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Abstract

We introduce version 3 of NETKET, the machine learning toolbox for many-body quantum
physics. NETKET is built around neural quantum states and provides efficient algorithms
for their evaluation and optimization. This new version is built on top of JAX, a differen-
tiable programming and accelerated linear algebra framework for the Python program-
ming language. The most significant new feature is the possibility to define arbitrary
neural network ansätze in pure Python code using the concise notation of machine-
learning frameworks, which allows for just-in-time compilation as well as the implicit
generation of gradients thanks to automatic differentiation. NETKET 3 also comes with
support for GPU and TPU accelerators, advanced support for discrete symmetry groups,
chunking to scale up to thousands of degrees of freedom, drivers for quantum dynamics
applications, and improved modularity, allowing users to use only parts of the toolbox
as a foundation for their own code.
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1 Introduction

During the last two decades, we have witnessed tremendous advances in machine learning
(ML) algorithms which have been used to solve previously difficult problems such as image
recognition [1, 2] or natural language processing [3]. This has only been possible thanks to
sustained hardware development: the last decade alone has seen a 50-fold increase in avail-
able computing power [4]. However, unlocking the full computational potential of modern
arithmetic accelerators, such as GPUs, used to require significant technical skills, hampering
researchers in their efforts. The incredible pace of algorithmic advances must therefore be
attributed, at least in part, to the development of frameworks allowing researchers to tap into
the full potential of computer clusters while writing high-level code [5,6].

In the last few years, researchers in quantum physics have increasingly utilized machine-
learning techniques to develop novel algorithms or improve on existing approaches [7]. In
the context of variational methods for many-body quantum physics in particular, the method
of neural quantum states (NQS) has been developed [8]. NQS are based on the idea of using
neural networks as an efficient parametrization of the quantum wave function. They are of
particular interest because of their potential to represent highly entangled states in more than
one dimension with polynomial resources [9], which is a significant challenge for more estab-
lished families of variational states. NQS are also flexible: they have been successfully used to
determine variational ground states of classical [10] and quantum Hamiltonians [11–17] as
well as excited states [13], to approximate Hamiltonian unitary dynamics [8, 18–23], and to
solve the Lindblad master equation [24–26]. In particular, NQS are currently used in the study
of frustrated quantum systems [13,15–17,27–30], which have so far been challenging to opti-
mize by established numerical techniques. They have also been used to perform tomographic
state reconstruction [31] and efficiently approximate quantum circuits [32].

A complication often encountered when working with NQS is, however, that standard ML
frameworks like TensorFlow [33] or PyTorch [34] are not geared towards these kind of quan-
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tum mechanical problems, and it often takes considerable technical expertise to use them for
such non-standard tasks. Alternatively, researchers sometimes avoid those frameworks and
implement their routines from scratch, but this often leads to sub-optimal performance. We
believe that it is possible to foster research at this intersection of quantum physics and ML by
providing an easy-to-use interface exposing quantum mechanical objects to ML frameworks.
We therefore introduce version 3 of the NETKET framework [35].1 NETKET 3 is an open-
source Python toolbox expressing several quantum mechanical primitives in the differentiable
programming framework JAX [5,36].

NETKET provides an easy-to-use interface to high-performance variational techniques with-
out the need to delve into the details of their implementations, but customizability is not sac-
rificed and advanced users can inspect, modify, and extend practically every aspect of the
package. Moreover, integration of our quantum object primitives with the JAX ecosystem al-
lows users to easily define custom neural-network architectures and compute a range of quan-
tum mechanical quantities, as well as their gradients, which are auto-generated through JAX’s
tracing-based approach. JAX provides the ability to write numerical code in pure Python using
NUMPY-like calls for array operations, while still achieving high performance through just-in-
time compilation using XLA, the accelerated linear algebra compiler that underlies TensorFlow.
We have also integrated JAX and MPI with the help of MPI4JAX [37] to make NETKET scale to
hundreds of computing nodes.

1.1 What’s new

With the release of version 3, NETKET has moved from internally relying on a custom C++
core to the JAX framework, which allows models and algorithms to be written in pure Python
and just-in-time compiled for high performance on both CPU and GPU platforms.2 By using
only Python, the installation process is greatly simplified and the barrier of entry for new
contributors is lowered.

iFrom a user perspective, the most important new feature is the possibility of writing cus-
tom NQS wave functions using JAX, which allows for quick prototyping and deployment, frees
users from having to manually implement gradients due to JAX’s support for automatic differ-
entiation, and makes models easily portable to GPU platforms. Other prominent new features
are

• support for (real and imaginary time) unitary and Markovian dissipative dynamics;

• support for continuous systems;

• support for composite Hilbert spaces;

• efficient implementations of the quantum geometric tensor and stochastic reconfigura-
tion, which scale to models with millions of parameters;

• group-invariant and group-equivariant layers and architectures which support arbitrary
discrete symmetries.

A more advanced feature is an extension mechanism built around multiple dispatch [38],
which allows users to override algorithms used internally by NETKET without editing the source
itself. This can be used to make NETKET work with custom objects and algorithms to study
novel problems that do not easily fit what is already available.

1This manuscript refers to NETKET v3.5, released in August 2022.
2Google’s Tensor Processing Units (TPUs) are also, in principle, supported. However, at the time of writing they

only support half-precision float16 . Some modifications would be necessary to work-around loss of precision
and gradient underflow.

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.7


SciPost Phys. Codebases 7 (2022)

ð
JAX fluency. Using NETKET’s high-level interface and built-in neural network ar-
chitectures does not require the user to be familiar with JAX and concepts such as
just-in-time compilation and automatic differentiation. However, when defining
custom classes such as neural network architectures, operators, or Monte Carlo
samplers, some proficiency with writing JAX-compatible code will be required.
We refrain from discussing JAX in detail and instead point the reader towards its
documentation at jax.readthedocs.io.

1.2 Outline

NETKET provides both an intuitive high-level interface with sensible defaults to welcome begin-
ners, as well as a complete set of options and lower-level functions for flexible use by advanced
users. The high-level interface is built around quantum-mechanical objects such as Hilbert
spaces ( netket.hilbert ) and operators ( netket.operator ), presented in Section 2.

The central object in NETKET 3 is the variational state, discussed in Section 3, which bring
together the neural-network ansatz, its variational parameters, and a Monte-Carlo sampler.
In Section 3.2, we give an example on how to define an arbitrary neural network using a
NETKET/JAX-compatible framework, while Section 3.4 presents the new API of stochastic sam-
plers. In Section 3.5, we show how to compute the quantum geometric tensor (QGT) with
NETKET, and compare the different implementations.

Section 4 shows how to use the three built-in optimization drivers to perform ground-
state, steady-state, and dynamics calculations. Section 5 discusses NETKET’s implementation
of spatial symmetries and symmetric neural quantum states, which can be exploited to lower
the size of the variational manifold and to target excited states in nontrivial symmetry sectors.
In Section 6, we also show how to study a system with continuous degrees of freedom, such
as interacting particles in one or more spatial dimensions.

The final sections present detailed workflow examples of some of the more common use
cases of NETKET. In Section 7, we show how to study the ground state and the excited state
of a lattice Hamiltonian. Section 9 gives examples of both unitary and Lindbladian dynamical
simulations.

To conclude, Section 10 presents scaling benchmarks of NETKET running across multiple
devices and a performance comparison with jVMC [39], another library similar in scope to
NETKET.

Readers who are already familiar with the previous version of NETKET might be especially
interested in the variational state interface described in Section 3.1, which replaces what was
called machine in NETKET 2 [35], the QGT interface described in Section 3.5, algorithms for
dynamics (Section 4.3 and Section 9), and symmetry-aware NQS (Section 5).

1.3 Installing NETKET

NETKET is a package written in pure Python; it requires a recent Python version, currently at
least version 3.7. Even though NETKET itself is platform-agnostic, JAX, its main dependency,
only works on MacOS and Linux at the time of writing.3 Installing NETKET is straightforward
and can be achieved running the following line inside a python environment:� �

1 pip install --upgrade netket� �
3In principle, JAX runs on Windows, but users must compile it themselves, which is not an easy process.
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To enable GPU support, Linux with a recent CUDA version is required and a special version
of JAX must be installed. As the appropriate installation procedure can change between JAX

versions, we refer the reader to the official documentation4 for detailed instructions.
NETKET by default does not make use of multiple CPUs that might be available to the

user. Exploiting multiple processors, or even running across multiple nodes, requires MPI
dependencies, which can be installed using the command� �

1 pip install --upgrade "netket[mpi]"� �
These dependencies, namely mpi4py and mpi4jax , can only be installed if a working MPI
distribution is already available.

Once NETKET is installed, it can be imported in a Python session or script and its version
can be checked as� �

1 >>> import netket as nk
2 >>> print(nk.__version__)
3 3.5.0� �

We recommend that users use an up-to-date version when starting a new project. In code
listings, we will often refer to the netket module as nk for brevity.

NETKET also comes with a set of so-called experimental functionalities which are pack-
aged into the netket.experimental submodule which mirrors the structure of the standard

netket module. Experimental APIs are marked as such because they are relatively young
and we might want to change the function names or options keyword arguments without guar-
anteeing backward compatibility as we do for the rest of NETKET. In general, we import the
experimental submodule as follows� �

1 >>> from netket import experimental as nkx� �
and use nkx as a shorthand for it.

2 Quantum-mechanical primitives

In general, when working with NETKET, the workflow is the following: first, one defines the
Hilbert space of the system (Section 2.1) and the Hamiltonian or super-operator of interest
(Section 2.2). Then, one builds a variational state (Section 3.1), usually combining a neural-
network model and a stochastic sampler. In this section, we describe the first step in this
process, namely, how to define a quantum-mechanical system to be modeled.

2.1 Hilbert spaces

Hilbert-space objects determine the state space of a quantum system and a specific choice of
basis. Functionality related to Hilbert spaces is contained in the nk.hilbert module; for

brevity, we will often leave out the prefix nk.hilbert in this section.

All implementations of Hilbert spaces derive from the class AbstractHilbert and fall
into two classes:

• discrete Hilbert spaces, which inherit from the abstract class DiscreteHilbert and

include spin ( Spin ), qubit ( Qubit ), Fock ( Fock ) as well as fermionic orbitals

( SpinOrbitalFermions ) Hilbert spaces. Discrete spaces are typically used to describe

4https://github.com/google/jax#installation
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lattice systems. The lattice structure itself is, however, not part of the Hilbert space class
and can be defined separately.

• continuous Hilbert spaces, which inherit from the abstract class ContinuousHilbert .

Currently, the only concrete continuous space provided by NETKET is Particle .

Continuous Hilbert spaces are discussed in Section 6. A general discrete space with N sites
has the structure

Hdiscrete = span{|s0〉 ⊗ · · · ⊗ |sN−1〉 | si ∈ Li , i ∈ {0, . . . , N − 1}} , (1)

where Li is the set of local quantum numbers at site i (e.g., L = {0, 1} for a qubit, L = {±1}
for a spin-1/2 system in the σz basis, or L= {0, 1, . . . , Nmax} for a Fock space with up to Nmax
particles per site). Constraints on the allowed quantum numbers are supported, resulting in
Hilbert spaces that are subspaces of Eq. (1). For example, Spin(1/2, total_sz=0) creates

a spin-1/2 space which only includes configurations {si} that satisfy
∑N

i=1 si = 0. The corre-
sponding basis states |s〉 span the zero-magnetization subspace. Similarly, constraints on the
total population in Fock spaces are also supported.

Different spaces can be composed to create coupled systems by using the exponent operator
( ** ) and the multiplication operator ( * ). For example, the code below creates the Hilbert
space of a bosonic cavity with a cutoff of 10 particles at each site, coupled to 6 spin−1

2 degrees
of freedom.� �

1 >>> hi = nk.hilbert.Fock(10) * nk.hilbert.Spin(1/2)**6
2 >>> print("Size of the hilbert space: ", hi.n_states)
3 Size of the hilbert space: 704
4 >>> print("Size of the basis: ", hi.size)
5 Size of the basis: 7
6 >>> hi.random_state(jax.random.PRNGKey(0), (2,))
7 DeviceArray([[10., -1., 1., -1., 1., -1., -1.],
8 [ 9., 1., -1., -1., 1., -1., 1.]], dtype=float32)� �

All Hilbert objects can generate random basis elements through the function
random_state(rng_key, shape, dtype) , which has the same signature as standard ran-

dom number generators in JAX. The first argument is a JAX random-generator state as re-
turned by jax.random.PRNGKey , while the other arguments specify the number of output
states and optionally the JAX data type. In this example, an array with two state vectors has
been returned. The first entry of each corresponds to the Fock space and is thus an integer in
{0, 1, . . . , 10}, while the rest contains the spin quantum numbers.

Custom Hilbert spaces can be constructed by defining a class inheriting either from
ContinuousHilbert for continuous spaces or DiscreteHilbert for discrete spaces. In

the rest of the paper, we will always be working with discrete Hilbert spaces unless stated
otherwise.

NETKET also supports working with super-operators, such as the Liouvillian used to define
open quantum systems, and variational mixed states. The density matrix is an element of the
space of linear operators acting on a Hilbert space, B(H). NETKET represents this space using
the Choi–Jamilkowski isomorphism [40,41] convention B(H)∼H⊗H; this “doubled” Hilbert
space is implemented as DoubledHilbert . Doubled Hilbert spaces behave largely similarly
to standard Hilbert spaces, but their bases have double the number of degrees of freedom; for
example, super-operators can be defined straightforwardly as operators acting on them.
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2.2 Linear operators

NETKET is designed to allow users to work with large systems, beyond the typically small
system sizes that are accessible through exact diagonalization techniques. In order to com-
pute expectation values 〈Ô〉 on such large spaces, we must be able to efficiently represent the
operators Ô and work with their matrix elements 〈σ| Ô |η〉 without storing them in memory.

NETKET provides different implementations for the operators, tailored for different use
cases, which are available in the netket.operator submodule. NETKET operators are al-
ways defined relative to a specific underlying Hilbert space object and inherit from one of the
abstract classes DiscreteOperator or ContinuousOperator , depending on the classes of
supported Hilbert spaces. We defer the discussion of operators acting on a continuous space
to Section 6 and focus on discrete-space operators in the remainder of this section.

An operator acting on a discrete space can be represented as a matrix with some matrix
elements 〈σ| Ô |η〉. As most of those elements are zero in physical systems, a standard ap-
proach is to store the operator as sparse matrices, a format that lowers the memory cost by
only storing non-zero entries. However, the number of non-zero matrix elements still scales
exponentially with the number of degrees of freedom, so sparse matrices cannot scale to the
thousands of lattice sites that we want to support, either. For this reason, NETKET uses one of
three custom formats to represent operators:

• LocalOperator is an implementation that can efficiently represent sums of K-local
operators, that is, operators that only act nontrivially on a set of K sites. The memory
cost of this format grows linearly with the number of operator terms and the number of
degrees of freedom, but it scales exponentially in K .

• PauliStrings is an implementation that efficiently represents a product of Pauli X , Y, Z
operators acting on the whole system. This format only works with qubit-like Hilbert
spaces, but it is extremely efficient and has negligible memory cost.

• FermionOperator2nd is an efficient implementation of second-quantized fermionic

operators built out of the on-site creation and annihilation operators f †
i , fi . It works

together with SpinOrbitalFermions and the equivalent Fock spaces.

• Special implementations like Ising , which hard-code the matrix elements of the op-
erator. Those are the most efficient, though they cannot be customized at all.

The nk.operator submodule also contains ready-made implementations of commonly used
operators, such as Pauli matrices, bosonic ladder or projection operators, and common Hamil-
tonians such as the Heisenberg, or the Bose–Hubbard models.

2.2.1 Manipulating operators

Operators can be manipulated similarly to standard matrices: they can be added, subtracted,
and multiplied using standard Python operators. In the example below we show how to con-
struct the operator

Ô =
�

σ̂x
0 + σ̂

x
1

�2
= 2(σ̂x

0 σ̂
x
1 + 1) , (2)

starting from the Pauli X operator acting on the i-th site, σx
i , given by the function

nk.operator.spin.sigmax(hi, i) :
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� �
1 >>> hi = nk.hilbert.Spin(1/2)**2
2 >>> op = nk.operator.spin.sigmax(hi,0) + nk.operator.spin.sigmax(hi,1)
3 >>> op = op * op
4 >>> op
5 LocalOperator(dim=2, acting_on=[[0], [0, 1], [1]], constant=0,

dtype=float64)
6 >>> op.to_dense()
7 array([[2., 0., 0., 2.],
8 [0., 2., 2., 0.],
9 [0., 2., 2., 0.],

10 [2., 0., 0., 2.]])� �
Note that each operator requires the Hilbert space object hi as well as the specific sites it acts
on as constructor arguments. In the last step (line 6), we convert the operator into a dense
matrix using the to_dense() method; it is also possible to convert an operator into a SciPy

sparse matrix using to_sparse() .
While it is possible to inspect those operators and (if the Hilbert space is small enough) to

convert them to dense matrices, NETKET’s operators are built in order to support efficient row
indexing, similar to row-sparse (CSR) matrices. Given a basis vector |σ〉 in a Hilbert space,
one can efficiently query the list of basis states |η〉 and matrix elements O(σ,η) such that

O(σ,η) = 〈σ| Ô |η〉 6= 0 , (3)

using the function operator.get_conn(sigma) , which returns both the vector of non-zero

matrix elements and the corresponding list of indices |η〉, stored as a matrix.5

3 Variational quantum states

In this section, we first introduce the general interface of variational states, which can be used
to represent both pure states (vectors in the Hilbert space) and mixed states (positive-definite
density operators). We then present how to define variational ansätze and the stochastic sam-
plers needed that generate Monte Carlo states.

