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Abstract

We consider the generalized hydrodynamics including the recently introduced diffusion
term for an initially inhomogeneous state in the Lieb-Liniger model. We construct a gen-
eral solution to the linearized hydrodynamics equation in terms of the eigenstates of the
evolution operator and study two prototypical classes of initial states: delocalized and
localized spatially. We exhibit some general features of the resulting dynamics, among
them, we highlight the difference between the ballistic and diffusive evolution. The first
one governs a spatial scrambling, the second, a scrambling of the quasi-particles con-
tent. We also go one step beyond the linear regime and discuss the evolution of the zero
momentum mode that does not evolve in the linear regime.
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1 Introduction

The questions of dynamics and equilibration of an initially inhomogeneous state in integrable
theories have been an area of active research. One common setup is the so called bi-partite
quench protocol which refers to non-equilibrium dynamics of two macroscopically different
subsystems joined together. Such bi-partite quenches or similar inhomogeneous initial states
were studied in different contexts ranging from the CFT [1–7] and more generally QFT [8–10]
to lattice models including 1d spin chains [11–22] and 1d Hubbard-like models [23–25]. The
hydrodynamics solution to bi-partite quench protocol was originally proposed in [26,27] and
further developed [28–34]. The resulting theory, Generalized Hydrodynamics (GHD), was
successfully applied to variants of bi-partite quench protocols [27,35–38] and other inhomo-
geneous setups [28, 39]. Its predictions were also confirmed experimentally [40]. Recently,
based on the microscopic insights, diffusion was incorporated to the GHD picture [41–43].

In this work, we consider the resulting dynamics for the Lieb-Liniger model, a gas of 1d
bosons with ultra-local interactions. The GHD forms a complicated, infinite, set of non-linear
equations. Our aim is to analyze solutions to those equations and display some of their quali-
tative features, especially those relevant to the question of equilibration. Specifically, we focus
on the linearized regime of the GHD in which the resulting equations take a form of an infinite
set of integro-differential equations.

The manuscript is organized in the following way. After the introductory part of the next
section, follow three sections with results. In Section 3 we display a general solution to the
linear GHD in terms of the eigenstates of the diffusion operator. We also study numerically
the properties of this operator and conjecture their effect on the dynamics. In the following
Section 4 we solve numerically the GHD equations for two prototypical initial states: the local-
ized and the delocalized state. In Section 5 we consider a next order correction to the linear
GHD and study the dynamics of the k = 0 spatial mode which does not evolve in the linear
approximation. Finally, the Appendix A is devoted to set the notation for integral operators.

2 Generalized hydrodynamics, diffusion and the Lieb-Liniger model

We start this section by presenting the Generalized Hydrodynamics following the original
works [41,43]. Then, we recall the Lieb-Liniger model and introduce the ingredients necessary
for its GHD description. We will consider the Lieb-Liniger model with repulsive interactions,
which contains quasi-particles of only one type. Below, we present the GHD appropriate for
this case. Generalization to situations with multi-species quasi-particles is possible [43].

2.1 Generalized hydrodynamics

The integrable theories are characterized by stable quasi-particles. The stability of the quasi-
particles is related to the presence of an extensive number of local (or quasi-local) conserved
densities q̂i(x , t). The hydrodynamic picture relies on the assumption that the state of the
system can be locally described by the averages q̄i(x , t) = 〈q̂i(x , t)〉. These averages can be
conveniently parametrized introducing local distribution of the quasi-particles ρp(θ , t, x)

q̄i(x , t) =

∫

dθρp(θ , x , t)hi(θ ), (1)

where hi(θ ) is the one-particle eigenvalue of the conserved charge with density qi(x , t) and
rapidity θ parametrizes the quasi-particle. At the Euler scale ρp(θ , x , t) corresponds to the
density of a local Generalized Gibbs Ensemble [44–46]. Beyond that scale, including the next
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term in the hydrodynamic derivative expansion, the average values of generic observables
depend not only on ρp(θ , x , t) but also on its spatial derivatives.

