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Abstract

We study the rare-earth magnets on a honeycomb lattice, and are particularly inter-
ested in the experimental consequences of the highly anisotropic spin interaction due to
the spin-orbit entanglement. We perform a high-temperature series expansion using a
generic nearest-neighbor Hamiltonian with anisotropic interactions, and obtain the heat
capacity, the parallel and perpendicular spin susceptibilities, and the magnetic torque co-
efficients. We further examine the electron spin resonance linewidth as an important sig-
nature of the anisotropic spin interactions. Due to the small interaction energy scale of
the rare-earth moments, it is experimentally feasible to realize the strong-field regime.
Therefore, we perform the spin-wave analysis and study the possibility of topological
magnons when a strong field is applied to the system. The application and relevance to
the rare-earth Kitaev materials are discussed.
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1 Introduction

Spin liquid candidates are often being searched among geometrically frustrated systems, such
as triangular [1], kagomé [2] or pyrochlore [3] lattices. This is quite reasonable as the geo-
metrical frustration could lead to a large number of degenerate or nearly-degenerate classical
ground states for commonly studied Heisenberg models and thus enhance quantum fluctua-
tions when the quantum effects are included. However, the destabilization of simple magnet-
ically ordered states and driving a disordered one can happen even on unfrustrated lattices,
by exploiting the power of anisotropic interactions [4]; the Kitaev honeycomb model [5] is
a representative example of the latter. Besides being an academic interest, anisotropic spin
interactions are also inevitable in realistic magnetic materials, especially those with heavy
atoms. A large number of spin liquid candidates are known experimentally to possess a signif-
icant spin-orbit coupling, leading to rather anisotropic spin interactions [6–11]. Beyond the
current interest in the spin liquid physics, understanding the relationship between the mag-
netic properties and the anisotropic spin interactions is a frontier topic in the field of quantum
magnetism.

The most commonly studied anisotropic magnets on unfrustrated lattices are the 4d/5d
magnets [11, 12] that include the honeycomb iridates and RuCl3. Because of the possible
relevance to Kitaev physics, these materials were referred as Kitaev materials. Due to the
spatial extension of the 4d/5d electron wavefunctions, the exchange interactions between the
local moments are usually beyond the nearest neighbors. Moreover, the iridates often suffer
from a strong neutron absorption such that the data-rich neutron scattering measurement can
be difficult. In comparison, the rare-earth family has the advantages of much stronger spin-
orbit couplings and much more localized 4 f orbitals [13–15], and the exchange interactions
often restrict to first neighbors. This makes the understanding of the modeling Hamiltonian
more accessible. In addition, the rare-earth magnets do not have the neutron absorption issue
that prevails in iridates. Furthermore, their smaller energy scales allow for the possibility to
quantitatively understand their Hamiltonian through the external magnetic fields. However,
rare-earth materials have only been well-investigated on frustrated lattices [9,16].

In this paper, we will study the rare-earth magnets on the unfrustrated honeycomb lattice,
and pursue an understanding of the experimental consequence of the spin-orbital entangle-
ment on the honeycomb structure. We start by exploring the thermodynamic properties of
a generic model with the nearest neighbor interactions. It is well-known that the anisotropic
exchange couplings could appear in the temperature dependence of the thermodynamic quan-
tities such as the specific heat, spin susceptibility [17] and magnetotropic coefficients [18,19].
Especially for the spin susceptibility and magnetic torque, magnetic fields along different di-
rections induce magnetization of different magnitudes, leading to the anisotropic spin suscep-
tibility [20–25] and the angular dependence of the magnetic torque [26–29], and providing a
natural detection of the intrinsic spin anisotropy in the system. To go beyond the thermody-
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namic properties, we further consider the electron spin resonance (ESR) measurement [30,31]
of the system. The ESR measurement turns out to be a very sensitive probe of the magnetic
anisotropy and is especially useful for the study of the strong spin-orbit-coupled quantum ma-
terials, and we compute the ESR linewidth to reveal the intrinsic spin anisotropy of the spin
interactions.

Due to the small energy scale of the interaction between the rare-earth local moment, it is
ready to apply a small magnetic field in the laboratory to change the magnetic state into a fully
polarized one. For such a simple product state, the magnetic excitation can be readily worked
out from the linear spin wave theory. We further consider the spin wave spectrum and explore
the possibility of topological magnons [32–39]. We find the magnon spectrum supports non-
trivial topological band structure. This feature can be manifested in thermal Hall transport
measurements.