3.1 Abstract interface

A variational state describes a parametrized quantum state that depends on a (possibly
large) set of variational parameters θ . The quantum state can be either pure (denoted as
|ψθ 〉) or mixed (written as a density matrix ρ̂θ ). NETKET defines an abstract interface,
netket.vqs.VariationalState , for such objects; all classes that implement this interface

will automatically work with all the high-level drivers (e.g., ground-state optimization or time-
dependent variational dynamics) discussed in Section 4. The VariationalState interface
is relatively simple, as it has only four requirements:

• The parameters θ of the variational state are exposed through the attribute parameters
and should be stored as an array or a nested dictionary of arrays.

5This querying is currently performed in Python code, just-in-time compiled using NUMBA [42], which runs
on the CPU. If you run your computations on a GPU with a small number of samples, this might introduce a
considerable slowdown. We are aware of this issue and plan to adapt our operators to be indexed directly on the
GPU in the future.
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• The expectation value 〈Â〉θ of an operator Â can be computed or estimated by the method
expect .

• The gradient of an expectation value with respect to the variational parameters,
∂ 〈Â〉θ/∂ θ j , is computed by the method expect_and_grad 6.

• The quantum geometric tensor (Section 3.5) of a variational state can be constructed
with the method quantum_geometric_tensor .

At the time of writing, NETKET exposes three types of variational state:

• nk.vqs.ExactState represents a variational pure state |ψθ 〉 and computes expecta-
tion values, gradients and the geometric tensor by performing exact summation over the
full Hilbert space.

• nk.vqs.MCState (short for Monte Carlo state) represents a variational pure state and
computes expectation values, gradients and the geometric tensor by performing Markov
chain Monte Carlo (MCMC) sampling over the Hilbert space.

• nk.vqs.MCMixedState represents a variational mixed state and computes expectation
values by sampling diagonal entries of the density matrix.

Variational states based on Monte Carlo sampling are the main tools that we expose to users,
together with a wide variety of high-performance Monte Carlo samplers. More details about
stochastic estimates and Monte Carlo sampling will be discussed in Section 3.3 and Section 3.4.

Dispatch and algorithm selection. With three different types of variational state and sev-
eral different operators supported, it is hard to write a well-performing algorithm that works
with all possible combinations of types that users might require. In order not to sacrifice per-
formance for generic algorithms, NETKET uses the approach of multiple dispatch based on the
PLUM module [38]. Combined with JAX’s just-in-time compilation, this solution bears a strong
resemblance to the approach commonly used in the Julia language [6].

Every time the user calls VariationalState.expect or .expect_and_grad , the types
of the variational state and the operator are used to select the most specific algorithm that
applies to those two types. This allows NETKET to provide generic algorithms that work for all
operators, but keeps it easy to supply custom algorithms for specific operator types if desired.

This mechanism is also exposed to users: it is possible to override the algorithms used by
NETKET to compute expectation values and gradients without modifying the source code of
NETKET but simply by defining new dispatch rules using the syntax shown below.� �

1 @nk.vqs.expect.dispatch
2 def expect(vstate: MCState, operator: Ising):
3 # more efficient implementation than default one
4 #
5 # expectation_value = ...
6 #
7 return expectation_value� �

6For complex-valued parameters θ j ∈ C, expect_and_grad returns the conjugate gradient ∂ 〈Â〉θ/∂ θ ∗j in-

stead. This is done because the conjugate gradient corresponds to the direction of steepest ascent when optimizing
a real-valued function of complex variables [43].
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3.2 Defining the variational ansatz

The main feature defining a variational state is the parameter-dependent mapping of an input
configuration to the corresponding probability amplitude or, in other words, the quantum wave
function (for pure states)

(θ , s) 7→ψθ (s) = 〈s|ψθ 〉 , (4)

or quantum density matrix (for mixed states)

(θ , s, s′) 7→ ρθ (s, s′) = 〈s| ρ̂θ
�

�s′
�

. (5)

In NETKET, this mapping is called a model (of the quantum state).7 In the case of NQS, the
model is given by a neural network. For defining models, NETKET primarily relies on FLAX [44],
a JAX-based neural-network library8. Ansätze are implemented as FLAX modules that map in-
put configurations (the structure of which is determined by the Hilbert space) to the corre-
sponding log-probability amplitudes. For example, pure quantum states are evaluated as

lnψθ (s) = module.apply (θ , s) . (6)

The use of log-amplitudes has the benefit that the log-derivatives ∂ lnψθ (s)/∂ θ j , often needed
in variational optimization algorithms, are directly available through automatic differentiation
of the model. It also makes it easier for the model to learn amplitudes with absolute values
ranging over several orders of magnitude, which is common for many types of quantum states.

,
Real and complex amplitudes. NETKET supports both real-valued and complex-
valued model outputs. However, since model outputs correspond to log-
amplitudes, real-valued networks can only represent states that have exclusively
non-negative amplitudes, lnψθ (s) ∈ R⇒ψθ (s)≥ 0.
Since the input configurations s are real, in many pre-defined NETKET models the
data type of the network parameters (θ ∈ RNp or θ ∈ CNp) determines whether
an ansatz represents a general or a real non-negative state. This should be kept
in mind in particular when optimizing Hamiltonians with ground states that can
have negative amplitudes.

3.2.1 Custom models using Flax

The recommended way to define a custom module is to subclass flax.linen.Module and

to provide a custom implementation of the __call__ method. As an example, we define a
simple one-layer NQS with a wave function of the form

lnψ(s) =
M
∑

j=1

tanh[Ws+ b] j , (7)

7The notion of “model” in NETKET 3 is related to the “machine” classes in NETKET 2 [35]. However, while
NETKET 2 machines both define the mapping (4) and store the current parameters, this has been decoupled in
NETKET 3. The model only specifies the mapping, while the parameters are stored in the variational state classes.

8While our primary focus has been the support of FLAX, NETKET can in principle be used with any JAX-compatible
neural network model. For example, NETKET currently includes a compatibility layer which ensures that models
defined using the HAIKU framework by DeepMind [45] will work automatically as well. Furthermore, any model
represented by a pair of init and apply functions (as used, e.g., in the STAX framework included with JAX) is

also supported.
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with the number of visible units N matching the number of physical sites, a number of hidden
units M , and complex parameters W ∈ CM×N (the weight matrix) and b ∈ CM (the bias
vector). Using NETKET and FLAX, this ansatz can be implemented as follows:� �

1 import netket as nk
2 import jax.numpy as jnp
3 import flax
4 import flax.linen as nn
5

6 class OneLayerNQS(nn.Module):
7 # Module hyperparameter:
8 n_hidden_units: int
9

10 @nn.compact
11 def __call__(self, s):
12 n_visible_units = s.shape[-1]
13 # define parameters
14 # the arguments are: name, initializer, shape, dtype
15 W = self.param(
16 "weights",
17 nn.initializers.normal(),
18 (self.n_hidden_units, n_visible_units),
19 jnp.complex128,
20 )
21 b = self.param(
22 "bias",
23 nn.initializers.normal(),
24 (self.n_hidden_units,),
25 jnp.complex128,
26 )
27

28 # multiply with weight matrix over last dimension of s
29 y = jnp.einsum("ij,...j", W, s)
30 # add bias
31 y += b
32 # apply tanh activation and sum
33 y = jnp.sum(jnp.tanh(y), axis=-1)
34

35 return y� �
The decorator flax.linen.compact used on __call__ (line 10) makes it possible to de-

fine the network parameters directly in the body of the call function via self.param as done
above (lines 15 and 21). For performance reasons, the input to the module is batched. This
means that, instead of passing a single array of quantum numbers s of size N , a batch of mul-
tiple state vectors is passed as a matrix of shape (batch_size, N) . Therefore, operations
like the sum over all feature indices in the example above need to be explicitly performed over
the last axis.
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ð
Just-in-time compilation. Note that the network will be just-in-time (JIT) com-
piled to efficient machine code for the target device (CPU, GPU, or TPU) using
jax.jit , which means that all code inside the __call__ method needs to

written in a way compatible with jax.jit .

In particular, users should use jax.numpy for NumPy calls that need to happen

at runtime; explicit Python control flow, such as for loops and if statements,
should also be avoided, unless one explicitly wants to have them evaluate once
at compile time. We refer users to the JAX documentation for further information
on how to write efficient JIT-compatible code.

The module defined above can be used by first initializing the parameters using
module.init and then computing log-amplitudes through module.apply :� �

1 >>> module = OneLayerNQS(n_hidden_units=16)
2 # init takes two arguments, a PRNG key for random initialization
3 # and a dummy array used to determine the input shape
4 # (here with a batch size of one):
5 >>> params = module.init(nk.jax.PRNGKey(0), jnp.zeros((1, 8)))
6 >>> module.apply(params, jnp.array([[-1, 1, -1, 1, -1, 1, -1, 1]]))
7 DeviceArray([-0.00047843+0.07939122j], dtype=complex128)� �

3.2.2 Network parametrization and pytrees

Parameter data types. NETKET supports models with both real-valued and complex-valued
network parameters. The data type of the parameters does not determine the output type. It
is possible to define a model with real parameters that produces complex output. A simple
example is the sum of two real-valued and real-parameter networks, representing real and
imaginary part of the log-amplitudes (and thus phase and absolute value of the wave func-
tion) [29,31]:

lnψ(θ ,η)(s) = fθ (s) + i gη(s) ⇔ |ψ(θ ,η)(s)|= exp[ fθ (s)] , argψ(θ ,η)(s) = gη(s) , (8)

(where all θi ,ηi ∈ R and f (s), g(s) ∈ R).
More generally, any model with Np complex parameters θ = α+ iβ can be represented by a

model with 2Np real parameters (α,β). While these parametrizations are formally equivalent,
the choice of complex parameters can be particularly useful in the case where the variational
mapping is holomorphic or, equivalently, complex differentiable with respect to θ . This is the
case for many standard network architectures such as RBMs or feed-forward networks, since
both linear transformations and typical activation functions are holomorphic (such as tanh,
cosh, and their logarithms) or piecewise holomorphic (such as ReLU), which is sufficient in
practice. Note, however, that there are also common architectures, such as autoregressive
networks, that are not holomorphic. In the holomorphic case, the computational cost of dif-
ferentiating the model, e.g., to compute the quantum geometric tensor (Section 3.5), can be
reduced by exploiting the Cauchy–Riemann equations [46],

i∇αψ(α,β)(s) =∇βψ(α,β)(s) . (9)

Note that NETKET generally supports models with arbitrary parametrizations (i.e., real and
both holomorphic and non-holomorphic complex parametrizations). The default assumption
is that models with complex weights are non-holomorphic, but some objects (most notably the
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quantum geometric tensor) accept a flag holomorphic=True to enable a more efficient code
path for holomorphic networks.

,
It is the user’s responsibility to only set holomorphic=True for models that
are, in fact, holomorphic. If this is incorrectly specified, NETKET code may give
incorrect results. To check whether a specific architecture is holomorphic, one
can verify the condition

∂ψθ (s)/∂ θ
∗
j = (∂ /∂ α j + i∂ /∂ β j)ψθ (s) = 0 , (10)

which is equivalent to Eq. (9).

Pytrees. In NETKET, model parameters do not need to be stored as a contiguous vector.
Instead, models can support any collection of parameters that forms a so-called pytree. Pytree
is JAX terminology for collections of numerical tensors stored as the leaf nodes inside layers of
nested standard Python containers (such as lists, tuples, and dictionaries).9 Any object that is
not itself a pytree, in particular NumPy or JAX arrays, is referred to as a leaf. Networks defined
as FLAX modules store their parameters in a (potentially nested) dictionary, which provides
name-based access to the network parameters.10 For the OneLayerNQS defined above, the
parameter pytree has the structure:� �

1 # For readability, the actual array data has been replaced with ...
below.

2 >>> print(params)
3 FrozenDict({
4 params: {
5 weights: DeviceArray(..., dtype=complex128),
6 bias: DeviceArray(..., dtype=complex128),
7 },
8 })� �

The names of the entries in the parameter dictionary correspond to those given in the param
call when defining the model. NETKET functions often work directly with both plain arrays and
pytrees of arrays. Furthermore, any Python function can be applied to the leaves of a pytree
using jax.tree_map . For example, the following code prints a pytree containing the shape

of each leaf of params , preserving the nested dictionary structure:� �
1 >>> print(jax.tree_map(jnp.shape, params))
2 FrozenDict({
3 params: {
4 weights: (16, 8),
5 bias: (16,),
6 },
7 })� �

Functions accepting multiple leaves as arguments can be mapped over the correspond-
ing number of pytrees (with compatible structure) using jax.tree_map . For exam-
ple, the difference of two parameter pytrees of the same model can be computed using

9See https://github.com/google/jax/blob/jax-v0.2.28/docs/pytrees.md for a detailed introduction of
pytrees.

10Specifically, FLAX stores networks parameters in an immutable FrozenDict object, which otherwise has the
same semantics as a standard Python dictionary and, in particular, is also a valid pytree. The parameters can be

modified by converting to a standard mutable dict via flax.core.unfreeze(params) .
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Table 1: List of models included in NETKET’s nk.models submodule, together with
relevant references.

Name NETKET class References

Jastrow ansatz Jastrow [47,48]

Restricted Boltzmann machine
(RBM)

RBM , RBMMultiVal ,

RBMModPhase
[8]

Symmetric RBM RBMSymm [8]

Group-Equivariant Convolutional
Neural Network GCNN Section 5

[49]

Autoregressive Neural Network

ARNNDense , ARNNConv1D ,

ARNNConv2D , FastARNNConv1D ,

FastARNNConv2D

[50]

Neural Density Matrix NDM [24,51]

delta = jax.tree_map(lambda a, b: a - b, params1, params2) . NETKET provides
an additional set of utility functions to perform linear algebra operations on such pytrees in
the nk.jax submodule.

3.2.3 Pre-defined ansätze included with NETKET

NETKET provides a collection of pre-defined modules under nk.models , which allow quick
access to many commonly used NQS architectures (Table 1):

• Jastrow: The Jastrow ansatz [47, 48] is an extremely simple yet effective many-body
ansatz that can capture some inter-particle correlations. The log-wavefunction is the
linear function logψ(σ) =

∑

i σiWi, jσ j . Evaluation of this ansatz is very fast but it is
also the least powerful model implemented in NETKET;

• RBM: The restricted Boltzmann machine (RBM) ansatz is composed by a dense layer
followed by a nonlinearity. If the Hilbert space has N degrees of freedom of size d,
RBM has αN features in the dense layer. This ansatz requires param_dtype=complex

to represent states that are non-positive valued. RBMMultiVal is a one-hot encoding

layer followed by an RBM with αdN features in its dense layer. Finally, RBMModPhase
consists of two real-valued RBMs that encode respectively the modulus and phase of
the wavefunction as logψ(σ) = RBM (σ) + i RBM (σ). This ansatz only supports real
parameters. If considering Hilbert spaces with local dimension d > 2, plain RBMs usually
require a very large feature density α and RBMMultiVal s perform better.

• RBMSymm: A symmetry-invariant RBM. Only symmetry groups that can be represented
as permutations of the computational basis are supported (see Section 5). This architec-
ture has fewer parameters than an RBM, but it is more expensive to evaluate. It requires
param_dtype=complex to represent states that are non-positive valued.
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• GCNN: A symmetry-equivariant feed-forward network (see Section 5.2). Only symme-
try groups that can be represented as permutations of the computational basis are sup-
ported. This model is much more complex and computationally intensive than RBMSymm ,
but can also lead to more accurate results. It can also be used to target an excited state
of a lattice Hamiltonian. When working with states that are real but non-positive, one
can use real parameters together with complex_output=True . If the states are to have

a complex phase, param_dtype=complex is required.

• Autoregressive networks: ARNNs are models that can produce uncorrelated samples
when sampled with nk.sampler.ARNNSampler . Those architectures can be efficiently
sampled on GPUs, but they are much more expensive than traditional RBMs.

• NDM: A positive-semidefinite density matrix ansatz, comprised of a component describ-
ing the pure part and one describing the mixed part of the state. The pure part is equiv-
alent to an RBM with feature density α, while the mixed part is an RBM with feature
density β . This network only supports real parameters.

3.2.4 Custom layers included with Flax and NETKET

The nk.nn submodule contains generic modules such as masked dense, masked convolu-
tional and symmetric layers to be used as building blocks for custom neural networks. Those
layers are complementary to those provided by FLAX and can be combined together to develop
novel neural-network architectures.11

As an example, a multi-layer NQS with two convolutional and one final dense layer acting
as a weighted sum can be defined as follows:� �

1 class MultiLayerCNN(nn.Module):
2 features1: int
3 features2: int
4 kernel_size: int
5

6 @nn.compact
7 def __call__(self, s):
8 # define layers
9 layer1 = nn.Conv(

10 features=self.features1,
11 kernel_size=self.kernel_size,
12 )
13 layer2 = nn.Conv(
14 features=self.features2,
15 kernel_size=self.kernel_size,
16 )
17 weighted_sum = nn.Dense(features=1)
18

19 # apply layers and tanh activations
20 y = jnp.tanh(layer1(s))
21 y = jnp.tanh(layer2(y))
22 y = weighted_sum(y)
23 # last axis only has one entry, so we just return that
24 # but keep the batch dimension

11In the past FLAX had minor issues with complex numbers and therefore NETKET included versions of some
standard layers, such as Dense and Conv , that handle complex numbers properly. Starting with FLAX version
0.5, released in May 2022, those issues have been addressed and we now recommend the use of FLAX layers also
with complex numbers.
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25 return y[..., 0]� �
FLAX network layers are available from the flax.linen submodule (imported as nn in

the example above), NETKET layers from netket.nn .

