above. The optional argu-
ments lower_lim and upper_lim enforce that allowed gene values should lie between -1
and 1, and the optional seed argument is provided to initialize all 10 gene values with the
value 0.

2.1.3 Operate on individuals

Although evortran is primarily designed to carry out optimization tasks at higher abstraction
levels, through evolving entire populations or even sets of populations, it is also possible to
operate directly on individual objects. This can be useful for testing, debugging, or for users
who require fine-grained control over their GA.

The following example program demonstrates how to manually create and operate on
float individuals. It shows the initialization of two individuals, application of simulated binary
crossover (see Section 2.3.2) to generate two offspring individuals, and it uses the shuffle mu-
tation routine (see Section 2.3.3) to modify the genes of one of the two offspring individuals.

1 program operate_on_individuals
2

3 use evortran__util_kinds , only : wp
4 use evortran__individuals_float , only : individual
5 use evortran__crossovers_sbx , only :

simulated_binary_crossing
6 use evortran__mutations_shuffle , only : shuffle_mutate
7 use evortran__prng_rand , only : initialize_rands
8

9 implicit none

8
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10

11 type(individual) :: ind1
12 type(individual) :: ind2
13 type(individual) :: ind3
14 type(individual) :: ind4
15

16 call initialize_rands(mode=’twister ’)
17

18 ind1 = individual (6, func)
19 ind2 = individual (6, func)
20

21 call simulated_binary_crossing( &
22 ind1 , ind2 , ind3 , ind4 , eta_c =30e0_wp , p_c =0.5 e0_wp)
23

24 call shuffle_mutate(ind3)
25

26 contains
27

28 subroutine func(ind , f)
29

30 class(individual), intent(in) :: ind
31 real(wp), intent(out) :: f
32

33 f = sum(ind
34

35 end subroutine func
36

37 end program operate_on_individuals

Specifically, this example illustrates the following sequence of operations:
- The pseudo-random number generator is initialized using the Mersenne Twister algo-

rithm (see also Section 2.7.1) by calling initialize_rands.
- Two float individuals ind1 and ind2 are created with 6 genes each. They are associated

with the fitness function func, which in this example computes the sum of squares of
the gene values.

- The procedure simulated_binary_crossing performs crossover between the parent
individuals ind1 and ind2, producing two offspring individuals ind3 and ind4. The
parameters eta_c and p_c are optional arguments that control the shape and probabil-
ity of the crossover, see Section 2.3.2 for details.

- A shuffle mutation is applied to one of the offspring (ind3) using shuffle_mutate,
see Section 2.3.3 for details.

While this example provides insight into the inner workings of the library, it is generally not
the preferred way to use evortran for actual optimization tasks. These are better handled at
the level of populations, as discussed in the following.

2.2 Populations

Instead of working with individuals directly, it is usually more convenient to work with a set of
individuals and perform different steps of a GA on this set as a whole. evortran defines for
this purpose the derived type population both for integer and float individuals. This enables
users to apply selection, crossover, mutation, and elitism operations in a modular and efficient
way.

9
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2.2.1 Integer populations

The declaration of the population derived type for integer individuals is given below:

1 type , public :: population
2 integer :: popsize
3 integer :: gene_length
4 integer :: base_pairs
5 type(individual), public , dimension (:), allocatable ::

inds
6 type(individual), public , dimension (:), allocatable ::

selection
7 type(individual), public , dimension (:), allocatable ::

elite
8 type(individual), public , dimension (:), allocatable ::

offspring
9 integer , public , dimension (:), allocatable ::

indices_sorted_fitness
10 contains
11 procedure , public :: calc_fitnesses
12 procedure , public :: select_individuals
13 procedure , public :: select_elite
14 procedure , public :: produce_offspring
15 procedure , public :: make_population_from_offspring
16 procedure , public :: get_fittest_individual
17 end type population
18

19 interface population
20 procedure create_population
21 end interface population

The components of the integer popolation type are:
- popsize: Number of individuals in the population.
- gene_length: Length of the gene array for each individual.
- base_pairs: Number of possible discrete values each gene can take (default is 2).
- inds: The array of actual individual objects in the population.
- selection: Array storing selected individuals.
- elite: Array for elite individuals that are preserved between generations.
- offspring: Array holding new individuals generated from crossover and mutation.
- indices_sorted_fitness: Indices of individuals sorted by fitness.

A new integer population object can be initialized using the constructor interface:

1 use evortran__populations_integer , only: population
2

3 type(population) :: pop
4

5 pop = population( &
6 popsize , gene_length , fit_func , &
7 base_pairs , seed , inds)

Here, popsize is the number of individuals, gene_length the length of the gene array of
each individual, fit_func the fitness procedure, base_pairs (optional) the number of pos-
sible gene values, and seed (optional) sets the initial values of the genes of all individuals
contained in the population. If seed is not given, the gene values of the initial populations
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are randomly generated following a uniorm distribution. Finally, the optional argument inds
is an array of integer individuals that shall be contained in the initial population. The derived
type for integer populations contains the following type-bound procedures:

1 subroutine calc_fitnesses(this)
2 class(population), intent(inout) :: this
3 end subroutine
4

5 subroutine select_individuals( &
6 this , num , mode , tourn_size , wheele_size)
7 class(population), intent(inout) :: this
8 integer , intent(in) :: num
9 character(len =*), intent(in) :: mode

10 integer , intent(in), optional :: tourn_size
11 integer , intent(in), optional :: wheele_size
12 end subroutine
13

14 subroutine select_elite(this , num , mode)
15 class(population), intent(inout) :: this
16 integer , intent(in) :: num
17 character(len =*), intent(in) :: mode
18 end subroutine
19

20 subroutine produce_offspring( &
21 this , num , mating , mating_prob , mutate , mutate_prob ,

&
22 mutate_gene_prob , include_elite , uniform_mating_ratio)
23 class(population), intent(inout) :: this
24 integer , intent(in) :: num
25 character(len =*), intent(in) :: mating
26 real(wp), intent(in), optional :: mating_prob
27 character(len =*), intent(in), optional :: mutate
28 real(wp), intent(in), optional :: mutate_prob
29 real(wp), intent(in), optional :: mutate_gene_prob
30 logical , intent(in), optional :: include_elite
31 real(wp), intent(in), optional :: uniform_mating_ratio
32 end subroutine
33

34 function make_population_from_offspring( &
35 this , fit_func , add_elite) result(pop)
36 class(population), intent(inout) :: this
37 procedure(func\_abstract) :: fit\_func
38 logical , intent(in), optional :: add\_elite
39 type(population) :: pop
40 end function
41

42 function get_fittest_individual(this) result(ind)
43 class(population), intent(in) :: this
44 type(individual) :: ind
45 end function

These procedures carry out the following tasks:
– calc_fitnesses: Computes the fitness values of all individuals in the population by

calling each individual’s calc_fitness routine.
– select_individuals: Selects num individuals from the population using the method

specified by mode. Supported selection modes include tournament, rank, and roulette
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wheel selection, see Table 1. The optional arguments tourn_size and wheele_size
control the subset size in tournament and roulette wheel selection, respectively.

– select_elite: Selects an elite of num high-performing individuals that can be pre-
served and reintroduced after crossover and mutation to ensure that they are main-
tained in the next generation of the population. So far the only mode supported is called
best_fitness which includes the individuals with the best fitness values in the elite.
These individuals are stored in the type-bound elite array.

– produce_offspring: Generates an array of offspring individuals with size num by
applying the specified crossover, mutation and elitisim routines. These individuals
are stored in the type-bound offspring array. The argument mating selects the
crossover method, see Table 2, while mating_prob defines the crossover probabil-
ity. The argument mutate selects the mutation methiod, see Table 3, while muta-
tion is applied according to a probability of mutate_prob. If the mutation method
accepts a gene-wise mutation probability, this probability can be given with the argu-
ment mutate_gene_prob. If include_elite is set to true, the elite individuals are
also added to the offspring. The uniform_mating_ratio is used if uniform crossover
is selected, see the discussion in Section 2.3.3.

– make_population_from_offspring: Returns an instance of type population with
the individuals given by the offspring individuals. The fitness function fit_func is
associated with the new population. If add_elite is set to true, the previously selected
elite individuals are also added to the new population.

– get_fittest_individual: Returns the single individual with the highest fitness
value in the population.

2.2.2 Float populations

Similar to integer individuals, evortran provides a population derived type to manage and
evolve collections of float individuals. These float individuals have real-valued genes and are
suited for optimization problems defined over continuous search spaces. The population type
offers the same high-level routines for selection, crossover, mutation, and elitism as for integer
populations. The definition of the float population type is shown below:

1 type , public :: population
2 integer :: popsize
3 integer :: gene_length
4 real(wp) :: lower_lim = 0.0 e0_wp
5 real(wp) :: upper_lim = 1.0 e0_wp
6 type(individual), public , dimension (:), allocatable ::

inds
7 type(individual), public , dimension (:), allocatable ::

selection
8 type(individual), public , dimension (:), allocatable ::

elite
9 type(individual), public , dimension (:), allocatable ::

offspring
10 integer , public , dimension (:), allocatable ::

indices_sorted_fitness
11 contains
12 procedure , public :: calc_fitnesses
13 procedure , public :: select_individuals
14 procedure , public :: select_elite
15 procedure , public :: produce_offspring
16 procedure , public :: make_population_from_offspring
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17 procedure , public :: get_fittest_individual
18 procedure , public :: get_fittest_individuals
19 end type population
20

21 interface population
22 procedure create_population
23 end interface population

In addition to the components contained also in the integer population type, see the discussion
above, the float population type contains the following additional components:

– lower_lim: a real number defining the lower bound of possible gene values (default
0.0).

– upper_lim: a real number defining the upper bound of possible gene values (default
1.0).

These values are respected when generating initial genes, and when applying crossover and
mutation operators, where the stochastic nature of these operations might otherwise lead to
gene values outside of the interval defined by lower_lim and upper_lim.

A new float population object can be created using the same constructor interface as for
integer populations:

1 use evortran__populations_float , only: population
2

3 type(population) :: pop
4

5 pop = population( &
6 popsize , gene_length , fit_func , &
7 lower_lim , upper_lim , seed)

Here, lower_lim and upper_lim (optional) define the possible range the genes. All other
arguments behave as in the case of integer populations.

Besides the procedures available for integer populations (see previous subsection), the
float population type defines one additional procedure called get_fittest_individuals.
This routine returns the n fittest individuals in the population, sorted by fitness in ascending
order.

2.2.3 Operate on populations

Similar to operating on individuals, as discussed in Section 2.1.3, evortran allows to create
and manipulate directly instances of the population types. While operating directly on pop-
ulations is a step up in abstraction compared to manipulating individual objects, it is still not
the most convenient to use evortran for real-world optimization tasks. The library provides
higher-level functions which allow users to evolve populations over multiple generations and
epochs with minimal code, see the discussions in Section 2.4 and Section 2.5. However, work-
ing at the population level offers insights into the inner workings of these functions and can
be helpful for advanced users who need more fine-grained control.

The following example demonstrates how to manually evolve a population of float indi-
viduals over one generation, using built-in selection, crossover, and mutation operations:

1 program operate_on_populations
2

3 use evortran__util_kinds , only : wp
4 use evortran__populations_float , only: population
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5 use evortran__individuals_float , only: individual
6 use evortran__prng_rand , only : initialize_rands
7

8 implicit none
9

10 type(population) :: pop
11 type(population) :: new_pop
12 type(individual) :: best
13

14 call initialize_rands(mode=’twister ’)
15

16 pop = population (100, 10, func)
17

18 call pop
19

20 call pop
21 100, &
22 mating=’blend’, &
23 include_elite =.true., &
24 mutate=’uniform ’)
25

26 new_pop = pop
27 best = new_pop
28

29 write (*,*) "Genes of best -fit ind.: ", best
30 write (*,*) "Fitness of best -fit ind.:", best
31

32 contains
33

34 pure subroutine func(ind , f)
35

36 class(individual), intent(in) :: ind
37 real(wp), intent(out) :: f
38

39 f = sum(ind
40

41 end subroutine func
42

43 end program operate_on_populations

This example demonstrates a typical evolutionary step operating on a float population:
– The random number generator is initialized with the Mersenne Twister method.
– A population pop of 100 float individuals is created, each with 10 genes, and associated

with the custom fitness function func.
– A subset of individuals is selected for reproduction using the roulette selection method,

which are stored in pop%selection. The optional argument wheele_size is propa-
gated to the roulette wheel selection routine (see Section 2.3.1).

– The procedure produce_offspring is called to generate 100 new offspring individ-
uals, which are stored in pop%offspring. The arguments set blend crossover and
uniform mutation as operations to produce the offspring, and the optional argument
include_elite is set to true to enforce that the fittest individual in the population is
taken over into the set of offspring individuals.

– By calling make_population_from_offspring, a new population new_pop is con-
structed from the offspring, using the same fitness function.
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– The fittest individual of the new population is extracted by calling
get_fittest_individual, Finally, the gene values and the fitness value of the best-fit
individual is printed.

This example provides a closer look at the operations evortran offers for manipulating pop-
ulations manually. It gives users full control over each step of the evolutionary process and
illustrates how populations are typically evolved internally when higher-level functions are
used.

2.3 Genetic algorithm operations

A GA progresses through repeated application of four key operations that mimic the prin-
ciples of natural selection and evolution: selection, crossover, mutation, and elitism. The
specific strategies and implementations of these operations greatly influence the effectiveness
and efficiency of the GA. The evortran library provides flexible and modular routines for
each of these operations, allowing users to tailor the GA to their demands. In the following
subsections, we describe in detail the selection, crossover, mutation, and elitism mechanisms
currently implemented in evortran, highlighting their underlying principles and typical use
cases. We also comment on the advantages and disadvantages of the different methods.

2.3.1 Selection routines

The first step in the evolution of a population from one generation to the other is the selection
step. During the selections step, samples of the initial population are selected that are allowed
to take part in the subsequent crossover step. The selection of the individuals is guided by
their fitness values, with the aim of increasing the likelihood of producing fitter offspring. To
this end, the selection procedure favors individuals with good fitness values. In Table 1 we
show the selection routines that are currently implemented in evortran. These routines are
implemented generically and can act on both integer and float individuals.

One of the most commonly used selection strategies is tournament selection. In this
method, a subset of individuals is randomly sampled from the population, and the individ-
ual with the highest fitness within this subset is selected to proceed to the crossover step. This
process is repeated as many times as needed to construct the mating pool. The tournament
size determines the selection pressure. Larger tournament sizes increase the chance of select-
ing individuals with good fitness, while smaller ones help preserve diversity. In evortran, the
default tournament size is set to 2, which provides a good balance between selection pressure
and population diversity for many applications.

Table 1: Selection methods implemented in evortran. The first column shows the
names of the three selection methods in evortran. The respective functions are
labeled in the second column as I, F, or I/F, indicating the type of genes they operate
on: I for individuals with integer-valued genes, F for those with floating-point genes,
and I/F for functions that can handle both types. The last column shows optional
arguments of each routine and their default values.

Kinds Optional arguments [default values]

tournament I/F tourn_size [2]

rank I/F -

roulette I/F wheele_size [3]
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Another selection strategy implemented in evortran is rank selection. In this approach,
individuals in the population are first sorted according to their fitness values, and the selection
is based on their rank rather than their absolute fitness. This method helps prevent the pre-
mature domination of highly fit individuals and maintains a more balanced selection pressure,
particularly in cases where fitness values vary widely. In evortran, rank selection is imple-
mented in a straightforward way: the size of the mating pool is specified, and the top-ranking
individuals, i.e. those with the best fitness values, are selected until the pool is full. While
this ensures that only the most promising individuals participate in the crossover step, it also
reduces diversity more aggressively than other selection methods. Compared to tournament
selection, rank selection offers more deterministic control over selection pressure but comes
with a computational cost. First, it requires the evaluation of the fitness of all individuals
contained in the population. Second, a sorting step is required to rank the individuals, which
can become expensive for large population sizes. In contrast, tournament selection is more
scalable, as it only operates on small subsets of the population and avoids global sorting.

The third selection method currently implemented in evortran is a modified version of
roulette wheel selection, designed to balance randomness and selection pressure in a com-
putationally more efficient way than the usual wheel selection. Unlike standard fitness-
proportionate selection over the entire population, the evortran implementation first ran-
domly selects a small subset of individuals called the wheel size k. The default value of the
wheel size in evortran is k = 3. Let the subset consist of individuals i = {1, 2, . . . , k}. Among
these, the best fitness value is determined as

fbest =min{ f1, f2, . . . , fk} , (1)

where fi is the fitness values of the individual i.3 Then, for each individual in the subset, a
weight parameter

wi = exp

�

−( fi − fbest)2

f 2
best

�

⇒ 0< wi ≤ 1 , wbest = 1 , (2)

is computed. The selection probabilities for the individuals are computed using these weights,
instead of using the fitness values fi themselves as in usual roulette wheel selection, via

pi =
wi
∑k

j=1 w j

. (3)

Then a single individual from the subset is selected based on these probabilities. The whole
operation is repeated until the mating pool is full. Compared to tournament selection and rank
selection, this approach can better preserve diversity, with the diversity generally increasing
with increasing wheel size k, while still biasing toward candidates with better fitness in the
population. Unlike tournament selection, where only the best-fitted individual in the subset is
selected, here all individuals in the subset have a non-zero probability pi of being chosen. This
selection strategy can therefore be viewed as a more relaxed version of tournament selection
(with the tournament size equal to the wheel size). Compared to rank selection, it avoids the
need to sort the entire population, making it computationally less expensive for large popula-
tions. However, the influence of the wheel size and fitness distribution can significantly affect
its behavior, requiring carefully choosing the wheel size k for good performance in specific
applications.