The remaining parts of the paper are organized as follows. In Sec. 2, we introduce the
nearest-neighbor spin Hamiltonian, followed by the high-temperature analysis of heat capacity,
spin susceptibilities and magnetic torque coefficient in Sec 3. Then we consider the ESR and
calculate the influence of anisotropy on the ESR linewidth in Sec. 4. Next the linear spin
wave theory of the system is exploited under strong external fields in Sec. 5 and the aspect of
topological magnons is discussed. Finally in Sec. 6 we comment on possible materials YbCl3
and TlYbS2.

2 Model

We begin with the following microscopic spin model, that is the most general nearest neighbor
Hamiltonian on a honeycomb lattice with the (usual) Kramers doublet effective spin-1/2 local
moments [6,10,15,40],

H =
∑

〈i j〉

JzzSz
i Sz

j + J±(S
+
i S−j + S−i S+j ) + J±±(γi jS

+
i S+j + γ

∗
i jS
−
i S−j )

+ J±z[(γ
∗
i jS
+
i Sz

j + γi jS
−
i Sz

j ) + 〈i↔ j〉], (1)

with γi j taking e2iπ/3, e−2iπ/3, and 1 on the bonds along a1, a2, a3 directions respectively, as
shown in Fig. 1. The first two terms give the usual XXZ Hamiltonian, while the latter two
terms are bond-dependent and constitute the spin-orbit interaction. The spin components are
defined in the global coordinate system in Fig. 1. This is possible because the system is planar
and has an unique rotational axis. This differs from the rare-earth pyrochlore materials where
the spins are often defined in the local coordinate system for each sublattice. This model ap-
plies to the rare-earth local moment such as the Yb3+ ion. For non-Kramers doublet like Pr3+ or
Tb3+ ion, the J±z term is not allowed by symmetry, and the model becomes further simplified.
In fact, a non-Kramers doublet based rare-earth honeycomb magnet arises from the triangular
lattice magnet TbInO3 after 1/3 of the Tb3+ ions becomes inactive magnetically [41]. For the
rare-earth local moments, the 4 f electrons are much localized, and most often, one only needs
to consider the nearest-neighbor interactions, and occasionally, one would like to include the
further neighbor dipole-dipole interactions. In contrast, for the 4d/5d systems, one may need
to worry about further neighbor exchange interactions because of the large spatial extension
of the electron wavefunctions.

An alternative and often used parametrization of the Hamiltonian is that of the J -K-Γ -Γ ′
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model [42]:

H =
∑

〈i j〉∈αβ(γ)

�

JSi · S j + KSγi Sγj + Γ (S
α
i Sβj + Sβi Sαj )

�

+ Γ ′
∑

〈i j〉∈αβ(γ)

�

Sαi Sγj + Sγi Sαj + Sβi Sγj + Sγi Sβj
�

, (2)

where α,β ,γ take values in {x ′, y ′, z′}. In the latter coordinate system, our unit vectors of
Fig. 1 can be expressed by x̂ = (−1,−1, 2)/

p
6, ŷ = (1,−1,0)/

p
2 and ẑ = (1, 1,1)/

p
3. The

spin components in the above equation are

S x ′ = −
p

6
6

Sx +
p

2
2

Sy +
p

3
3

Sz ,

S y ′ = −
p

6
6

Sx −
p

2
2

Sy +
p

3
3

Sz ,

Sz′ =
p

6
3

Sx +
p

3
3

Sz .

(3)

Furthermore, we have used the notation that αβ(γ) specifies a bond parallel (or anti-parallel)
to the vector α̂− β̂ , or simply a bond of type γ. Here J , K and Γ are the Heisenberg, Kitaev
and symmetric off-diagonal exchange, respectively, and Γ ′ parametrizes the trigonal distortion.
The coupling constants in Eq. (1) and (2) are related by the following equation

J =
4
3

J± −
2
p

2
3

J±z −
2
3

J±± +
1
3

Jzz , K = 2
p

2J±z + 2J±±, (4)

Γ = −
2
3

J± −
2
p

2
3

J±z +
4
3

J±± +
1
3

Jzz , Γ ′ = −
2
3

J± +
p

2
3

J±z −
2
3

J±± +
1
3

Jzz . (5)

The Hamiltonian in Eq. (1) can also be used to describe the general exchange interaction
between the higher spin local moments for the honeycomb magnets after some modification.
The differences are explained in details in the Appendix A.