At the Navier-Stokes level the dynamics of the GHD can be understood through the fol-
lowing qualitative picture. When a quasi-particle travels through an inhomogeneous system it
experiences two effects. First, the changing distribution of the quasi-particles leads to a differ-
ence in the propagation velocity. Second, the scattering processes with other particles lead to
diffusion, see Fig. 2. These two effects are combined in Navier-Stokes-like equations of GHD

∂tρp + ∂x(v
eff
n ρp) =

1
2
∂x

�

Dn∂xρp

�

, (2)

with the effective velocities veff
n and diffusion operator Dn depending on the local (in the space-

time) distribution of quasi-particles. Solving (2) is difficult even in the absence of the diffusion
term, however, in some cases the problem can be rephrased into more trackable integral equa-
tions [31]. The difficulty lies in the fact that each mode θ propagates with a velocity veff

n (θ )
depending non-linearly on the local density function ρp(θ , t, x) of quasi-particles. Therefore,
already at the ballistic level, the dynamics is complicated and non-linear [47] and displays
the equilibration phenomena. The known results describe, for example, the self-similar solu-
tion [27] or numerical solution [38] for the nonequilibrium steady states.

Inclusion of the diffusion term in (2) further complicates the situation, e.g. it leads to
mixing between densities of different rapidities θ . Our aim is to understand better the role of
the diffusion term in the dynamics governed by (2).

Let us specify now in some details the ingredients entering Eq. (2). The effective velocity
is defined as

veff
n (θ ) =

(E′)dr(θ )
(p′)dr(θ )

. (3)

The functions (E′)dr(θ ) and (p′)dr(θ ) are dressed derivatives of the effective energy and mo-
mentum of a particle with rapidity θ in the presence of the other particles specified by filling
function n(θ ) (see Appendix A for the definition of the dressing procedure and notation).

The diffusion operator is given by the integral kernel

Dn = (1− nT)−1ρsD̃nρ
−1
s (1− nT), (4)

where T is the differential scattering kernel (explicitly defined for the Lieb-Liniger model in
Sec. 2.2) and D̃n is the diffusion kernel

D̃n(θ ,α) =
1

ρ2
s (θ )

(δ(θ −α)w(α)−W (θ ,α)) . (5)

Function ρs(θ ) specifies the maximal allowed density of particles in the range [θ ,θ+∆θ] and
is related to the particles density ρp(θ ) through the filling function n(θ ): ρs(θ ) = n(θ )ρp(θ ).
The other two function entering the formula above are

W (θ ,α) = ρp(θ )(1− n(θ ))
�

Tdr(θ ,α)
�2|veff

n (θ )− veff
n (α)|, (6)

w(θ ) =

∫

dαW (α,θ ). (7)

The dependence of all the above functions on space-time variables has been skipped for the
compactness of the notation.
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2.2 Lieb-Liniger model

The Lieb-Liniger model [48, 49] describes a gas of bosonic particles in one spatial dimension
with ultra-local interactions. The Hamiltonian for N particles is

HLL = −
N
∑

j=1

∂ 2
x + 2c

∑

i< j

δ(x i − x j), (8)

where we set ħh = 2m = 1. We focus on repulsive interactions, c > 0, and assume periodic
boundary conditions for a system of length L. The Lieb-Liniger model is exactly solvable. At
the center of the exact solution is the scattering kernel

T (θ ,θ ′) =
1
π

c
c2 + (θ − θ ′)2

. (9)

The thermodynamics in the limit of finite particles density N/L (which we assume from now
on to be 1) is known [45,50–52] and takes a universal form

n(θ ) =
1

1+ eε(θ )
, (10)

where ε(θ ) solves an Thermodynamic Bethe Ansatz (TBA) equation. At the thermal equilib-
rium

ε(θ ) =
θ2 −µ

T
−
∫ ∞

−∞
dθ ′ T (θ ,θ ′) log

�

1+ e−ε(θ
′)
�

, (11)

where T is the temperature and µ is the chemical potential. The generalized TBA [45] de-
scribes in the similar framework the filling functions of non-thermal states. An example of
such a state is a state reached after the interaction quench from the BEC state, the ground
state of the non-interacting gas c = 0. In that case the distribution of quasi-particles is known
explicitly to be [53]

nquench(θ ) =
a(θ/c)

a(θ/c) + 1
, a(x) =

2π
cx sinh(2πx)

I1−2i x(4/
p

c)I1+2i x(4/
p

c), (12)

with I j(x) the modified Bessel functions of the first kind.
The bare momentum and energy are p(θ ) = θ , E(θ ) = θ2. The physical observables in

the Lieb-Liniger model depend on the particles density ρp(θ ) which follows from the filling
function n(θ ) through the same dressing procedure