3We remind the reader that evortran minimizes the fitness function.
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Table 2: Crossover methods implemented in evortran. The first column shows the
names of the four crossover methods in evortran. The respective functions are
labeled in the second column as I, F, or I/F, indicating the type of genes they operate
on: I for individuals with integer-valued genes, F for those with floating-point genes,
and I/F for functions that can handle both types. The third and fourth columns show
Npar and Noff which are the number of parent individuals and offspring individuals,
respectively. The last column shows optional arguments of each routine and their
default values.

Kinds Npar Noff Optional arguments [default values]

one-point I/F 2 2 -

two-point I/F 2 2 -

uniform I/F 2 2 ratio [0.5]

blend F 2 2 alpha [0.5]

sbx F 2 2 eta_c [1.0], p_c [0.5]

2.3.2 Crossover routines

The crossover step is the process during which new offspring individuals are created whose
genes are determined by exchanging and potentially modifying the genes of two or more parent
individuals. evortran currently offers several crossover routines that are summarized in
Table 2.

The one-point crossover routine takes two parent individuals as input and returns two off-
spring individuals. The genes of the offspring individuals are created by selecting a random
point along the genes of the parent individuals and exchanging their genes beyond this point.
One-point crossing should be used if one wants to maintain some structure in the gene pool
since it preserves large segments of the genes of the parent individuals. However, if the op-
timization problems is high-dimensional and complex, one-point crossing may not introduce
sufficient diversity, leading to premature convergence. Moreover, it disrupts the positional de-
pendencies of neighbouring genes, which may be disadvantageous for optimization problems
in which certain genes must remain next to each other for meaningful solutions.

The two-point crossover routine works in a very similar way as the one-point crossover
routine. The only difference is that two-point crossing uses two (instead of one) randomly
chosen points along the genes, and only the genes between these two points are swapped in
order to create the genes of two offspring individuals. Compared to one-point crossing, the
two-point crossing method provides more genetic mixing, while still preserving large segments
of genetic material. However, it also disrupts genetic structure by separating neighbouring
genes.

The uniform crossover routine takes two parent individuals as input, and their genes are
inherited randomly by two offspring individuals. Each gene of the offspring individuals is ran-
domly assigned to be taken over from either the first or the second parent individual. Typically,
the probability to inherit a gene from parent A or parent B is set to be equal, such that both
offspring individuals on average acquire 50% of their genes from one parent and 50% from
the other. This is also the default setting in evortran. By disrupting the genes of the parent
individuals at various positions along the genes, uniform crossing leads to excellent diversity
in the gene pool. This makes it well suited for highly complex optimization tasks because it is
less affected by premature convergence compared to one- and two-point crossing. However,
the highly disruptive behaviour of uniform crossing with 50% exchange probability does not
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maintain larger blocks of genes, which may cause slow convergence. In such cases, it can be
useful to lower the degree of diversity. This can be achieved in evortran by changing the
ratio of the genes assigned from either parent A or parent B via the optional argument ratio.
The value given for this argument is the probability for each gene of parent A to be inherited
by the first offspring individual, and the second offspring individual inherits the corresponding
gene from parent B. Accordingly, the probability for the second offspring individual to inherit
a gene from parent A is one minus the value given for ratio.

The blend crossover routine (also called BLX-α) is a crossing procedure that can only be
applied to individuals with genes consisting of continuous numbers and not integers. This
method generates two offspring individuals by selecting new gene values within an extended
range between the gene values of two parent individuals. With ai being the genes from par-
ent A and bi the genes from parent B, the genes ci and di of the offspring individuals C and D
are given, respectively, by randomly and uniformly selecting a number in the ranges

ci ∈ [ai −α(bi − ai), bi +α(bi − ai)] , and di ∈ [bi −α(ai − bi), ai +α(ai − bi)] , (4)

for all i = 1, . . . , Ng . If the above operation leads to gene values ci and/or di that fall outside of
the allowed range of the genes of the individuals, their values are clipped to the nearest valid
value, i.e. either the lower or the upper limit. The parameter α controls the range beyond
which the genes of the offspring individuals can extend beyond the ones of the parent individ-
uals. In many applications it is set to α= 0.5, and this is also the default setting in evortran.
The presence of this parameter allows tunable exploration of the solution space, in contrast
to the other implemented crossover strategies. However, in many cases a good choice for α
can only be obtained on heuristic grounds by “trial and error”. Blend crossing is fundamen-
tally different from the other crossover methods due to its continuous nature, creating gene
values for the offspring individuals that are similar but not identical to the genes contained in
the parent individuals. This feature makes blend crossing often more suitable for continuous
optimization problems in which small variations can give rise to significant improvements in
the fitness of an individual.

Finally, simulated binary crossover (usually abbreviated as SBX) is a widely used operator
in GAs for individuals with floating-point genes. Inspired by one-point crossover in binary-
coded GAs, SBX simulates a similar effect in continuous search spaces. For each corresponding
gene pair (ai , bi) from two parent individuals, a random number 0 ≤ ui ≤ 1 is drawn from a
uniform distribution. From the random variables ui , spread factor βq,i are computed using the
distribution index ηc via

βq,i(u) =

(

(2ui)
1/(ηc+1) , if ui ≤ 0.5 ,
�

1
2(1−ui)

�1/(ηc+1)
, if ui > 0.5 .

(5)

Then the corresponding pair of offspring genes ci and di are computed as

ci = 0.5
�

(1+ βq,i)ai + (1− βq,i)bi

�

,

di = 0.5
�

(1− βq,i)ai + (1+ βq,i)bi

�

.
(6)

This operation is applied independently to each gene pair (i = 1, . . . , Ng) with a certain gene-
wise crossover probability pc . For each gene pair, the SBX operation described above is applied
to generate new gene values ci and di , and otherwise (with probability 1 − pc) the two off-
spring individuals simply inherit the genes ai or bi , respectively. As for blend crossover, if the
above operation leads to gene values ci and/or di that fall outside of the allowed range of the
genes of the individuals, their values are clipped to the lower or upper limit of the allowed
range. In evortran the probability pc has the default value pc = 0.5, but its value can be
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Table 3: Mutation methods implemented in evortran. The first column shows the
names of the three mutation methods in evortran. The respective functions are
labeled in the second column as I, F, or I/F, indicating the type of genes they operate
on: I for individuals with integer-valued genes, F for those with floating-point genes,
and I/F for functions that can handle both types. The third column shows optional
arguments of each routine and their default values.

Kinds Optional arguments [default values]

uniform I/F prob [1/ind%length]

shuffle I/F prob [1/ind%length]

gaussian F prob [1/ind%length], sigma [1.0]

changed by the user. The parameter ηc controls the distribution of offspring genes. It has
the default value ηc = 1.0 in evortran, but can also be modified by the user. Smaller val-
ues of ηc promote broader exploration, allowing the genes of the offspring to deviate more
significantly from the genes of the parent individuals. On the contrary, larger values of ηc
lead to offspring genes that are centered more closely to the genes of the parent individuals,
which typically yields faster convergence but less exploration of the solution space. Com-
pared to the blend crossover method discussed above, SBX offers a more adjustable and often
more efficient trade-off between exploration (searching broadly across the solution space) and
exploitation (refining and improving solutions near individuals with high fitness). However,
blend crossover requires fewer computation steps and only has a single meta parameter α.
Therefore, while SBX is often more effective for detailed local optimization in promising re-
gions of the solution space, blend crossover is simpler and better suited for broad, uniform
searches across the entire solution space where less precision is initially required.

2.3.3 Mutation routines

We discuss here the mutation routines that evortran provides. Mutation introduces diversity
by randomly modifying gene values, helping the GA escape local optima and explore the search
space more comprehensively. The available mutation routines are summarized in Table 3. Each
mutation routine operates in-place on a given individual, i.e. it directly modifies the genes of
the individual given as input. After mutation, the fitness of the individual is invalidated by a
call to its internal reset_fitness() procedure. This ensures that the next time the fitness
is accessed, it is correctly recalculated using the mutated genes.

The uniform mutation routine can be applied to both integer and float individuals. Each
gene has an independent probability prob (defaulting to 1/ind%length, where ind%length
is the length of the genes of the individual) of being replaced by a new value sampled uni-
formly from the full range of allowable gene values. A main advantage of uniform mutation
is that it introduces new gene values into the population over the whole possible range. It
is therefore particularly useful in early stages of the GA, where the solution space should be
covered broadly without converging prematurely into a local minimum. However, uniform
mutation might be too disruptive at final stages of the GA, when there are solutions that are
already close to the desired (global) optimum, since its coarse nature may modify gene values
far away from suitable values instead of refining them.

Also compatible with both integer and float genes is the shuffle mutation routine. With the
specified probability prob per gene (default 1/ind%length), each gene switches the place in
the array of genes with another randomly selected gene. In contrast to the uniform mutation
discussed above, shuffle mutation only modifies the order of the gene values, but it does not
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introduce new gene values which were not present in the population before. In a GA with
a contineous solution space, it should therefore be combined with a crossover method that
produces new gene values (e.g. blend or sbx crossover) instead of only transferring gene val-
ues from parent to offspring individuals. Since shuffle mutation keeps the gene values, only
altering their positions, the mutation is often less disruptive than uniform mutation and can
maintain some beneficial building blocks. This makes it more suitable for permutation-based
optimization problems, such as scheduling, path finding or ordering tasks. However, it might
lack sufficient exploration power, and it is usually not suitable for problems in which the po-
sitions of the gene values within the sequence are highly structured for good solutions to the
problem at hand.

Available only for float individuals, evortran offers a third mutation routine called gaus-
sian mutation. Here, each gene has a chance prob to be replaced by a normally distributed
random number with mean given by the gene value to be replaced and standard deviation
sigma. This introduces smooth, local variations suitable for continuous optimization prob-
lems. The default value of sigma is set to 1.0 because the default range of allowed gene
values is from 0.0 to 1.0, see the discussion in Section 2.2.2. If the actual lower and upper
limits of possible gene values differ from this default, it is advisable to adjust sigma accord-
ingly to ensure that the spread of mutation remains appropriate relative to the full range of
possible gene values. Since the mean of the normal distribution is the original gene value
itself, Gaussian mutation tends to produce values close to the original, making this method
less disruptive than uniform mutation, where the gene value is replaced with a completely
random value from the entire allowed range. The argument sigma controls the spread of the
distribution. A larger value increases variability and allows for more exploratory mutations,
whereas a smaller value makes mutations more conservative, favoring fine-tuning. Gaussian
mutation is especially useful if the GA has already determined solutions near a good solution
in order to explore the local neighborhood efficiently and fine-tune the final solution.

2.3.4 Elitism

Elitism is a common strategy in GAs that ensures the preservation of the best-performing in-
dividuals across generations. Its main purpose is to prevent the loss of the best solutions at
intermediate stages of the GA due to the stochastic nature of selection, crossover, and muta-
tion. By retaining a subset of the best individuals, elitism promotes convergence and often
improves the stability and performance of the GA. However, if the number of elite individuals
is too large, it might lead to premature convergence and poor coverage of the solution space.

In evortran, elitism is currently implemented in the most simple form. Users can specify
a number of elite individuals to be preserved during reproduction. The individuals in the
population that have the lowest fitness values are directly appended to the offspring. It is worth
noting that this elitism procedure can become computationally significant for large population
sizes or when fitness evaluations are costly, as it requires computing the fitness values of all
individuals in the population and sorting them based on those values.

2.4 Evolution of a population

We have discussed above how to operate on individuals and populations directly. In principle, a
user can defined their own GA using these functionalities to their specific needs. However, with
a certain optimization task at hand, it is usually more practical to call a function which takes
the fitness function as input and performs a whole evolution of a population in order to opti-
mize the fitness function. To this end, evortran provides the function evolve_population,
which corresponds to the next level of abstraction and encapsulates the entire process of evolv-
ing a population through the different stages of a GA. This function iteratively applies the four
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fundamental operations (selection, crossover, mutation, and elitism) until either a maximum
number of generations has been reached or a predefined fitness target has been achieved.

This is one of the two interfaces that are most likely to be used by users of evortran (with
the other one being the evolve_migration function discussed in Section 2.5). It allows users
to easily apply GAs to their problems with minimal boilerplate code. The only requirement
is to implement a user-defined fitness function conforming to the abstract interface described
in Section 2.1.1. Once the fitness function is defined, optimization is as simple as calling
evolve_population with the desired parameters.

The function evolve_population is highly flexible, offering a large number of optional
arguments that enable customization of the GA, such as gene initialization, selection and mat-
ing strategies, mutation behavior, elitism, and output tracking. The whole function declaration
is as follow:

1 function evolve_population( &
2 pop_size , &
3 gene_length , &
4 fit_func , &
5 lower_lim , &
6 upper_lim , &
7 max_generations , &
8 fitness_target , &
9 verbose , &

10 gene_seed , &
11 add_ind , &
12 selection , &
13 selection_size , &
14 tourn_size , &
15 wheele_size , &
16 elitism , &
17 elite_size , &
18 mating , &
19 offspring_size , &
20 offspring_include_elite , &
21 mating_prob , &
22 blend_alpha , &
23 sbx_eta_c , &
24 sbx_p_c , &
25 uniform_mating_ratio , &
26 mutate , &
27 mutate_prob , &
28 mutate_gene_prob , &
29 mutate_gaussian_sigma , &
30 fittest_inds_from_gen , &
31 pops_from_gen , &
32 init_pop , &
33 final_pop) result(best_ind)
34

35 integer , intent(in) :: pop_size
36 integer , intent(in) :: gene_length
37 procedure(func_abstract) :: fit_func
38 real(wp), intent(in), optional :: lower_lim
39 real(wp), intent(in), optional :: upper_lim
40 integer , intent(in), optional :: max_generations
41 real(wp), intent(in), optional :: fitness_target
42 logical , intent(in), optional :: verbose
43 real(wp), intent(in), optional :: gene_seed
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44 type(individual), intent(in), optional :: add_ind
45 character(len =*), intent(in), optional :: selection
46 integer , intent(in), optional :: selection_size
47 integer , intent(in), optional :: tourn_size
48 integer , intent(in), optional :: wheele_size
49 character(len =*), intent(in), optional :: elitism
50 integer , intent(in), optional :: elite_size
51 character(len =*), intent(in), optional :: mating
52 integer , intent(in), optional :: offspring_size
53 logical , intent(in), optional :: offspring_include_elite
54 real(wp), intent(in), optional :: mating_prob
55 real(wp), intent(in), optional :: blend_alpha
56 real(wp), intent(in), optional :: sbx_eta_c
57 real(wp), intent(in), optional :: sbx_p_c
58 real(wp), intent(in), optional :: uniform_mating_ratio
59 character(len =*), intent(in), optional :: mutate
60 real(wp), intent(in), optional :: mutate_prob
61 real(wp), intent(in), optional :: mutate_gene_prob
62 real(wp), intent(in), optional :: mutate_gaussian_sigma
63 type(individual), intent(out), dimension (:), &
64 allocatable , optional :: fittest_inds_from_gen
65 type(population), intent(out), dimension (:), &
66 allocatable , optional :: pops_from_gen
67 type(population), intent(in), optional :: init_pop
68 type(population), intent(out), optional :: final_pop
69 type(individual) :: best_ind

The arguments to this function are:
– pop_size: Number of individuals in the population.
– gene_length: Number of gene values in each individual. Should be equal to the di-

mension of the fitness function.
– fit_func: User-defined fitness function following the abstract interface
func_abstract given in Section 2.1.1.

– lower_lim, upper_lim: Limits of the range of possible gene values (defaults are 0.0
and 1.0). These optional arguments can only be set together.

– max_generations: Maximum number of generations to run (default is pop_size).
– fitness_target: Optimization stops early if this fitness value is reached.
– verbose: If true, prints evolving summary output during execution.
– gene_seed: Seed used to initialize gene values of all individuals in the initial popula-

tion.
– add_ind: An individual to insert into the initial population.
– selection: The selection method, currently possible values are tournament, rank or
roulette, see Section 2.3.1 (default is tournament).

– selection_size: Number of individuals to select (default is pop_size).
– tourn_size: Given as optional argument tourn_size when tournament selection is

used, see Section 2.3.1.
– wheele_size: Given as optional argument wheele_size if roulette wheele selection

is used, see Section 2.3.1.
– elitism: Elitism mode, where currently only the default option best_fitness is sup-

ported, see Section 2.3.4.
– elite_size: Number of elite individuals to keep (default is 1).
– mating: The crossover method, currently possible values are one-point, two-point,
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uniform for both integer and float populations, and additionally blend, and sbx only
for float populations (default is one-point).

– offspring_size: Number of offspring individuals to generate (default is pop_size).
– offspring_include_elite: Whether to apply elitism, see Section 2.3.4 (default is
.true.).

– mating_prob: The mating probability, see Section 2.3.2 (default is 0.95).
– blend_alpha: Parameter alpha for blend crossover, see Section 2.3.2 (default is 0.5).
– sbx_eta_c: Parameter eta_c for simulated binary crossover, see Section 2.3.2 (default

is 1.0).
– sbx_p_c: Parameter p_c for simulated binary crossover, see Section 2.3.2 (default is

0.9).
– uniform_mating_ratio: Parameter ratio for uniform crossover, see Section 2.3.2

(default is 0.5).
– mutate: The mutation method, currently possible values are uniform and shuffle

for both integer and float populations, and additionally gaussian only for float popu-
lations, see Section 2.3.3. (default is uniform).

– mutate_prob: Mutation probability (default is 0.1).
– mutate_gene_prob: Probability of mutating each gene if individual is mutated (default

is 0.1).
– mutate_gaussian_sigma: Parameter sigma for gaussian mutation, see

Section 2.3.3 (default is 1.0).
– fittest_inds_from_gen: Stores the fittest individual from each generation in an

array of length max_generations if the final achieved fitness value is larger than
fitness_target. If the GA terminates because a fitness below fitness_target has
been achieved, the length of the array will be equal to the number of generations that
were created up to this point.