3 Thermodynamics

The highly anisotropic nature of the exchange interaction first impacts the thermodynamic
properties of the system. Here we explicitly calculate the specific heat and the magnetic sus-
ceptibilities of the system from the generic exchange Hamiltonian, with details presented in
Appendix B. Using the high-temperature series expansion [43, 44], we find the heat capacity

a3
a1

a2

x

y

z

Figure 1: The honeycomb lattice with three different types of bonds and our choice
of the global coordinate system.
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Figure 2: Susceptibilities versus temperature. The dashed black lines show the Curie-
Weiss law, and the solid blue lines plot the inverse of equation (9). The parameters
are chosen to be Jzz = 1, J± = 0.9, J±± = 0.2, J±z = 0.1. The susceptibilities in the
plot, χ‖ and χ⊥, are in units of µ0µ

2
B g2
‖/4kB and µ0µ

2
B g2
⊥/4kB, respectively.

to be

C =
3J2

0

2kB T2
−

27J4
0

8k3
B T4

, (6)

where kB is the Boltzmann constant, and

J2
0 ≡

1
16

J2
zz +

1
2
(J2
± + J2

±± + J2
±z). (7)

Due to the spin-orbit entanglement, the coupling of the local moment to the external magnetic
field is also anisotropic. The Landé factors g ’s are different for the in-plane and out-plane
magnetic fields, and the Zeeman coupling is given as

HZ = −µ0µB

∑

i

�

g⊥(hxS x
i + hyS y

i ) + g‖h‖S
z
i

�

, (8)

hx , hy are the in-plane components of the external magnetic field, and h‖ the z-component. µ0
is the vacuum permeability and µB the Bohr magneton. Again using high-temperature series
expansion, we compute the parallel and perpendicular spin susceptibilities up to O(T−3)

χ‖ =
µ0µ

2
B g2
‖

4kB T

�

1−
3Jzz

4kB T
−

J2
±

2k2
B T2
−

J2
±±

2k2
B T2
−

J2
±z

k2
B T2

+
3J2

zz

8k2
B T2

�

,

χ⊥ =
µ0µ

2
B g2
⊥

4kB T

�

1−
3J±

2kB T
+

5J2
±

4k2
B T2
−

J2
±±

k2
B T2
−

3J2
±z

4k2
B T2
−

J2
zz

16k2
B T2

�

.

(9)

In the SU(2)-symmetric point, Jzz = 2J±, J±± = J±z = 0, the two expressions coincide. For the
rare-earth local moments with non-Kramers doublets, g⊥ = 0 so χ⊥ = 0. In Fig. 2, we plot the
magnetic susceptibilities and show the deviation from the simple Curie-Weiss law due to the
high order anisotropic terms.

In addition to the simple thermodynamics such as Cv and χ, the magnetic torque mea-
surement is proved to be quite useful in revealing the magnetic anisotropy. Intrinsically,
this is because the induced magnetization is generically not parallel to the magnetic field.
Thus, when the sample has an anisotropic magnetization, the system would experience a
torque τ= M ×H = −∂ F/∂ θ in an external magnetic field. The magnetotropic coefficient
k = ∂ 2F/∂ θ2, defined as the second derivative of the free energy to the angle θ between the
sample and the applied magnetic field, can be introduced to quantify such anisotropy. It can be
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Figure 3: (Color online.) The dependence of ∆H (defined in equation (14))
on J±±/Jzz and J±z/Jzz , with fixed values of J±/Jzz . Left: J±/Jzz = 1, middle:
J±/Jzz = 0.2, right: J±/Jzz = −0.5. In the first two panels, the linewidths are min-
imal at the “most isotropic” points J±± = J±z = 0. In the right panel, we depict the
case J±/Jzz < 0, where the in-plane exchange is ferromagnetic. The linewidths ∆H
in the three plots are in the units µB g(θ )/

p
2π.

directly measured using the resonant torsion magnetometry [18]. Under the high temperature
expansion, we find the magnetotropic coefficient k is given as

k =
µ2

0µ
2
Bh2

kB T
cos 2θ

�1
4
(g2
⊥ − g2

‖ ) +
3

16kB T
(g2
‖ Jzz − 2g2

⊥J±)

+
1

192k2
B T2

�

− 3g2
⊥(−20J2

± + 16J2
±± + 12J2

±z + J2
zz)

+ 6g2
‖ (4J2

± + 4J2
±± + 8J2

±z − 3J2
zz)− 2µ2

0µ
2
Bh2(g4

⊥ − g4
‖ )
�	

−
µ4

0µ
4
Bh4

96k3
B T3

cos4θ (g2
⊥ − g2

‖ )
2,

(10)

where we have defined h2 = h2
x+h2

y+h2
z . Note that there are two different sources of a nontriv-

ial torque magnetometry: the anisotropy of the g-tensor and the anisotropy of the exchange.
In the limit of g⊥ = g‖, there is still a nonzero contribution to k, detailed in Appendix B. The
coefficient will only vanish if the Heisenberg limit is further taken: Jzz = 2J±, J±± = J±z = 0.