ρp = n(1− Tn)−1 1
2π

, (13)

where we understand that 1/(2π) is a constant function.
In this work, we focus our attention on the filling function n(θ ) instead of a particle density

ρp(θ ). The reason is two-fold. First, the linearized hydrodynamics is most easily formulated
for the n(θ ) function. Therefore to understand the resulting dynamics it is most natural to
look at n(θ ) instead of ρp(θ ). Second, beside the non-linear relation the quantitative features
of ρp(θ ) are visible already at the level of n(θ ). The main effect in the transformation (13)
from n(θ ) to ρp(θ ) is in smoothing the shape of the function and, for small values of c, making
the distribution more compact, see Fig. 1.
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Figure 1: The particle density ρp(θ ) and filling function n(θ ) for a thermal gas at
T = 1 and with c = 1.

3 Linearized generalized hydrodynamics

We consider now a linear approximation in perturbation δn around space-time independent
equilibrium n(θ ):

n(θ , t, x) = n(θ ) +δn(θ , t, x). (14)

This has two applications. First, when one indeed considers perturbing a space-time indepen-
dent equilibrium with a small disturbance. 1 The final state of the GHD evolution is then the
original equilibrium state.

The second case is in the large-time hydrodynamics of an initially strongly inhomogeneous
state. We expect that at late times the GHD dynamics smooth out the quantum fluid to a state
which can be described by the linearized equations around a homogeneous state. One must,
however, remember that the hydrodynamical modes can only describe systems which are in
local thermodynamical equilibrium [26].

The Eq. (2) of the GHD was expressed in terms of the particles’ density ρp(θ , t, x). To
consider its linear regime it is convenient to write it as an equation for the filling function
n(θ , t, x). The equation is then [43]

∂t n+ veff
n ∂x n=

1
2ρs
(1− nT)∂x

�

(1− nT)−1ρsD̃n∂x n
�

, (15)

and its linearized form is

∂tδn(θ , t, x) + veff
n ∂xδn(θ , t, x) =

1
2

∫

dα D̃n(θ ,α)∂ 2
x δn(α, t, x). (16)

Here we have explicitly written the action of the kernel operator on the filling function. The
effective velocities veff and the diffusion kernel D̃(θ ,α) are determined from the equilibrium
data n as in Eq.(14) 2.

The time evolution of linearized hydrodynamics (16) is driven by two phenomena. First,
the velocity with which particles propagate depends on their rapidity. This leads to spatial
spreading of an initially localized profile δn(θ , t, x = 0) even in the absence of the diffu-
sion. On top of this the diffusion processes lead to the redistribution of the particle content
δn(θ , t, x) through scattering processes with the background, see Fig. 2

The effect of the GHD dynamics is the reorganization of the spatial and rapidity dependence
of the filling function. The linear dynamics is conservative in the sense that the total profile of

1For infinite systems δn has to be additionally compactly supported.
2Dependence on n will be suppressed in our notation from now on.
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Figure 2: Left panel: The hydrodynamics is driven by two processes. First, is the
ballistic propagation of particles with the velocity that depends on the local distri-
bution of particles. The second process, that leads to the diffusion, is the scattering
between the particles. Right panel: In the linearized regime both processes gets sim-
plified. The ballistic propagation occurs now with the space-time constant velocity
determined by the particles rapidity and the background state n(θ ). The scattering
events, driving the diffusion, are now between the perturbation and the background
particles and are controlled by the dressed scattering phase shift Tdr.

rapidities
∫

dx δn(θ , t, x), (17)

does not vary in time.

3.1 Solution to the linearized GHD

Equation (16) is an integro-differential equation for δn(θ , t, x). The variables are separated
and we can solve it in a standard manner. For a single momentum mode

δn(θ , t, x) = δnk(θ , t)eikx , (18)

(16) yields

∂tδnk(θ , t) +

∫

dα Dk(θ ,α)δnk(α, t) = 0 , (19)

where the operator

Dk(θ ,α) = ikveff(θ )δ(θ −α) +
k2

2
D̃(θ ,α) , (20)

explicitly depends on the Fourier mode k. Hereafter, we shall consider k 6= 0 modes only: k = 0
does not evolve in time at the linear level and should be part of the background equilibrium
state. At the quadratic level δn0 acquires non trivial dynamics as it shall be discussed in Sec. 5.