– pops_from_gen: If present, stores the entire population at each generation. The user
should ensure that sufficient memory is available.

– init_pop: Initial population to start from instead of ranodmly generating one at the
start of the GA.

– final_pop: If present, stores the entire population after the GA has terminated.
The return object best_ind of the function is the individual with the best fitness that was
found during the process. A minimal call of evolve_population for a continuous optimiza-
tion problem (without specifying the optional arguments) and printing out the minimal value
of the fitness function that was found, looks like this:

1 use evortran__individuals_float , only : individual
2 use evortran__evolutions_float , only : evolve_population
3

4 type(individual) :: best_ind
5

6 best_ind = evolve_population (1000, 20, func)
7 write (*,*) best_ind

Here the function func with 20 arguments is minimized using a GA with a population size of
1000.

In some applications, it may be beneficial to adapt the behavior of the GA over time. For
example, starting with more exploratory operations such as broad or disruptive crossover and
mutation strategies, and gradually transitioning to more fine-grained, exploitative methods as
the search progresses. evortran supports this type of staged evolution by allowing multiple

23

https://scipost.org
https://scipost.org/SciPostPhysCodeb.64


SciPost Phys. Codebases 64 (2026)

chained calls to evolve_population, each with different parameters. Between calls, one
can transfer either only the best individual using the add_ind argument or reuse the entire
final population from one stage as the initial population for the next via the final_pop and
init_pop arguments. This modular design enables the construction of highly flexible and
dynamic GAs that evolve their strategies over the course of the optimization process.

2.5 Migration of populations

In addition to the function evolve_population, evortran provides the function
evolve_migration, which operates on multiple populations simultaneously. This repre-
sents the highest abstraction level in the user-interface of evortran. Specifically, the func-
tion evolve_migration evolves multiple populations independently over a series of epochs,
where each epoch consists of a number of generations. After each epoch, individuals may mi-
grate between populations. This form of co-evolution can help to maintain genetic diversity
by reducing premature convergence, explore multiple areas of the search space concurrently,
and to increase robustness by yielding several good-fit individuals (each corresponding to lo-
cal minima of the fitness function and potentially sufficiently good solutions to the problem
at hand). Moreover, this approach naturally allows for performant and straightforward paral-
lelization, as each population can be evolved independently before migration steps are applied,
as is discussed in more detail in Section 2.6.

As in evolve_population, users can configure the GA, including selection, crossover,
mutation, elitism, and stopping criteria. Additional parameters control the migration behavior.
The interface of the function is:

1 function evolve_migration( &
2 pop_number , &
3 epoches , &
4 pop_size , &
5 gene_length , &
6 fit_func , &
7 migration , &
8 migration_size , &
9 migration_order , &

10 lower_lim , &
11 upper_lim , &
12 max_generations , &
13 fitness_target , &
14 verbose , &
15 gene_seed , &
16 selection , &
17 selection_size , &
18 tourn_size , &
19 wheele_size , &
20 elitism , &
21 elite_size , &
22 mating , &
23 mating_prob , &
24 blend_alpha , &
25 sbx_eta_c , &
26 sbx_p_c , &
27 uniform_mating_ratio , &
28 offspring_size , &
29 offspring_include_elite , &
30 mutate , &
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31 mutate_prob , &
32 mutate_gene_prob , &
33 mutate_gaussian_sigma , &
34 add_ind , &
35 fittest_inds_final_pops &
36 ) result(best_ind)
37

38 integer , intent(in) :: pop_number
39 integer , intent(in) :: epoches
40 integer , intent(in) :: pop_size
41 integer , intent(in) :: gene_length
42 procedure(func_abstract) :: fit_func
43 character(len =*), intent(in), optional :: migration
44 integer , intent(in), optional :: migration_size
45 character(len =*), intent(in), optional ::

migration_order
46 real(wp), intent(in), optional :: lower_lim
47 real(wp), intent(in), optional :: upper_lim
48 integer , intent(in), optional :: max_generations
49 real(wp), intent(in), optional :: fitness_target
50 logical , intent(in), optional :: verbose
51 real(wp), intent(in), optional :: gene_seed
52 character(len =*), intent(in), optional :: selection
53 integer , intent(in), optional :: selection_size
54 integer , intent(in), optional :: tourn_size
55 integer , intent(in), optional :: wheele_size
56 character(len =*), intent(in), optional :: elitism
57 integer , intent(in), optional :: elite_size
58 character(len =*), intent(in), optional :: mating
59 real(wp), intent(in), optional :: mating_prob
60 real(wp), intent(in), optional :: blend_alpha
61 real(wp), intent(in), optional :: sbx_eta_c
62 real(wp), intent(in), optional :: sbx_p_c
63 real(wp), intent(in), optional :: uniform_mating_ratio
64 integer , intent(in), optional :: offspring_size
65 logical , intent(in), optional :: offspring_include_elite
66 character(len =*), intent(in), optional :: mutate
67 real(wp), intent(in), optional :: mutate_prob
68 real(wp), intent(in), optional :: mutate_gene_prob
69 real(wp), intent(in), optional :: mutate_gaussian_sigma
70 type(individual), intent(in), optional :: add_ind
71 type(individual), intent(out), dimension (:), allocatable

, &
72 optional :: fittest_inds_final_pops
73 type(individual) :: best_ind
74

75 end function evolve_migration

This function contains the following arguments in addition to the ones of the function
evolve_population that were already discussed in Section 2.4:

– pop_number: The number of populations evolved in parallel.
– epoches: The number of epochs.
– migration: The type of migration that is carried out after each epoche. The currently

only implemented option is rank, where the best-fit individuals are selected to migrate
to other populations.
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– migration_size: The number of individuals to migrate from each population per
epoch.

– migration_order: The migration order that determines the population to which in-
dividuals migrate from one to the other. Assuming that the populations are labeled by
i = 1, . . . , N , with N being equal to migration_size, possible options are (default is
random):

LR: The individuals from population i migrate to population i+1, except the indi-
viduals from population i = N migrate to population i = 0.
RL: The individuals from population i migrate to population i−1, except the indi-
viduals from population i = 1 migrate to population i = N .
random: For each population, after each epoch, the target population is randomly
selected. In this case it is possible that individuals from different populations mi-
grate to the same target population.

– fittest_inds_final_pops: Stores the best-fit individuals from each population
upon completion.

The return value best_ind is the best-fit individual found across all populations after the
GA completes, either by reaching the fitness target or by reaching the maximum number of
epoches.

2.6 Parallelization using OpenMP

GAs are particularly well-suited for parallelization due to their inherently population-based
structure. Since individuals in a population evolve mostly independently during fitness eval-
uation, selection, and crossover, many of the operations in a GA can be efficiently distributed
across multiple CPU cores.4 This allows significant speed-up when tackling computationally
intensive optimization problems if a sufficient number of CPU cores are available.

evortran supports parallel execution on multi-core CPUs through the OpenMP application
programming interface. OpenMP is a widely adopted standard for shared-memory parallel
programming in Fortran, C, and C++, which enables easy parallelization of loops and code
sections through compiler directives that are supported by many Fortran compilers. evortran
uses fpm as build system, where OpenMP support is activated by adding it as a meta-package
in the fpm.toml configuration file, as discussed in more detail in Section 3.1.2.

The way parallelization is applied in evortran depends on the abstraction level
used by the user. When operating at the level of individual populations (e.g. via
evolve_population), evortran parallelizes internal loops over individuals. For instance,
fitness evaluation, selection, and offspring generation can each be executed in parallel across
individuals within a population. The user does not need to modify the runtime call to benefit
from this. At the higher level of abstraction using evolve_migration, evortran evolves
multiple populations in parallel. In this case, the outer loop over populations is parallelized,
which is often more efficient than parallelizing individual operations, because fewer threads
need to be launched and managed, thus reducing overhead. When selecting how many CPU
cores to use, it can be beneficial to consider these differences: With evolve_population,
performance may improve if the number of individuals in the population is a multiple of the
available CPU cores. With evolve_migration, best efficiency is typically achieved when the
number of populations matches or is a multiple of the number of available cores.

4The suitability of GAs for parallelization is reduced in special cases where operations (such as the fitness
function or the selection procedure) depend not only on an individual’s genes, but also collectively on the genes
of multiple or all individuals in the population. Such global dependencies introduce synchronization constraints
that make parallel execution less efficient or even impossible. These cases are not considered in this paper. In
evortran, users can disable parallelization if such dependencies are required for a specific application.
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To ensure correctness during parallel execution, the user must make sure that the cus-
tom fitness function is thread-safe, i.e. it should not depend on or modify shared state in a
non-synchronized manner. All internal components of evortran that are involved in parallel
execution, such as random number generation and sorting routines, are implemented to be
thread-safe, as will be discussed in more detail in Section 2.7. The number of threads used
during execution can be controlled by the user via the OMP_NUM_THREADS environment vari-
able at compile time (see also the discussion in Section 3.1). While this must be set before
compilation, this is not a major limitation in practice, since evortran can be compiled in just
a few seconds.5

The current implementation of evortran focuses on shared-memory parallelization via
OpenMP directives. This prioritises portability and simplicity for users working on typical
desktop and single-node workstations, where many scientific users conduct their computa-
tions and optimization tasks. Here, OpenMP provides efficient scaling across multi-core CPUs,
while being widely supported by modern Fortran compilers. It should be noted, however, that
this approach is inherently limited to single-node systems. For large-scale applications (for
instance, the reconstruction of gravitational wave spectra from LISA data, see Section 4.2.2),
future extensions of evortran could benefit from distributed-memory parallelization using
MPI, or from offloading computationally intensive task to GPUs through OpenMP target dire-
cives or the CUDA framework developed by NVIDIA, which provides the nvfortran compiler.
The efficiency of GPU acceleration depends strongly on the form of the fitness function, where
only computationally intensive and side-effect-free fitness functions are likely to benefit sig-
nificantly from GPU offloading. In some applications, the evaluation of the fitnesses of all
individuals contained in a population may be suitable for offloading as a whole to the GPU,
for instance, if the computation across the individuals can be expressed in terms of matrix
operations. Support for GPU-accelerated GAs in evortran is planned for future releases.

2.7 Core utilities and numerical tools

This section discusses essential building blocks that underpin the operation of GAs, and their
implementation in evortran. These core utilities include the pseudo-random number genera-
tors (PRNGs), which are fundamental to introduce randomness into the algorithm, and sorting
routines, which are crucial for implementing selection mechanisms based on fitness values of
the individuals. In addition to these core components, evortran also includes a numerical
interpolation module that can be valuable for regression or surrogate modeling tasks.

2.7.1 Pseudo-random number generation

Pseudorandom number generation is a central component in GAs, as it governs stochastic
processes such as initialization, mutation, selection, and crossover. In parallelized GAs, the
PRNG desirably is thread-safe to avoid race conditions and ensure reproducibility. evortran
provides two options for generating random numbers.

The default and recommended PRNG in evortran is a thread-safe implementation of the
Mersenne Twister algorithm [53,54] (specifically, the 64-bit variant MT19937-64). The imple-
mentation contained in evortran is adapted from Ref. [55]. The adaptation integrates it with
evortran’s internal real kind working precision (wp) and modifies it for parallel execution
using OpenMP. Each OpenMP thread is assigned its own instance of the PRNG and initialized
with a unique seed at the start of the program. This design ensures that random number
generation is thread-safe, and that the results of the GA are deterministic and reproducible

5The number of threads can be modified at runtime using the omp_lib module, e.g. by calling the subroutine
omp_set_num_threads. However, it cannot be set to a value that exceeds the maximum number of threads
specified at compile time by the OMP_NUM_THREADS environment variable.
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in parallel execution. Moreover, the performance is competitive compared to Fortran intrinsic
PRNGs, making it suitable for large-scale stochastic sampling.6

Alternatively, evortran offers the option to generate random integer and float numbers
based on the Fortran intrinsic function random_number(). While slightly faster in sequen-
tial execution, this option is not thread-safe, since concurrent calls by multiple threads result
in race conditions. As a consequence, results are no longer deterministic when executed in
parallel. This option is useful when strict reproducibility is not required and performance is
paramount. However, typically the thread-save implementation of the Mersenne Twister is
strongly recommended.

Before using any functionality of the evortran library, the PRNG must be explicitly ini-
tialized. This is done by calling the subroutine initialize_rands. For instance, to use the
Mersenne Twister PRNG, one has to call:

1 use evortran__prng_rand , only : initialize_rands
2

3 call initialize_rands(mode=’twister ’, seed =0)

The second argument seed is an optional integer argument that sets an initial seed value for
the Mersenne Twister PRNG (the default value is 0). Alternatively, to use the Fortran intrinsic
PRNG function, one has to call:

1 call initialize_rands(mode=’intrinsic ’)

Using this mode, the optional seed argument is ignored. If this routine is not called, the pro-
gram will result in a runtime error if evortran was compiled in DEBUG mode, or in undefined
behavior if compiled without it. The compilation flags, including enabling or disabling DEBUG
mode, are discussed in detail in Section 3.1.

2.7.2 Sorting methods

Sorting individuals based on their fitness values is a central operation in GAs, especially for
ranking-based selection methods and elitism. In evortran, sorting is used internally to de-
termine the ordering of individuals according to their fitness, and the library provides two
efficient and thread-safe sorting algorithms that are designed to be called in parallel using
OpenMP.

The first sorting option is a parallel merge sort algorithm, which is the default sorting
method in evortran. It is based on the merge sort implementation from the orderpack
library [57]. The version used in evortran has been adapted from a parallel implementa-
tion provided in a public github repository [58], and modified for compatibility with the real
working precision kind and data structures used in the library. The second available option
is quick sort, implemented using a recursive algorithm adapted from a publicly available For-
tran quicksort implementation [59]. Like the merge sort routine, it is thread-safe, allowing
concurrent execution in OpenMP-parallelized regions of user code.

Users can explicitly select the sorting algorithm used by evortran by calling the subrou-
tine set_rank_method with the desired mode:

1 use evortran__sorting_ranking , only : set_rank_method
2

3 ! Select merge sort

6The Merseene Twister algorithm is also used in the modernizded fpm version of Pikaia [50], whereas the
original version uses the “Minimal standard” PRNG [56].
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4 call set_rank_method(mode=’merge’)
5

6 ! Or select quicksort
7 call set_rank_method(mode=’quick’)

In typical use cases within evortran, both sorting methods were found to exhibit similar run-
time performance. However, for specific use cases of the GA the user may wish to specifically
chose one of the two options. Merge sort guarantees O(n log n) time complexity in all cases
and is stable (preserves relative ordering of equal elements), which can be advantageous in
some applications. Quick sort may be faster in practice due to lower constant factors, but its
performance can degrade to O(n2) in the worst case, although this is rare with randomized
pivoting. Because of its more predictable performance and stability, merge sort is the default
sorting method in evortran.

2.7.3 Function interpolation

While not a core component of GAs, evortran includes a utility for performing cubic spline in-
terpolation, which can be valuable in a range of optimization contexts where functions are ap-
proximated via discretization and a finite number of points. This functionality is implemented
through pure Fortran procedures, making the routines thread-safe and thus suited for parallel
execution. In GA applications, spline interpolation can be useful when the fitness function is
based on experimental or computational data sampled at discrete values. Instead of restrict-
ing the optimization to those discrete points, a spline-based interpolant can provide a smooth
and continuous approximation of the function, allowing for evaluations at arbitrary points in
the parameter space. Additionally, spline interpolation may be helpful in hybrid optimization
strategies where gradient-free methods like GA are combined with smooth approximations to
facilitate local refinement or sensitivity analysis, by enabling smooth representations of other-
wise discrete data.

The following code snippet demonstrates how to use the cubic spline interpolation feature
to approximate the value of a function between a set of known data points:

1 use evortran__util_kinds , only : wp
2 use evortran__util_interp_spline , only : spline_construct
3 use evortran__util_interp_spline , only : spline_getval
4

5 integer , paramter :: n = 4 ! Number of known points
6 real(wp) :: x(n) ! Array of x-values
7 real(wp) :: y(n) ! Corresponding y-values = f(x)
8 real(wp) :: b(n) ! Spline coefficient array
9 real(wp) :: c(n) ! Spline coefficient array

10 real(wp) :: d(n) ! Spline coefficient array
11 real(wp) :: xi ! Point at which to evaluate

the spline
12 real(wp) :: yi ! Interpolated value at xi
13

14 ! Define interpolation points: f(x) = x^2
15 x = [1.0 e0_wp , 2.0e0_wp , 3.0e0_wp , 4.0 e0_wp]
16 y = [1.0 e0_wp , 4.0e0_wp , 9.0e0_wp , 16.0 e0_wp]
17

18 xi = 2.5 e0_wp ! Target x-value for interpolation
19

20 ! Compute spline coefficients based on input data
21 call spline_construct(x, y, b, c, d, n)
22
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23 ! Evaluate the spline at xi = 2.5
24 yi = spline_getval(xi, x, y, b, c, d, n)

Specifically, this example interpolates the function f (x) = x2 using four data points. After
constructing the spline coefficients using spline_construct, it evaluates the interpolated
value at a midpoint x i = 2.5 using spline_getval.

3 User instructions

In this section we give practical guidance on how to get started with evortran. In Section 3.1,
we explain how to install the library and its dependencies. In Section 3.2 we introduce the
key functionalities of evortran and demonstrates how to develop a custom GA.

3.1 Installation

To use evortran, a few prerequisites must be installed on the system. These are standard
tools in modern Fortran development and are typically easy to set up on most platforms.

3.1.1 Prerequisities

evortran is written in modern Fortran using an object-oriented user interface. The recom-
mended compiler to build evortran is the GNU Fortran compiler gfortran.7 On Ubuntu or
Debian-based systems gfortran can be installed with:

1 sudo apt update
2 sudo apt install gfortran

evortran was developed and tested using the versions 11, 12 and 13 of gfortran.
For the build process and for managing dependencies, evortran uses the Fortran Package

Manager fpm [51]. There are various ways to install fpm, for instance, using package managers
like pip,

1 pip install fpm

or conda,

1 conda config --add channels conda -forge
2 conda create -n fpm fpm
3 conda activate fpm

One can also install fpm by downloading a binary for the latest stable release which are avail-
able for Windows, MacOS, and Linux, or build fpm from source, see Ref. [60].