4 Electron spin resonance

In the thermodynamic properties, the leading contributions come from the Jzz and J± terms,
while the J±± and J±z terms are subleading. Arising from spin-orbital entanglement and com-
pletely breaking the U(1) rotational symmetry, these terms play important roles in the potential
quantum spin liquid behavior. To resolve them, we now turn to the electron spin resonance.
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Electron spin resonance measures the absorption of electromagnetic radiation by a sam-
ple subjected to an external static magnetic field. For a SU(2) invariant system, the absorp-
tion is completely sharp, i.e. described by a delta function located exactly at the Zeeman
energy [30]. Therefore, the broadening of the resonance spectrum has to arise from the mag-
netic anisotropy. To understand the contribution of the anisotropy of the nearest-neighbor spin
interaction to the ESR linewidth, we decompose the Hamiltonian Eq. (1) into the isotropic
Heisenberg part and the anisotropic exchange part

H = J
∑

〈i, j〉

Si · S j +H ′, (11)

where the Heisenberg coupling J = (Jzz + 4J±)/3, and the anisotropic part

H ′ =
∑

〈i, j〉

Sµi Γi j,µν Sνj . (12)

Here Γi j is a traceless and symmetric exchange coupling matrix, satisfying

Γi j,x x = 2J±/3+ (γi j + γ
∗
i j)J±± − Jzz/3, Γi j,y y = 2J±/3− (γi j + γ

∗
i j)J±± − Jzz/3,

Γi j,zz = 2Jzz/3− 4J±/3, Γi j,x y = i(γi j − γ∗i j)J±±,

Γi j,yz = i(γ∗i j − γi j)J±z , Γi j,zx = (γi j + γ
∗
i j)J±z . (13)

Under the Zeeman term of Eq. (8), the ESR can be computed using the Kubo-Tomita formal-
ism [45], yielding a Lorentzian-shaped spectrum. The corresponding linewidth at high temper-
atures is given by the second and the fourth moments of the ESR line-shape function [46–48]

∆H(θ ) =
p

2π
µB g(θ )

�

M3
2

M4

�1/2

, (14)

where θ is again the angle between the external field and the sample, and

g(θ ) =
r

g2
‖ sin2 θ + g2

⊥ cos2 θ , (15)

M2 =
〈[H ′, M+][M−, H ′]〉

〈M+M−〉
, M4 =

〈[H, [H ′, M+]][H, [H ′, M−]]〉
〈M+M−〉

. (16)

M2 and M4 are the second and the fourth moments, respectively, and M± ≡
∑

i S±i . The expec-
tation “〈· · · 〉”in the above equations is taken with respect to high temperatures. Specifically,
we find that

M2 =
3
4
(J2

zz + 4J2
± + 4J2

±± + 10J2
±z − 4J±Jzz),

M4 =
3
4

J4
zz −

9
2

J3
zzJ± +

57
8

J2
zzJ2
±z + 15J2

zzJ2
± + 6J2

zzJ2
±± −

3
4

JzzJ±±J2
±z −

93
4

JzzJ±J2
±z

− 24JzzJ±J2
±± − 30JzzJ3

± +
123
2

J4
±z +

153
2

J2
±±J2

±z +
39
2

J±J±±J2
±z + 33J2

±J2
±z

+ 15J4
±± + 30J2

±J2
±± + 24J4

±.

(17)

The high-temperature ESR linewidths (14), expressed in terms of the different exchanges (17),
can be compared with future experiments on the rare-earth based honeycomb magnets in or-
der to extract the anisotropic exchanges. The Jzz and J± exchanges are easier to indicate from
analyzing the experimental data of susceptibilities, as they have lower-order effects. Using
their extracted values, one can infer the corresponding J±± and J±z from the ESR linewidth
∆H. In Fig. 3, we depict the three-dimensional plots that explicitly demonstrate the depen-
dence of the ESR linewidth on the anisotropic couplings Jz± and J±± for three different choices
of J±.
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5 Polarized phases

5.1 Strong field normal to the honeycomb plane

To further explore the effect of the anisotropic exchange interaction, we study the spin wave
excitation with respect to the polarized states under the strong magnetic fields. This is clearly
feasible in the current laboratory setting for the rare-earth magnets as the energy scales for
them are usually rather small. For the 4d/5d magnets, there can be difficulty to achieve as the
energy scale over there is much higher, typically by two orders. Our results here are relevant
to the inelastic neutron scattering and thermal Hall transport measurements.