3.3 Estimating observables

For any variational ansatz, it is crucial to also have efficient algorithms for computing quantities
of interest, in particular observables and their gradients. Since evaluating the wave function
on all configurations is infeasible for larger Hilbert spaces, NQS approaches rely on Monte
Carlo sampling of quantum expectation values.

Pure states. The quantum expectation value of an operator Â on a non-normalized pure state
|ψ〉 can be written as a classical expectation value over the Born distribution p(s)∝ |ψ(s)|2

using the identity

〈Â〉=
〈ψ|Â|ψ〉
〈ψ|ψ〉

=
∑

s

|ψ(s)|2

〈ψ|ψ〉
Ã(s) =

∑

s

p(s)Ã(s) = E[Ã] , (11)

where Ã is the local estimator

Ã(s) =
〈s|Â|ψ〉
〈s|ψ〉

=
∑

s′

ψ(s′)
ψ(s)

〈s|Â|s′〉 , (12)

also known as the local energy when Â is the Hamiltonian [52]. Even though the sum in
Eq. (12) runs over the full Hilbert space basis, the local estimator can be efficiently computed
if the operator is sufficiently sparse in the given basis, i.e., all but a tractable number of matrix
elements 〈s|Â|s′〉 are zero. Thus, an efficient algorithm is required that, given s, yields all
connected configurations s′ together with their respective matrix elements, as described in
Section 2.2. Given the derivatives of the log-amplitudes

Oi(s) =
∂ lnψθ (s)
∂ θi

, (13)

gradients of expectation values can also be evaluated. Define the force vector as the covariance

f̃i = Cov[Oi , Ã] = E[O∗i (Ã−E[Ã])] . (14)

Then, if θi ∈ R is a real-valued parameter,

∂ 〈Â〉
∂ θi

= 2Re[ f̃i] . (15)

If θi ∈ C and the mapping θi 7→ψθ (s) is complex differentiable (holomorphic),

∂ 〈Â〉
∂ θ ∗i

= f̃i . (16)

In case of a non-holomorphic mapping, Re[θi] and Im[θi] can be treated as two independent
real parameters and Eq. (15) applies to each.

The required classical expectation values are then estimated by averaging over a sequence
{si}

Ns
i=1 of configurations distributed according to the Born distribution p(s)∝ |ψ(s)|2; e.g.,

Eq. (11) becomes

E[Ã]≈
1
Ns

Ns
∑

i=1

Ã(s) . (17)
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For some models, in particular autoregressive neural networks [50], one can efficiently draw
samples from the Born distribution directly. For a general ansatz, however, this is not possible
and Markov-chain Monte Carlo (MCMC) sampling methods [52]must be used: these generate
a sequence (Markov chain) of samples that asymptotically follows the Born distribution. Such
a chain can be generated using the Metropolis–Hastings algorithm [53], which is implemented
in NETKET’s sampler interface, described in the next section.

Mixed states. When evaluating observables for mixed states, it is possible to exploit a slightly
different identity,

〈Â〉=
Tr
�

ρ̂Â
�

Tr[ρ̂]
=
∑

s

ρ(s, s)
Tr[ρ̂]

Ãρ(s) = E[Ãρ] , (18)

which rewrites the quantum expectation value as a classical expectation over the probability
distribution defined by the diagonal of the density matrix p(s)∝ ρ(s, s). Here, Ãρ denotes
the local estimator of the observable over a mixed state,

Ãρ(s) =
〈s|ρ̂Â|s〉
〈s| ρ̂ |s〉

=
∑

s′

ρ(s, s′)
ρ(s, s)

〈s′|Â|s〉 . (19)

It is then possible to follow the same procedures detailed in the previous paragraph for pure
states to compute the gradient of an expectation value of an operator over a mixed state by
replacing the probability distribution over which the average is computed and the local esti-
mator.

3.3.1 Reducing memory usage with chunking

The number of variational state evaluations required to compute the local estimators (12)
typically scales superlinearly12 in the number of sites N . For optimal performance, NETKET by
default performs those evaluations in a single call using batched inputs. However, for large
Hilbert spaces or very deep models it might be impossible to fit all required intermediate buffers
into the available memory, leading to out-of-memory errors. This is encountered particularly
often in calculations on GPUs, which have more limited memory.

To avoid those errors, NETKET’s nk.vqs.VariationalState exposes an attribute called

chunk_size , which controls the maximum number of configurations for which a model is

evaluated at the same time13. The chunk size effectively bounds the maximum amount of
memory required to evaluate the variational function at the expense of an increased compu-
tational cost in some operations involving the derivatives of the model. For this reason, we
suggest using the largest chunk size that fits in memory.

Chunking is supported for the majority of operations, such as computing expectation values
and their gradients, as well as the evaluation the quantum geometric tensor. If a chunk size
is specified but an operation does not support it, NETKET will print a warning and attempt to
perform the operation without chunking.

3.4 Monte Carlo samplers

The sampling algorithm used to obtain a sequence of configurations from the probability
distribution defined by the variational ansatz is specified by sampler classes inheriting from

12The exact scaling depends on the sparsity of the observable in the computational basis (which in a lattice model
primarily depends on the locality of the operator and the dimension of the lattice).

13The chunk size can be specified at model construction and freely changed later. Chunking can also be disabled
at any time by setting VariationalState.chunk_size = None .
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nk.sampler.AbstractSampler . Following the purely functional design of JAX, we define
the sampler to be a stateless collection of settings and parameters, while storing all mutable
state such as the PRNG key and the statistics of acceptances in an immutable sampler state
object. Both the sampler and the sampler state are stored in the variational state, but they can
be used independently, as they are decoupled from the rest of NETKET.

The Metropolis–Hastings algorithm is used to generate samples from an arbitrary proba-
bility distribution. In each step, it suggests a transition from the current configuration s to a
proposed configuration s′. The proposal is accepted with probability

Pacc(s→ s′) =min
�

1,
P(s′)
P(s)

g(s | s′)
g(s′ | s)

�

, (20)

where P is the distribution being sampled from and g(s′ | s) is the conditional probability of
proposing s′ given the current s. We use L(s, s′) = log[g(s | s′)/g(s′ | s)] to denote the correct-
ing factor to the log probability due to the transition kernel. This factor is needed for asym-
metric kernels that might propose one move with higher probability than its reverse. Simple
kernels, such as a local spin flip or exchange, are symmetric, therefore L(s, s′) = L(s′, s) = 1,
but other proposals, such as Hamiltonian sampling, are not necessarily symmetric and need
this factor.

At the time of writing, NETKET exposes four types of rules to use with the Metropolis sam-
pler: MetropolisLocal , which changes one discrete local degree of freedom in each transi-

tion; MetropolisExchange , which exchanges two local degrees of freedom respecting a con-

served quantity (e.g., total particle number or magnetization); MetropolisHamiltonian ,
which transitions the configuration according to the off-diagonal elements of the Hamilto-
nian; and MetropolisGaussian , which moves a configuration with continuous degrees of
freedom according to a Gaussian distribution.

The different transition kernels in these samplers are represented by MetropolisRule
objects. To define a Metropolis sampling algorithm with a new transition kernel, one only
needs to subclass MetropolisRule and implement the transition method, which gives

s′ and L(s, s′) in each transition. For example, the following transition rule changes the local
degree of freedom on two sites at a time:� �

1 from netket.hilbert.random import flip_state
2 from netket.sampler import MetropolisRule
3 from netket.utils.struct import dataclass
4

5 # To be jax-compatible, it must be a dataclass
6 @dataclass
7 class TwoLocalRule(MetropolisRule):
8 def transition(rule, sampler, machine, parameters, state, key, σ):
9 # Deduce the number of MCMC chains from input shape

10 n_chains = σ.shape[0]
11 # Load the Hilbert space of the sampler
12 hilb = sampler.hilbert
13 # Split the rng key into 2: one for each random operation
14 key_indx, key_flip = jax.random.split(key, 2)
15 # Pick two random sites on every chain
16 indxs = jax.random.randint(
17 key_indx, shape=(n_chains, 2), minval=0, maxval=hilb.size
18 )
19 # flip those sites
20 σp, _ = flip_state(hilb, key_flip, σ, indxs)
21
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Table 2: List of samplers in NETKET with their class names and a description.

Type Name Usage

MCMC (Metropolis)

MetropolisLocal discrete Hilbert spaces

MetropolisExchange
permutations of local states, conserv-
ing total magnetization in spin sys-
tems

MetropolisHamiltonian preserving symmetries of the Hamil-
tonian

MetropolisGaussian continuous Hilbert spaces

Direct
ExactSampler small Hilbert spaces, performs MC

sampling from the exact distribution

ARDirectSampler autoregressive models

22 # If this transition had a correcting factor L, it’s possible
23 # to return it as a vector in the second value
24 return σp, None� �

Once a custom rule is defined, a MCMC sampler using such rule can be constructed with the
command sampler = MetropolisSampler(hilbert, TwoLocalRule()) . Besides Metro-
polis algorithms, more advanced Markov chain algorithms can also be implemented as NETKET

samplers. Currently, parallel tempering is provided as an experimental feature.
Some models allow us to directly generate samples that are exactly distributed accord-

ing to the desired probability, without the use of Markov chains and the issue of autocor-
relation, which often leads to more efficient sampling. In this case, direct samplers can be
implemented with an interface similar to Markov chain samplers. Currently NETKET has im-
plemented ARDirectSampler to be used with ARNNs. For benchmarking purposes, NETKET

also provides ExactSampler , which allows direct sampling from any model by computing

the full Born distribution |ψ(s)|2 for all s. Table 2 is a list of all the samplers.

3.5 Quantum geometric tensor

The quantum geometric tensor (QGT) [54] of a pure state is the metric tensor induced by the
Fubini–Study distance [55,56]

d(ψ,φ) = cos−1

√

√〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

, (21)

which is the natural and gauge-invariant distance between two pure quantum states |ψ〉 and
|φ〉. The QGT is commonly used for time evolution (see Section 4.3) and for quantum natural
gradient descent [57], which was originally developed in the VMC community under the name
of stochastic reconfiguration (SR) [58]. Quantum natural gradient descent is directly related
to the natural gradient descent developed in the machine learning community [59].

From now on, we assume that the state |ψθ 〉 is parametrized by a set of parameters θ .
Assuming further that |φ〉 = |ψθ+δθ 〉, the distance (21) can be expanded to second order
in the infinitesimal parameter change δθ as d(ψθ ,ψθ+δθ )2 = (δθ )†G(δθ ), where G is the
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quantum geometric tensor. For a holomorphic mapping θ 7→ |ψθ 〉, the QGT is given by

Gi j(θ ) =

¬

∂θi
ψθ

�

�

�∂θ j
ψθ

¶

〈ψ|ψ〉
−

¬

∂θi
ψθ

�

�

�ψθ

¶¬

ψθ

�

�

�∂θ j
ψθ

¶

〈ψ|ψ〉2
, (22)

where the indices i, j label the parameters and



x
�

�∂θi
ψθ
�

= ∂θi
〈x |ψθ 〉. Similar to expectation

values and their gradients, Eq. (22) can be rewritten as a classical covariance with respect to
the Born distribution∝ |ψ(s)|2:

Gi j(θ ) = Cov[Oi , Oj] = E
�

O∗i (Oj −E[Oj])
�

, (23)

where Oi are the log-derivatives (13) of the ansatz.14 This allows the quantum geometric
tensor to be estimated using the same sampling procedure used to obtain expectation values
and gradients. The QGT or its stochastic estimate is also commonly known as the S matrix [52]
or quantum Fisher matrix (QFM) in analogy to the classical Fisher information matrix [57,59,
60].

For applications such as quantum natural gradient descent or time-evolution it is usually
not necessary to access the full, dense matrix representation Gi j(θ ) of the quantum geometric
tensor, but only to compute its product with a vector, ṽi =

∑

j Gi j(θ ) v j . When the variational
ansatzψθ has millions of parameters, the QGT can indeed be too large to be stored in memory.
Exploiting the Gram matrix structure of the geometric tensor [61], we can directly compute
its action on a vector without ever calculating the full matrix, trading memory requirements
for an increased computational cost.

Given a variational state vs , a QGT object can be obtained by calling:� �
1 >>> qgt = vs.quantum_geometric_tensor()� �

This qgt object does not store the full matrix, but can still be applied to a vector with the
same shape as the parameters:� �

1 >>> vec = jax.tree_map(jnp.ones_like, vs.parameters)
2 >>> qgt_times_vec = qgt @ vec� �

It can be converted to a dense matrix by calling to_dense :� �
1 # get the matrix (2d array) of the qgt
2 >>> qgt_dense = qgt.to_dense()
3 # flatten vec into a 1d Array
4 >>> grad_dense, unravel = nk.jax.tree_ravel(vec)
5 >>> qgt_times_vec = unravel(qgt_dense @ vec_dense)� �

The QGT can then be used together with a direct solver, such as jnp.linalg.eigh ,

jnp.linalg.svd , or jnp.linalg.qr .

Mixed states. When working with mixed states, which are encoded in a density matrix, it is
necessary to pick a suitable metric to induce the QGT. Even if the most physical distances for
density matrices are the spectral norm or other trace-based norms [62,63], it is generally hard
to use them to define an expression for the QGT that can be efficiently sampled and computed
at polynomial cost. While this might be regarded as a barbaric choice, it leads to an expression
equivalent to Eq. (23), where the expectation value is over the joint-distribution of the of row

14Strictly speaking, this estimator is only correct if ψθ (s) = 0 =⇒ ∂θk
ψθ (s) = 0. This is because we multiplied

and divided by ψθ (s) in the derivation of the estimator, which is only valid if ψθ (s) 6= 0.
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and column labels (s, s′) of the squared density matrix∝
�

�ρ(s, s′)
�

�

2
. Therefore, when working

with mixed states, we resort to the L2 norm, which is equivalent to treating the density matrix
as a vector (“pure state”) in an enlarged Hilbert space.

3.5.1 Implementation differences

There is some freedom in the way one can calculate the QGT, each different implementation
taking a different tradeoff between computational and memory cost. In the example above,
we have relied on NETKET to automatically select the best implementation according to some
internal heuristics, but if one wants to push variational methods to the limits, it is useful to
understand the two different implementations on offer:

• QGTJacobian , which computes and stores the Jacobian Oi(s) of the model (cf. Ap-
pendix B.1) at initialization (using reverse-mode automatic differentiation) and can be
applied to a vector by performing two matrix-vector multiplications;

• QGTOnTheFly , which lazily computes the application of the quantum geometric tensor
on a vector through automatic differentiation.

QGTOnTheFly is the most flexible and can be scaled to arbitrarily large systems. It is based
on the observation that the QGT is the Jacobian of the model multiplied with its conjugate,
which means that its action can be calculated by combining forward and reverse-mode au-
tomatic differentiation. At initialization, it only computes the linearization (forward pass),
and then it effectively recomputes the gradients every time it is applied to a vector. However,
since it never has to store these gradients, it is not limited by the available memory, which also
makes it perform well for shallow neural-network models like RBMs. This method works with
both holomorphic and non-holomorphic ansätze with no difference in performance.

QGTJacobian. For deep networks with ill-conditioned15 quantum geometric tensors, recom-
puting the gradients at every step in an iterative solver might be very costly. QGTJacobian
can therefore achieve better performance at the cost of considerably higher memory require-
ments because it precomputes the Jacobian at construction and stores it. The downside
is that it has to store a matrix of shape Nsamples × Nparameters, which might not fit in the

memory of a GPU. We note that there are two different implementations of QGTJacobian :

QGTJacobianDense and QGTJacobianPyTree . The difference among the two is that in the
former the Jacobian is stored contiguously in memory, leading to a better throughput on GPUs,
while the latter stores them in the same structure as the parameters (so each parameter block
is separated from the others). Converting from the non-contiguous ( QGTJacobianPyTree )

to the contiguous ( QGTJacobianDense ) format has, however, a computational and mem-
ory cost which might shadow its benefit. Moreover, the dense format does not work with
non-homogeneous parameter data types. The basic QGTJacobian algorithm supports both
holomorphic and non-holomorphic NQS, but a better performing algorithm for holomorphic
ansätze can be accessed instantiating it with the option holomorphic=True .

Key differences between the different QGT implementations are summarized in Table 3.
Implementations can be selected, and options passed to them, as shown below:

15The number of steps required to find a solution with an iterative linear solver grows with the condition number
of the matrix. Therefore, an ill-conditioned matrix requires many steps of iterative solver. For a discussion on this
issue, see the paragraph on Linear Systems of this section.
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Table 3: Overview of the three QGT implementations currently provided by NETKET

with their respective options and limitations.

Implementation Extra arguments Use-cases Limitations

QGTOnTheFly None

shallow networks,
large numbers of
parameters and
samples, few solver
steps

Might be more
computationally
expensive for deep
networks compared
to QGTJacobian .