3.1.2 Building evortran

With gfortran and fpm installed, one can build evortran. The first step is to clone the
repository and to navitage to the evortran directory:

1 git clone https :// gitlab.com/thomas.biekoetter/evortran
2 cd evortran

7While other modern Fortran compilers exist, they are either not yet compatible with key features used in
evortran or lack integration with the Fortran Package Manager. lfortran, currenly in alpha stage and under
active development, still lacks full support for OpenMP. Moreover, LLVM flang is not yet widely supported by fpm
(as of version 0.12.0).
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Then one has to source fpm environment variables which define compiler flags and the number
of OpenMP threads that should be used. This can be done by sourcing one of two provided
scripts. Running

1 source exports_debug.sh

sets compiler flags appropriate for debugging, including options that enable stricter compile-
time checks. More importantly, it activates a wide range of runtime argument checks specific
to evortran that help ensure correct usage of the library. These checks are only available
in debug mode and are strongly recommended while setting up or developing the GA. For
performance runs, one should instead run

1 source exports_run.sh

which disables these runtime checks through preprocessor directives, activates compiler op-
timization (-O3 -march=native) and omits array out-of-bounds checking. This results in
significantly faster execution but should only be used once the implementation is known to
be correct. In both cases, the number of threads used for parallel regions is controlled by the
OMP_NUM_THREADS environment variable, which is set to 8 by default in both files but can be
modified as needed.

As was already mentioned in Section 2.1.2, by default the real kind working preci-
sion wp corresponds to double precision, as defined in the module evortran_util_kinds
using selected_real_kind(15, 307). This corresponds to a precision of at least
15 significant digits. The precision can be upgraded to quadruple precision, using
selected_real_kind(30, 4931), by setting the QUAD preprocessor flag. In this case,
evortran operates with at least 30 significant digits. The real kind precision can be changed
at compile time by appending -DQUAD to the FPM_FFLAGS environment variable, for example:

1 export FPM_FFLAGS="$FPM_FFLAGS -DQUAD"

Alternatively, the user can add the -DQUAD flag directly to the exports_debug.sh or
exports_run.sh files, where FPM_FFLAGS is defined. These files should be sourced before
compilation to ensure the correct build configuration is used, as discussed above.

Once the environment variables are sourced, one can compile the project with:

1 fpm build

The build process is handled by fpm, which automatically downloads and compiles all required
dependencies. These include the meta-dependency openmp, which enables multithreaded
parallelization, and a Fortran error-handling module:

1 [dependencies]
2 openmp = "\*"
3 error -handling = { git = "https :// github.com/SINTEF/

fortran -error -handling.git", tag = "v0.2.0" }

In addition, dev-dependencies are specified in the fpm.toml file which are used in example
applications and test programs:
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1 [dev -dependencies]
2 csv -fortran = { git = "https :// github.com/jacobwilliams/

csv -fortran.git" }
3 pikaia = { git = "https :// github.com/jacobwilliams/pikaia.

git", tag = "2.0.0" }

The package pikaia is another GA framework implemented in Fortran [49,50]. It is included
as a dev-dependency because it is used for comparisons with evortran in example appli-
cations, see Section 4.1.2 and Section 4.1.4. The package csv-fortran is used for exporting
data to csv-files.

To use evortran as a dependency in another fpm project, one can simply add the following
entry to the fpm.toml file of the project:

1 [dependencies]
2 evortran = { git = "https :// gitlab.com/thomas.biekoetter/

evortran" }

This makes it straightforward to integrate evortran into existing programs and libraries.
After building evortran one can install the compiled executables that are contained in

the app folder locally by running:

1 fpm install

This command copies the built executables to a default location, typically ~/.local/bin,
and the compiled module files are copied to ~/.local/include. If these paths are included
in the PATH environment variable, one can run the executable from any directory without
having to reference the full build path. If needed, you can change the installation prefix using
the –prefix flag.

3.1.3 Running tests and applications

evortran includes a set of test programs to verify that the library is working correctly. Tu run
a specific test program, use the fpm test command followed by the name of the test program:

1 fpm test <name_of_test_program >

This will execute the selected test and output the results to the terminal. To view the available
test programs, navigate to the test directory and its sub-directories.

Similarly, evortran provides example application programs located in the app directory,
which demonstrate how to use evortran in practical scenarios. To run a specific application,
one can use the fpm run command followed by the name of the application program:

1 fpm run <name_of_app_program >

This will compile and execute the chosen application, displaying its output in the terminal.
One can explore the available application programs by browsing the app directory and its
sub-folders. These applications include several of the examples discussed in Section 4. These
are intended to be a convenient starting point for understanding the library and for developing
new programs that use evortran.
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3.2 Quick start: Basic usage and main features

To help new users quickly get started with evortran, this section presents a minimal yet
complete example that demonstrates how to use the library to solve an optimization problem.
The example program quick_start is located in the app directory and can be executed using
the following command:

1 fpm run quick_start

This program uses a GA to find the global minimum of the well-known Rosenbrock func-
tion [61], which is commonly used as a benchmark for optimization algorithms. The Rosen-
brock function is defined as

f (x , y) = (a− x)2 + b(y − x2)2 , (7)

where a = 1 and b = 100 are parameters that define the shape of the function. The func-
tion has a global minimum at (x , y) = (a, a2) = (1, 1), where f (a, a2) = 0. The Rosen-
brock function is a suitable test case for optimzation algorithms, as it poses challenges related
to convergence to the global minimum since the minimum is located inside a long, narrow,
parabolic-shaped flat valley. The source code for this example is the following:

1 program quick_start
2

3 use evortran__util_kinds , only : wp
4 use evortran__individuals_float , only : individual
5 use evortran__evolutions_float , only : evolve_population
6 use evortran__prng_rand , only : initialize_rands
7

8 implicit none
9

10 type(individual) :: best_ind
11 real(wp) :: x
12 real(wp) :: y
13

14 real(wp), parameter :: a = 1.0 e0_wp
15 real(wp), parameter :: b = 1.0 e2_wp
16 real(wp), parameter :: xmin = -2.0e0_wp
17 real(wp), parameter :: xmax = 2.0 e0_wp
18 real(wp), parameter :: ymin = -1.0e0_wp
19 real(wp), parameter :: ymax = 3.0 e0_wp
20

21 call initialize_rands(mode=’twister ’)
22

23 best_ind = evolve_population( &
24 100, 2, rosenbrock , &
25 mating=’blend’, &
26 elite_size =1, &
27 fitness_target =1.0e-10_wp , &
28 mutate=’gaussian ’, &
29 mutate_prob =0.5 e0_wp , &
30 mutate_gene_prob =0.5 e0_wp , &
31 mutate_gaussian_sigma =1.0e-3_wp)
32

33 call get_xy(best_ind
34

35 write (*,*) ’Rosenbrock function:’
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36 write (*,*) ’ Minimum at x, y =’, x, y
37 write (*,*) ’ f(x,y) =’, best_ind
38

39 contains
40

41 pure subroutine rosenbrock(ind , f)
42

43 class(individual), intent(in) :: ind
44 real(wp), intent(out) :: f
45

46 real(wp) :: x
47 real(wp) :: y
48

49 call get_xy(ind)
50

51 f = (a - x)**2 + b * (y - x**2) **2
52

53 end subroutine rosenbrock
54

55 pure subroutine get_xy(genes , x, y)
56

57 real(wp), intent(in) :: genes (2)
58 real(wp), intent(out) :: x
59 real(wp), intent(out) :: y
60

61 x = xmin + genes (1) * (xmax - xmin)
62 y = ymin + genes (2) * (ymax - ymin)
63

64 end subroutine get_xy
65

66 end program quick_start

The program illustrates the key components needed to define and solve an optimization prob-
lem using evortran:

– The program starts by importing the relevant modules and defining parameters for the
Rosenbrock function and the domain of the variables x and y .

– The pseudo-random number generator is initialized with the Mersenne Twister algo-
rithm.

– The call to evolve_population is the main entry point for the optimization. Here, we
define:

– A population size of 100 and gene length 2 (for variables x and y),
– The objective function rosenbrock as the fitness function,
– Blend crossover as mating method, and Gaussian mutation,
– Elitism with one elite individual per generation,
– A termination criterion based on reaching a fitness value below 10−10.

– The fitness function is defined as a pure subroutine taking an individual and returning
the value of the Rosenbrock function.8

– The helper subroutine get_xy rescales the genes values from the normalized interval
[0, 1] to the domain −2 ≤ x ≤ 2 and −1 ≤ y ≤ 3 in which the global minimum should
be determined by the algorithm.

8Recall that, unlike many other GA frameworks which maximize the fitness function, evortran minimizes it,
such that the Rosenbrock function is implemented as shown in Eq. (7).
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– Finally, the location of the found minimum and the corresponding value of the Rosen-
brock function is printed.

Executing this example yields the output:

1 Rosenbrock function:
2 Minimum at x, y = 0.99996858723522219

0.99993706186036069
3 f(x,y) = 9.8805221531614218E-010

This demonstrates that evortran successfully locates the global minimum of the Rosenbrock
function with high accuracy.

Users can adapt this minimal example to define and optimize their own objective functions
by simply modifying the fitness function and adjusting the meta-parameters of the GA accord-
ingly. Instead of defining the fitness function inside of the main program after the contains
statement, one can also define the fitness function in a separate module and import the func-
tion at the beginning of the program.

3.3 Using evortran from Python

To increase accessibility and broaden the potential user base, a Python interface to the core
optimization routines of evortran is provided through a separate Fortran fpm package called
pyevortran. This interface allows users to take advantage of the performance of Fortran-
based GAs while working within Python environments.

The pyevortran package is a minimal Fortran project that uses evortran as a depen-
dency. It contains only two modules: the module pyevortran__evolutions_float pro-
vides a C-binding wrapper for the evolve_population routine, and the module
pyevortran__migrations_float provides a C-binding wrapper for the
evolve_migration routine. So far only the routines acting on float populations are imple-
mented. The two routines are compiled into a shared library which is then used by the Python
package pyevortran that is installed using pip. Within this Python package, the shared li-
brary is accessed using Python’s ctypes module to expose the two functions
evolve_population and evolve_migration. These functions can be called from Python
to optimize arbitrary Python functions of the form f(x), where x is a NumPy array.

The Python interface currently supports only the two mentioned high-level optimization
routines. Nevertheless, these routines allow the use of a variety of GA configurations by spec-
ifying optional arguments, just as in the native Fortran implementation. Another limitation to
note is performance: when using the Python interface, the fitness function is typically written
in Python and may run significantly slower than a compiled Fortran equivalent. If the evalu-
ation of the fitness function dominates runtime of the GA, it may be worthwhile to translate
the function into Fortran and use the native evortran package for optimal performance.

For installation, the pyevortran interface requires a Python v.3 installation, the
gfortran Fortran compiler, and fpm version ≥ 0.12.0, as earlier versions do not support
building shared libraries. The version of fpm currently distributed via PyPI is outdated (cur-
rently version 0.10.0) and will not work. To install a suitable version of fpm, one can download
a recent binary from the GitHub releases page [60], make it executable, and move it to a di-
rectory in the system’s PATH, e.g.:

1 chmod +x fpm
2 mv fpm ~/. local/bin/
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In addition, patchelf must be installed to embed runtime library paths (RPATH) into the
shared libraries, ensuring that Python can find them at runtime without needing to manually
set LD_LIBRARY_PATH. On Debian-based systems, patchelf can be installed with:

1 sudo apt install patchelf

With the above mentioned prerequisites installed, one can proceed to install pyevortran.
The first step is to clone the repository and navigate to its main folder:

1 git clone https :// gitlab.com/thomas.biekoetter/pyevortran
2 cd pyevortran

Then one must source one of two provided environment setup scripts. As for evortran, see
the discussion in Section 3.1.2, the script exports_debug.sh is intended for development
and enables runtime checks and assertions, while exports.sh is optimized for production
use by enabling compiler optimizations and disabling checks. These scripts also set up the
number of OpenMP threads. To use the debug version, run:

1 source exports_debug.sh

Alternatively, to use the optimized configuration, run:

1 source exports.sh

Once the environment is configured, pyevortran can be built and installed with:9

1 make pyevortran

The makefile invokes fpm to build the shared library, uses pip to install the Python wrapper
into the current environment, and finally applies patchelf to embed the necessary RPATHs
into the shared libraries. After successful installation, users can import pyevortran in Python
and use the evolve_population and evolve_migration functions to apply GAs to their
own objective functions.

To test the installation, and to demonstrate the usage of pyevortran, a simple test pro-
gram test_rastrigin.py is provided in the python/test folder:

1 import numpy as np
2 from pyevortran.evolutions import evolve_population
3

4 A = 10
5 def rastrigin(x):
6 return A * len(x) + np.sum(x**2 - A * np.cos(2 * np.pi

* x))
7

8 print()
9 print("Minimizing Rastrigin function:")

10 print()
11 for dim in range(2, 11):
12 print(" Number of dimensions =", dim)
13 xmin = evolve_population(

9Updating Python packaging tools may help prevent potential installation issues: python -m pip install
–upgrade pip setuptools wheel.

36

https://scipost.org
https://scipost.org/SciPostPhysCodeb.64


SciPost Phys. Codebases 64 (2026)

14 rastrigin , dim ,
15 pop_size =1000,
16 lower_lim =-5.12, upper_lim =5.12,
17 max_generations =1000 ,
18 fitness_target =1e-9, verbose=False ,
19 selection="rank", selection_size =100,
20 elite_size =100)
21 print(" Minimum at xmin =", xmin)
22 print(" f(xmin) =", rastrigin(xmin))
23 print()

This script demonstrates the use of the evolve_population function from the Python in-
terface to minimize the Rastrigin function, see Section 4.1.1 for details. The script performs
minimization for dimensions ranging from two to ten and prints both the location of the min-
ima and the corresponding function values. We note that only the first two arguments, the
fitness function (rastrigin) and the dimensionality of the problem (dim), are required. All
other arguments are optional and allow the user to specify GA parameters such as population
size, selection strategy, elite size, and termination criteria.

4 Example applications

To demonstrate the flexibility and performance of evortran, this section presents several ex-
ample applications ranging from standard mathematical benchmarks to physics-motivated use
cases. In Section 4.1 we discuss the minimization of common multimodal test functions that
are frequently used to evaluate optimization algorithms. Next, in Section 4.2 we showcase
two realistic applications from theoretical physics. First, we present a fit of a beyond-the-
Standard-Model (BSM) theory with an extended Higgs sector against data from the Large
Hadron Collder (LHC) in Section 4.2.1. Afterwords, we show how evortran can be used to
reconstruct a stochastic gravitational wave background predicted by a cosmological phase tran-
sition in the early Universe from mock data of the Laser Interferometer Space Antenne (LISA)
in Section 4.2.2.

4.1 Minimizing multimodal benchmark functions

Multimodal test functions are commonly used in the evaluation and benchmarking of optimiza-
tion algorithms, particularly GAs, due to their complex landscapes characterized by multiple
local minima. Successfully identifying the global minimum of such functions is a core strengths
of GAs. In this subsection, we use evortran to minimize several standard multimodal func-
tions to demonstrate its performance and to serve as templates that can be adapted by the user
to new optimization problems.

4.1.1 Rastrigin function

The Rastrigin function [62–64] is a well-known and widely used multimodal benchmark func-
tion in global optimization. It is particularly challenging for optimization algorithms due to
its highly repetitive landscape filled with many local minima. This makes it an excellent test
function for GAs to locate the globally best solution under the presence of many sub-optimal
candidate solutions. The Rastrigin function is defined as

f (x i) = A · n+
n
∑

i=1

�

x2
i − A · cos(2πx i)

�

, (8)
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1Figure 1: Left: Surface plot of the n = 2 dimensional Rastrigin function with
A = 10 in the domain x1,2 ∈ [−5.12,5.12]. Right: Number of calls to the Rast-
rigin function against the number of dimensions n until the global minimum has
been determined with a function value fmin < 10−10 using the example application
benchmark_rastrigin.

where A = 10 and x i = x1, . . . , xn, with n being the number of dimensions. The global
minimum is located at x i = 0 for all i, where the function reaches the minimum value
f (x i = 0) = 0. The Rastrigin function is typically minimized in the domain x i ∈ [−5.12, 5.12].
The left plot of Fig. 1 shows a surface plot of the Rastrigin function in two dimensions.

To demonstrate the capabilities of evortran, we performed a series of optimization
runs using the benchmark_rastrigin example program included in the app folder of the
repository. In this benchmark, the goal is to find the global minimum with a precision of
fmin < 10−10 for dimensions ranging from n = 2 to n = 20. The GA is executed for each
dimensionality separately, and the number of fitness function evaluations until convergence,
as well as the final minimum value of the function found, are stored in a CSV file. The core
of the benchmark_rastrigin program consists of a loop over the number of dimensions
(currdim) in which the evolve_population function is called:

1 best_ind = evolve_population( &
2 10000, currdim , rastrigin , &
3 mating=’blend’, &
4 elite_size =100, &
5 lower_lim =-5.12e0_wp , &
6 upper_lim =5.12 e0_wp , &
7 selection=’rank’, &
8 selection_size =100, &
9 fitness_target =1.0e-10_wp , &

10 mutate_prob =0.1 e0_wp , &
11 mutate_gene_prob =0.1 e0_wp)

Here, a large population size of 10,000 individuals and a relatively high number of elite in-
dividuals (100) are used to ensure robust exploration across all dimensions. The GA uses
blend crossover, rank-based selection, and gaussian mutation, see Section 2.3 for details. The
GA terminates once a fitness value of 10−10 has been found, which is set via the argument
fitness_target.10

10Using a fitness target value to control the desired precision of the solution is only appropriate in this case
because the global minimum of the Rastrigin function is known to be exactly zero. For functions where the global
minimum is not known, convergence criteria must be defined differently.
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1
Figure 2: Wall time as a function of the number of threads for the example pro-
gram benchmark_rastrigin_nthreads. For each number of threads, the 20-
dimensional Rastrigin function was minized ten times, and the plot shows the av-
erage wall time per minimzation. The blue points show the wall time using the
evolve_population routine, and the orang points show the wall time using the
evolve_migration routine.