We first consider the case of a strong magnetic field in the direction normal to the honey-
comb plane such that the system is in the fully polarized paramagnetic phase and all the spins
are aligned along the z direction. In this case, the magnon bands carry nontrivial Chern num-
bers for generic range of parameters, as found in reference [39] in the J−K−Γ−Γ ′ presentation.
We expand about this fully polarized state using the conventional Holstein-Primakoff transfor-
mations of the spin variables [49], which are Sz

i = S − a†
i ai , S+i = ai , S−i = a†

i for sublattice A,
and substitute a→ b for sublattice B. a and b’s are bosonic operators, [ai , a†

j ] = [bi , b†
j ] = δi j .

Keeping only the bilinear terms of bosonic operators and taking the Fourier transformation,
we arrive at

H =
9N
4

Jzz − 2Nµ0µB g‖h‖ +
1
2
Υ †

kHkΥk, (18)

with Υ ≡ (ak, bk, a†
−k, b†

−k)
T , and N being the number of sites in one sublattice. Here we have

denoted k1 = −
1
2 kx +

p
3

2 ky , k2 = −
1
2 kx −

p
3

2 ky , and k3 = kx that correspond to the y-, z- and
x-bonds, respectively. We further define f (k) =

∑

i eiki , g1(k) =
∑

i e−ikiγi , g2(k) =
∑

i eikiγi
and u≡ (g‖µ0µBh‖ − 3Jzz/2), we then have for Hk a block form

Hk =

�

A(k) B(k)
B†(k) AT (−k)

�

, (19)

where we have

A(k) =

�

u J± f ∗

J± f u

�

, B†(k) =

�

0 J±±g1
J±±g2 0

�

. (20)

All the J±z terms are not present. The spin wave dispersion relation for Hk follows as

ε(k)2 =u2 + | f |2J2
± −
|g1|2 + |g2|2

2
J2
±±

± [4| f |2u2J2
± +
(|g1|2 − |g2|2)2

4
J4
±± + ( f

∗g∗1 − f g∗2)( f
∗g2 − f g1)J

2
±J2
±±]

1/2,

(21)

where only the positive square root of ε(k)2 is taken. Several simple limits of this expression
can be checked: (1) in the Heisenberg limit Jzz = 2J± ≡ 2J , then ε(k) = (

g‖µ0µB
2S h‖−3J±| f |J)1/2;

(2) when only Jzz is finite, it reduces to the Ising case ε(k) =
g‖µ0µB

2S h‖ −
3
2 Jzz; if only J± is

present, we have a graphene-like dispersion ε(k) =
g‖µ0µB

2S h‖ ± | f |J±.
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Figure 4: (Color online.) The two spin wave bands ω± when a
strong field in the z-direction is applied. The parameters are chosen as
Jzz = 1; J± = 0.9; J±± = 1; J±z = 0.3; u= 5.

At high fields, the results can be simplified by the Schrieffer-Wolff transformation,

H̃k = eWHke−W =Hk + [W,Hk] +
1
2

�

W, [W,Hk]
�

+ · · · , (22)

with the commutator understood as

[X , Y ]≡ XηY − YηX , (23)

and η is a diagonal matrix with entries (1, 1,−1,−1). Following the treatment of Ref. [39],
we choose the transformation to be

W =
1
2u

�

0 B(k)
−B†(k) 0

�

, (24)

so that up to O(h−2
‖ ), we have the H̃k to become A(k)→ Ã(k), B(k)→ B̃(k),

Ã(k) =

 

u− J2
±±
2u |g2|2 f ∗J±
f J± u− J2

±±
2u |g1|2

!

, B̃(k) = −
J±J±±

2u

�

f ∗g∗1 + g∗2 f 0
0 f ∗g∗1 + g∗2 f

�

.

(25)

At high fields, we can thus ignore B̃(k) and focus on the
Ã(k) term. Writing Ã(k) = d0(k)1+

1
2d(k) ·σ, with the three components being

d1(k) = 2J± Re( f ), d2(k) = 2J± Im( f ),

d3(k) =
J2
±±

2u
(|g1|2 − |g2|2), d0(k) = u−

J2
±±

4u
(|g1|2 + |g2|2). (26)

At each momentum k we have the eigenvalues

ω±(k) = d0(k)±
1
2
|d(k)|. (27)

The above spin wave bands Eq. (27) do not touch unless J± = J±± = 0, as we have depicted
in Fig. 4. We further compute the Berry curvature as follows

F x y
± (k) = ±

i
2

�

d(k)
|d(k)|3

·
�

∂ d(k)
∂ ky

×
∂ d(k)
∂ kx

��

. (28)

This is negative semi-definite in the Brillouin zone. The Chern numbers follow as

C± =
1

2πi

∫

BZ
dkx dky F x y

± = ∓1. (29)

This implies the presence of chiral magnon edge states and thermal Hall effect, resulting from
the presence of magnon number non-conserving terms B(k) in the Hamiltonian [34,39]. The
edge state for the open boundary condition is depicted in Fig. 5.
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0 π 2π
1

2

3

4

5

6

ky

ω

Figure 5: Edge state in a cylindrical geometry. The y-direction is periodic, while
x-direction contains 50 sites. The parameters are Jzz = 1, J± = 0.9, J±± = 0.6,
u= 4.