QGTJacobianDense
mode

holomorphic

rescale_shift

deep networks with
narrow layers

requires homoge-
neous parameter
types, memory
bound

QGTJacobianPyTree
deep networks
with heterogeneous
parameters

memory bound

� �
1 >>> from netket.optimizer.qgt import (
2 ... QGTJacobianPyTree, QGTJacobianDense, QGTOnTheFly
3 ... )
4 >>> qgt1 = vs.quantum_geometric_tensor(QGTOnTheFly)
5 >>> qgt2 =

vs.quantum_geometric_tensor(QGTJacobianPyTree(holomorphic=True))
6 >>> qgt3 = vs.quantum_geometric_tensor(QGTJacobianDense)� �

Holomorphicity. When performing time evolution or natural gradient descent, one does not
always need the full quantum geometric tensor: for ansätze with real parameters, as well as
in the case of non-holomorphic wave functions,16 only the real part of the QGT is used. The
real and imaginary parts of the QGT are only required when working with a holomorphic
ansatz. (An in-depth discussion of why this is the case can be found at [64, Table 1].) For this
reason, NETKET’s QGT implementations return the full geometric tensor only for holomorphic
complex-parameter ansätze, and its real part in all other cases.

3.5.2 Solving linear systems

For most applications involving the QGT, a linear system of equations of the kind
∑

j

Gi jδ j = fi , (24)

needs to be solved, where Gi, j is the quantum geometric tensor of a NQS, and fi is a gradient.
This can be done using the standard JAX/NumPy functions, assuming f is a pytree with the
same structure as the variational parameters:� �

1 >>> # iterative solver
2 >>> x, info = jax.scipy.sparse.linalg.cg(qgt, f)
3 >>> # direct solver, acting on the dense matrix
4 >>> x, info = jax.numpy.linalg.cholesky(qgt.to_dense(), f)� �
16Non-holomorphic functions of complex parameters are internally handled by both JAX and NETKET as real-

parameter functions that take the real and imaginary parts of the “complex parameters” separately.
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However, we recommend that users call the solve method on the QGT object, which allows
some additional optimization that may improve performance:� �

1 >>> x, info = qgt.solve(jax.scipy.sparse.linalg.cg, f)
2 >>> x, info = qgt.solve(nk.optimizer.solver.cholesky, f)� �

While this works with any of the representations it is advisable to only use Jacobian based
implementations ( QGTJacobianPyTree or QGTJacobianDense ) with direct solvers, since

constructing the QGT matrix from QGTOnTheFly requires multiplication with all basis vec-
tors, which is not as efficient. Finally, we highlight the fact that users can write their own
functions to solve the linear system (24) using advanced regularization schemes (see for in-
stance ref. [21]) and use them together with qgt.solve , as long as they respect the standard
NumPy solver interface.

When working with iterative solvers such as cg, gmres or minres, the number of steps
required to find a solution grows with the condition number of the matrix. Therefore, an
ill-conditioned geometric tensor requires many steps of iterative solver, increasing the compu-
tational cost. Even then or when using non-iterative methods such as singular value decom-
position (SVD), the high condition number can cause instabilities by amplifying noise in the
right-hand side of the linear equation [20,21,23]. This is especially true for NQS, which typ-
ically feature QGTs with a spectrum spanning many orders of magnitude [60], often making
QGT-based algorithms challenging to stabilize [15,21,23].

To counter that, there is empirical evidence that in some situations, increasing the number
of samples used to estimate the QGT and gradients helps to stabilize the solution [23]. Fur-
thermore, it is possible to apply various regularization techniques to the equation. A standard
option is to add a small diagonal shift ε to the QGT matrix before inverting it, thus solving the
linear equation

∑

j

(Gi, j + ε)δ
′
j = fi . (25)

When ε is small, the solution δ′ will be close to the desired solution. Otherwise it is biased
towards the plain force f , which is still acceptable in gradient-based optimization. To add this
diagonal shift in NETKET, one of the following approaches can be used:� �

1 >>> qgt_1 = vs.quantum_geometric_tensor(QGTOnTheFly(diag_shift=0.001))
2 QGTOnTheFly(diag_shift=0.001)
3 >>> qgt_2 = qgt_1.replace(diag_shift=0.005)
4 QGTOnTheFly(diag_shift=0.005)
5 >>> qgt_3 = qgt_2 + 0.005
6 QGTOnTheFly(diag_shift=0.01)� �

Regularizing the QGT with a diagonal shift is an effective technique that can be used when
performing SR/natural gradient descent for ground state search (see Section 4.1). Note, how-
ever, that since the diagonal shift biases the solution of the linear equation towards the plain
gradient, it may bias the evolution of the system away from the physical trajectory in cases
such as real-time evolution. In those cases, non-iterative solvers such as those based on SVD
can be used, the stability of which can be controlled by suppressing smaller singular values.
It has also been suggested in the literature to improve stability by suppressing particularly
noisy gradient components [21,39]. This is not currently implemented in NetKet, but planned
for a future release. SVD-based regularization also comes at the cost of potentially suppress-
ing physically relevant dynamics [23], making it necessary to find the right balance between
stabilization and physical accuracy, and increased computational time as SVD is usually less
efficient than iterative solvers.
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4 Algorithms for variational states

The main use case of NETKET is variational optimization of wave function ansätze. In the
current version NETKET, three algorithms are provided out of the box via high-level driver
classes: variational Monte Carlo (VMC) for finding ground states of (Hermitian) Hamiltonians,
time-dependent variational Monte Carlo (t-VMC) for real- and imaginary-time evolution, and
steady-state search of Liouvillian open-system dynamics.

These drivers are part of the nk.driver module but we also export them from the nk
namespace. They are constructed from the relevant physical model (e.g., a Hamiltonian), a
variational state, and other objects used by the optimization method. They all support the
run method, which performs a number of optimization steps and logs their progress (e.g.,

variational energies and network parameters) in a variety of output formats.
We highlight that these drivers are built on top of the functionalities described in Sec-

tions 2 and 3, and users are free to implement their own drivers or optimization loops, as
demonstrated in Section 4.4.

4.1 Ground-state search

NETKET provides the variational driver nk.VMC for searching for minimal-energy states using

VMC [52]. In the simplest case, the VMC constructor takes three arguments: the Hamilto-
nian, an optimizer and the variational state (see Section 3.1). NETKET makes use of optimizers
provided by the JAX-based OPTAX library [65],17 which can be directly passed to VMC , allow-
ing the user to build complex training schedules or custom optimizers. In each optimization
step, new samples of the variational state are drawn and used to estimate the gradient of the
Hamiltonian with respect to the parameters θ of the ansatz [52] based on the force vector
[compare Eq. (14)]

f̃i = Cov[Oi , H̃] = E[O∗i (H̃ −E[H̃])] , (26)

where H̃ is the local estimator (12) of the Hamiltonian, known as the local energy, and Oi is
the log-derivative (13) of the wave function. All expectation values in Eq. (26) are evaluated
over the Born distribution ∝ |ψ( · )|2 and can therefore be estimated by averaging over the
Monte Carlo samples. Given the vector f̃ , the direction of steepest descent is given by the
energy gradient

f ≡∇θ 〈Ĥ〉= 2Re[ f̃ ] (real) , (27)

or complex co-gradient [43]

f ≡∇θ ∗〈Ĥ〉= f̃ (complex holomorphic) . (28)

Here we have distinguished the case of i) real parameters and ii) complex parameters with a
variational mapping that is holomorphic with respect to θ . For non-holomorphic ansätze (cf.
Section 3.2.2), complex parameters can be treated pairs of separate real-valued parameters
(real and imaginary part) in the sense of eq. (27). Therefore, this case can be considered
equivalent to the real parameter case.

The gradients are then passed on to the OPTAX optimizer, which may transform them (using,
e.g., Adam) further before updating the parameters θ . Using the simple stochastic gradient
descent optimizer optax.sgd (alias nk.optimizer.Sgd ), the update rule is

θi 7→ θi −η fi , (29)

17The nk.optimizer submodule includes a few optimizers for ease of use and backward compatibility: these

are simply re-exports from OPTAX.
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where the gradient f is given by Eq. (27) or (28) as appropriate.
Below we give a short snippet showing how to use the VMC driver to find the ground-

state of the Ising Hamiltonian.� �
1 # Define the geometry of the lattice
2 g = nk.graph.Hypercube(length=10, n_dim=1, pbc=False)
3 # Hilbert space of spins on the graph
4 hi = nk.hilbert.Spin(s=1 / 2, N=g.n_nodes)
5 # Construct the Hamiltonian
6 hamiltonian = nk.operator.Ising(hi, graph=g, h=0.5)
7

8 # define a variational state with a Metropolis Sampler
9 sa = nk.sampler.MetropolisLocal(hi)

10 vstate = nk.vqs.MCState(sa, nk.models.RBM())
11

12 # Construct the VMC driver
13 vmc = nk.VMC(hamiltonian,
14 nk.optimizer.Sgd(learning_rate=0.1),
15 variational_state=vstate)
16

17 # run the optimisation for 300 steps
18 output = vmc.run(300)� �

To improve on plain stochastic gradient descent, the VMC interface allows passing a key-

word argument preconditioner . This must be a function that maps a variational state and
the gradient vector fi to the vector δi to be passed to the optimizer as gradients instead of fi .
An important use case is stochastic reconfiguration [52], where the gradient is preconditioned
by solving the linear system of equations

∑

j

Re[Gi j]δ j = fi = 2Re[ f̃i] (real) , (30)

or

∑

j

Gi jδ j = fi (complex holomorphic) . (31)

The corresponding preconditioner can be created from a QGT class and a JAX-compatible linear
solver (the default is jax.scipy.sparse.linalg.cg ) using nk.optimizer.SR :� �

1 # Construct the SR object with the chosen algorithm
2 sr = nk.optimizer.SR(
3 qgt = nk.optimizer.qgt.QGTOnTheFly,
4 solver=jax.scipy.sparse.linalg.bicgstab,
5 diag_shift=0.01,
6 )
7

8 # Construct the VMC driver
9 vmc = nk.VMC(

10 hamiltonian, # The Hamiltonian to optimize
11 nk.optimizer.sgd(learning_rate=0.1), # The optimizer
12 variational_state=vstate, # The variational state
13 preconditioner=sr, # The preconditioner
14 )� �
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4.2 Finding steady states

In order to study open quantum systems, NETKET provides the nk.SteadyState variational
driver for determining the variational steady-state ρ̂ss defined as the stationary point of an
arbitrary super-operator L,

0=
dρ̂
d t
= Lρ̂ . (32)

The search is performed by minimizing the Frobenius norm of the time-derivative [24], which
defines the cost function

C(θ ) =
‖Lρ̂‖22
‖ρ̂‖22

=
Tr
�

ρ̂†L†Lρ̂
�

Tr [ρ̂†ρ̂]
, (33)

which has a global minimum for the steady state. The stochastic gradient is estimated over
the probability distribution of the entries of the vectorized density matrix according to the
formula:

fi ≡
∂

∂ θ ∗i

‖Lρ̂‖22
‖ρ̂‖22

= E
�

L̃∇∗i L̃
�

−E[O∗i L̃
2] , (34)

where L̃(s, s′) =
∑

m,m′ L(s, s′; m, m′)ρ(m, m′)/ρ(s, s′) is the local estimator proposed in [24],
and the expectation values are taken with respect to the “Born distribution” of the vectorized
density matrix, p(s, s′)∝ |ρ(s, s′)|2. The optimization works like the ground-state optimiza-
tion provided by nk.VMC : the gradient is passed to an OPTAX optimizer, which may transform

it further before updating the parameters θ . The simplest optimizer, optax.sgd , would up-
date the parameters according to the equation

θi → θi −η fi . (35)

To improve the performance of the optimization, it is possible to pass the keyword argument
preconditioner to specify a gradient preconditioner, such as stochastic reconfiguration that

uses the quantum geometric tensor to transform the gradient. The geometric tensor is com-
puted according to the L2 norm of the vectorized density matrix (see Section 3.5).

As an example, we provide a snippet to study the steady state of a transverse-field Ising
chain with 10 spins and spin relaxation corresponding to the Lindblad master equation

Lρ̂ = −i
�

Ĥ, ρ̂
�

+
∑

i

σ̂−i ρ̂σ̂
+
i −

1
2

�

σ̂+i σ̂
−
i , ρ̂

	

. (36)

We first define the Hamiltonian and a list of jump operators, which are stored in a
LocalLiouvillian object, which is a lazy representation of the super-operator L. Next,

a variational mixed state is built by defining a sampler over the doubled Hilbert space and
optionally a different sampler for the diagonal distribution p(s) ∝ ρ(s, s), which is used to
estimate expectation values of operators. The number of samples used to estimate super-
operators and operators can be specified separately, as shown in the example by specifying
n_samples and n_samples_diag .� �

1 # Define the geometry of the lattice
2 g = nk.graph.Hypercube(length=10, n_dim=1, pbc=False)
3 # Hilbert space of spins on the graph
4 hi = nk.hilbert.Spin(s=1 / 2, N=g.n_nodes)
5

6 # Construct the Liouvillian Master Equation
7 ha = nk.operator.Ising(hi, graph=g, h=0.5)
8 j_ops = [nk.operator.spin.sigmam(hi, i) for i in range(g.n_nodes)]
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9 # Create the Liouvillian with Hamiltonian and jump operators
10 lind = nk.operator.LocalLiouvillian(ha, j_ops)
11

12 # Observable
13 sz = sum([nk.operator.spin.sigmam(hi, i) for i in range(g.n_nodes)])
14

15 # Neural Density Matrix
16 sa = nk.sampler.MetropolisLocal(lind.hilbert)
17 vs = nk.vqs.MCMixedState(
18 sa, nk.models.NDM(beta=1), n_samples=2000, n_samples_diag=500
19 )
20 # Optimizer
21 op = nk.optimizer.Sgd(0.01)
22 sr = nk.optimizer.SR(diag_shift=0.01)
23

24 ss = nk.SteadyState(lind, op, variational_state=vs, preconditioner=sr)
25 out = ss.run(n_iter=300, obs={"Sz": sz})� �

4.3 Time propagation

Time propagation of variational states can be performed by incorporating the time dependence
in the variational parameters and deriving an equation of motion that gives a trajectory in pa-
rameters space θ (t) that approximates the desired quantum dynamics. For real-time dynamics
of pure and mixed NQS, such an equation of motion can be derived from the time-dependent
variational principle (TDVP) [64, 66, 67]. When combined with VMC sampling to estimate
the equation of motion (EOM), this is known as time-dependent variational Monte Carlo (t-
VMC) [52,68] and is the primary approach currently used in NQS literature [8,18,19,21–23].
For complex holomorphic parametrizations18, the TDVP equation of motion is

∑

j

Gi j(θ ) θ̇ j = γ fi(θ , t) , (37)

with the QGT G and force vector f defined in Sections 4.1 and 4.2. After solving Eq. (37), the
resulting parameter derivative θ̇ can be passed to an ODE solver. The factor γ determines the
type of evolution:

• For γ= −i, the EOM approximates the real-time Schrödinger equation on the variational
manifold, the simulation of which is the main use case for the t-VMC implementation
provided by NETKET.

• For γ= −1, the EOM approximates the imaginary-time Schrödinger equation on the vari-
ational manifold. When solved using the first-order Euler scheme θ (t+d t) = θ (t)+θ̇ d t,
this EOM is equivalent to stochastic reconfiguration with learning rate d t. Imaginary-
time propagation with higher-order ODE solvers can therefore also be used for ground
state search as an alternative to VMC. This can result in improved convergence in some
cases [17].

• For γ = 1 and with the Lindbladian super-operator taking the place of the Hamiltonian
in the definition of the force f , this ansatz yields the dissipative real-time evolution
according to the Gorini-Kossakowski-Lindblad-Sudarshan master equation [69]. Our
implementation uses the QGT induced by the vector norm [25] as discussed in the last
paragraph of Section 3.5.

18The TDVP can be implemented for real-parameter wavefunctions by taking real parts of the right-hand side
and QGT similar to VMC (Section 4.1) [39,46]. This is not yet available in the current version of NETKET, but will
be added in a future release.
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The current version of NETKET provides a set of Runge–Kutta (RK) solvers based on JAX

and a driver class TDVP implementing the t-VMC algorithm for the three use cases listed
above. At the time of writing, these features are provided as a preview version in the
netket.experimental namespace as their API is still subject to ongoing development. The

ODE solvers are located in the submodule netket.experimental.dynamics , the driver un-

der netket.experimental.TDVP .

Runge-Kutta solvers implement the propagation scheme [70]

θ (t + d t) = θ (t) + d t
∑L

l=1
bl kl , (38)

using a linear combination of slopes

kl = F
�

θ (t) +
∑l−1

m=1
almkm, t + cl d t

�

, (39)

each determined by the solution F(θ , t) = θ̇ of the equation of motion (37) at an intermediate
time step. The coefficients {alm}, {bl}, and {cl} determine the specific RK scheme and its order.
NETKET further supports step size control when using adaptive RK schemes. In this case, the
step size is dynamically adjusted based on an embedded error estimate that can be computed
with little overhead during the RK step (38) [70]. Step size control requires a norm on the
parameters space in order to estimate the magnitude of the error. Typically, the Euclidean norm
‖δ‖=

Æ
∑

i |δi|2 is used. However, since different directions in parameters space influence the

quantum state to different degrees, it can be beneficial to use the norm ‖δ‖G =
q
∑

i δ
∗
i Gi jδ j

induced by the QGT G as suggested in Ref. [21], which takes this curvature into account and
is also provided as an option with the NETKET time-evolution driver.