Despite using the same GA settings for all dimensions, this basic setup is sufficient to re-
liably identify the global minimum of the Rastrigin function in all tested dimensions. The
performance could be further optimized by tuning the GA parameters individually for each di-
mension (for example, using smaller population sizes in lower-dimensional cases) but the aim
here is to demonstrate the generality and robustness of the algorithm rather than maximizing
efficiency. Even with this general setup, the full benchmark test program completes in approx-
imately 7 seconds on a standard laptop equipped with 8 CPU threads. In the right plot of Fig. 1
we show the number of fitness function evaluations required to reach the desired precision of
f < 10−10 as a function of the number of dimensions n. The plot reveals that approximately
60,000 evaluations are needed for the two-dimensional test case, while the number increases
gradually with dimensionality, reaching about 700,000 evaluations at n = 20. This growth is
expected due to the exponential increase in the search space volume with dimension.

To illustrate the effects of parallelization in a case where fitness evaluations are compu-
tationally inexpensive, we now consider the case of minimizing the 20-dimensional Rastrigin
function. For an increasing number of threads, up to a maximum of 40 threads, the minimiza-
tion was repeated ten times each, and the average wall time per minimization is shown in
Fig. 2. The blue points correspond to results obtained with the evolve_population routine,
and the orange points correspond to the evolve_migration routine. Minimization with
evolve_population was performed as discussed above, except that the fitness_target
argument was left unset, such that the GA runs through all generations without early conver-
gence. For the minimization with the evolve_migration routine, a population size of 500
and a total number of 20 populations was used, giving a total of 10,000 individuals, the same
as for the minimization using the evolve_population. As a result, the wall time for both
routines is comparable. As one can see in Fig. 2, the evolve_population routine shows only
modest speedup in this case, with the wall time decreasing from roughly eleven seconds using a
single thread to just below six seconds using more than ten threads. The evolve_migration
routine benefits more significantly from parallelization here, with the wall time dropping to
about five seconds with only two threads, to roughly one second with ten threads, and to
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1Figure 3: Left: Surface plot of the n = 2 dimensional Michalewicz function with
m = 10 in the domain x1,2 ∈ [0,π]. Right: Minimal function values fmin of the
Michalewicz function for m= 10 against the number of dimensions n= 2, . . . 25 that
were found using the example application benchmark_michalewicz.

around 0.8 seconds for 20 threads or more. In both cases, no further improvement is observed
beyond approximately 20 threads, as the runtime is then dominated by the constant over-
head of the GA itself. The difference in runtime improvement between both routines can be
attributed to the larger parallelization overhead of evolve_population, which is more ad-
vantageous when fitness evaluations are costly, whereas evolve_migration incurs smaller
overhead and scales more efficiently with thread count in this example. The runtime improve-
ments with parallelization become more significant when the evaluation of the fitness function
is computationally expensive and dominating the overall runtime, as will be demonstrated in
a more realistic application in Section 4.2.2.

4.1.2 Michalewicz function

Another widely used multimodal test function for evaluating the performance of global opti-
mization algorithms is the Michalewicz function [65]. The function is defined in n dimensions
as

f (x i) = −
n
∑

i=1

sin(x i)

�

sin

�

i x2
i

π

��2m

, (9)

where the search domain is x i ∈ [0,π], and the parameter m controls the sharpness of the
valleys and ridges that structure the function. We show a surface plot of the two-dimensional
Michalewicz function in the left plot of Fig. 3. A common and recommended value is m= 10,
which is also adopted in our analysis. As m increases, the local minima become steeper and
narrower, making the optimization landscape significantly more difficult to navigate. In total,
the Michalewicz function has n! local minima, and only one of them corresponds to the global
minimum.

A key distinctions between the Michalewicz function and the Rastrigin function discussed
in Section 4.1.1 lies in the nature of their local minima. The local minima of the Rastrigin
function are located in a regular pattern, whereas the Michalewicz function features broad,
almost flat valleys that can mislead an optimizer into converging prematurely. These valleys
exhibit very small gradients, which can render gradient-based methods ineffective. At the same
time, the global minimum is confined to a narrow, sharply defined region of the parameter
space, further increasing the difficulty of the search.
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1Figure 4: Minimal function values fmin of the Michalewicz function normalized to the
dimensionality n for m= 10 as a function of the number of dimensions n= 2, . . . 100
that were found using the example application benchmark_michalewicz. Blue and
orange points indicate the values obtained with evortran and Pikaia, respectively,
see text for details.

To demonstrate how evortran can be used to tackle this problem, we include a test pro-
gram benchmark_michalewicz in the app folder of the repository. This program runs a GA
on the Michalewicz function for dimensions ranging from n= 2 to n= 100. To search for the
global minimum, we use the following call to evolve_population from evortran:

1 best_ind = evolve_population( &
2 1000, n, michalewicz , &
3 lower_lim =0.0 e0_wp , &
4 upper_lim=pi, &
5 selection=’rank’, &
6 mating=’blend’, &
7 mutate=’gaussian ’, &
8 selection_size =100, &
9 elite_size =10, &

10 mutate_prob =0.4 e0_wp , &
11 mutate_gene_prob =0.1 e0_wp)

This configuration uses a population size of 1,000, applies rank-based selection, blend
crossover and gaussian mutation, and it includes both elitism with 10 individuals per gen-
eration. In the right plot of Fig. 3 we show the minimum value of the test function achieved
at the end of the GA as a function of the dimension n up to n = 25. For n = 2,5, 10 the
global minimum of the Michalewicz function is known, and we find good agreement with the
minimum found using evortran.

For larger number of dimensions, the global minium of the Michalewicz function is in
general not known. To assess the quality of the solutions found by evortran, we therefore
apply also the PikaiaGA framework to the same problem, see also the discussion in Section 1.
For the comparison, we use the default settings of Pikaia, except we increase the population
size to 1,000 and the maximum number of generations to 10,000. The latter is ten times
higher than the corresponding setting in the evortran run. We found that in this way both
algorithms use roughly the same runtime. It is important to emphasize that our goal is not
a performance comparison between Pikaia and evortran. The goal of this comparison is
simply to verify that evortran reliably identifies minima that are at least as deep as those
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found by Pikaia, and to therefore be able to validate the evortran result in the absence of
known solutions to the optimization problem.

In Fig. 4 we show the minimum values of the Michalewicz function fmin devided by the
number of dimensions n as a function of n that were found using evortran (blue) and
Pikaia (orange). One can observe that for each value of n the values of fmin/n determined
with evortran are in agreement or slightly smaller than the values obtained with Pikaia.
For n ≳ 50, we observe that for both evortran and Pikaia the values of fmin/n start to
grow with increasing value of n. This potentially indicates that both codes struggle to deter-
mine the exact global minima in this regime given the settings used in the example program
benchmark_michalewicz.

4.1.3 Himmelblau function

The Himmelblau function [66] serves as a classic benchmark in the study of multimodal op-
timization problems. Unlike the Rastrigin and Michalewicz functions discussed above, which
feature a single global minimum (albeit in a complex landscape), the Himmelblau function
presents a qualitatively different challenge because it possesses multiple global minima of
equal depth. The four minima are separated by relatively shallow barriers. This makes it an
ideal benchmark function for evaluating the ability of an optimization framework not just to
find a global minimum, but to recover multiple degenerate global optima. The Himmelblau
function is defined as

f (x , y) = (x2 + y − 11)2 + (x + y2 − 7)2 . (10)

It has four known global minima in the search domain x , y ∈ [−5, 5], located approximately
at

(x , y)≈ (3.0, 2.0) , (11)

(x , y)≈ (−2.805, 3.131) , (12)

(x , y)≈ (−3.779, −3.283) , (13)

(x , y)≈ (3.584, −1.848) , (14)

all with a function value of f (x , y) = 0. In Fig. 5 we show a surface plot of the Himmelblau
function in the search domain.
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Figure 5: Surface plot of the n= 2 dimensional Himmelblau function in the domain
x , y ∈ [−5,5].
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To demonstrate how evortran can successfully identify all of these minima, we make
use of the evolve_migration routine, which is designed to evolve multiple populations in
parallel, see the discussion in Section 2.5. In this example, we disable migration between the
evolving populations (by chosing a single epoche, see the discussion below), such that each
population evolves independently. Due to the stochastic nature of GAs, different populations
initialized with random gene values can then converge to different minima. Using a sufficient
number of evolving populations enhances the likelihood of recovering all four global minima
of the Himmelblau function within a single execution. The corresponding example program
benchmar_himmelblau can be found in the app folder of the repository. In this program,
the call to the evolve_migration function is as follows:

1 best_ind = evolve_migration( &
2 pop_number =20, &
3 epoches=1, &
4 pop_size =50, &
5 gene_length =2, &
6 fit_func=himmelblau , &
7 mating=’sbx’, &
8 elite_size =1, &
9 lower_lim =-5.0e0_wp , &

10 upper_lim =5.0 e0_wp , &
11 max_generations =100, &
12 fittest_inds_final_pops=fittest_inds_final_pops)

20 independent populations of size 50 are evolved in parallel for 100 generations. Each in-
dividual encodes two genes, corresponding to the two-dimensional input of the Himmelblau
function, with gene values bounded between -5 and 5. Simulated binary crossover is used
for mating, and one elite individual is retained in each generation. Only a single epoch is
used, which means no migration of individuals occurs between populations since migration in
evolve_migration is only applied across multiple epochs. This setup allows each population
to converge independently. The function returns the best-fit individual across all populations
(best_ind). Since we are interested in finding all minima, we additionally store the best-
fit individual of each population after the completion of the GA using the optional argument
fittest_inds_final_pops.

Upon completion, the benchmark_himmelblau program prints the best solution found
across all populations, followed by a detailed list of the best soloutions from within each of
the 20 independent populations:

1 Fittest overall individual:
2 Genes: 3.5844E+00 -1.8481E+00
3 Fitness: 0.0000E+00
4

5 Fittest individuals in each population:
6 i x y fmin
7 1 3.0000E+00 2.0000E+00 4.4727E-21
8 2 3.5844E+00 -1.8481E+00 0.0000E+00
9 3 3.5844E+00 -1.8481E+00 0.0000E+00

10 4 3.0000E+00 2.0000E+00 9.6754E-19
11 5 3.0000E+00 2.0000E+00 4.2069E-26
12 6 -2.8051E+00 3.1313E+00 7.8886E-31
13 7 -2.8051E+00 3.1313E+00 7.8886E-31
14 8 -2.8051E+00 3.1313E+00 1.3647E-28
15 9 3.5844E+00 -1.8481E+00 1.1177E-22
16 10 3.0000E+00 2.0000E+00 1.1292E-25
17 11 -3.7793E+00 -3.2832E+00 2.9196E-22
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18 12 3.5844E+00 -1.8481E+00 0.0000E+00
19 13 3.0000E+00 2.0000E+00 0.0000E+00
20 14 3.5844E+00 -1.8481E+00 0.0000E+00
21 15 3.0000E+00 2.0000E+00 0.0000E+00
22 16 -2.8051E+00 3.1313E+00 1.3996E-24
23 17 3.5844E+00 -1.8481E+00 0.0000E+00
24 18 -3.7793E+00 -3.2832E+00 7.1510E-27
25 19 3.0000E+00 2.0000E+00 5.8376E-28
26 20 -3.7793E+00 -3.2832E+00 3.1554E-30

The table lists the population index, the gene values, i.e. the x and y coordinates, of the fittest
individual, and the achieved minimum of the Himmelblau function. In the example shown,
all four known global minima of the Himmelblau function are discovered by different popu-
lations. This demonstrates the effectiveness of evolving multiple independent populations in
parallel for identifying multiple (approximately) degenerate solutions of multimodal objective
functions.

4.1.4 Drop-Wave function

As a final benchmark, we consider the Drop-Wave function, a challenging multimodal test
function often used to evaluate the robustness of global optimization methods. The definition
of the Drop-Wave function is

f (x i) = −
1+ cos (12||x ||)

0.5||x ||2 + 2
, with ||x ||2 =

n
∑

i=1

x2
i . (15)

Its global minimum with f (x i) = −1 is located at the center x i = 0 of the search domain
x i ∈ [−5.12, 5.12]. In Fig. 6 we show a surface plot of the Drop-Wave function in two di-
mensions over the search domain. Due to the presence of steep central basins surrounded
by increasingly shallow, oscillating ripples that form many local minima, the landscape of the
function misleads optimization algorithms away from the global minimum. This structure
makes it extremely difficult for optimization methods to locate the global minimum, even for
a relatively small number of dimensions. The Drop-Wave function is particularly well-suited
to test the ability of GAs to escape local minima. In this benchmark, we again compare the
results obtained with evortran with the ones obtained using the Pikaia library.

We apply both frameworks to search for the global minimum of the Drop-Wave func-
tion in dimensionalities ranging from n = 2 to n = 8. The corresponding example program
benchmark_dropwave_pikaia is located in the app folder of the evortran repository. For
evortran, we use the evolve_migration routine with the following call:

1 best_ind = evolve_migration( &
2 pop_number =90, &
3 epoches =1000 , &
4 pop_size =200, &
5 max_generations =300, &
6 gene_length=i, &
7 fit_func=dropwave , &
8 migration_size =10, &
9 elite_size =10, &

10 selection_size =100, &
11 mating=’blend’, &
12 fitness_target =-1.0 e0_wp + 1.0e-4_wp , &
13 selection=’roulette ’, &
14 wheele_size =7, &
15 mutate=’uniform ’, &
16 mutate_prob =0.2 e0_wp)
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1Figure 6: Left: Surface plot of the n = 2 dimensional Drop-Wave function in the
domain x1,2 ∈ [−5.12, 5.12]. Right: Number of calls to the Drop-Wave function
against the number of dimensions n until the GA completes by either finding the
global minimum with a precision of 10−4 (filled points) or by reaching the max-
imum number of epoches/generations (empty points) using the example applica-
tion benchmark_dropwave_pikaia. Blue and orange points correspond to using
evortran and Pikaia, respectively, with the GAs configured as described in the
text.

Here the argument i for the gene_size corresponds to the number of dimensions which
are iterated over. This setup results in a total of 18,000 individuals evolving in parallel in 90
different populations of size 200 each, over a maximum number of 300 generations and 1000
epoches, see the discussion in Section 2.5 for details. We make use of elitism (10 individuals
in each population), roulette wheel selection (with wheele_size=7), blend crossover, and
uniform mutation (with a mutation probability of 20%).11 Migration exchanges 10 individuals
between populations after each epoch. The algorithm halts when the fitness falls below -
0.9999, which is within 10−4 of the known global minimum of the Drop-Wave function, or
when the maximum number of epochs is reached.

For comparison, Pikaia is configured with similar computational resources by assigning it
the same total number of individuals and a maximum of 5000 generations. The initialization
is performed as follows:

1 call pikaia
2 i, xl, xu , &
3 dropwave_pikaia , &
4 status_pikaia , &
5 ngen =5000 , &
6 np =200*90)

The large number of maximum generations allows Pikaia to perform up to approximately
100 million fitness evaluations, which is a number comparable to what is typically required
by evortran to converge to the global minimum in more than 5 dimensions. The argu-
ments xl and xu are arrays that determine the search domain in each x i-direction. Since
Pikaia maximizes the fitness function, whereas evortran minimizes, we define a separate

11A total number of 90 populations is chosen because the program was executed on a cluster with 90 CPU cores
available.
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function dropwave_pikaia here, which differs by an overall minus sign from the fitness func-
tion dropwave used in the evolve_migration call of evortran. We again would like to
emphasize that this setup is not intended to directly compare runtime performance between
evortran and Pikaia, as the frameworks differ in design and parallelization, but only to
validate the evortran results against a similar available GA implementation.

In the right plot of Fig. 6 we show the number of times the Drop-Wave function
was evaluated for the different values of dimensions n when using the example program
benchmark_dropwave_pikaia, with the orange points indicating the calls from evortran
and the blue points indicating the calls from Pikaia.12 The filled points indicate if the GA
converged successfully by converging to the global minimum, whereas the empty points indi-
cate if the GA failed by converging to a local minimum. We observe that the GA applied with
evortran is able to find the global minimum of the Drop-Wave function up to n = 7 dimen-
sions, requiring a total number of about 5·107 function calls for n= 2 dimensions and of about
5 · 108 function calls for n = 7 dimensions. The GA applied with Pikaia is able to find the
global minimum of the Drop-Wave function with a substantially smaller number of function
evaluations for n= 2 and n= 3 dimensions, and with a similar number of functions calls than
the GA applied with evortran for n= 4 dimensions. For n> 4 the GA applied with Pikaia is
not able to locate the global minimum in the give maximum number of generations, and thus
shows a larger number of function calls for n = 4,5, 6 than the GA applied with evortran
because the latter halts once the global minimum is found within the required precision.