5.2 Strong field along the honeycomb plane

We now turn to a strong in-plane field, in the x-direction. This is relevant for the rare-earth
local moments with the usual Kramers doublet, and does not apply to the non-Kramers doublet.
The Holstein-Primakoff transformation for sublattice A is modified as
S x

i =
1
2 − a†

i ai , S y
i =

1
2(ai + a†

i ), Sz
i =

1
2i (ai − a†

i ), and that for sublattice B is obtained by
substituting a by b. These are again bosonic operators satisfying [ai , a†

j ] = [bi , b†
j ] = δi j .

Keeping only the bilinear terms of bosonic operators and taking the Fourier transformation,
we obtain

H =
9N
2

J± − 2Nµ0µB g⊥hx +
1
2
Υ †

kHkΥk, (30)

Υ ≡ (ak, bk, a†
−k, b†

−k)
T . (31)

Define g3(k) = eik1 + eik2 −2eik3 , g4(k) = eik1 − eik2 and recall f (k) =
∑

i eiki . The Hk is of the
familiar form

Hk =

�

A(k) B(k)
B†(k) AT (−k)

�

,

but now with the A, B matrices given by

A(k)11 = A(k)22 = v = µ0µB g⊥hx − 3J±,

A(k)21 = A(−k)12 = (
1
4

Jzz +
1
2

J±) f +
g3

4
J±±,

B(k)11 = B(k)22 = 0,

B(k)21 = B(−k)12 = (−
1
4

Jzz +
1
2

J±) f +
1
4

J±±g3 +
i
p

3
2

J±z g4. (32)

Appealing again to the Schrieffer-Wolff transformation with

W =
1
2v

�

0 B(k)
−B†(k) 0

�

, (33)

then up to O(h−2
⊥ ), we have the effective H̃k to be A(k)→ Ã(k), B(k)→ B̃(k).

Ã(k) =

�

v − 1
2v |B(k)12|2 A(k)12

A(k)21 v − 1
2v |B(k)21|2

�

, B̃(k) = −
1

2v

�

A(k)21B(k)12 + A(k)12B(k)21

�

.

(34)
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Figure 6: (Color online.) The two spin wave bands ω± when a strong in-plane field
is present. The parameters are chosen Jzz = 1; J± = 0.9; J±± = 1; J±z = 0.3; v = 5.

At high fields h⊥, we can ignore B̃(k) and focus on the Ã(k) term. Rewrite
Ã(k) = d0(k)1+

1
2d(k) ·σ, with each component being

d1 = (
1
4

Jzz +
1
2

J±)Re( f ) +
1
4

J±±Re(g3),

d2 = (
1
4

Jzz +
1
2

J±)Im( f ) +
1
4

J±± Im(g3),

d3 = −
1
2v

�

i

p
3

2
g∗4J±z[(

1
4

Jzz +
1
2

J±) f +
1
4

J±±g3] + c.c
�

,

d0 = v −
1
2v
[(

1
4

Jzz +
1
2

J±)
2| f |2 +

3
4

J2
±z|g4|2]. (35)

We then arrive at the dispersions ω±(k) = d0(k)±
1
2 |d(k)|. The spectrum is plotted in Fig. 6.

We find both bands have zero Chern numbers, and we have checked for many other parameter
choices and also obtained trivial zero Chern number. Thus, the in-plane field magnon band
structure is quite distinct from the topological magnon band structure for the normal-plane
field case.

6 Discussion

We have studied the experimental consequences of the spin-orbital entanglement and the
anisotropic spin exchange interactions in the honeycomb rare-earth magnets. These results
can be directly compared with the experiments, thereby providing a useful guidance for the
future study on candidate systems. One future direction would be to involve higher-lying
crystal field states based on the information of specific materials.