An example demonstrating the use of NETKET’s time evolution functionality is provided in
Sec. 9.

4.4 Implementing custom algorithms using NETKET

While key algorithms for energy optimization, steady states, and time propagation are pro-
vided out of the box in the current NETKET version, there are many more applications of NQS.
While we wish to provide new high-level driver classes for additional use cases, such as quan-
tum state tomography [31] or general overlap optimization [32], it is already possible and
encouraged for users to implement their own algorithms on top of NETKET. For this reason,
we provide the core building blocks of NQS algorithms in a composable fashion.

For example, it is possible to write a simple loop that solves the TDVP equation of mo-
tion (37) for a holomorphic variational ansatz and using a first-order Euler scheme [i.e.,
θ (t + d t) = θ (t) + θ̇ (t) d t] very concisely, making use of the elementary building blocks
provided by the VariationalState class:� �

1 def custom_simple_tdvp(
2 hamiltonian: AbstractOperator, # Hamiltonian
3 vstate: VariationalState, # variational state
4 t0: float, # initial time
5 dt: float, # time step
6 t_end: float, # end time
7 ):
8 t = t0
9 while t < t_end:

10 # compute the energy gradient f
11 energy, f = vstate.expect_and_grad(hamiltonian)
12 G = vstate.quantum_geometric_tensor()
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13 # multiply the gradient by -1.0j for unitary dynamics
14 gamma_f = jax.tree_map(lambda x: -1.0j * x, f)
15 # Solve the linear system using any solver, such as CG
16 # (or write your own regularization scheme)
17 dtheta, _ = G.solve(jax.scipy.sparse.linalg.cg, gamma_f)
18 # update the parameters (theta = theta + dt * dtheta)
19 vs.parameters = jax.tree_map(
20 lambda x, y: x + dt * y, vs.parameters, dtheta
21 )
22 t = t + dt� �

While the included TDVP driver (Section 4.3) provides many additional features (such as
error handling, step size control, or higher-order integrators) and makes use of JAX’s just-in-
time compilation, this simple implementation already provides basic functionality and shows
how NETKET can be used for quick prototyping.

5 Symmetry-aware neural quantum states

NETKET includes a powerful set of utilities for implementing NQS ansätze that are symmetric
or transform correctly under the action of certain discrete symmetry groups. Only groups
that are isomorphic to a set of permutations of the computational basis are supported. This
is useful for modeling symmetric (e.g., lattice) Hamiltonians, whose eigenstates transform
under irreducible representations of their symmetry groups. Restricting the Hilbert space to
individual symmetry sectors can improve the convergence of variational optimization [71] and
the accuracy of its result [14,16,49,72]. Additionally, symmetry restrictions can be used to find
excited states [13,16,30], provided they are the lowest energy level in a particular symmetry
sector.

While there is a growing interest for other symmetry groups, such as continuous ones
like SU(2) or SO(3), they cannot be compactly represented in the computational basis and
therefore the approach described in this chapter cannot be used. Finding efficient encodings
for continuous groups is still an open research problem and it’s not yet clear which strategy
will work best [16].

NETKET uses group convolutional neural networks (GCNNs) to build wave functions that are
symmetric over a finite group G. GCNNs generalize convolutional neural networks, invariant
under the Abelian translation group, to general symmetry groups G which may contain non-
commuting elements [73]. GCNNs were originally designed to be invariant, but they can be
modified to transform under an arbitrary irreducible representation (irrep) of G, using the
projection operator [74]

|ψχ〉=
dχ
|G|

∑

g∈G

χ∗g g|ψ〉 , (40)

where g runs over all symmetry operations in G, with corresponding characters χg . Under the
trivial irrep, where all characters are unity, the invariant model is recovered.

NETKET can infer the full space group of a lattice, defined as a set of permutations of lattice
sites, starting from a geometric description of its point group. It can also generate nontrivial
irrep characters [to be used in (40) for states with nonzero wave vectors or transforming non-
trivially under point-group symmetries] using a convenient interface that approximates stan-
dard crystallographic formalism [75]. In addition, NETKET provides powerful group-theoretic
algorithms for arbitrary permutation groups of lattice sites, allowing new symmetry elements
to be easily defined.
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Pre-built GCNNs are then provided in the nk.models submodule, which can be con-
structed by specifying few parameters, such as the number of features in each layer, and the
lattice or permutation group under which the network should transform. Symmetric RBMs [8]
are also implemented as one-layer GCNNs that aggregate convolutional features using a prod-
uct rather than a sum. These pre-built network architectures are made up of individual layers
found in the nk.nn submodule, which can be used directly to build custom symmetric an-
sätze.

Section 5.1 describes the NETKET interface for constructing space groups of lattices and
their irreps. Usage of GCNNs is described in Section 5.2, while appendix A provides mathe-
matical and implementation details.

5.1 Symmetry groups and representation theory

NETKET supports symmetry groups that act on a discrete Hilbert space defined on a lattice. On
such a Hilbert space, space-group symmetries act by permuting sites; most generally, there-
fore, arbitrary subgroups of the symmetric group SN of a lattice of N sites are supported. A
symmetry group can be specified directly as a list of permutations, as in the following example,
which enforces the symmetry ψ(s0, s1, s2, s3) = ψ(s3, s1, s2, s0) for all four-spin configurations
s = (s0, . . . , s3), si = ±1:� �

1 hi = nk.hilbert.Spin(1/2, N=4)
2 symms = [
3 [0, 1, 2, 3], # identity element
4 [3, 1, 2, 0], # swap first and last site
5 ]
6 model = nk.models.RBMSymm(symms, alpha=1)� �

The listed permutations are required to form a group and, in particular, the identity operation
e : s 7→ s must always be included as the first element.

It is inconvenient and error-prone to specify all space-group symmetries of a large lattice
by their indices. Therefore, NETKET provides support for abstract representations of permu-
tation and point groups through the nk.utils.group module, complete with algorithms

to compute irreducible representations [76–78]. The module also contains a library of two-
and three-dimensional point groups, which can be turned into lattice-site permutation groups
using the graph class nk.graph.Lattice (but not general Graph objects, for they carry no
geometric information about the system):� �

1 from netket.utils.group.planar import D
2 from netket.graph import Lattice
3

4 # construct a centred rectangular lattice
5 lattice = Lattice(
6 basis_vectors = [[2,0], [0,1]], # each row is a lattice vector
7 extent = (5,5),
8 site_offsets = [[0,0], [1,0.5]], # each row is the position of a

site in the unit cell
9 point_group = D(2) # the point group of the lattice, here Z_2 x Z_2

10 )� �
NETKET contains specialized constructors for some lattices (e.g., Square or Pyrochlore ),
which come with a default point group; however, these can be overridden in methods like
Lattice.space_group :� �

1 from netket.utils.group.planar import rotation, reflection_group, D
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2 from netket.utils.group import PointGroup, Identity
3 from netket.graph import Honeycomb
4

5 # construct the D_6 point group of the honeycomb lattice by hand
6 cyclic_6 = PointGroup(
7 [Identity()] + [rotation(360 / n * i) for i in range(1, n)],
8 ndim=2,
9 )

10 # the @ operator returns the Cartesian product of groups
11 # but doesn’t check for group structure
12 dihedral_6 = reflection_group(angle=0) @ cyclic_6
13

14 assert dihedral_6 == D(6)
15

16 lattice = Honeycomb([6,6])
17

18 # returns the full space group of ‘lattice‘ as a PermutationGroup
19 space_group = lattice.space_group()
20 # the space group is spanned by 6^2 translations and 12 point-group

symmetries
21 assert len(space_group) == 12 * 6 * 6
22

23 # do this if the Hamiltonian breaks reflection symmetry
24 # can also be used for generic Lattices that have no default point group
25 space_group = lattice.space_group(cyclic_6)� �

Irreducible representation (irrep) matrices can be computed for any point or permutation
group object using the method irrep_matrices() . Characters (the traces of these matri-

ces) are returned by the method character_table() as a matrix, each row of which lists the
characters of all group elements. Character tables closer to the format familiar from quantum
chemistry texts are produced by character_table_readable() . Irrep matrices and char-
acter tables are calculated using adaptations of Dixon’s [76] and Burnside’s [77] algorithms,
respectively.

It would, however, be impractical to inspect irreps of a large space group directly to
specify the symmetry sector on which to project a GCNN wave function. Exploiting the
semidirect-product structure of space groups [78], space-group irreps are usually19 described
in terms of a set of symmetry-related wave vectors (known as a star) and an irrep of the
subgroup of the point group that leaves the same invariant (known as the little group) [75].
Irreps can be constructed in this paradigm using SpaceGroupBuilder objects returned by

Lattice.space_group_builder() :� �
1 from netket.graph import Triangular
2

3 lattice = Triangular([6,6])
4 momentum = [0,0]
5 # space_group_builder() takes an optional PointGroup argument
6 sgb = lattice.space_group_builder()
7

8 # choosing a representation
9 # this one corresponds to the B_2 irrep at the Gamma point

10 chi = sgb.space_group_irreps(momentum)[3]� �
19Representation theory for wave vectors on the surface of the Brillouin zone in a nonsymmorphic space group

is much more complicated [78] and is not currently implemented in NETKET.
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The irrep chi , generated using the little group, is equivalent to one of the irreps

in Lattice.space_group().character_table() and can thus be used for symmetry-
projecting GCNN ansätze. The order in which irreps of the little group are returned can readily
be checked in an interactive session:� �

1 >>> sgb.little_group(momentum).character_table_readable()
2 ([’1xId()’, ’2xRot(60)’, ’2xRot(120)’, ’1xRot(180)’, ’3xRefl(0)’,

’3xRefl(-30)’],
3 array([[ 1., 1., 1., 1., 1., 1.], # this is irrep A1
4 [ 1., 1., 1., 1., -1., -1.], # A2
5 [ 1., -1., 1., -1., 1., -1.], # B1
6 [ 1., -1., 1., -1., -1., 1.], # B2
7 [ 2., 1., -1., -2., 0., 0.], # E1
8 [ 2., -1., -1., 2., 0., 0.]])) # E2� �

The main caveat in using this machinery is that the point groups predefined in NETKET

all leave the origin invariant (except for cubic.Fd3m which represents the “nonsymmorphic
point group” of the diamond/pyrochlore lattice) and thus only work well with lattices in which
the origin has full point-group symmetry. This behaviour can be changed (see the definition
of cubic.Fd3m for an example), but it is generally safer to define lattices using the proper
Wyckoff positions [75], of which the origin is usually maximally symmetric.

5.2 Using group convolutional neural networks (GCNNs)

NETKET uses GCNNs [49,73] to create NQS ansätze that are symmetric under space groups of
lattices. These networks consist of alternating group convolutional layers and pointwise nonlin-
earities. The former can be thought of as a generalization of convolutional layers to a generic
finite group G. They are equivariant, that is, if their inputs are transformed by some space-
group symmetry, features in all subsequent layers are transformed accordingly. As a result, the
output of a GCNN can be understood as amplitudes of the wave functions g|ψ〉 for all g ∈ G,
which can be combined into a symmetric wave function using the projection operator (40).
Further details about equivariance and group convolutions are given in Appendix A.1.

GCNNs are constructed by the function nk.models.GCNN . Symmetries are specified ei-

ther as a PermutationGroup or a Lattice . In the latter case, the symmetry group is given

by space_group() ; an optional point_group argument to GCNN can be used to override
the default point group. By default, output transforms under the trivial irrep χg ≡ 1, that is, all
output features are averaged together to obtain a wave function that is fully symmetric under
the whole space group. Other irreps can be specified through the characters argument,
which takes a vector of the same size as the space group.� �

1 from netket.graph import Triangular
2 from netket.models import GCNN
3 from netket.utils.group.planar import C
4

5 lattice = Triangular([6,6])
6 momentum = [0,0]
7 sgb = lattice.space_group_builder()
8 chi = sgb.space_group_irreps(momentum)[3]
9

10 # This transforms as the trivial irrep Gamma A_1
11 gcnn1 = GCNN(lattice, layers = 4, features=4)
12

13 # This transforms as Gamma B_2
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Table 4: Comparison of GCNN implementations. fin,out stands for the number of
input and output features, |G|, |P|, |T | for the sizes of the space group, point group,
and translation group, respectively. da are the dimensions of irreps of G; in a large
space group,

∑

a d3
a scales as |G||P|.

mode="irreps" mode="fft"

Can be used for any group only space groups

Symmetries can be specified
by

• Lattice

• PermutationGroup
• Symmetry permutations
and irrep matrices

• Lattice

• PermutationGroup and
shape of translation group
• Symmetry permutations,
product table, and shape of
translation group

Kernel memory footprint
per layer

O( fin fout|G|) O( fin fout|G||P|)

Evaluation time per layer
per sample

O[( fin + fout)|G|2 +
fin fout

∑

a d3
a ]

O[( fin + fout)|G| log |T |+
fin fout|G||P|]

Preferable for • large point groups
• if expanded "fft" ker-
nels don’t fit in memory

• small point groups
• very large batches (see
App. A.2)

14 gcnn2 = GCNN(lattice.space_group(), characters=chi, layers=4,
features=4)

15

16 # This does not enforce reflection symmetry
17 gcnn3 = GCNN(lattice, point_group=C(6), layers=4, features=4)� �

NETKET currently supports two implementations of GCNNs, one based on group Fourier
transforms ( mode="irreps" ), the other using fast Fourier transforms on each coset of the

translation group ( mode="fft" ): these are discussed in more detail in Appendix A.2. Their
behavior is equivalent, but their performance and calling sequence is different, as explained in
Table 4. A default mode="auto" is also available. For spin models, parity symmetry (taking
σz to −σz) is a useful extension of the U(1) spin symmetry group enforced by fixing mag-
netization along the σz axis. Parity-enforcing GCNNs can be constructed using the parity
argument, which can be set to ±1.

In addition to deep GCNNs, fully symmetric RBMs [8] are implemented in nk.models.

RBMSymm as a single-layer GCNN from which the wave function is computed as

ψ=
∏

i,g∈G

cosh f (i)g =⇒ logψ=
∑

i,g∈G

ln cosh f (i)g . (41)

Due to the products (rather than sums) used, this ansatz only supports wave functions that
transform under the trivial irrep. An RBM-like structure closer to that of ref. [72] can be
achieved using a single-layer GCNN:� �

1 from netket.models import GCNN, RBMSymm
2 from netket.nn import logcosh
3

4 # fully symmetric RBM
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5 rbm1 = RBMSymm(group, alpha=4)
6

7 # symmetrized RBM similar to (Nomura, 2021)
8 rbm2 = GCNN(group, layers=1, features=4, output_activation=logcosh)� �

6 Quantum systems with continuous degrees of freedom

In this section we will introduce the tools provided by NETKET to study systems with continuous
degrees of freedom. The interface is very similar to the one introduced in Section 2 for discrete
degrees of freedom.

6.1 Continuous Hilbert spaces

Similar to the discrete Hilbert spaces, the bosonic Hilbert space of N particles in continuous
space has the structure

Hcontinuous = span{|x0〉 ⊗ · · · ⊗ |xN−1〉 : x i ∈ Li , i ∈ {0, . . . , N − 1}} , (42)

where Li is the space available to each individual boson: for example, Li is Rd for a free par-
ticle in d spatial dimensions, and [0, L]d for particles confined to a d-dimensional box of side
length L. In the case of finite simulation cells, the boundaries can be equipped with periodic
boundary conditions.

In the following snippet, we define the Hilbert space of five bosons in two spatial dimen-
sions, confined to [0,10]2 with periodic boundary conditions:� �

1 >>> hilb = nk.hilbert.Particle(N=5, L=(10.0, 10.0), pbc=True)
2 >>> print("Size of the basis: ", hilb.size)
3 Size of the basis: 10
4 >>> hilb.random_state(nk.jax.PRNGKey(0), (2,))
5 [[0.02952452 0.21660899 2.836163 3.5628846 4.5622005 5.9473248
6 6.104126 8.14864 9.163713 9.263418 ]
7 [9.85617 0.4667458 2.211265 4.1587596 4.250165 6.69916
8 6.5165453 7.3764215 8.508119 0.08060825]]� �

As we discussed in Section 2.1, the Hilbert objects only define the computational basis. For
that reason, the flag pbc=True only affects what configurations can be generated by samplers
and how to compute the distance between two different sets of positions. This option does not
enforce any boundary condition for the wave-function, which would have to be accounted for
into the variational ansatz.

6.2 Linear operators

Similar to the discrete-variable case, expectation values of operators can be estimated as clas-
sical averages of the local estimator

Õ(x) =
〈x | Ô |ψ〉
〈x |ψ〉

(43)

over the (continuous) Born distribution p(x) ∝ |ψ(x)|2. NETKET provides the base class
ContinuousOperator to write custom (local) operators and readily implements Hamiltoni-

ans of the form (ħh= 1 in our units)

Ĥ = −
1
2

∑

i

1
mi
∇2

i + V̂
�

{xi}
�

, (44)
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Figure 1: VMC energy estimate as a function of the optimization step for a
continuous-space system of N = 10 particles in d = 3 spatial dimensions subject
to a harmonic confinement.

using the predefined operators KineticEnergy and PotentialEnergy . For example, a

harmonically confined system described by Ĥ = −1
2

∑

i∇
2
i +

1
2

∑

i x̂2
i can be implemented as� �

1 # This function takes a single vector and returns a scalar
2 def v(x):
3 return 0.5*jnp.linalg.norm(x) ** 2
4

5 # Construct the Kinetic energy term with unit mass
6 H_kin = nk.operator.KineticEnergy(hilb, mass=1.0)
7 # Construct the Potential energy term using the potential defined above
8 H_pot = nk.operator.PotentialEnergy(hilb, v)
9

10 # Sum the two objects into a single Operator
11 H = H_kin + H_pot� �

Operators defined on continuous Hilbert spaces cannot be converted to a matrix form or
used in exact diagonalization, in contrast to those defined on discrete Hilbert spaces. Con-
tinuous operators can still be used to compute expectation values and their gradients with a
variational state.