To demonstrate the flexibility of the evortran library, and to compare the perfor-
mance of different crossover methods, we conducted a comprehensive set of runs using the
evolve_migration function to minimze the Drop-Wave function using different crossover
routines. For each dimensionality from n = 2 to n = 10, we tested each crossover operator
(blend, sbx, one-point, two-point, uniform) in combination with all possible permuta-
tions of the three available selection routines (tournament, rank, roulette) and the three
mutation strategies (uniform, shuffle, gaussian). Each unique combination was run 10
times, resulting in a total of 3 · 3 · 10= 90 runs per crossover method and dimension. The GA
was configured via the following call:

1 best_ind = evolve_migration( &
2 pop_number =90, &
3 epoches =1000 , &
4 pop_size =200, &
5 max_generations =300, &
6 gene_length=number_dimensions , &
7 fit_func=dropwave , &
8 migration_size =2, &
9 elite_size =2, &

10 selection_size =100, &
11 selection=selection_opts(i_selection), &
12 mating=mating_opts(i_mating), &
13 mutate=mutate_opts(i_mutate), &
14 fitness_target =-0.999, &
15 wheele_size =7, &
16 verbose=verbose)

Here, evolve_migration was used to evolve 90 populations in parallel with light migra-
tion (migration_size=2) between them. The number of epochs was set to 1000, and each

12We slightly modified the Pikaia algorithm for this example by changing the convergence condition. We
implemented that the Pikaia algorithm only halts if either the global minimum was found with a precision of
10−4, or if the maximum number of generations was reached. In this way the Pikaia algorithm allows for a larger
number of function calls and behaves more similarily to the evortran algorithm.
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1Figure 7: Number of calls to the Drop-Wave function against the number of dimen-
sions n until the GA successfully converged to the global minimum for the different
crossover methods implemented in evortran. The horizontal bars indicate the mean
values per dimension for each crossover method, and the colored numbers show the
total number of successfully converged runs out of a total number of 90 runs (see the
discussion in the text for details).

population consisted of 200 individuals, evolved over up to 300 generations per epoch. The
fitness_target value was set to -0.999, which lies below the value of any local minimum
of the Drop-Wave function, thereby serving as an effective criterion to identify convergence to
the true global minimum. Default values were used for all optional arguments of the selection,
crossover and mutation routines, except for a wheele_size of 7 for roulette selection.

The results are summarized in Fig. 7, which shows the number of function evaluations
required for successful convergence versus dimensionality n. The total number of success-
ful runs is indicated with numbers per method and dimension to quantify robustness. Also
shown with horizontal bars are the mean values of the function calls per dimension for each
crossover method, including only the successfully converged runs. The plot reveals several key
features regarding the robustness of the different crossover strategies. The crossover methods
specifically designed for continuous optimization problems, blend and sbx, outperform the
more generic binary-inspired crossovers, one-point, two-point, and uniform, particularly
in lower and intermediate dimensions n ≤ 6. This suggests that using continuous crossover
operators can significantly enhance the reliability of a GA in continuous solution spaces. Up
to dimension n = 7, the blend crossover shows the highest robustness, achieving successful
convergence in at least 75 out of 90 runs, highlighting its effectiveness across a wide range of
settings. For higher dimensionalities (n= 8, . . . , 10), the sbx crossover becomes more robust,
maintaining a convergence success rate of over 20%. Interestingly, the uniform crossover,
while generally less robust at lower dimensionality, shows a certain robustness in performance
at high dimensionality, matching the robustness of blend and sbx for n = 8 and beyond. It
maintains a minimum success rate of roughly 10% across all dimensions.

These results underscore the importance of carefully selecting the components of a GA
to match the characteristics of the specific optimization problem. The flexible design of
evortran allows users to easily explore and combine different evolutionary operators. This
modularity is a key advantage of the library, making it a powerful tool in wide areas of in
scientific computing.

47

https://scipost.org
https://scipost.org/SciPostPhysCodeb.64


SciPost Phys. Codebases 64 (2026)

4.2 Physics applications

To demonstrate the capabilities of evortran in real-world research settings, we present two
physics-motivated applications that go beyond the mathematical benchmark problems dis-
cussed above. The first application focuses on a global fit of an extended Higgs sector in
a beyond-the-Standard-Model (BSM) scenario to existing data from the Large Hadron Col-
lider (LHC). This includes fitting the observed signal strengths of the Higgs boson at 125 GeV
as well as incorporating cross section limits from searches for additional Higgs bosons that
have (so far) not given rise to a discovery. The second application addresses a problem in cos-
mology: reconstructing the frequency spectrum of a stochastic gravitational wave background
produced by a cosmological first-order phase transition, such as the ones expected from an
electroweak phase transition in the early universe. Here, the goal is to reconstruct a consis-
tent signal from LISA mock data, which includes both an injected gravitational wave signal
and realistic instrumental noise.

4.2.1 Confronting extended Higgs sector with LHC data

A common challenge in studies of BSM physics is the efficient exploration of high-dimensional
parameter spaces subject to a complex set of constraints. In particular, models with extended
scalar/Higgs sectors often feature many free parameters (eleven in the first scenario studied
below, and 14 in a second more general scan). These parameters are subject to both theoret-
ical consistency requirements (such as vacuum stability or perturbativity) and a wide range
of experimental constraints. Among the latter are 95% confidence level exclusion bounds on
production cross sections from direct searches for additional Higgs bosons at the LHC, as well
as precision measurements of the observed 125 GeV Higgs boson. Many of these constraints
are either non-differentiable (e.g., hard cutoffs on excluded cross sections) or involve discrete
features in the parameter space, which makes gradient-based optimization methods less effec-
tive.

GAs offer a natural solution to this type of problem. Their population-based and non-
gradient nature allows them to effectively navigate large, non-linear, and non-smooth land-
scapes, making them well-suited for parameter scans that need to identify viable regions con-
sistent with a diverse set of constraints. An additional advantage of GAs is their ability to
uncover multiple, qualitatively distinct regions of parameter space that are all consistent with
theoretical and experimental constraints within their respective uncertainties. This is par-
ticularly important when different parameter regions compatible with the constraints yield
different phenomenology. Since these parameter regions may correspond to local minima
of the χ2-function or likelihood that are only marginally suboptimal compared to the global
minimum within the margin of uncertainty, identifying (ideally) all of these regions may be
crucial. GAs are well-suited for this task because their stochastic and population-based search
can naturally discover such local optima, rather than converging exclusively to a single best-fit
solution.

As an example, we focus here on the singlet-extended two Higgs doublet
model (S2HDM) [16], a well-motivated BSM scenario that augments the Standard Model by
a second Higgs doublet and a complex scalar singlet. We utilized a GA to explore the phe-
nomenology of the S2HDM in previous studies in Refs. [16–18] using the Python GA frame-
work DEAP [42]. In the S2HDM, the presence of the second Higgs doublet opens the possibility
of a strong first-order electroweak phase transition, which is an essential requirement for elec-
troweak baryogenesis to explain the baryon asymmetry of the universe, and which cannot
be realized in the Standard Model. Additionally, the complex singlet respects a softly-broken
global U(1) symmetry, which is spontaneously broken when the real component of the singlet
acquires a vacuum expectation value. This results in a pseudo-Nambu-Goldstone boson from
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the imaginary part of the singlet field, which is stable and provides a viable Higgs-portal dark
matter candidate. Notably, a pseudo-Nambu-Goldstone dark matter particle can achieve the
observed relic abundance through the standard thermal freeze-out mechanism, while evad-
ing the stringent limits from dark matter direct detection experiments due to momentum-
suppressed scattering cross sections at leading order [67,68].

A comprehensive discussion of the S2HDM can be found in Ref. [16]. Here, we briefly
summarize the key features relevant for the following analysis. The model contains the same
fermionic and gauge field content as the Standard Model, but due to the extended scalar
sector the physical spectrum includes a total of three CP-even neutral scalar Higgs bosons hi
(i = 1, 2,3) which mix with each other, a CP-odd pseudoscalar Higgs boson A, a pair of singly
charged Higgs bosons H±, and a stable spin-0 dark matter candidate χ.13 We consider two
Yukawa structures: first, a so-called Type I structure where only one Higgs doublet is coupled
to fermions, and second, a flavour-aligned setup which can be parameterized by three so-called
flavour alignment parameters ξu,d,ℓ [69]. The other free parameters used in the analysis below
include the masses mh1,2,3

, mA, mH± , mχ , the three CP-even scalar mixing angles α1,2,3, the ratio
of the Higgs doublet vacuum expectation values tanβ , the singlet vacuum expectation value
vS , and an additional mass scale parameter M , which controls the allowed mass range of the
BSM Higgs states.

To identify phenomenologically viable points in the parameter space of the S2HDM, we
construct a global χ2-function that incorporates a range of theoretical and experimental con-
straints. This function is then minimized using a GA implemented in evortran. Since evalu-
ating the fitness function requires interfacing with external codes, namely HDECAY [70,71] for
computing Higgs boson decay properties and HiggsTools [72–75] for checking consistency
against LHC data (see below), the evaluation is computationally expensive. For this reason, we
employ a relatively economical GA with a population size of only 40 individuals, evolved us-
ing evortran’s evolve_population routine over a maximum of 1000 generations, applying
tournament selection, blend crossover and uniform mutation. All source code used to obtain
the results presented in this section is publicly available in a dedicated Git repository [76].

The theory constraints included in the analysis are the following:
- Vacuum stability: We impose that the scalar potential is bounded from below, ensuring

that no field direction leads to the potential tending to−∞ for large field values. At tree-
level, this leads to analytic conditions requiring certain combinations of quartic couplings
appearing in the potential to be positive. The corresponding expressions can be found
in Refs. [71,77].

- Perturbative unitarity: We verify that the leading-order 2→ 2 scalar scattering ampli-
tudes remain below the threshold 8π in the high-energy limit. This results in a set of
inequalities on combinations of the scalar quartic couplings, whose precise form can be
found in Ref. [16].

Both theory constraints are implemented as hard cuts and introduce non-differentiable fea-
tures into the χ2 function. The experimental constraints that we consider here are the follow-
ing:

- 125 GeV Higgs cross sections: We include cross section measurements of the observed
Higgs boson in various production and decay channels, including also the measurements
presented in the form of the Simplified Template Cross Section (STXS) framework.

- Limits from BSM spin-0 resonance searches: We apply 95% confidence level exclusion
limits from a large set of direct LHC searches for additional neutral and charged Higgs
bosons. These constraints are implemented as hard cuts.

13The Standard Model of particle physics predicts a single CP-even Higgs boson.
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- Electroweak precision observables: We require compatibility with the measured elec-
troweak parameter ∆ρ within its experimental uncertainty [78], based on its one-loop
prediction in the S2HDM [16]. This constraint is included as a hard cut, rejecting pa-
rameter points predicting a value of∆ρ deviating by more than two standard deviations
from the experimental central value, corresponding to a confidence level of about 95%.

The check against the LHC data is carried out in our analysis with the help of the public C++
package HiggsTools, which performs a global χ2 fit to the cross section measurements of the
125 GeV Higgs bosons and checks if all existing cross section limits from BSM scalar searches
are satisfied. The HiggsTools library can be exposed to Fortran via the iso_c_binding
module. We created a minimal working example for using HiggsTools within an fpm project
that is available in a dedicated GitLab repository [79].

The global χ2 function minimized by evortran includes the contributions from
HiggsTools for the 125 GeV Higgs measurements, denoted χ2(h125) in the following, while
all other constraints are incorporated via large fixed penalty values if they are not satisfied.
This setup effectively translates the task of finding allowed parameter points into minimiz-
ing χ2(h125) under the condition that all other theoretical and experimental constraints are
satisfied, for which derivative-free optimization strategies like GAs are especially useful. To
define a meaningful condition at which the GA shall halt, we subtract the Standard Model
prediction χ2

SM(h125) from the total χ2, such that χ2 = 0 corresponds to the S2HDM fitting
the LHC data as well as the Standard Model (while satisfying all other constraints), while
χ2 < 0 indicates a better fit than the Standard Model. The GA halts if a parameter point pre-
dicting χ2 < 0 was found. During the minimization process, we not only record the best-fit
point but also store all parameter points generated during the evolution process that predict
χ2 = χ2(h125) − χ2

SM(h125) ≤ 6.18, which approximately corresponds to a 95% confidence
region assuming two degrees of freedom and assuming that the Standard Model prediction is
a good approximation of the best fit to the LHC data (see Ref. [75] for details). To obtain a
diverse sample of viable parameter points across the scanned regions of parameter space, we
run the GA multiple times with different random seeds.

Scenario 1: Scanning the S2HDM Type I – 11 free parameters: {mh2
, mh3

, mA, mH± , mχ ,
tanβ , α1,2,3, M , vS} In the first scenario, we use evortran to perform a global scan of the
S2HDM with Yukawa Type I, using the full parameter space summarized in Table 4. This con-
stitutes a very generic scan where the goal is to test whether the GA is capable of identifying
regions in parameter space that yield a 125 GeV Higgs boson (here h1) with properties resem-
bling those predicted by the Standard Model within current experimental precision, while also

Table 4: The top rows show the S2HDM parameter ranges used in the scans. The last
two rows indicate the Yukawa structure chosen for the scenario 1 and the scenario 2.

Parameter Range

mh1
125.1 GeV (fixed)

mh2
, mh3

, mA, mH± , mχ [30, 1000] GeV

α1,2,3 [−π2 , π2 ]
tanβ [1, 20]
M(= m2

12/(sinβ cosβ)) [30, 1000] GeV

vS [10, 3000] GeV

Scenario 1: Yukawa Type I

Scenario 2: Flavour alignment: ξu,d,ℓ ∈ [10−3, 103] (log prior)
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Figure 8: Each point in the two plots corresponds to a valid parameter point found
with the GA in the scenario 1 in the S2HDM with type I Yukawa structure. Left:
χ2(h125) obtained with HiggsTools against the coupling coefficient |κV | of the
125 GeV Higgs boson h1. Right: mass of the CP-odd Higgs boson mA against the
mass of the charged Higgs bosons mH± .

satisfying all other theoretical and experimental constraints discussed above. In the case where
the additional Higgs bosons are substantially heavier, the properties of the 125 GeV Higgs bo-
son are mainly governed by the mixing angles α1,2,3 and tanβ , which must be tuned with some
precision in order to reproduce the observed Higgs boson signal strengths. The other parame-
ters are relevant for satisfying the remaining constraints. For instance, the masses of the BSM
states have to be chosen in a range that is not excluded by LHC searches. Their allowed values
are also strongly correlated with the parameter tanβ , the mass parameters M and vS , and the
mass splitting among the BSM states is constrained by the ∆ρ parameter.

Technically, this parameter scan is a minimization of a χ2 function defined over eleven free
parameters. The complexity of the task is significant since the χ2 function encodes roughly
150 independent LHC measurements of the 125 GeV Higgs boson cross sections, in addition to
a vast number of cross section limits from direct searches for BSM Higgs bosons. This results
in a highly structured and non-trivial eleven-dimensional optimization landscape.

In Fig. 8 we show results from scenario 1, where each point corresponds to a valid parame-
ter point identified by the GA. The left plot shows the distribution of χ2(h125) values obtained
with HiggsTools against the coupling coefficient κV of the CP-even Higgs boson h1 to vector
bosons V =W, Z , defined as κV = gh1V V/ghSMV V , where gh1V V is the coupling predicted in the
S2HDM and ghSMV V is the coupling predicted for a Standard Model Higgs boson of the same
mass. This plot demonstrates that the GA successfully identified parameter points consistent
with the 125 GeV Higgs boson data at the level of the Standard Model (χ2 ≈ 0) and even
slightly better (χ2 < 0), though the latter is not a statistically significant improvement con-
sidering the larger number of additional parameters of the S2HDM compared to the Standard
Model.

The right plot of Fig. 8 shows the mass of the CP-odd Higgs boson mA against the mass
of the charged Higgs boson mH± . The GA identified valid parameter points over a wide mass
range up to the upper limit 1 TeV of the scan for the masses of the BSM states. The lightest
masses found for A and H± are around 200 GeV. Below this, experimental searches from the
LHC increasingly constrain the parameter space, and a light H± also introduces substantial
loop-level corrections to the di-photon decay rate of the 125 GeV Higgs boson h1, making it
harder to achieve agreement with the data. However, this does not imply that smaller values
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Figure 9: For each valid parameter point found with the GA in the scenario 1 in the
S2HDM with type I Yukawa structure, the plots show three points with properties
related to the Higgs bosons h1, h2 and h3 in blue, orange and green, respectively.
Left: coupling coefficient κV of the respective state hi against the mass of the Higgs
boson mhi

. Left: coupling coefficient κ f of the respective state hi against the mass of
the Higgs boson mhi

.

of mA or mH± are excluded in the S2HDM. Uncovering valid parameter space in this regime
would require a dedicated scan that biases the GA toward lower mass ranges (or higher values
of tanβ), instead of the setup applied here that constitutes a broad and generic exploration
of parameter space. Biasing the GA towards smaller masses could, for instance, be achieved
using a logarithmic prior instead of linear prior for the masses of the BSM Higgs bosons when
the GA is initialized, see also the discussion in Section 4.2.2.

In Fig. 9 we show the couplings and masses of the three CP-even Higgs bosons h1, h2, and
h3 in the S2HDM with type I Yukawa structure for the valid parameter points found in scenario
1. In each plot, for each valid parameter point three points are displayed with the following
color-coding: blue for h1, orange for h2, and green for h3. The left plot shows the vector
boson coupling coefficient κV (hi) versus the Higgs boson mass mhi

. Here it should be noted
that due to unitarty there is a sum rule for these coupling coefficients:

∑

i κV (hi)2 = 1. Since
LHC measurements require κV (h1) ≳ 0.93, see left plot of Fig. 8, this forces the couplings of
h2 and h3 to electroweak gauge bosons to be small. The GA identified parameter points with
this coupling configuration by accurately sampling the mixing angles α1,2,3, as is visible in the
plot where both κV (h2) and κV (h3) lie below about 0.3. Accordingly, for h1 the GA efficiently
converges to κV (h1) ≈ 1, in agreement with LHC data requiring the 125 GeV Higgs boson to
resemble the Standard Model prediction within an experimental precision at the level of 10%.