The operator Dk being an integral, linear operator on non-compact quasi-momenta space
has an infinite number of eigenstates fk,ω(θ ) and corresponding eigenvalues zk,ω ∈ C,

zk,ω ≡ iκω(k) +λω(k), (21)

where ω enumerates the eigenvalues, κω(k) and λω(k) are both real and control the ballistic
and diffusive propagation respectively. In writing (21) we have anticipated that, once for
each k a suitable ordering of ω’s is made, the zk,ω’s are well-defined functions of k. From
the numerical diagonalization, we observe that the spectrum of Dk is non-degenerate and can
be ordered with κω. An example of such spectrum is given in Fig. 3. From (20) it follows
that κω(k) = −κω(−k) and λω(k) = λω(−k). Moreover, we shall see that all λω are positive
and display the equilibration rate of the mode fk,ω. The slowest equilibration is given by the
smallest λω.

6

https://scipost.org
https://scipost.org/SciPostPhysCore.1.1.002


SciPost Phys. Core 1, 002 (2019)

A general solution to (19) in terms of the eigenstates of Dk is

δn(θ , t, x) =
∑

k

eikx

∫

dω ck,ω fk,ω(θ )e
−zk,ω t , (22)

where coefficients ck,ω are specified by the initial state

δn(θ , 0, x) =
∑

k

eikx

∫

dω ck,ω fk,ω(θ ). (23)

The integration is performed over ω parametrizing the spectrum of Dk operator. In prac-
tice, when we perform numerical computations, operator Dk becomes a finite matrix and its
spectrum contains finite number of eigenvectors which turns the integration into a sum. The
integration measure dω is irrelevant, after discretization it can be absorbed into the coeffi-
cients ck,ω. Note that Dk operator is not normal and therefore its eigenstates do not form on
orthonormal basis. However, they do form a complete basis and (23) has a unique solution.

To quantify the time evolution we focus on the dynamics of momentum modes,

δnk(t) =

∫

dθ dω ck,ω fk,ω(θ )e
−zk,ω t , (24)

and on the moments of the filling function δn(θ , t, x),

µ j(t, x) =

∫

dθ θ jδn(θ , t, x). (25)

We will also look at the diffusion coefficient describing the linear in time growth of the spa-
tial variance of the particles‘ distribution. To this end, we define the diffusion coefficient Dj
associated to the j-th moment as

Var(µ j)(t)∼ 2tDj , (26)

where

Var(µ j)(t) =

∫

dx
�

x − x̄ j

�2
µ j(t, x). (27)

With x̄ j we denote the average position with respect to the j-th moment, defined as

x̄ j =

∫

dx x µ j(t, x). (28)

The relation (26) can hold only approximately. The time evolution, even in the linearized
regime, is quite involved, and can not be simply described by a number of diffusion coefficients.
However, we will see that for intermediate times the relation (26) holds and helps in clarifying
the quantum fluid dynamics. At larger times it breaks due to the finite length L of the system.

3.2 The diffusion operators

We will now display some properties of the diffusion operator D̃ (5) and a related operator
Dk (20). The eigenvalues of D̃ are non-negative real numbers as follows from its construc-
tion [43]. Examples of spectra of D̃ obtained through numerical diagonalization for thermal
and BEC-quench distributions are shown in Fig. 3. We observe that all eigenvalues of D̃ but
one depend continuously on the eigenvalue index. The special zero eigenvalue is related to
the Markov property of the diffusion matrix [43]. The corresponding left eigenfunction is, in
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Figure 3: Spectra of the diffusion operators for a thermal state with c = 1 and T = 1.
Left panel: Distribution of 500 eigenvalues of D̃. The eigenvalues are normalized to
the largest eigenvalue (about 0.19) and ordered from maximal to minimal. The cusps
are the artefact of this ordering and appear when the degeneracy of the eigenvalues
changes. The inset shows the dependence of the trace of D̃ on the interaction strength
in the BEC-quench saddle-point state. Right panel: Distribution of 500 eigenvalues
zk,ω of Dk for k = 1. The eigenvalues form a complex spectral curve. Each point
plotted correspond to a single eigenstate and eigenstates can be labeled uniquely by
its imaginary part κ(1).

the Lieb-Liniger model, the constant function. This can be easily seen from the definition of
the diffusion kernel (4).