6.3 Samplers

Out of the built-in samplers in the current version of NETKET (Section 3.4), only the
Markov chain Monte Carlo sampler MetropolisSampler supports continuous degrees

of freedom, as both ExactSampler and the autoregressive ARNNSampler rely on the
sampled basis being countable. For continuous spaces, we provide the transition rule
sampler.rules.GaussianRule which proposes new states by adding a random shift to ev-

ery degree of freedom sampled from a Gaussian of customizable width. More complex transi-
tion rules can be defined following the instructions provided in Section 3.4.
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6.4 Harmonic oscillators

As a complete example of how to use continuous-space Hilbert spaces, operators, variational
states, and the VMC driver together, consider 10 particles in three-dimensional space, confined
by a harmonic potential V (x) = x2/2. The exact ground-state energy of this system is known
to be E0 = 15. We use the multivariate Gaussian ansatz logψ(x) = −xTΣ−1 x , where Σ= T Tᵀ

and T is randomly initialized using a Gaussian with zero mean and variance one. Note that
the form of Σ ensures that it is positive definite.� �

1 import netket as nk
2 import jax.numpy as jnp
3

4 def v(x):
5 return 0.5*jnp.linalg.norm(x) ** 2
6

7 hilb = nk.hilbert.Particle(N=10, L=(jnp.inf,jnp.inf,jnp.inf), pbc=False)
8 ekin = nk.operator.KineticEnergy(hilb, mass=1.0)
9 pot = nk.operator.PotentialEnergy(hilb, v)

10 ha = ekin + pot
11

12 sa = nk.sampler.MetropolisGaussian(hilb, sigma=0.1, n_chains=16,
n_sweeps=32)

13 model = nk.models.Gaussian(param_dtype=float)
14 vs = nk.vqs.MCState(sa, model, n_samples=10 ** 4, n_discard=2000)
15

16 op = nk.optimizer.Sgd(0.05)
17 sr = nk.optimizer.SR(diag_shift=0.01)
18

19 gs = nk.VMC(ha, op, sa, variational_state=vs, preconditioner=sr)
20 gs.run(n_iter=100, out="HO_10_3d")� �

We show the training curve of above snippet in Fig. 1; exact ground-state energy is recovered
to a very high accuracy.

6.5 Interacting system with continuous degrees of freedom

In this example we want to tackle an interacting system of bosonic Helium particles in one
continuous spatial dimension. The two-body interaction is given by the Aziz potential which
qualitatively resembles a Lennard-Jones potential [79–81]. The Hamiltonian reads

H = −
ħh2

2m

∑

i

∇2
i +

∑

i< j

VAziz(ri j) . (45)

We will examine the system at a density ρ = N
L = 0.3Å

−1
with N = 10 particles in units where

ħh = m = kb = 1. To confine the system it is placed in a box of size L equipped with periodic
boundary conditions. The Hilbert space and sampler are initialized as shown above (rm is the
length-scaled defined in the Aziz potential):� �

1 import netket as nk
2

3 N = 10
4 d = 0.3 # 1/Angstrom
5 rm = 2.9673 # Angstrom
6 L = N / (0.3 * rm)
7 hilb = nk.hilbert.Particle(N=N, L=L, pbc=True)
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8 sab = nk.sampler.MetropolisGaussian(hilb, sigma=0.05, n_chains=16,
n_sweeps=32)� �

6.5.1 Defining the Hamiltonian

We can define the Hamiltonian through the action of the interaction-potential on a sample of
positions x , and combine it with the predefined kinetic energy operator. Since we are using
periodic boundary conditions, we will use the Minimum Image Convention (MIC) to compute
distances between particles. In the following snippet the Aziz potential (in the units above) is
defined and the Hamiltonian is instantiated:� �

1

2 def minimum_distance(x, sdim):
3 """Computes distances between particles using mimimum image

convention"""
4 n_particles = x.shape[0] // sdim
5 x = x.reshape(-1, sdim)
6

7 distances = (-x[jnp.newaxis, :, :] + x[:, jnp.newaxis, :])[
8 jnp.triu_indices(n_particles, 1)
9 ]

10 distances = jnp.remainder(distances + L / 2.0, L) - L / 2.0
11

12 return jnp.linalg.norm(distances, axis=1)
13

14 def potential(x, sdim):
15 """Compute Aziz potential for single sample x"""
16 eps = 7.846373
17 A = 0.544850 * 10 ** 6
18 alpha = 13.353384
19 c6 = 1.37332412
20 c8 = 0.4253785
21 c10 = 0.178100
22 D = 1.241314
23

24 dis = minimum_distance(x, sdim)
25 return jnp.sum(
26 eps
27 * (
28 A * jnp.exp(-alpha * dis)
29 - (c6 / dis ** 6 + c8 / dis ** 8 + c10 / dis ** 10)
30 * jnp.where(dis < D, jnp.exp(-((D / dis - 1) ** 2)), 1.0)
31 )
32 )
33

34 ekin = nk.operator.KineticEnergy(hilb, mass=1.0)
35 pot = nk.operator.PotentialEnergy(hilb, lambda x: potential(x, 1))
36 ha = ekin + pot� �

6.5.2 Defining and training the variational Ansatz

There are two properties that the variational Ansatz for this system must obey:

1. It must be invariant with respect to the permutations of its particles, because they are
bosons;
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2. As the interaction resembles a Lennard-Jones potential we have a strong divergence in
the potential energy when particles get close to each other. This divergence must be
compensated by the kinetic energy.

We satisfy the permutation-invariance by using a neural network architecture called DeepSets.
DeepSets exploit the fact that any function f (x1, ..., xN ) which is invariant under permutations
of its inputs can be decomposed as [82]:

f (x1, ..., xN ) = ρ

�

∑

i

φ(x i)

�

, (46)

where ρ and φ are arbitrary functions. In this specific example, x i denotes a single-particle
position and ρ and φ are parameterized with dense feed forward neural networks.

The second requirement is fulfilled by using Kato’s cusp condition which states that [83]

lim
r→0

�

∇2ψc(r)
ψc(r)

+ V (r)

�

<∞ , (47)

where r denotes the distance between the particles and ψc is the cusp wave-function. For the
case of a Lennard-Jones potential (∝ r−12-divergence), we have

ψc(r) = exp

�

−
1
2

�

b
r

�5
�

, (48)

where b is a variational parameter.
We also need to handle the periodic conditions, making sure that the wave-function does

not exhibit divergent behaviour at the edges of the (periodic) box. To this end we will use a sur-
rogate distance function for the minimum image convention, namely dsin(x i , x j) =

L
2 sin

�

π
L ri j

�

in the variational Ansatz. Additionally we replace the single-particle coordinates in Eq. (46)
by the two-particle distances dsin(x i , x j)2, such that all in all our variational Ansatz reads

ψ(x1, ..., xN ) = exp



ρ

 

∑

i< j

φ(dsin(x i , x j)
2)

!



 · exp

�

−
1
2

�

b
dsin(x i , x j)

�5�

. (49)

The variational ansatz we described here is implemented in NETKET as DeepSeetRelDistance ,

and a more in-depth discussion can be found in this reference [84].
Having defined the ansatz, we run the VMC driver with the given variatianal Ansatz to find

an estimation of the ground-state energy of the system. This is done as follows:� �
1 model = nk.models.DeepSetRelDistance(
2 hilbert=hilb,
3 cusp_exponent=5,
4 layers_phi=2,
5 layers_rho=3,
6 features_phi=(16, 16),
7 features_rho=(16, 16, 1),
8 )
9 vs = nk.vqs.MCState(sab, model, n_samples=4096, n_discard_per_chain=128)

10

11 op = nk.optimizer.Sgd(0.001)
12 sr = nk.optimizer.SR(diag_shift=0.01)
13

14 gs = nk.VMC(ha, op, sab, variational_state=vs, preconditioner=sr)
15 gs.run(n_iter=1000, out="Helium_10_1d")� �

The result of this optimization and a comparison to literature results is displayed in Fig. 2.
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Figure 2: VMC energy estimate as a function of the optimization step for a
continuous-space system of N = 10 particles in d = 1 spatial dimensions subject
to a LJ-like interaction potential placed within a periodic box. The green dashed line
is the result given in the supplementary material of [80].

7 Example: Finding ground and excited states of a lattice model

In this example, we define the J1–J2 Heisenberg Hamiltonian

H = J1

∑

〈i j〉

~σi · ~σ j + J2

∑

〈〈i j〉〉

~σi · ~σ j , (50)

on a 10×10 square lattice and use the VMC code introduced in Section 4.1 to find a variational
approximation of its ground state. This model gives rise to several phases of matter, including
magnetically ordered states, a valence bond solid, and a quantum spin liquid. Here, we set
J1 = 1, J2 = 0.5, inside the spin liquid phase [30,85].

Our example is optimized to run on a single GPU with 16 GB of memory. We will make
note of what should be changed when running the simulation on CPUs.

7.1 Defining the lattice and the Hamiltonian

We use the Lattice class to define the square lattice and generate its space-group sym-

metries. By passing max_neighbor_order=2 to the constructor, we generate graph edges

for both nearest and next-nearest neighbours. The pre-defined Heisenberg class supports
passing different coupling constants for both types of edge.� �

1 import netket as nk
2 import numpy as np
3 import json
4 from math import pi
5

6 L = 10
7 # Build square lattice with nearest and next-nearest neighbor edges
8 lattice = nk.graph.Square(L, max_neighbor_order=2)
9 hi = nk.hilbert.Spin(s=1 / 2, total_sz=0, N=lattice.n_nodes)

10 # Heisenberg with coupling J=1.0 for nearest neighbors
11 # and J=0.5 for next-nearest neighbors
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12 H = nk.operator.Heisenberg(hilbert=hi, graph=lattice, J=[1.0, 0.5])� �
7.2 Defining and training a symmetric ansatz

To enforce all spatial symmetries of (50), we use the GCNN ansatz described in Section 5.
By default, the GCNN projects onto the symmetric representation, which contains the ground
state for this geometry. We select singlet states by only sampling basis states with

∑

i Sz
i = 0

and setting spin parity using parity=1 . We use a model with four layers, each contain-

ing four feature vectors (i.e., four hidden units for each of the 8L2 space-group symme-
tries). To exploit the high degree of parallelism of GPUs, we set sampler.n_chains equal

to vstate.n_samples 20. When using CPUs, n_chains should be set to a smaller value.� �
1 machine = GCNN(
2 symmetries=lattice,
3 parity=1,
4 layers=4,
5 features=4,
6 param_dtype=np.complex128,
7 )
8 sampler = nk.sampler.MetropolisExchange(
9 hilbert=hi,

10 n_chains=1024,
11 graph=lattice,
12 d_max=2,
13 )
14 opt = nk.optimizer.Sgd(learning_rate=0.02)
15 sr = nk.optimizer.SR(diag_shift=0.01)
16 vstate = nk.vqs.MCState(
17 sampler=sampler,
18 model=machine,
19 n_samples=1024,
20 n_discard_per_chain=0,
21 chunk_size=4096,
22 )
23 gs = nk.VMC(H, opt, variational_state=vstate, preconditioner=sr)
24 gs.run(n_iter=200, out="ground_state")
25

26 data = json.load(open("ground_state.log"))
27 print(np.mean(data["Energy"]["Mean"]["real"][-20:])/400)
28 # Output: -0.49562531096409457
29 print(np.std(data["Energy"]["Mean"]["real"][-20:])/400)
30 # Output: 0.0002492304032505182� �

We specify chunk_size=4096 in the variational state in order to reduce memory con-

sumption. As we have L2 = 100 sites, at every VMC step we will need to evaluate the network
for O(Nsamples L2) = O(103 · 102) different configurations, but the memory available on com-
mercial GPUs will not be enough to perform this computation in a single pass. Instead, by

20Note that this results in a somewhat non-standard MC scheme where, instead of an ensemble of chains with
generally non-zero internal autocorrelation, the sampler produces an ensemble of independently drawn single
configurations ( n_samples_per_chain==1 ). Since the sampler state of the previous VMC step is used as initial

state for the next step, there can still be a residual autocorrelation with the previous samples, which is, however,
alleviated by the sampler performing Nsites intermediate updates before yielding the single requested sample with
the settings used here.
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Figure 3: Energy evolution of variational ground states (green) and excited states
after transfer learning (blue), compared to the lowest known variational energy for
the 10× 10 square-lattice J1–J2 model [30] (black). The variational energies can be
further improved by allowing more training steps, Monte Carlo samples, etc. The
plot on the right zooms in on the lowest energies.

setting chunk_size NETKET will split the calculation in many smaller sub-calculations (see
Section 3.3.1 for more details).

This calculation, which takes about 30 minutes on an NVIDIA A100 GPU, already delivers
a fairly accurate variational energy. The evolution of variational energy during the training
procedure is shown in Fig. 3.

We note that a typical initialization of a GCNN gives rise to ferromagnetic correlations,
which can make training an antiferromagnetic Hamiltonian unstable [15, 49]. Therefore, it
is often good practice to pre-optimize the phases by restricting all amplitudes to unity by
setting equal_amplitudes=True switch and training only the phases of the network. These

parameters can then be loaded into a model with equal_amplitudes=False .

7.3 Finding an excited state

We can also find low-lying excited states using this procedure, by projecting the wavefunction
onto a different irrep. Here, we consider the first gapless mode in the Anderson tower of states
of the Néel antiferromagnet [86], a triplet at wave vector (π,π) that transforms trivially under
all point-group symmetries. This mode is still gapless in the quantum spin liquid; we project
out spin-singlets by focusing on parity odd states.

We expedite this calculation by using parameters optimized for the ground-state sector as
an initial guess. The resulting wave function will already have a low variational energy (as
shown in Fig. 3) and correlations typical for low-energy eigenstates.� �

1 # store the optimized ground-state parameters
2 saved_params = vstate.parameters
3 # Compute the characters of the first excited state
4 characters = lattice.space_group_builder().space_group_irreps(pi, pi)[0]
5 # Construct a model respecting the first-excited state symmetries
6 machine = GCNN(
7 symmetries=lattice,
8 characters=characters,
9 parity=-1,

10 layers=4,
11 features=4,
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12 param_dtype=complex,
13 )
14 vstate = nk.vqs.MCState(
15 sampler=sampler,
16 model=machine,
17 n_samples=1024,
18 n_discard_per_chain=0,
19 chunk_size=4096,
20 )
21 # assign the old parameters to the new variational state
22 vstate.parameters = saved_params
23 gs = nk.VMC(H, opt, variational_state=vstate, preconditioner=sr)
24 gs.run(n_iter=50, out=’excited_state’)
25

26 data = json.load(open("excited_state.log"))
27 print(np.mean(data["Energy"]["Mean"]["real"][-10:])/400)
28 # Output: -0.49301426054097885
29 print(np.std(data["Energy"]["Mean"]["real"][-10:])/400)
30 # Output: 0.0003802670752071611� �

8 Example: Fermions on a lattice

NETKET can also be used to simulate fermionic systems with a finite number of orbitals. Func-
tionality related to fermions is kept in the netket.experimental in order to signal that some
parts of the API might still slightly change while we gather feedback from the community. We
usually import this namespace as nkx as follows:� �

1 from netket import experimental as nkx� �
and then use nkx freely.

The Hilbert space for discrete fermionic systems is called SpinOrbitalFermions . It
supports fermions, with and without a spin- degree of freedom, which occupy a set of orbitals
(such as the sites of a lattice). Internally, it uses a tensor product of a Fock space for each spin
component. For a set of spin-1/2 fermions, we can fix the number of fermions with up (↑) and
down (↓) spins through the n_fermions keyword argument. The SpinOrbitalFermions

generates samples that correspond to occupation numbers |n〉 =
�

�n1,↑, ..., nNo ,↑, n1,↓, ..., nNo ,↓
�

,
for a given ordering of the No orbitals (or sites).

In the example below, we determine the ground state of the Fermi-Hubbard model on a
square lattice

Ĥ = −t
∑

〈i, j〉

∑

σ={↑,↓}

f †
i,σ f j,σ + h.c.+ U

∑

i

ni,↑ni,↓ , (51)

where ni,σ = f †
i,σ fi,σ.