Using the Type I Yukawa structure, the modifications of the Higgs boson couplings to
fermions can be expressed by means of a single coupling coefficient κ f (hi) for each Higgs
boson, independently of the fermion kind. The right plot shows the fermion coupling coeffi-
cients defined as κ f (hi) = ghi f f̄ /ghSM f f̄ , where ghi f f̄ is the coupling predicted for the state hi
in the S2HDM, and ghSM f f̄ is the coupling predicted in the Standard Model for a Higgs boson
of the same mass. In the type I Yukawa structure, there is an upper bound of |κ f (hi)| ≤ 1.
Unlike the gauge couplings, |κ f (h2)| and |κ f (h3)| can be sizable, i.e. as large as |κ f (h1)|, with-
out violating current LHC data. This behavior is visible in the right plot. Again, as before for
|κV (h1)| shown in the left plot of Fig. 9, the GA converges to κ f (h1)≈ 1 for the 125 GeV Higgs
boson, such that the state h1 resembles a SM Higgs boson.
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Since the scan covers all physically distinct combinations of the three scalar mixing angles
α1,2,3, see Table 4, no distinction between h2 and h3 is imposed on their possible masses and
couplings. As a result, the orange points corresponding to the state h2 and the green points
corresponding to the state h3 show a similar distribution in the two plots of Fig. 9. Further-
more, the mass ranges for h2 and h3 span from about 63 GeV to 1 TeV. The lower bound arises
because masses below 62.5 GeV would open the decay channels h1→ h2h2/h3h3, which tends
to spoil the Standard-Model-like nature of h1 unless the corresponding couplings governing
these decays are fine-tuned to suppress the decays. The GA does not converge to such tuned re-
gions of parameter space in this broad scan. On the upper end, the scan reaches the maximum
mass range of 1 TeV set in the input.

We finally note that some points shown in the plots in Fig. 8 and Fig. 9 are clustered along
a line in the plot, which reflects the fact that during the GA evolution, all parameter points sat-
isfying χ2 ≤ 6.18 are stored, and not just the final best-fit point. As a result, parameter points
originating from gradual changes to a successful candidate solutions during the optimization
appears as an approximately continuous trajectory in parameter space.

Scenario 2: Scanning the flavor-aligned S2HDM – 14 free parameters: {mh2
, mh3

, mA,
mH± , mχ , tanβ , α1,2,3, M , vS, ξu,d,ℓ} In this second scenario, we consider a more general
Yukawa sector for the S2HDM, namely the flavor alignment mentioned above. In contrast to
the Type I Yukawa structure where only one Higgs doublet couples to all fermions, the flavor-
aligned setup allows both Higgs doublets to couple to fermions, controlled via three additional
parameters ξu, ξd , and ξℓ. These alignment parameters act as proportionality factors between
the Yukawa couplings of the two Higgs doublets and determine which doublet dominantly
couples to a given fermion type: up-type quarks u, down-type quarks d, and charged leptons
ℓ. Specifically, values of ξu,d,ℓ≪ 1 correspond to dominant couplings to the first Higgs doublet,
while ξu,d,ℓ≫ 1 correspond to dominant couplings to the second doublet.

An important consequence is that compared to the Type I Yukawa structure, where the
couplings of the Higgs bosons to fermions are governed by a universal modifier κ f for all
fermion types, the flavor alignment leads to an independent coupling modifier for each fermion
kind: κu, κd , and κℓ, defined analogously to κ f as the ratio of the coupling of a state hi in
the S2HDM to the corresponding coupling of a Higgs boson in the Standard Model with the
same mass as the state hi . This results in additional freedom to accommodate the LHC Higgs
boson measurements. The coupling coefficients κu,d,ℓ depend on the parameters ξu,d,ℓ, tanβ
and the mixing angles α1,2,3, such that the couplings of the 125 GeV Higgs bosons depends on
various independent parameters, and where various entirely different regions of the complex
parameter space can predict a Higgs boson h1 in agreement with the LHC measurements.

In Fig. 10 we show the results obtained for scenario 2, where the GA was used to scan the
flavor-aligned S2HDM, see Table 4. Each point in both plots corresponds to a valid parameter
point that satisfies all theoretical and experimental constraints. In the left plot, we show the
values of the global χ2(h125) as computed with HiggsTools plotted against the absolute value
of the coupling coefficient |κV | of the 125 GeV Higgs boson h1. The plot demonstrates that
the GA successfully identifies parameter points where |κV | ≈ 1 with χ2(h125) close to or below
the Standard Model value χ2

SM(h125), indicating good agreement with the LHC measurements
of the Higgs boson. This confirms that even in the more general flavor-aligned setup with
a total of 14 free parameters the GA is able to determine parameter space regions with the
desired features. In this scenario, we find that smaller values of the coupling coefficient |κV |
are still compatible with current LHC data. Values down to |κV | ≈ 0.912 are allowed while
still yielding valid parameter points. This is in contrast to the more restrictive scenario 1 with
Yukawa Type I, see the left plot of Fig. 8, where viable parameter points were only found
for |κV | ≳ 0.935. Notably, even some parameter points with |κV | ≲ 0.92 result in a total
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Figure 10: For each valid parameter point found with the GA in the scenario 2 in the
flavor-aligned S2HDM, the left plot shows the the values of χ2(h125) obtained with
HiggsTools against the coupling coefficient |κV | of the 125 GeV Higgs boson h1.
The right plot shows the h1 coupling coefficient κt against the coupling coefficient
κb. In both plots, the orange points belong to the same parameter point which stands
out as the only parameter point for which κt and κb have the opposite sign.

χ2(h125) below the Standard Model value χ2
SM(h125). This indicates that, compared to the

Yukawa Type I, the added freedom of the flavor-aligned Yukawa structure allows the model to
better accommodate the LHC measurements in case of sizable deviations in κV from the SM
prediction κV = 1.

In the right plot of Fig. 10, we show the values of the coupling modifiers κu vs. κd , which
specifically correspond to the ratios of the h1 couplings to top and bottom quarks, respectively,
compared to the Standard Model. Unlike in the Yukawa Type I, these two couplings are now
controlled independently via the alignment parameters ξu and ξd . The distribution shows
that most viable parameter points cluster in the region where both κu and κd are close to
either +1 or −1, reflecting Standard-Model-like behavior. However, one point clearly stands
out as it corresponds to a parameter point where κu and κd have opposite signs. The two
points in the left and the right plot of Fig. 10 corresponding to this parameter point are high-
lighted in orange. This sign configuration between κu and κd (also referred to as wrong-sign
Yukawa coupling regime) is a distinctive feature of the flavor-aligned S2HDM compared to
the S2HDM Type I and can, as observed here, still be consistent with current data, though it is
associated with modified interference effects in loop-induced Higgs processes (such as gluon
fusion production or the h→ γγ decay).

In summary, the two example scenarios demonstrate that GAs are effective tools for scan-
ning the complex parameter space of BSM theories. Despite the high dimensionality of the
search (eleven and fourteen free parameters) and the large amount of experimental constraints
(including around 150 measurements of the 125 GeV Higgs boson and a plethora of exclusion
limits from searches for additional scalars), the GA reliably identifies viable parameter regions.
Notably, one of the key strengths of GAs is their ability to uncover distinct and potentially iso-
lated solutions in parameter space that are consistent with all constraints and may even yield
a better fit to the data. Such solutions might easily be missed by more local or gradient-based
methods. This is exemplified in scenario 2 by the identification of a parameter point with
opposite signs in the top and bottom Yukawa coupling modifiers, a feature that nonetheless
yields an acceptable fit to the LHC data. The S2HDM serves here as one specific but sufficiently
complex example to showcase the power of GAs, demonstrating their potential for parameter
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scans in BSM theories. More broadly, GAs hold great promise for exploring a wide range of
particle physics models with a substantial number of unknown parameters and with similar or
even greater complexity.

4.2.2 Reconstructing gravitational wave spectrum from LISA mock data

To explore the utility of GAs, and in particular the evortran library, in a cosmological context,
we consider the problem of reconstructing a stochastic gravitational wave signal generated by
a first-order phase transition in the early universe. The analysis begins with the construction
of mock observational data for the upcoming LISA experiment, into which a synthetic gravi-
tational wave signal is injected based on a physically motivated template predicted for such a
cosmological phase transition. To simulate realistic observational conditions, Gaussian noise
simulating the LISA instrument sensitivity is added to the signal. This introduces a stochas-
tic component to the data, which complicates the parameter inference and makes traditional
gradient-based minimization techniques less effective, whereas a GA is well suited for this type
of problem. For the fitting process we use a GA implemented with evortran to minimize
an overall χ2-function that quantifies the deviation between the theoretical signal (including
LISA’s sensitivity curve) and the noisy mock data. This procedure is repeated multiple times to
generate a set of reconstructed signals. Each reconstructed signal corresponds to a set of cos-
mological parameters that govern the spectral shape and amplitude of the gravitational wave
signal, such as the strength, duration, and energy release of the phase transition. The resulting
distribution of these parameter sets reveals the regions of parameter space compatible with
the data, and allows for a comparison with the values originally used for signal injection.

The gravitational wave spectrum produced during a cosmological phase transition carries
information about the underlying physics of the early universe. The shape and amplitude of
the signal can be parametrized in terms of the strength of the phase transition α, defined
as the ratio of the vacuum energy released to the radiation energy density, the inverse dura-
tion of the transition normalized to the Hubble rate, β/H, the transition temperature T∗ at
which the signal is generated, the number of relativistic degrees of freedom in the plasma at
that temperature, g∗, and the terminal velocity vw of the bubble walls expanding through the
plasma. In this study, we use signal templates derived from numerical simulations that model
the generation of gravitational waves produced during a first-order phase transitions. The to-
tal gravitational wave spectral power density ΩGWh2, with h = 0.68 being the dimensionless
Hubble constant, is composed of three main contributions,

ΩGWh2 = Ωswh2 +Ωturbh2 +Ωcollh
2 . (16)

Each of these components contributes with a characteristic spectral shape and peak frequency,
dependent on the physical parameters mentioned above. The sound wave contribution Ωswh2

results from gravitational wave production from the acoustic oscillations in the plasma after
bubble collisions, which dominates the signal in scenarios in which the bubble walls reach a
terminal velocity before colliding [80]. The turbulence contribution Ωturbh2 arises from mag-
netohydrodynamic turbulence, i.e. nonlinear plasma motion generated after the transition.
The turbulence contribution are not yet well understood, but numerical simulations indicate
that it peaks at slightly higher frequencies than the sound wave contribution and with peak
amplitudes that are substantially smaller than the one of the sound wave contribution [81].
Finally, Ωcollh

2 contains the contributions from bubble wall collisions, which account for the
direct collisions of expanding bubbles during the transition [82]. Specifically, we model the
three contributions using the following templates available in the literature: the sound wave
contribution follows the power-law parametrization given in Ref. [83], the turbulence spec-
trum is implemented using the results of Ref. [84], and the bubble collision part is described
by the broken power-law given in Ref. [85].
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To simulate realistic LISA mock data and model the detector sensitivity, we follow the
methodology outlined in Ref. [86]. The total power spectral density includes contributions
from instrumental noise due to the optical metrology system and mass acceleration, assuming
a standard LISA configuration with an arm length of L = 2.5 ·106 km. We incorporate the full
LISA response function as detailed in the same reference. For simplicity, we do not include
uncertainties on the effective functions parametrizing the two noise components. In a more
realistic scenario, these could be constrained by measuring in the low- and high-frequency
regions where no gravitational wave signal is expected. Following the Welch method [87],
the data are simulated over a frequency range from fmin = 3 · 10−5 Hz to fmax = 0.5 Hz,
with a resolution of ∆ f = 10−6 Hz, determined by the length of the time stream. To inject a
signal, we generate at each frequency 94 individual signal power values with Gaussian noise
and compute their average to obtain the final mock data. This mimics an expected 4-year
observational run of LISA with approximately 75% observing efficiency, which results in 94
statistically independent data chunks.

To reconstruct the gravitational wave signal from the simulated LISA data, we use
evortran to minimize a χ2-function that quantifies the difference between the model and
the data, with the data including the injected signal. Specifically, we minimize

χ2(α,β/H, T∗, g∗, vw) = Nchunks

∑

i

1
2

�

D̄i −ΩGWh2 −Ωsh
2

σi

�2

, (17)

where ΩGWh2 is the template for the gravitational wave spectrum from a cosmological phase
transition, see Eq. (16), depending on the five physical parameters α, β/H, T∗, G∗, and vw,
as discussed above. Ωsh

2 is the LISA face sensitivity curve, D̄i are the averaged simulated
signal powers at frequency bin i, and σi are the variances over the Nchunks = 94 individual
realizations that were averaged to produce the mock data (see Ref. [86] for details). The sum
in Eq. (17) runs over the frequency bins from the minimum frequency 3 · 10−5 Hz up to a
frequency of 10−2 Hz, and the bins at higher frequency are discarded since the gravitational
wave signals are far below the LISA sensitivity there.

We employ the evolve_population function of evortran to perform the optimization
and locate parameter values that minimize χ2. The GA is configured with tournament selec-
tion, sbx crossover and uniform mutation. The populations size is 200, the selection size is
100, and the elite size is four. The population is evolved over a maximum number of 500
generations, or until a minimal χ2 threshold value of 1.11 ·10−2 was achieved. This value was
determined heuristically because we observed that below this value the instrumental noise
prevents improving the signal reconstruction to a higher level of precision. For each example
presented below, which differ by the injected signal or the parameter set to be reconstructed
from the mock data, the minimization is repeated 200 times to explore potential variations
and degeneracies in the fit. The resulting distribution of reconstructed parameter sets is then
compared to the true parameters used to inject the signal, providing insight into the precision
with which LISA may constrain phase transition parameters if a stochastic gravitational wave
background is observed. All source code used to obtain the results presented in this section is
publicly available in a dedicated Git repository [88].

Before turning to the discussion of specific example scenarios, we briefly comment on the
simplifications made in this analysis. First, we do not include uncertainties in the LISA sensi-
tivity curve, which in a full analysis would arise from limited knowledge of the noise power
spectral densities and calibration uncertainties [86]. Second, we ignore stochastic astrophys-
ical foregrounds, such as the unresolved foregrounds from stellar binary systems like white
dwarfs, neutron stars or black holes [89,90], which are expected to contribute in the relevant
frequency range and may complicate signal extraction. Third, we assume that the shape of
the gravitational wave spectrum follows fixed template forms based on hydrodynamic simula-
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tions, rather than reconstructing the spectrum in a binned, model-independent way from the
data, as considered in various LISA forecasting studies. Furthermore, we do not perform a sta-
tistically comprehensive likelihood analysis to determine allowed parameter ranges at a given
confidence level. Instead, we effectively over-fit the data to provide signal reconstructions
that agree well with the observations. Finally, we note that future improvements in theoreti-
cal modeling might reveal additional features in the signal templates, which could allow more
precise parameter extraction if present in real data. These simplifications are justified here
since our goal is to illustrate how evortran can be used for gravitational wave signal recon-
struction as a general-purpose, customizable tool. A comprehensive treatment that includes
these more realistic aspects and a more sound statistical interpretation is left for future work.
For studies that address these issues in detail, see e.g. Refs. [85,86].

Scenario 1: Reconstructing EWPT signal – Free parameters: {α, β/H , T∗, g∗, vw } As a
first example, we consider a gravitational wave signal injected into the LISA mock data that
is consistent with an electroweak phase transition in the early universe. The underlying pa-
rameters for this signal reflect a realistic scenario in BSM physics. We assume a transition
temperature T∗ = 100 GeV, corresponding to the order of the electroweak scale. For the tran-
sition strength we assume a value of α = 0.4, which lies at the upper end of what can be
achieved in simple scalar extensions of the Standard Model such as models with an additional
singlet [91, 92] and/or a second Higgs doublet [93–95], without invoking significant super-
cooling. The terminal velocity of the expanding bubbles is taken to be vw = 0.9, close to the
speed of light, since in strong transitions with α ≳ 0.1 the bubble expansion is expected to
proceed as relativistic detonations [96]. The number of effective relativistic degrees of free-
dom is set to g∗ = 110, accounting for the ones of the Standard Model plus a modest number
of BSM states that facilitate a strong electroweak phase transition. Finally, we use β/H = 100
as a representative inverse duration of the transition, which is typical for such scenarios.

The upper plot of Fig. 11 shows the LISA face sensitivity curve (magenta), the injected
gravitational wave signal (orange), and the mock data after adding Gaussian detector noise
(blue). As described above, we use evortran to minimize the χ2 function shown in Eq. (17)
in order to reconstruct the signal from this noisy data. This reconstruction is performed 200
times to explore degeneracies and noise-induced variance, where we include all five parame-
ters {α,β/H, T∗, g∗, vw} as free parameters to be fitted to the data, under the conditions that
g∗ ≤ 103, α ≤ 104 and vw ≥ 0.1. The resulting reconstructed spectra are shown in green.
For this specific scenario, the contribution from bubble collisions is omitted, as the expanding
bubbles are not expected to runaway in a typical electroweak phase transition, and the result-
ing collision signal is expected to be subdominant compared to sound waves and turbulence
in the LISA frequency band.