One potential rare-earth candidate for the anisotropic honeycomb lattice model is YbCl3
[50], which has a similar crystal structure to that of RuCl3. The Yb3+ ions have nearly filled
4 f -orbitals, which, combined with the large crystal fields lead to Kramers doublet ground state
manifold. This is modeled as an effective spin-1/2 local moment. Furthermore, its edge-shared
octahedral structure gives simple exchange physics that is relatively well-understood according
to a microscopic calculation in Ref. [15]. There is very limited information about this material
in the literature apart from a very recent work [51]. Comparing their susceptibility data with
our calculations, we are able to pin down the exchange parameters Jzz ∼ 8K , J± ∼ 6K . Another
relevant material is TlYbS2 with AB-stacking triangular structure, which is equivalent to the
honeycomb lattice. Recent experiment [52] shows that it has no long-range magnetic order
down to 0.4K , suggesting it to be a frustrated magnet and possible candidate for spin liquid.

In this paper, we have focused the analysis on the honeycomb lattice rare-earth magnets
and its anisotropic interaction. It is noticed that, the generic model for the rare-earth honey-
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comb magnets contains a Kitaev interaction as one independent exchange interaction out of
four. It is thus reasonable for us to consider the possibility of Kitaev materials among the hon-
eycomb rare-earth magnets. In fact most rare-earth magnets have not been discussed along the
line of Kitaev interactions, except the first few works [13–15]. In the previous work [13], we
have illustrated this observation with the FCC rare-earth magnets. Since many non-honeycomb
lattice iridates are claimed as Kitaev materials, it is thus reasonable to consider the rare-earth
magnets with other crystal structures to be potential Kitaev materials beyond the previously
proposed ones and the honeycomb one here [53, 54]. The reason that these rare-earth mag-
nets contain a Kitaev interaction is due to two facts. The first fact is the spin-orbital-entangled
effective spin-1/2 local moment. The second fact is the three-fold rotation symmetry at the
lattice site. This symmetry permutes the effective spin components and generates a Kitaev
interaction. These two ingredients can be used as the recipe to search for other rare-earth
Kitaev materials beyond the honeycomb one.

To summarize, we have focused on rare-earth honeycomb materials with nearest-neighbor
interactions and computed the high-temperature thermodynamic properties, ESR linewidth,
and spin-wave behaviors as the experimental consequences of the anisotropic spin interaction.
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A Generic spin models and candidate states for higher spins

This spin model in Eq. (1) is designed for effective spin-1/2 local moments. It can be well ex-
tended to the high-spin local moments. For the honeycomb lattice with spin-1 local moments,
the pairwise spin interaction is given as

H =
∑

〈i j〉

JzzSz
i Sz

j + J±(S
+
i S−j + S−i S+j ) + J±±(γi jS

+
i S+j + γ

∗
i jS
−
i S−j )

+ J±z[(γ
∗
i jS
+
i Sz

j + γi jS
−
i Sz

j ) + 〈i↔ j〉] +
∑

i

D(Sz
i )

2.
(36)

Because of the larger Hilbert space, a single-ion anisotropy (the D-term) is allowed and new
states such as the quantum paramagnet can be favored here. Thus, the phase transitions
between quantum paramagnet and other ordered phases can be interesting. Further neighbor
exchange interaction, if included, could bring more frustration channel than the spin-orbit
entanglement induced frustration. It is known that, simple J1-J2 (first neighbor and second
neighbor Heisenberg) model on honeycomb lattice could induce spiral spin liquids in two
dimensions where the spiral degeneracy has a line degeneracy in the momentum space rather
than the surface degeneracy. The presence of the anisotropic interaction in Eq. (36) would
overcome the quantum/classical order by disorder effect and lift the degeneracy. In addition
to the spin-1 local moments, the model in Eq. (36) also applies to the spin-3/2 systems. Since
the honeycomb lattice contains three nearest neighbor bonds, one may consider the possibility
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of the AKLT states on the honeycomb lattice where the nearest neighbor bonds are covered
with spin singles of the spin-1/2 states and three onsite spin-1/2 spins are combined back to
a spin-3/2 local moments.

Here, we have only listed the pairwise spin interactions. Due to the spin-orbital entan-
glement and the spin-lattice coupling, the effective interaction for the spin-1 and spin-3/2
magnets can contain significant multipolar interactions. A simple example would be the bi-
quadratic exchange −(Si · S j)2 that is induced effectively by the spin-lattice coupling. The
presence of these multipolar interactions can significantly enhance quantum fluctuation by al-
lowing the system to tunnel more effectively within the local spin Hilbert space and thus create
more quantum states such as multipolar ordered phases and quantum spin liquids [55,56].