NETKET implements a class FermionOperator2nd that represents an operator in sec-
ond quantization. This class does not separate spin and orbital indices. Internally, the
FermionOperator2nd computes matrix elements of a fermion operator f †

i on an orbital i
through the Jordan-Wigner transformation

f †
i →

�

⊗

j<i

Z j

�

�

X i + iYi

2

�

, (52)
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or in terms of occupation numbers




n
�

� f †
i

�

�n′
�

= (−1)
∑

j<i n jδn′i+1,ni

∏

j 6=i

δn j ,n
′
j
. (53)

One can create a FermionOperator2nd object from an external FermionOperator object
from the OPENFERMION library, which is popular for symbolic manipulation of fermionic oper-
ators [87]. The small intermezzo code below shows how this works in practice for an operator
f †
1 f2 + 4 f3 f †

0� �
1 from openfermion import FermionOperator
2 from netket.operator import FermionOperator2nd
3

4 of_operator = FermionOperator("1^ 2") + 4*FermionOperator("3 0^")
5 nk_operator1 = FermionOperator2nd.from_openfermion(of_operator)
6

7 nk_operator2 = FermionOperator2nd("1^ 2") + 4*FermionOperator2nd("3 0^")� �
where nk_operator1 and nk_operator2 are equivalent.

The mapping between fermions and qubit degrees of freedom is not unique [88], and
the Jordan-Wigner transformation is one well-know example of such a transformation. How-
ever, by interfacing with toolboxes specialized in symbolic manipulation, we open up a range
of possibilities, especially in combination with PauliStrings.from_openfermion , which

converts openfermion.QubitOperator from OPENFERMION to a PauliStrings object in
NETKET. This allows one to, for example, use a wider range of alternatives to the Jordan-
Wigner transformation implemented in OPENFERMION, or other variations.

Going back to our example of the Fermi-Hubbard model, NETKET also implements a more
easy to use set of creation and annihilation operators that clearly separate the orbitals and spin
indices

• f †
i,σ: nkx.operator.fermion.create

• fi,σ: nkx.operator.fermion.destroy

• ni,σ: nkx.operator.fermion.number

Each operator takes a site and spin projection ( sz ) in order to find the right position in the
Hilbert space samples. We will create a helper function to abbreviate the creation, annihilation
and number operators in the example below.� �

1 from netket import experimental as nkx
2 from netket.experimental.operator.fermion import (
3 create as c, destroy as cdag, number as nc)
4

5 # create the graph our fermions can hop on
6 L = 4
7 g = nk.graph.Hypercube(length=L, n_dim=2, pbc=True)
8 n_sites = g.n_nodes
9

10 # create a hilbert space with 2 up and 2 down spins
11 hi = nkx.hilbert.SpinOrbitalFermions(n_sites, s=1 / 2, n_fermions=(2,

2))
12

13 t = 1 # tunneling/hopping
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14 U = 0.01 # coulomb
15

16 up, down = +0.5, -0.5
17 ham = 0.0
18 for sz in (up, down):
19 for u, v in g.edges():
20 ham += -t * (cdag(hi, u, sz) * c(hi, v, sz) +
21 cdag(hi, v, sz) * c(hi, u, sz))
22 for u in g.nodes():
23 ham += U * nc(hi, u, up) * nc(hi, u, down)� �

Sampling: To run a VMC optimization, we need a proper sampling algorithm that takes
into account the constraints of the computational basis we are working with. As the
SpinOrbitalFermions basis consereves total spin-magnetization, we cannot use samplers

like MetropolisLocal which randomly change the population ni,σ on a site, thus changing

the total spin. We can instead use MetropolisExchange , which moves fermions around
according to the physical lattice graph of L × L vertices, but the computational basis defined
by the Hilbert space contains (2s+ 1)L2 occupation numbers. By taking a disjoint copy of the
lattice, we can move the fermions around independently for both spins and therefore conserve
the number of fermions with up and down spin. Notice that in the chosen representation,
where is no need to anti-symmetrize our ansatz.� �

1 sa = nk.sampler.MetropolisExchange(hi,
2 graph=nk.graph.disjoint_union(g, g),
3 n_chains=16)
4

5 ma = nk.models.RBM(alpha=1, param_dtype=complex)
6 vs = nk.vqs.MCState(sa, ma, n_discard_per_chain=100, n_samples=512)
7

8 opt = nk.optimizer.Sgd(learning_rate=0.01)
9 sr = nk.optimizer.SR(diag_shift=0.1)

10

11 gs = nk.driver.VMC(ham, opt, variational_state=vs, preconditioner=sr)
12 gs.run(500, out=’fermions’)� �

9 Example: Real-time dynamics

We demonstrate the simulation of NQS dynamics in the transverse-field Ising model (TFIM)
on an L site chain with periodic boundaries, using a restricted Boltzmann machine (RBM) as
the NQS ansatz. The Hamiltonian reads

ĤIsing = J
∑

〈i j〉

σ̂z
i σ̂

z
j − h

∑

i

σ̂x
i , (54)

with J = 1 and h = 1 and periodic boundary conditions. We will estimate the expectation
value of the transverse magnetization Ŝ x =

∑

i σ̂
x
i along the way.

We simulate the dynamics starting from an initial state |ψ(t0)〉 that is the ground state for
the TFIM Hamiltonian with h = 1/2. The random weight initialization of a neural network
yields a random initial state. Therefore, we determine the weights corresponding to this initial
state by performing a ground-state optimization. Even though the TFIM ground state can be
parametrized using an RBM ansatz with real-valued weights, we need to use complex-valued

45

https://scipost.org
https://scipost.org/SciPostPhysCodeb.7


SciPost Phys. Codebases 7 (2022)

Figure 4: Comparison between the exact (dashed line) and variational dynamics
of a quench on the transverse-field Ising model. (Left): Expectation value of the
quenched Hamiltonian, which is conserved by the unitary dynamics. The shaded
area represents the uncertainty due to Monte Carlo sampling. (Right): Expectation
value of the total magnetization along the x axis during the evolution.

weights here, in order to describe the complex-phase of the wave function that arises during
the time evolution21. In this example, we work with a chain of L = 20 sites, which can be
easily simulated on a typical laptop with the parameters below.� �

1 import netket as nk
2 import netket.experimental as nkx
3

4 # Spin Hilbert space on 20-site chain with PBC
5 L = 20
6 chain = nk.graph.Chain(L)
7 hi = nk.hilbert.Spin(s=1/2) ** L
8

9 # Define RBM ansatz and variational state
10 rbm = nk.models.RBM(alpha=1, param_dtype=complex)
11 sampler = nk.sampler.MetropolisLocal(hi)
12 vstate = nk.vqs.MCState(sampler, rbm, n_samples=4096)
13

14 # Hamiltonian at J=1 (default) and external field h=1/2
15 ha0 = nk.operator.Ising(hi, chain, h=0.5)
16 # Observable (transverse magnetization)
17 obs = {"sx": sum(nk.operator.spin.sigmax(hi, i) for i in range(L))}
18

19 # First, find the ground state of ha0 to use it as initial state
20 optimizer = nk.optimizer.Sgd(0.01)
21 sr = nk.optimizer.SR()
22 vmc = nk.VMC(ha0, optimizer, variational_state=vstate,

preconditioner=sr)
23 # We run VMC with SR for 300 steps
24 vmc.run(300, out="ising1d_groundstate_log", obs=obs)� �

46

https://scipost.org
https://scipost.org/SciPostPhysCodeb.7


SciPost Phys. Codebases 7 (2022)

Figure 5: Comparison between the exact (dashed line) and variational dynamics of
a random initial density matrix evolved according to the Lindblad Master equation.
(Left): Expectation value of the 〈〈ρ|L†L|ρ〉〉 convergence estimator. (Right): Ex-
pectation value of the total magnetization along the x̂ axis during the evolution. We
remark that the evolution is near-exact in the region where the dissipative terms
dominate the dynamics, while there is a sizable error when the unitary dynamics
starts to play a role. The error could be reduced by considering smaller time steps.

9.1 Unitary dynamics

Starting from the ground state, we can compute the dynamics after a quench of the transverse
field strength to h = 1. We use the second-order Heun scheme for time stepping, with a step
size of d t = 0.01, and explicitly specify a QGT implementation (compare Sec. 3.5) in order to
make use of the more efficient code path for holomorphic models.� �

1 # Quenched Hamiltonian
2 ha1 = nk.operator.Ising(hi, chain, h=1.0)
3 # Heun integrator configuration
4 integrator = nkx.dynamics.Heun(dt=0.001)
5 # QGT options
6 qgt = nk.optimizer.qgt.QGTJacobianDense(holomorphic=True)
7 # Creating the time-evolution driver
8 te = nkx.TDVP(ha1, vstate, integrator, qgt=qgt)
9 # Run the t-VMC solver until time T=1.0

10 te.run(T=1.0, out="ising1d_quench_log", obs=obs)� �
In Fig. 5 we show the results of this calculation, comparing against an exact solution com-

puted using QuTiP [89,90].

9.2 Dissipative dynamics (Lindblad master equation)

In Section 4.3 we have shown that the time-dependent variational principle can also be used to
study the dissipative dynamics of an open quantum system. In this section we give a concrete
example, studying the transverse-field Ising model coupled to a zero-temperature bath. The
coupling is modeled through the spin depolarization operators σ̂−i acting on every site i.

As the dissipative dynamics converges to the steady state, which is also an attractor of
the non-unitary dynamics, we will use a weak-simulation of the dynamics22 to determine

21It is possible to first use a real-weight RBM for the initial state preparation and then switch to complex-valued
weights for the dynamics. For the sake of simplicity, we leave out this extra step in the present example.

22We use weak and strong simulation in the sense of the theory of numerical SDE schemes [91]. This means
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the steady-state more efficiently than using the natural gradient descent scheme proposed
in ref. [24]. This scheme is similar to what was proposed in Ref. [25].

We employ the positive-definite RBM ansatz proposed in Ref. [51]. A version of that net-
work with complex-valued parameters is provided in NETKET with the name nk.models.NDM .� �

1 # The graph of the Hamiltonian
2 g = nk.graph.Chain(L, pbc=False)
3 # Hilbert space
4 hi = nk.hilbert.Spin(0.5)**g.n_nodes
5 # The Hamiltonian
6 ha = nk.operator.Ising(hi, graph=g, h=-1.3, J=0.5)
7 # Define the list of jump operators
8 j_ops = [nk.operator.spin.sigmam(hi, i) for i in range(g.n_nodes)]
9 # Construct the Liouvillian

10 lind = nk.operator.LocalLiouvillian(ha, j_ops)
11

12 # observable
13 Sx = sum([nk.operator.spin.sigmax(hi, i) for i in

range(g.n_nodes)])/g.n_nodes
14

15 # Positive-definite RBM-like ansatz (Torlai et al.)
16 ma = nk.models.NDM(alpha=2, beta=3)
17 # MetropolisLocal sampling on the Choi’s doubled space.
18 sa = nk.sampler.MetropolisLocal(lind.hilbert, n_chains=16)
19 # Mixed Variational State. Use less samples for the observables.
20 vs = nk.vqs.MCMixedState(
21 sa, ma, n_samples=12000, n_samples_diag=1000,

n_discard_per_chain=100
22 )
23 # Setup the ODE integrator and QGT.
24 integrator = nkx.dynamics.Heun(dt=0.01)
25 # The NDM ansatz is not holomorphic because it uses conjugation
26 qgt = nk.optimizer.qgt.QGTJacobianPyTree(holomorphic=False,

diag_shift=1e-3)
27 te = nkx.TDVP(lind, variational_state=vs, integrator=integrator,

qgt=qgt)
28

29 # run the simulation and compute observables
30 te.run(T=6.0, obs={"Sx": Sx, "LdagL": lind.H @ lind})� �

In the listing above, we first construct the Liouvillian by assembling the Hamiltonian and
the jump operators, then we construct the variational mixed state. We chose a different num-
ber of samples for the diagonal, used when sampling the observables, as that happens on
a smaller space with respect to the full system. For the geometric tensor, we choose the
QGTJacobianPyTree and specify that the ansatz is non-holomorphic (while this is already

the default, a warning would be printed otherwise, asking the user to be explicit). The choice
is motivated by the fact that the TDVP driver by default uses an SVD-based solver, which works
best QGTJacobian -based implementations. However, NDM uses a mix of complex and real

parameters which is not supported by QGTJacobianDense , and would throw an error. Nor-
mally, to simulate a meaningful dynamics you’d want to keep the diagonal shift small, but
since we are striving for a weak simulation a large value helps stabilize the dynamics.

that weak integration is an integration which is not accurate at finite times but which converges to the right state
at long times. A strong integration yields the correct state at every time t.
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Figure 6: (Left): Benchmark of NETKET’s VMC implementation. Each data point
shows the minimum time spent (out of 5 repetitions) to evolve a DNN with depth
d layers and complex weights over 100 VMC steps for the 1D transverse-field Ising
model with L = 256 and Nsamples = 214 = 16384. (Right): Scaling behavior of the
required computational time as a function of the number of MPI ranks on a single
node. We repeat 5 VMC optimizations and report the minimum time required for
100 steps for the 1D Ising model with L = 256 and an RBM with α= 1 with complex
weights. The black line represents ideal scaling behavior.

10 Benchmarks

10.1 Variational Monte Carlo

We benchmark NETKET by measuring its performance on the 1D/2D transverse-field Ising
model defined as in Eq. (54) with J = 1 and h= 1 and periodic boundary conditions.

We first monitor the scaling behavior of NETKET’s VMC implementation by running an
energy optimization consisting of 100 steps. In order to carry out a meaningful benchmark,
we run a first VMC step to trigger the JIT-compiler on the relevant JAX and NUMBA functions,
while all reported timings are for the evaluation of JIT compiled functions only. The left panel
of Fig. 6 depicts the scaling behavior of the computational time as a function of the complexity
of the NQS model, using three implementations of the QGT. Hereby, we increase the complexity
of the NQS by optimizing a DNN with an increasing amount of layers, where depth d represents
the number of dense layers (with α= 1), each followed by a sigmoid activation function. Such
a DNN with d layers has O((d − 1)L2 + L) free parameters.

10.2 MPI for NETKET

We benchmark the scaling behavior of NETKET as a function of the computational resources
available to perform parallel computations. Therefore, NETKET uses MPI for JAX through
MPI4JAX [37]. The effectiveness of the MPI implementation is illustrated in Fig. 7 for a VMC
optimization with and without Stochastic Reconfiguration (SR). Throughout our analyses, we
provide each MPI rank with 2 CPU cores. We introduce the speedup factor τr = ∆t1/∆tr
where ∆tr refers to the time required to perform the computations on r MPI ranks. Similarly,
we define τn as the speedup factor when using n nodes. The right panel of Fig. 7 demonstrates
that even on a single node, our MPI implementation can introduce significant speedups by run-
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Figure 7: (Left): Speedup factor τ observed by increasing the number of MPI ranks r
on a single node while keeping the problem size constant (strong scaling). (Center):
Speedup factor observed by scaling across multiple nodes n, and scaling the number
of samples accordingly (weak scaling). (Right): Scatter plot of the absolute wall
clock time in seconds for the runs reported in the weak scaling (center) plot. There
are 4 points for every color, but they overlap for most implementations because of the
almost-ideal weak scaling. We repeat 5 iterations of constructing the QGT and 1000
matrix multiplications with the gradient vector for the 2D Ising model with L = 8 and
a DNN with 9 layers and complex weights. In the left panel, we keep the number of
samples Nsamples = 214 constant, while in the center panel, we increase the number
of samples to 214× n, while we correct the timing by the number of nodes n to show
the speedup factor for a constant number of 214 samples. We remark that while
the speedup factor is resistant to changes in the network architecture, the absolute
timing might favor one or another implementation depending on several details and
can change depending on the architecture and problem at hand.

ning multiple Markov Chain samplers in parallel. This is consistent with the fact that JAX is
not able to make use of multiple CPU cores unless working on very large matrices.

The performance of NETKET on challenging Hamiltonians, as well as its scalability with
both system size and model complexity depends on the implementation details of the quan-
tum geometric tensor [see Eq. (22)] and its matrix multiplication with the gradient vector,
as discussed in Section 3.5. We therefore isolate these operations and benchmark the QGT
constructor, combined with 1000 matrix multiplications with the gradient vector (where the
latter imitates many steps in the iterative solver). In Fig. 7, we show the scaling behavior of
these operations with respect to both the number of ranks (on a single node), and its scaling
behavior with respect the number of nodes (thereby including communication over the Infini-
band network). One can observe that the scaling behavior is close to optimal, especially when
the number of samples per rank is sufficiently large.

10.3 Comparison with jVMC

We compare NETKET with jVMC [39], another open-source Python package supporting VMC
optimization of NQS. Results are shown in Fig. 6. We remark that since both NETKET and
jVMC are JAX-based, performance on sampling, expectation values and gradients is roughly
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Table 5: Comparison of performance between NETKET and jVMC. All times are
indicated in seconds and have been taken on a workstation with an AMD Ryzen
Threadripper 3970X 32-Core processor and 2xNvidia RTX 3090 GPUs. Tim-
ings are for one VMC step using a complex-valued RBM model with hidden unit
density of α = Nhidden/L = 1 on the 1-dimensional TFIM model (54) with L = 64
sites. Other parameters are: 214 total samples, 210 independent Markov chains
per GPU (or across all CPUs). Calculations for NETKET where performed using
QGTJacobianDense(holomorphic=True) . NETKET multi-GPU calculations use

CUDA-enabled MPI for inter-process communication, while jVMC uses JAX built-in
mechanism. The run labeled with (MPI×16) is run on the same workstation but 16
MPI processes are used to better take advantage of the multiple cores of the proces-
sors.