The Lieb-Liniger model in the c → 0 limit is a theory of free bosons, whereas for c →∞
maps to free fermions (Tonks-Girardeau gas). In both cases, there is no diffusion because
there is no interaction between quasi-particles. This is supported by the large c analysis of the
diffusion operator presented in [43]. In the inset of Fig. 3 we plot the dependence of the trace
of D̃ for the BEC-quench saddle point state as a function of the interaction strength c which
shows the expected behaviour.

We turn now to the analysis of the spectrum of the Dk operator, see also Fig. 3. The
diagonal operator with values veff reigning the ballistic evolution and D̃ do not commute with
each other. This rebuilds the spectrum of the resulting operator Dk with respect to that of D̃.
One of the consequences is that Dk has no zero modes. Numerical computations reveal that
the eigenvalues are smooth functions of k and with great accuracy follow a scaling with k,

κω(k)≈ kκω(1), λω(k)≈ k2λω(1), (29)

as illustrated in Fig. 4. This simple scaling implies that modes with larger k diffuse much
faster than modes with smaller k. The eigenvalues κω(k) describe the angular frequency of
ballistic propagation of a mode, whereas eigenvalues λω(k) are responsible for its diffusive
decay. The dimensionless ratio of the numbers defines two regimes of the propagation where
either ballistic or diffusive propagation dominates. Because of the observed scaling, we can
introduce an effective momentum k∗ω

k∗ω =
κω(1)
λω(1)

. (30)

Modes with k > k∗ω propagate diffusively, modes with k < k∗ω propagate ballistically. The
effective momentum depends on the eigenstate and changes over few orders of magnitude as
also illustrated in Fig. 4. The scaling of the eigenvalues is due to the fact that the diffusion is
a small correction to the ballistic motion and would break if the diffusion was stronger. The
strongly diffusive modes are however short-lived and do not influence the long-time relaxation
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Figure 4: Left panel: We plot every third eigenvalue of Dk operator for k = 0.1, 1,10.

In rescaled variables (λ(k)/k2,κ(k)/k) the spectral curves fall on each other exhibit-
ing relation (29). Right panel: Dependence of the effective momentum k∗ω on the
eigenstates of the Dk operator. We label the eigenstates by the (rescaled) imagi-
nary part of the eigenvalue zk,ω. The diffusion has a small effect for most modes and
therefore the ballistic propagation dominates even for relatively large momenta. The
background state is the thermal state at c = 1 and T = 1.

mechanisms. Therefore, the scaling of eigenvalues and a perturbative picture of diffusion are
universal at large enough times. This suggests that it might suffice to treat diffusion perturba-
tively to capture its effect.

4 Examples

In this section we consider the dynamics governed by the linearized GHD over a thermal state.
We have checked that the dynamics over the BEC-quench saddle point state (12) yields qualita-
tively similar results. We consider two types of the initial state. The first one has a well-defined
momentum and therefore its time evolution is especially simple. The second perturbation
starts instead localized in space. The two examples serve as a good illustration of equilibra-
tion of the Lieb-Liniger fluid within the GHD. From now on we fix the background state to be
the thermal equilibrium state of c = 1, T = 1 and unit density of particles.

4.1 Single Fourier mode initial state

We start with the single mode perturbation δn of a well-defined momentum k. The initial
perturbation is of the product form 3

δn(θ , 0, x) = ε cos(kx) · n(θ )(1− n(θ )), (31)

where n is the GGE background filling fraction, see Fig. 5. The profile guarantees that the
perturbation is small compared to n for all θ and all times.

For a perturbation with a well-defined momentum k (with k = 1 [kF ] here4), the equilibra-
tion follows a straightforward way. The dynamics cause a decay of the momentum mode as
shown in Fig. 5. The effect of inclusion of the diffusion to the hydrodynamics leads to slightly
faster decay. Therefore the main effect is played by the different velocities of propagation of
particles with different rapidities. The subleading role of the diffusion confirms the observa-
tion from the previous section. Specifically, from right panel of Fig. 3 we can read off that

3In the following we shall suppress an overall small parameter ε because it scales out from the linear equation.
4The Fermi momentum kF = π for the unit density of the background state
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Figure 5: Left panel: the initial profile n(θ )(1− n(θ )). Right panel: the evolution of
mode occupation δnk=1(t) with and without the diffusion.
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Figure 6: Time evolution for the initial profile (23). Left panel: the zeroth moment
µ0(t, x) shows steady collapse of the initial spatial profile. Right panel: local mo-
ments of the distribution µ j(x = 0, t) cease to zero with the j = 0 moment being the
slowest.