The plot reveals an important degeneracy in the signal reconstruction. evortran con-
sistently identifies two qualitatively distinct classes of solutions that fit the data taking into
account instrumental noise. The first class closely resembles the injected signal, with the peak
from the sound wave contribution lying within the most sensitive frequency range of LISA.
In this case, the turbulence contribution remains largely irrelevant, as its amplitude is sup-
pressed, and its peak falls at higher frequencies where the experimental sensitivity is strongly
reduced. The second class of reconstructed signals, however, fits the data using the turbulence
peak instead. Here, the entire signal is shifted to lower frequencies, and although the corre-
sponding sound wave component is much stronger, it is shifted to the left of the LISA sensitivity
curve and thus effectively undetected. Despite arising from entirely different physical param-
eters and microphysics, these two alternative reconstructions produce a gravitational wave
signal that would be indistinguishable from the injected signal within the noise level of the
simulated data. This example highlights the practical challenges and degeneracies involved in
interpreting gravitational wave observations from cosmological phase transitions.
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Figure 11: Top: Gravitational wave power spectrum as a function of frequency for the
scenario 1. The magenta line shows the LISA power-law face sensitivity curve, the
orange line is the injected gravitational wave signal composed of sound wave and
turbulence contributions, and the blue line shows the mock data including Gaus-
sian noise. The green lines represent 200 reconstructed gravitational wave signals
obtained using the evortran by minimizing the χ2 function given in Eq. (17). Bot-
tom: Corner plot showing the distributions of the phase transition parameters corre-
sponding to the reconstructed signals. Each green point marks a parameter set that
produced a signal consistent with the mock data, while the orange star indicates the
parameters used to generate the injected signal.
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Figure 12: Wall time as a function of the number of threads for the scenario 1, using
the evolve_population (blue points) and evolve_migration (orange points)
routines.

In the same plot, we also show the distributions of the reconstructed parameter values
corresponding to the signals that are consistent with the mock data. One can see that none
of the parameters can be extracted given the available data. In particular, the parameters α
and g∗ remain effectively unconstrained. Importantly, this imprecision is not solely due to the
existence of the two different classes of viable signals, but also persists when considering only
the subset of reconstructed signals that closely resemble the injected one. This residual un-
certainty reflects inherent degeneracies in the dependence of the gravitational wave spectrum
on the underlying parameters. In the future, if LISA will detect a signal consistent with an
electroweak phase transition, these degeneracies might severely limit the possibility of distin-
guishing between different BSM theories that might have given rise to the electroweak phase
transition.

The lower plot in Fig. 11 is a corner plot showing the parameter distributions of the 200
reconstructed signals. Each green point corresponds to a parameter combination that yields
a signal compatible with the mock data (green lines in the top plot), while the orange star
indicates the true values of the injected signal (orange line in the top plot). The corner plot
shows the presence of strong degeneracies, as the green points are broadly scattered, filling
large portions of the allowed parameter space across all pairwise projections. This behavior
does not indicate a shortcoming of the applied GA or a lack of convergence. The reconstruction
problem in the chosen parameter basis (called “thermodynamical” parameters) is known to
exhibit strong parameter degeneracies [85], which prevent precise constraints regardless of
the sampling technique employed. In particular, a prominent degeneracy is visible between
the parameters α, β/H and T∗. This degeneracy will be further analyzed and discussed in the
next example.

To study the performance of the parallel implementation of evortran in a realistic set-
ting (the scaling was studied for the minimization of the Rastrigin benchmark function in
Section 4.1.1) with a computationally expensive fitness function, we analyzed the scaling
of wall time with the number of threads in this LISA signal reconstruction example. The
results are shown in Fig. 12. For both the evolve_population (blue points) and the
evolve_migration (orange points) routines, the minimization of the χ2 function was per-
formed here without setting a fitness_target to ensure that all generations were executed.
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In the case of evolve_population, a population size of 1000, a maximum of 250 genera-
tions, and a selection size of 1000 were used. For evolve_migration, ten populations with
100 individuals each were evolved over five epochs of up to 50 generations, resulting in the
same total number of individuals and total number of generations. Moreover, the selection
size was set equal to the population size. This setup yields similar wall times for both routines
when using a single thread, although it leads to some overfitting in this scenario. The config-
uration was chosen deliberately to increase the total runtime so that the scaling with thread
count remains visible before reaching the regime where algorithmic overhead dominates.

One can see in Fig. 12 that the evolve_population routine exhibits a significant re-
duction of the wall time with thread count. Starting from almost 300 seconds for a single
thread, the wall time roughly halves when using two threads, decreases to about 5 seconds
with five threads, and continues to improve gradually with even larger numbers of threads,
dropping below one second at 30 threads. With the maximum of 40 threads, the wall time
reaches about 0.9 seconds, corresponding to an overall speedup by a factor of more than 300.
The evolve_migration shows similar improvement up to about five threads, where the wall
time decreases to roughly 5 seconds. Then the wall time stagnates until ten threads, where
the wall time improves the last time, reaching approximately 3 seconds, corresponding to a
speedup of about two orders of magnitude relative to a run with only one thread. For even
larger number of threads, no further improvement of the runtime is achieved. The better scal-
ing of the evolve_population routine in this example compared to evolve_migration is
the opposite of what was observed for the optimization of the Rastrigin function discussed in
Section 4.1.1, see Fig. 2, where the evolve_migration routine performed significantly bet-
ter using parallel execution. The important difference here is the higher computational cost
of the fitness function which makes the parallelization over individuals within a population,
as implemented in the evolve_population routine, highly effective. In contrast, the par-
allelization implemented in the evolve_migration over the different populations is limited
here by the small number of only five simultaneously evolving populations, such that using
significantly more than about five threads provides no additional improvement in runtime.

Scenario 2: Reconstructing EWPT signal assuming α ≤ 1 and g∗ = 110 – Free param-
eters: {α, β/H , T∗, vw } In the second example, we build upon the previous analysis by
introducing additional constraints that reflect a more model-dependent interpretation of the
gravitational wave signal. Specifically, we restrict the strength of the phase transition to val-
ues α ≤ 1, and we fix the effective number of relativistic degrees of freedom to g∗ = 110.
These choices are motivated by the expectation that an electroweak phase transition occur-
ring in minimal extensions of the Standard Model, such as those with a singlet scalar, a second
Higgs doublet, or a Higgs triplet, will involve only a modest increase in the particle content
and will not exhibit significant supercooling. As a result, this setup provides a more focused
reconstruction of the signal under the assumption that the underlying physics corresponds to
a specific electroweak-scale model. In contrast, the broader parameter space explored in the
previous example remains more agnostic to the origin of the signal and is also compatible with
other cosmological phase transitions that might have occurred in the early universe. We again
take into account only the sound wave and turbulence contribution to the gravitational wave
signal, which is consistent with the considered range of α.

The results of this second example are shown in Fig. 13, with the top plot displaying the
power spectra and the bottom plot presenting the corner plot of reconstructed parameter val-
ues. Due to the additional assumptions on α and g∗, only reconstructed signals that closely
resemble the injected one are found. The second class of solutions observed in the previous
example, characterized by a peak at lower frequencies dominated by the turbulence contribu-
tion as visible in the upper plot of Fig. 11, disappears. This is a consequence of requiring α≤ 1
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here. As a result of the additional assumptions, the parameter reconstruction becomes more
useful. From the distribution of reconstructed signals, we infer that the transition temperature
T∗ is constrained between about 24 GeV and 154 GeV, α must be larger than about 0.1, β/H
lies between 27 and 223, and the bubble wall velocity vw is reconstructed to be above about
0.4. Here one should note that the lower limit on T∗ and the upper bound on β/H are both
consequences of the upper limit assumed on α, and thus not a direct consequence of the fitting
procedure.
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Figure 13: As in Fig. 11 for the scenario 2.
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Figure 14: As in Fig. 11 for the scenarion 3. The corner plot additionally shows the
1σ confidence level credible regions obtained with two independent Bayesian infer-
ence methods: nested sampling using PolyChordLite (blue shaded regions) and
an ensemble Markov Chain Monte Carlo sampler implemented using copa (purple
shaded regions).

The corner plot at the bottom of Fig. 13 further reveals that the bubble wall velocity vw
remains practically unconstrained. However, fixing g∗ = 110 gives rise to a clearer correlation
between the other three parameters T∗, α and β/H, with α and β/H decreasing with increas-
ing values of T∗, see the two bottom panes in the left column of the corner plot. The size of
the bands in which the green points are concentrated in these plots results from the unknown
bubble wall velocity vw which is also fitted to the data in this example. In the following ex-
ample we will investigate the correlations between the parameters by further assuming that a
prediction for vw is available for the electroweak phase transition, in which case vw does not
have to be reconstructed from the LISA data but can be set to the predicted value.
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Scenario 3: Reconstructing EWPT signal assuming α ≤ 1, g∗ = 110 and vw = 0.9 – Free
parameters: {α, β/H , T∗} The third example builds upon the second scenario with an even
more constrained fit. In addition to assuming α≤ 1 and fixing the effective number of degrees
of freedom to g∗ = 110, we now also fix the bubble wall velocity to vw = 0.9, motivated by
the expectation of relativistic expansion for phase transitions with O(0.1–1) values of α. This
setup reflects a more model-dependent interpretation in which we assume that in the future
when LISA is in operation it may be possible to reliably compute the bubble wall velocity from
first principles in a given BSM scenario. Consequently, the reconstruction is now performed
only for the three parameters α, β/H and T∗. While these additional assumptions reduce
generality, they significantly enhance the precision of the parameter reconstruction, as we will
demonstrate. The injected signal parameters remain the same as in the previous two examples
discussed above, and we again only consider the sound wave and turbulence contribution to
the gravitational wave signal.

In Fig. 14 we show the results for this third example, again showing the reconstructed
power spectra in the top plot and the reconstructed values of the fitted parameters in the
corner plot at the bottom. The upper plot illustrates that the signal is now reconstructed
with high precision across the frequency range relevant for LISA. However, despite the overall
good match between the reconstructed signals and the injected one, the underlying parameter
values corresponding to the injected signal are still not recovered. This is a result of the de-
generacy between the three free parameters α, β/H and T∗. As shown in the corner plot, the
viable parameter values consistent with the data lie along thin lines in the parameter space.
This indicates that a detection of a stochastic signal with LISA could effectively be used to
express two of the parameters as functions of the third.

While the observed degeneracy between the parameters still prevents precise extraction
of the parameter values of the injected signal, the reconstruction becomes significantly more
informative. In particular, it enables meaningful model discrimination power. If a given BSM
theory can predict a set of values for α, β/H and T∗ that fall on top of the reconstructed lines in
the corner plot, that model remains viable within experimental uncertainty and could provide
an explanation for the detected signal. Conversely, if the predicted parameter correlations in a
specific BSM theory fall outside the reconstructed viable region, not overlapping with the lines
in the corner plot, the model could potentially be ruled out. It is important to note, however,
that this type of model testing hinges on the assumption that the bubble wall velocity vw is
known and fixed. If a precise prediction for vw is not available in the future when LISA is in
operation, the discrimination power between different models is significantly worse, see the
scenarios discussed above.

In addition to the reconstructed points obtained with evortran, the corner plot in Fig. 14
also shows the 1σ credible regions derived from Bayesian parameter inference, obtained using
nested sampling with the Fortran library PolyChordLite [97,98] (blue shaded regions) and
an ensemble Markov Chain Monte Carlo sampler implemented in the fpm project copa [99]
(purple shaded regions). The chains produced by both the ensemble MCMC sampler and the
nested sampler were processed using the Python package GetDist [100] to determine the 1σ
credible regions, making use of kernel density estimation to construct smooth posterior dis-
tributions. The comparison of the signal reconstruction using evortran with with Bayesian
samplers is carried out only for this example scenario, since the previous two scenarios exhibit
multiple degeneracies in the parameter space, which make a meaningful construction of credi-
ble regions difficult. In contrast, in the present scenario, the degeneracy between the three free
parameters α, β/H, and T∗ is confined to a single, relatively well-defined direction in parame-
ter space, allowing for a more direct comparison between the results obtained with evortran
and the statistically inferred credible regions from PolyChordLite and copa, respectively.
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In the comparison between the results from evortran against the ones from PolyChord
and copa, it is important to keep in mind that GAs and Bayesian sampling methods serve com-
plementary but distinct purposes. GAs are designed to efficiently identify the best-fit solutions
that minimize the χ2 function, whereas Bayesian sampling explores the posterior probabil-
ity distribution around these solutions, providing statistically meaningful confidence regions
that quantify parameter uncertainties. However, sampling methods can struggle to locate the
global best-fit solutions if the likelihood landscape is sufficiently complex or if some optima
appear isolated from the others in the analyized parameter space. In such cases, GAs provide
an ideal tool to verify whether the samplers have identified all viable regions of parameter
space.

One can see that most of the reconstructed parameter points obtained with evortran lie
within the 1σ credible regions, and both the PolyChordLite and copa results agree very well
with each other. The strong degeneracy among the parameters α, β/H, and T∗ is visible across
all methods, confirming that it is an intrinsic feature of the reconstruction problem rather than
a limitation of the GA optimization or the sampling methods. A few of the evortran points at
low transition temperatures and transition strengths appear outside of the 1σ credible regions.
This behavior arises because the credible regions from the Bayesian analyses were constructed
using uniform sampling, which, combined with finite resolution, can artificially truncate the
regions at the lowest parameter values along the flat direction in the χ2 function. The fact that
evortran, where also uniform initialization of the initial population was employed, identi-
fies viable solutions in this region highlights this limitation and demonstrates the advantage
of combining GA-based reconstructions with Bayesian sampling. A GA efficiently explores the
global parameter space more exploratory and can expose paramter regions that may be un-
dersampled in a statistical analysis. However, also the results of GAs depend on the priors
that are used to initialize the population. The impact of different prior choices on the inferred
parameter regions is discussed in more detail in the following example.

Scenario 4: Reconstructing stronger signal assuming α ≤ 103, g∗ ≤ 150 and vw = 1 –
Free parameters: {α, β/H , T∗, g∗} In this fourth and final scenario, we return to a more
general setup and consider a substantially stronger gravitational wave signal originating from
a cosmological phase transition with a large strength parameter of α = 45. The motivation
behind this choice is to investigate how well the signal reconstruction and parameter inference
is improved when the injected signal has a significantly higher signal-to-noise ratio, thereby
enhancing its detectability across a wider range in the LISA frequency band. In this example,
the contribution from bubble collisions might not be negligible, and we therefore include this
third source component in the signal template. The bubble collision peak appears at slightly
lower frequencies than the sound wave and turbulence contributions, providing additional
structure in the spectrum that could potentially help break some of the degeneracies observed
in earlier examples.

A key focus of this example is to explore the influence of the prior distribution used for
the reconstructed parameters. In particular the sampled range of the strength parameter α
span several orders of magnitude. To investigate the impact of different initialization of gene
values in a GA, we perform two separate reconstructions: one using a linear prior on α and
the other using a logarithmic prior. The comparison between the resulting distributions of
reconstructed parameters highlights that the performance and coverage of the solution space
of GAs can depend sensitively on the initial seeding of gene values, i.e. on how the sampling
space is explored from the start. As this example will demonstrate, the choice of prior can have
significant consequences for the robustness and reliability of the inferred parameter ranges in
multi-scale parameter spaces.
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Figure 15: Same as in Fig. 11 for the scenario 4. The corner plot additionally shows
reconstructed parameter values using a logarithmic prior on the parameter α at ini-
tialization of the GA.

In Fig. 15 we show the results for the fourth scenario, where a strong gravitational wave
signal is injected with parameters T∗ = 100 GeV, α = 45, β/H = 100 g∗ = 110, and vw = 1.
The large signal-to-noise ratio allows for a very precise reconstruction of the spectral shape,
as visible in the top plot, with the sound wave peak placed near the maximum sensitivity of
LISA and the turbulence and collision peaks located to either side but still within the sensitive
band. In the corner plot below, we show two sets of reconstructed parameter values. The
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green points correspond to a linear prior on α, while purple points come from using a log
prior. The linear prior leads to a more concentrated reconstruction, especially for g∗, as visible
in the upper pane of the corner plot. This might misleadingly suggest that this parameter
is well constrained by the data. However, the results using the log prior reveal that a wide
range of values, including the whole sampled range of g∗, are actually compatible with the
injected signal. This discrepancy arises because the linear prior oversamples values of α at
the upper end of the sampled interval, whereas the log prior allows the GA to explore several
orders of magnitude more evenly as visible in the bottom row of the corner plot. Notably,
only the log prior reconstruction recovers the injected parameter values (orange stars), while
the linear prior biases the fit toward larger α and β/H values. This example illustrates the
importance of prior choice in GA-based inference, especially when parameters span several
orders of magnitude.

5 Conclusions

We have introduced evortran, a lightweight, flexible, and efficient genetic algorithm (GA)
library written in modern Fortran. The evortran package is available at:

https://gitlab.com/thomas.biekoetter/evortran.

With its modular design and simple user interface, evortran enables users to easily ap-
ply evolutionary strategies to complex optimization problems, including those with non-
differentiable, discontinuous, or noisy fitness functions. The library supports customization
of GA components, native real and integer encodings, and parallel execution via OpenMP.
evortran is installed with the Fortran package manager fpm, ensuring a straightforward de-
pendency management, compilation and installation process, as well as a seamless integration
into both simple scripts and larger code bases. To further enhance accessibility, evortran pro-
vides Python bindings available at:

https://gitlab.com/thomas.biekoetter/pyevortran.

This interface allows users to run the core optimization routines of evortran directly from
Python.

To demonstrate its robustness and versatility, we first validated evortran on a set of well-
known multi-modal benchmark functions commonly used in global optimization, showing re-
liable convergence and the ability to locate global optima even in rugged fitness landscapes. As
a complex, real-world application from particle physics, we used evortran to perform high-
dimensional parameter scans of the Singlet-extended Two-Higgs-Doublet Model (S2HDM),
involving eleven to 14 free parameters, a combination of theoretical constraints, and an ex-
tensive set of LHC data. As a second physics application from cosmology, we then applied
the library to the reconstruction of primordial gravitational wave signals and their underlying
parameters from mock data of the upcoming LISA space observatory. In both cases, evortran
performed successfully, identifying viable solutions efficiently in challenging search spaces.

While our focus here has been on specific scientific use cases, the design of evortran
makes it broadly applicable to a wide range of optimization problems in physics, engineering,
and other fields requiring global search strategies. We hope that evortran becomes a useful
tool for GAs in the Fortran ecosystem and scientific computing.
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