NETKET jVMC

SVD solver

CPU (32 cores) 48 337

GPU (×1) 24 44

GPU (×2) 20 36

CG solver

CPU (32 cores) 86 N/A

CPU (32 cores, MPIx16) 7.5 N/A

GPU (×1) 3.9 N/A

GPU (×2) 1.7 N/A

equivalent when using the same hyperparameters [39]. However, a performance difference
arises in algorithms requiring the use of the QGT, such as TDVP or natural gradient (SR). Such
difference will vanish in cases where the cost of solving the QGT linear system is small with
respect to the cost of computing the energy and its gradient.

At the time of writing, jVMC only implements a singular-value decomposition (SVD) solver
to invert the QGT matrix. The same type of solver can be used also in NETKET (for a detailed
discussion, see Section 3.5). We limit the computations to models with less than 7000 pa-
rameters in order for the QGT to have less than 49 ·103 elements, which is approximately the
maximum matrix size that can be diagonalized in reasonable time on the GPUs we have access
to23. For that reason we chose the size of L = 64 spins.

As shown in Table 5, NETKET outperforms by almost an order of magnitude jVMC on a
32-core CPU using SVD-based solvers. On GPU, jVMC requires significantly less computational
time than on CPU, yet, NETKET outperforms jVMC by about 50% in a full VMC iteration. We
remark that in this benchmark both packages scale poorly when going from a single GPU to
two. This is because the diagonalization of the QGT, in this case the bottleneck, cannot be
parallelized.

In order to scale efficiently to many GPUs, our QGT implementations can be combined with
iterative solvers to scale up to potentially millions of parameters, as well as significantly larger
system sizes. As expected from Fig. 7, increasing the number of MPI ranks reduces the total
time by a factor nearing the number of ranks (with eventually a saturation in the speedup).
Notice also that the CG-solver becomes significantly more efficient on GPU.

23Using distributed linear-algebra libraries such as ScaLaPack [92], ELPA [93] or the recent [94] would allow
us to avoid this barrier, however we are not aware of any Python binding for those libraries. Regardless, if those
libraries exposed a distributed linear solver to Python, using it with NETKET would be as simple as using it as the
linear solver for the QGT.
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11 Discussion and conclusion

We have presented NETKET 3, a modular Python toolbox to study complex quantum-mechanical
problems with machine learning-inspired tools. Compared to version 2 [35], the major new
feature is the ability to define arbitrary neural-network ansätze for either wave functions or
density matrices using the flexible JAX framework; we believe this makes NETKET much more
useful to non-technical users. Another significant improvement is that NETKET is now com-
pletely modular. Users of NETKET 3 can decide to use only the neural-network architectures,
the stochastic samplers, the quantum geometric tensor, or the operators without necessarily re-
quiring the VariationalState interface, which is convenient but geared towards the most
common applications of variational NQS. Care has been taken to ensure that the algorithms
implemented can scale to very large systems and models with millions of parameters thanks
to more efficient implementations of the geometric tensor and other algorithmic bottlenecks.
Thanks to its JAX foundations, NETKET 3 can now also make effective use of GPU hardware,
without any need for manual low-level programming for these platforms.

Even with all the new features that have been introduced with this version, there are many
things that we would like to see integrated into NETKET in the future. To name a few: native
support for fermionic systems; support for more general geometries in continuous systems;
improvements to the dynamics submodule in order to support a wider variety of ODE solvers
and more advanced regularization and diagnostic schemes [21,23]; new drivers for quantum
state reconstruction [31] and overlap optimization [32]; a more general way to define arbi-
trary cost functions to be optimized. However, we think that our new JAX-based core is very
welcoming to contributors, and we believe that this constitutes a solid foundation upon which
to build in the future. Moreover, we are now explicitly committed to stability of the user-facing
API, in order to make sure that code written today will keep working for a reasonable time,
while we iterate and refine NETKET.

Since a project is only as big as its community, the most important developments are prob-
ably those related to documentation, learning material, and developing a community where
users answer each other’s questions in the spirit of open, shared science. We are taking steps
to make all of this happen.
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A Details of group convolutions

A.1 Group convolutions and equivariance

As explained in Section 5.2, GCNNs generate the action of every element g of the symmetry
group G on a wave function |ψ〉, written as |ψg〉 = g|ψ〉, which are then combined into a
symmetric wave function using the projection operator (40). Amplitudes of the computational
basis states |σ〉 are related to one another in these wave functions as

ψg(σ) = 〈σ|g|ψ〉=ψ(g−1σ) . (55)

Therefore, feature maps inside the GCNN are indexed by group elements rather than lattice
sites, and all layers must be equivariant: that is, if their input is transformed by a space-group
symmetry, their output must be transformed the same way, so that (55) would always hold.
Pointwise nonlinearities clearly fit this bill [73]; we now consider what linear transformations
are allowed.

First, input feature maps naturally defined on lattice sites must be embedded into group-
valued features:

fg =
∑

~r

Wg−1~rσ~r =
∑

~r

Wrσg~r =
∑

~r

W~r(g
−1σ)~r , (56)

consistent with (55). We also see that the embedding (56) is equivariant: if the input is
transformed by some symmetry operation u, the output transforms as

∑

~r

Wg−1~rσu~r =
∑

~r

Wg−1u−1~rσ~r = fug . (57)

This layer is implemented in NETKET as nk.nn.DenseSymm .
To build deeper GCNNs, we also need to map group-valued features onto one another in

an equivariant fashion. This is achieved by group convolutional layers, which transform input
features as24

φ g =
∑

h∈G

Wh−1 g fh . (58)

This layer is implemented in NETKET as nk.nn.DenseEquivariant . It is equivariant under
multiplying with a group element u from the left:

∑

h∈G

Wh−1 g fuh =
∑

h∈G

Wh−1ug fh = φug , (59)

which is consistent with how the embedding layer (56) is equivariant, cf. (57). Indeed, it can
be composed with (56):

φ g =
∑

h

Wh−1 g

∑

~r

W′h−1~rσ~r =
∑

~r

�

∑

h

Wh−1W′h−1 g−1~r

�

σ~r ≡
∑

~r

W′′g−1~rσ~r , (60)

as the expression in brackets only depends on g−1~r.
Finally, the output features of the last layer of the GCNN are turned into the wave functions

ψg(σ) =
∑

i exp
�

f (i)g

�

and projected on an irrep using (40) (we drop the irrelevant constant
prefactor):

ψ(σ) =
∑

i,g

χ∗g exp
�

f (i)g

�

, (61)

24Our convention differs from that of Ref. [73], which in fact implements group correlation rather than con-
volution. The two conventions are equivalent (the indexing of the kernels differs by taking the inverse of each
element); we use convolutions to simplify the Fourier transform-based implementations of Sec. A.2.

53

https://scipost.org
https://scipost.org/SciPostPhysCodeb.7


SciPost Phys. Codebases 7 (2022)

where χg are the characters of the irrep. In addition to allowing nontrivial symmetries, our
choice of summing a large number of terms in the ansatz appears to improve the stability of
variational optimization for sign-problematic Hamiltonians [15,30,49,72].

A.2 Fast group convolutions using Fourier transforms

The simplest implementation of a group convolutional layer is expanding each of the fin fout
kernels, containing |G| entries, to a |G| × |G| matrix defined as

W̃ (a,b)
g,h =W (a,b)

g−1h , (62)

where a, b index input and output features, respectively. The resulting tensor of size fin fout|G|2

can then be contracted straightforwardly with the input features:

φ
(b)
h =

∑

a,g

W̃ (a,b)
g,h f (a)g (63)

is equivalent to (58). Embedding layers (56) can be constructed analogously. This method
is the easiest to interpret and code, serving as a useful check on other methods; however,
the enlarged kernels require substantial amounts of memory, which already becomes a serious
problem on modestly sized lattices and networks. Furthermore, evaluating a convolution using
this method takes O( fin fout|G|2) time. NETKET implements two approaches to improve on this
scaling.

The first approach uses group Fourier transforms, which generalize the usual discrete Fourier
transform for arbitrary finite groups. The forward and backward transformations are defined
by

f̂ (ρ) =
∑

g∈G

f (g)ρ(g) , f (g) =
1
|G|

∑

ρ

dρ Tr
�

f̂ (ρ)ρ(g−1)
�

. (64)

In the forward transformation, ρ is a representation of the group G; f (g) is a function defined
on group elements, while f̂ (ρ) is a matrix of the same shape as the representatives ρ(g). The
sum in the backward transformation runs over all inequivalent irreps ρ, of dimension dρ, of
the group. Since

∑

ρ d2
ρ = |G|, this transformation does not increase the amount of memory

needed to store inputs, outputs, or kernels.25 Group convolutions can readily be implemented
by multiplying the Fourier transform matrices (we drop feature indices for brevity):

φ̂(ρ) =
∑

g

φgρ(g) =
∑

g,h

fhWh−1 gρ(h)ρ(h
−1 g) = f̂ (ρ)Ŵ (ρ) . (65)

To calculate a convolution using this approach, the input features are Fourier transformed
[O( fin|G|2) as there is no generic fast Fourier transform algorithm for group Fourier trans-
forms], multiplied with the kernel Fourier transform for each irrep [O( fin foutd

3
ρ) for an irrep

of dimension dρ], and the output is transformed back [O( fout|G|2)], yielding the total runtime
O[( fin+ fout)|G|2+ fin fout

∑

ρ d3
ρ]. In a large space group, most irreps are defined on a star of |P|

wave vectors (P is the point group) and thus have dimension |P|; accordingly,
∑

ρ d3
ρ ≈ |G||P|.

The second approach, based on Ref. [73], exploits the fact that the translation group T is
a normal subgroup of the space group G, so each g ∈ G can be written as tg pg , where tg is a
translation and pg is a fixed coset representative (in symmorphic groups, we can choose these

25If some irreps cannot be expressed as matrices with real entries, the Fourier transform of real in-
puts/outputs/kernels is complex too, temporarily doubling the amount of memory used.
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to be point-group symmetries). Now, we can define the expanded kernels (we drop feature
indices again to reduce clutter)

W̃
(pg ,ph)
t ≡Wp−1

g t ph
, (66)

such that
φh =

∑

g

fgWg−1h =
∑

tg ,pg

ftg pg
Wpg t−1

g thph
≡
∑

tg ,pg

f̃
(pg )
tg

W̃
(pg ,ph)
th−tg

. (67)

In the last form, we split the space-group feature map f into cosets of the translation group
and observe that the latter is Abelian. In fact, the translation group is equivalent to the set of
valid lattice vectors, so the sum over tg in (67) is a standard convolution. Ref. [73] proposes to
perform this convolution using standard cuDNN routines. However, we are usually interested
in convolutions that span the entire lattice in periodic boundary conditions: these can be
performed more efficiently using fast Fourier transforms (FFTs) as the Fourier transform of
a convolution is the product of Fourier transforms. Therefore, we FFT the kernels W̃ and
features f̃ , contract them as appropriate, and FFT the result back:

φ̃(b,ph) = F−1
�

∑

a,pg

F
�

f̃ (a,pg )
�

F
�

W̃ (a,b;pg ,ph)
�

�

, (68)

where the Fourier transform is understood to act on the omitted translation-group indices, and
the Fourier transforms are multiplied pointwise.

Calculating a convolution in this approach involves fin|P| forward FFTs [O(|T | log |T |)
each], |T | tensor inner products [O( fin fout|P|2 each], and fout|P| backward FFTs; as |G|= |T ||P|,
this yields a total of O[( fin + fout)|G| log |T | + fin fout|G||P|]. For large lattices, which bring
out the better asymptotic scaling of FFTs, this improves significantly on the runtime of the
group Fourier transform-based approach, especially in the pre- and postprocessing stages. By
contrast, the group Fourier transform approach is better for large point groups, as it avoids
constructing the |P|2 reshaped kernels W̃ pg ph , which can be prohibitive for large lattices.

In practice, as both FFTs and group Fourier transforms involve steps more complicated
than simple tensor multiplication, their performance is hard to assess beyond asymptotes, es-
pecially on a GPU. On CPUs, the FFT-based approach tends to be faster. On GPUs, computation
time tends to scale sub-linearly with the number of operations so long as the process is effi-
ciently parallelized. As all operations of the group Fourier transform implementation involve
multiplications of large matrices, it can fully exploit the large GPU registers even with rela-
tively few samples. By contrast, FFTs cannot be fully vectorized, meaning that larger batches
are required to make full use of the computing power of the GPU. In practice therefore, the
FFT-based approach may not perform better until most of the GPU memory becomes involved
in evaluating a batch.

B Implementation details of the quantum geometric tensor

In the following, we discuss our implementations of the quantum geometric tensor, introduced
in section 3.5, in more detail. In particular, we show how the action of the quantum geometric
tensor on a vector can be computed efficiently without storing the full matrix. Appendix B.1
introduces relevant automatic-differentiation concepts in general terms; the concrete algo-
rithms used by QGTJacobian and QGTOnTheFly are discussed in Appendices B.2 and B.3,
respectively.
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B.1 Jacobians and their products

We assume that our NQS is modeled by the scalar parametric function f (s) = lnψθ (s), where
θ is a vector of variational parameters and s is a basis vector of the Hilbert space. Consistent
with the notation of the main text, Oj(s) = ∂θ j

lnψθ (s) are the log-derivatives (13) of the NQS.
We also assume that f can be vectorized and evaluated for a batch of inputs {sk}k=1...Ns

,
yielding the vector fk = lnψθ (sk). The Jacobian of this function is therefore the matrix

Jkl = Ol(sk) =
∂ lnψθ (sk)
∂ θl

, (69)

each row corresponds to the gradient of f evaluated at a different input sk, so k = 1 . . . Ns and
l = 1 . . . Nparameters.

The Jacobian matrix can be computed in JAX with jax.jacrev(log_wavefunction)(s) ,

which returns a matrix.26 However, it is often not needed to have access to the full Jacobian:
for example, when computing the gradient (26) of the variational energy, we only need the
product of the Jacobian with a vector, namely ∆Eloc(sk) = H̃(sk)−E[H̃].

A vector can be contracted with the Jacobian along its dimension corresponding to either
parameters or outputs:

• Jacobian–vector products (Jvp), ṽ= Jv, can be computed using forward-mode automatic
differentiation;

• vector–Jacobian products (vJp), ṽ = vT J , can be computed through backward-mode au-
tomatic differentiation (backward propagation).

Modern automatic-differentiation frameworks like that of JAX implement primitives that eval-
uate Jvp and vJp, and construct higher-level functions such as jax.grad or jax.jacrev
on top of those functions; that is, one can extract the best performance from JAX by making
use of vJp and Jvp as much as possible [95].

B.2 QGTJacobian

Writing the estimator (23) of the quantum geometric tensor explicitly in terms a finite number
of samples sk, we obtain

Gi j = E
�

O∗i Oj

�

−E [Oi]
∗E
�

Oj

�

≈
1
Ns

Ns
∑

k=1

Oi(sk)
∗Oj(sk)−

1
Ns

2

� Ns
∑

k=1

Oi(sk)
�∗� Ns

∑

k=1

Oj(sk)
�

=
1
Ns

Ns
∑

k=1

�

Oi(sk)−
Ns
∑

k=1

Oi(sk)
Ns

�∗�

Oj(sk)−
Ns
∑

k=1

Oj(sk)

Ns

�

=
1
Ns

Ns
∑

k=1

�

Jki −
Ns
∑

k=1

Jki

Ns

�∗�

Jk j −
Ns
∑

k=1

Jk j

Ns

�

=
1
Ns

Ns
∑

k=1

(∆Jki)
∗ �∆Jk j

�

, (70)

26More precisely, it returns a PyTree with a structure similar to the PyTree that stores the parameters; each leaf
gains an additional dimension of length Ns.
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where we have defined the centered Jacobian ∆Jki ≡ Jki −
∑Ns

k=1
Jki
Ns

. In matrix notation, this
is equivalent to

G =
∆J†

p

Ns

∆J
p

Ns
. (71)

The Jacobian-based implementation of the quantum geometric tensor computes27 and
stores28 the full Jacobian matrix Jkl for the given samples upon construction.Then, QGT–vector
products ṽ= Gv are computed without finding the full matrix G, in two steps:

∆w=
∆J
p

Ns
v , ṽ=

∆J†

p

Ns
∆w=

�

∆J
p

Ns
∆w†

�†

, (72)

the final form has the advantage that the Hermitian transpose of a vector is simply its conju-
gate. Evaluating Eq. (72) is usually less computationally expensive than constructing the full
quantum geometric tensor.

B.3 QGTOnTheFly

In some cases one might have so many parameters or samples that it is impossible to store
the full Jacobian matrix in memory. In that case, we still evaluate a set of equations similar
to Eq. (72), but without pre-computing the full Jacobian, only using vector–Jacobian and
Jacobian–vector products.

It would be impractical to perform a vJp using the centered Jacobian; however, Eq. (23)
can be rewritten as Gi j = E

�

O∗i
�

Oj −E
�

Oj

���

, which yields

G =
1
Ns

J†∆J , (73)

where we have substituted one of the two centered Jacobians with a plain Jacobian. Then, we
note that the centered-Jacobian–vector product can be expressed as

∆w≡∆J v=

�

J −
1T J
Ns

�

v=w−
1T w
Ns

, (74)

where 1T is a row vector all entries of which are 1, used to express averaging the columns
of the Jacobian in the matrix formalism. Therefore, QGTOnTheFly performs the following
calculations:

w=
1
Ns

Jv , ∆w=w− 〈w〉 , ṽ= J†∆w , (75)

where the first and the last step are implemented with jax.vjp and jax.jvp , respectively.
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