λω(1) ∼ 10−2 and is two-three orders smaller than κω(1). In short, the ballistic propagation
dominates. The time scale td associated with the ballistic, dispersive, propagation is related
to the characteristic scale κω as kω td ∼ 2π. For the example discussed here κω ∼ 10 which
yields equilibration time due to dispersion td ∼ 1 in agreement with Figures 5 and 6.

Spatial time evolution is displayed in Fig. 6 where we plot the 0-th moment of δn(θ , t, x).
Because of the wave-like form of the initial state the time evolution is periodic in space. There-
fore, we focus on x = 0, which corresponds to one of the maxima of the initial state, and
consider local moments of δn(θ , 0, t), that is µ j(0, t). During the time evolution, the local
conglomerates of particles at x multiplicities of k/π get smeared over the whole system. Par-
ticles with higher rapidities travel faster and therefore the higher moments of the distribution
vanish faster, see also Fig. 6.

Finally, we look into the rapidities distribution at a specific position in space. We choose
again x = 0. The evolution of δn(θ , 0, t) is shown in Fig. 7 for linearized GHD with and
without the diffusion. We observe that, whereas the averaged distribution in both cases van-
ishes similarly, the mechanism is different. The presence of diffusion causes a steady decay of
the perturbation whereas purely dispersive evolution leads to a superposition of decoherent
waves. The time scale of the diffusive decay is hard to estimate because what is observed is
the mixture of diffusive and dispersive effects.

The physical picture behind the scrambling in the space of rapidities relates back to fig. 2:
diffusion leads to scattering processes between quasi-particles and the background which re-
organises the quasi-particle distribution. This increases the total entropy of the fluid [43] as
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Figure 7: Time evolution of the local filling function δnk(θ , 0, t) with (left panel)
and without (right panel) the diffusion term in the linearized GHD.

we will now present.
For the Lieb-Liniger model the local entropy density, takes the familiar Yang-Yang form [50]

s(x , t) = −
∫

dθρs(θ , x , t) (n(θ , x , t) log n(θ , x , t) + (1− n(θ , x , t) log(1− n(θ , x , t)) . (32)

The total entropy S(t) at time t is then the spatial integral of s(x , t) and according to the GHD
predictions its production in time, in the leading order in the perturbation, is quadratic and
given by [43]

∂ S(t)
∂ t

=
1
2

∫

dx

∫

dθ dα
∂xδn(θ , t, x)

n(θ )(1− n(θ ))
ρs(θ )D̃(θ ,α)∂xδn(α, t, x). (33)

In purely non-diffusive GHD, with full non-linear dynamics, the entropy is conserved. Includ-
ing the diffusion leads to the production of the entropy until the final state of the system settles
in, as shown by the solid line in the right panel of fig. 7. When we linearize the GHD dynam-
ics we introduce an error of the second order in the perturbation. This leads to the entropy
production already at the non-diffusive level and to entropy production at the diffusive level
larger then the one predicted by the full non-linear GHD with diffusion. These expectations
are confirmed in the right panel of Fig. 7. The results show that scrambling in the space of
rapidities is related to the entropy production.

We can summarize these findings concluding that the evolution of the perturbation is gov-
erned mainly by the dispersion suppression mechanisms. Particles with different rapidities
propagate with different velocities which quickly (at the order of a single frequency period
κω(k)) leads to equilibration of the initial spatially delocalized profile. However, looking into
the details of local filling functions δn(θ , t, x) reveals the role of the diffusion in the equilibra-
tion. Whereas the ballistic propagation leads just to a decoherent superposition of waves, it is
the diffusion that redistributes the rapidities and leads to a uniform, for a chosen initial state,
long-time distribution.

4.2 Localized initial state

We consider now a bit more involved example of a perturbation localized initially in space.
The initial configuration is

δn(θ , t = 0, x) = e−πx2
e−θ

2
, (34)

over the same thermal equilibrium background n(θ ). The time evolution and ultimately the
equilibration, of the first and second moments µ j(t, x), as defined in (25), is shown in Fig. 9.
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Figure 8: We plot the difference in the entropy between the state at time t and the
initial state. The dots corresponds to evaluating the entropy from the definition (32)
with the help of the numerical solution considered here. The solid line is computed
with the GHD prediction for the entropy production (33). The discrepancy between
the GHD predictions and observed entropy originates from linearization of the full
dynamics.
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Figure 9: Dynamics of the initial Gaussian perturbation (34) over a thermal back-
ground with c = 1 and β = 1. Left panel: space-time dependence of the 0th moment
µ0(t, x) of the δn(θ , t, x) distribution. Right panel: plot of the 2nd second moment
µ2(t, x).

The final state of the system is given by the thermal background over which there is a uniform
in space and time reminiscent of the initial perturbation given by (see (22))

lim
t→∞

δn(θ , t, x) =
2π
L

∫

dω c0,ω f0,ω(θ ). (35)

It is worth pointing out that there are no dissipation processes and that the total density of
quasi-particles is conserved

∫

dx δn(θ , t, x) = 2π

∫

dω c0,ω f0,ω(θ ). (36)

At large times the density of quasi-particles gets spread uniformly over the space as (35) indi-
cates.

To quantify the process of equilibration we consider the evolution of modes δnk(t) defined
in (24). The results are presented in Fig. 10 and show that the larger momentum the faster
the decay and that the diffusion slightly speeds up this process. We also estimate the diffusion
coefficient for different moments µ j(t, x), see also Fig. 9. The higher moments diffuse faster
with the density (0-th mode) decaying the slowest.
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Figure 10: Left panel: the decay of different momenta modes δnk(t). The dotted
line corresponds to non-diffusive hydrodynamics. Right panel: The time dependence
of the variance of the position. In the linear regime we fit the diffusion coefficient
according to (26). At late time the turn over of the variance is caused by the periodic
boundary conditions.

Finally, we look at the “occupation numbers” ck,ω(θ , t) quantifying the number of ballistic
and diffusive modes. We define the “ballistic occupation” and “diffusive occupation” by

cballistic(t) =

∫

dω
∑

|k|<k∗ω

|ck,ω(t)|, (37)

cdiffusive(t) =

∫

dω
∑

|k|≥k∗ω

|ck,ω(t)|, (38)

with k∗ω defined in (30). We expect the diffusive part to decay much faster than the ballistic
part. These intuitions are confirmed on Fig. 11 where we show the time evolution of both
quantities for the initial perturbation given by the Gaussian packet (34).

ballistic

diffusive

� � �� �� ��
���

���

���

���

���

���

�

�(�)

Figure 11: The time evolution of the ballistic and diffusive “occupation numbers”
cballistic(t) and cdiffusive(t) from equations (37) and (38).

Concluding, the time evolution of the localized perturbation is again driven by the ballistic
propagation with diffusion playing a secondary role. Moreover, the modes with diffusive dy-
namics decay faster. Despite this, there is a region in time in which the dynamics is diffusive,
in the sense that the spatial variance of expectation values of local conserved charges grows
linearly in time. This is caused by an interplay of the ballistic propagation, which mixes quasi-
particles in the real space, and diffusive propagation, which mixes modes in the rapidities
space.
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5 Quadratic corrections

In this section we go one step beyond the linear approximation discussed until now and con-
sider quadratic GHD. We focus on the k=0 mode as this mode does not evolve at the linear
level. We also dismiss the quadratic part of the diffusion operator as it gives only subleading
corrections to k 6= 0 modes.

The full GHD equation (15) can be easily expanded to the second order in δn(θ , t, x)
keeping small diffusion term at linear order only:

∂tδn+ veff
n ∂xδn+δv ∂xδn=

1
2

D̃n∂
2
x δn. (39)

The leading second order correction comes from the effective velocity term because the latter
depends on the full state n(θ , t, x). Directly from the definition of the dressing procedure in
Appendix A we get

δv = veff
�

δE′

E′
−
δp′

p′

�

=
(Tδn(E′)dr)dr

(p′)dr
− veff (Tδn(p′)dr)dr

(p′)dr
. (40)

Expanding δn and δv in spatial Fourier modes leads to the following equation for the k = 0
mode

δn0(θ , t)−
∫

dt
∑

p+q=0

iqδvp(θ , t)δnq(θ , t) = 0. (41)

Here, δnq is the linear solution to the GHD and determines δvp according to (40). The equa-
tion (41) can be now solved numerically with the techniques introduced in the previous sec-
tions.
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Figure 12: Left panel: The dynamics of the k = 0 mode following an initial state (31)
with ε= 1 and three different values of the momentum k. Right panel: The dynam-
ics of the k = 0 mode following an initial Gaussian state of (34). Additionally to the
density moments ( j = 0), we plot the the second and fourth moments. In comput-
ing the time evolution we took into account only the smallest momentum modes of
δnk(θ , t, x).

In Fig. 12 we plot the dynamics of the k = 0 mode resulting from (41). In the left panel of
Fig. 12 we consider the delocalized initial state from Eq. (31). Such a state has a well-defined
momentum k and we consider its three different values. The slower the momentum the slower
the resulting evolution of the k = 0 mode to its late-time value.

We consider also the dynamics of the k = 0 mode with the localized initial state (34). To
simplify the problem we approximate the full dynamics given by (41) by including only the
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lowest contributing modes. This provides a lower bound on the equilibration process. In the
right panel of Fig. 12, we plot the moments of the resulting distribution of quasi-particles,

δn j
0(t) =

∫

dθ θ jδn0(θ , t). (42)

The higher moments, which depend more strongly on large θ part of the distribution δn0(θ , t)
equilibrate faster. This is simply caused by their larger effective velocity.

It is worth to stress that the k = 0 mode tends to a constant non-zero value as times goes to
infinity. That means that quadratic fluctuations modify the equilibrium state. Whereas linear
dynamics describes decaying fluctuations around the initial profile, inclusion of the quadratic
terms leads to the change in the homogeneous profile itself. This is expected from general
properties of GHD which has now quite solid foundation due to various numerical checks (see
e.g. recent works [54,55]). Here we can see it in a much simpler setup.

6 Conclusions

In this work, we have considered numerical solutions to the Generalized Hydrodynamics in
the linear regime. This required turning an initial integro-differential equation into an eigen-
problem of the diffusion operator. The latter being exactly known in terms of the quantities
of the Thermodynamic Bethe Ansatz. We have performed numerical diagonalization of this
operator. Questions about the analytic construction of its eigenstates remain open.

The general solution to the linearized GHD presented in Section 3 was then applied to
two concrete examples of initially delocalized and localized states. In Section 4 we focused
on the time evolution over the thermal background, however, we have checked that time
evolution over the non-equilibrium saddle-point state like the one obtained after the BEC-
quench leads to qualitatively similar results. The results show the complementary role of the
ballistic and diffusion effect on the dynamics. Whereas the ballistic propagation dominates
the spatial homogenization of the initial state, it is the diffusive dynamics that reorganizes the
quasi-particle content and ultimately equilibrates distribution also in the rapidities space. It
also increases the total entropy of the fluid but the linear approximation applied in this paper
overestimates the exact result for the entropy production.

On the other hand, we have observed that the effect of the diffusion is rather weak and
potentially can be treated in a perturbative way. A first step in developing such an approach,
in a context of the bi-partite quench, was performed in [43]. It would be interesting to pursue
this approach further.

Finally, we have also considered the effect of the quadratic terms. These are most impor-
tant for the evolution of the k = 0 spatial mode which does not evolve in the linear regime.
Quadratic corrections do not show any sign of instabilities which could appear due to positive
interference of linear modes. Instead, they tend to non-zero values at late times modifying
the homogeneous GGE state. This behavior supports the GHD as a valid approach to non-
equilibrium physics of the integrable systems.

In this work we focused on the simplest and most easily accessible observables. It would
be interesting to consider the dynamics of other observables, e.g. the local n-body correlations
functions for which exact expressions in the homogeneous Lieb-Liniger model were recently
obtained [56]. Under the hydrodynamic assumption, these can be extended to the inhomoge-
neous case and evaluated for the linearized or full GDH dynamics. We leave this problem for
future work.
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A Integral operators

In the main text we use a shorthand notation for the action of integral operators. For any
K(θ ,θ ′) its action on a function f (θ ) is denoted and understood as

K f −→
∫

dθ ′K(θ ,θ ′) f (θ ′). (43)

The dressing procedure is defined through the following integral equation

f dr(θ ) = f (θ ) +

∫

dθ ′T (θ ,θ ′)n(θ ′) f dr(θ ′). (44)

Here T (θ ,θ ′) is the differential scattering kernel and n(θ ) is the filling function. In the com-
pact notation introduced above it is written as

f dr = f + Tn f dr. (45)

Introducing the resolvent (1− Tn)−1 of the kernel Tn the solution to this equation takes the
form

f dr = (1− Tn)−1 f . (46)
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