The relevant physical systems for the spin-1 and spin-3/2 moments would contain the
4d2, 5d2, 4d4, 5d4 and 4d1, 5d1, 4d3, 5d3 magnetic ions, respectively. The relevant ions can
arise from Ru, Mo and even V atoms, where spin-orbit coupling in the partially filled t2g shell
is active [55,56].

B Details of high temperature expansion

The high temperature expansion requires to take into account the commutation relations
between different spin operators on a same site. To this end, we define a vertex function
νi(nx , ny , nz) at each site i following Ref. [43], where nx , ny and nz have to be even integers
for the function to be nonzero. Its explicit form can be calculated by introducing the generating
function

ψ(ξ,η,ζ) = Tr [exp(ξS x +ηS y + ζSz)] . (37)

Expanding the exponential and using the definition of ν, we have

ψ(ξ,η,ζ) = 2
∞
∑

nx=0

∞
∑

ny=0

∞
∑

nz=0

ν(nx , ny , nz)

2nx+ny+nz

ξnxηnyζnz

nx !ny !nz!
. (38)

On the other hand, by diagonalizing the matrix of the exponential, we have

ψ(ξ,η,ζ) = 2 cosh
�
Æ

ξ2 +η2 + ζ2/2
�

. (39)

Expanding this and comparing with the previous equation,

ν(nx , ny , nz) =
[(nx + ny + nz)/2]!

(nx/2)!(ny/2)!(nz/2)!

nx !ny !nz!

(nx + ny + nz)!
. (40)

We note this function is symmetric under the permutation of nx , ny , nz . The heat capacity is
related to the zero-field partition function in the following way

C =
1
N
∂ E
∂ T
=
β2

N

�

1
Z0

∂ 2Z0

∂ β2
−

1

Z2
0

�

∂ Z0

∂ β

�2�

, (41)

where we have divided by the number of sites N to get the intensive quantity, and β = 1/kB T .
Z0 is given by

Z0 = 2N



1+
1
4
β2
∑

〈i j〉

(
1
8

J2
zz + J2

± + J2
±± + J2

±z)



+O(β3), (42)
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where the 2N factor results from the summation over all possible configurations. Susceptibility
in direction a can be reduced to the following expectation values of two spin operators,

χa =
1
βN

∂ 2

∂ h2
a

ln Z
�

�

ha=0 =
µ0µ

2
B g2

a

N Z0
β〈
∑

m,n

Sa
mSa

n〉0. (43)

Using the vertex function ν(nx , ny , nz) defined above, we obtain for the parallel case,

〈
∑

m,n

Sz
mSz

n〉0 =
∑

{Si}

∑

m,n

Sz
mSz

ne−βH

=
∑

{Si}





∑

m,n

Sz
mSz

n − β
∑

〈i j〉

∑

m,n

Hi jS
z
mSz

n +
1
2
β2
∑

〈i j〉

∑

〈kl〉

∑

m,n

Hi jHklS
z
mSz

n + permutations+O(β3)





=
∑

{Si}

�

N
4
−

3N
16
βJzz +

3N
128

β2J2
zz + (

3N2

32
−

3N
16
)β2(

1
8

J2
zz + J2

± + J2
±± + J2

±z)

+
β2

32
(J2
± + J2

±±)
∑

〈i j〉

�

νi(2,0, 2)ν j(2,0, 0) + νi(2,0, 2)ν j(0, 2,0) + νi(0, 2,2)ν j(2, 0,0)

+ νi(0, 2,2)ν j(0, 2,0)
�

+
β2

32
J2
±z

∑

〈i j〉

�

νi(2, 0,2)ν j(0, 0,2) + νi(0, 2,2)ν j(0,0, 2) + νi(0,0, 4)ν j(2,0, 0)

+ νi(0, 0,4)ν j(0, 2,0)
�

+
1
16
β2
∑

〈i j〉

(J2
zz − 2J2

±z) +O(β3)

)

=2N ·
N
4

�

1−
3
4
βJzz + β

2(
3
8

J2
zz −

1
2

J2
± −

1
2

J2
±± − J2

±z) +
3N
8
β2(

1
8

J2
zz + J2

± + J2
±± + J2

±z) +O(β3)
�

.

(44)

Here, the summation for {Si} is over the possible configurations of spins on all sites. The
notation Hi j means the terms in the Hamiltonian for the bond labeled by sites i, j; namely,
H =

∑

〈i j〉Hi j .“Permutations” on the second line are those with respect to the relative orderings
of Hi j , Hkl , Sz

m and Sz
n. Similarly, for the perpendicular susceptibility, we have

〈
∑

m,n

S x
mS x

n 〉0 =
∑

{Si}

∑

m,n

S x
mS x

n e−βH

=
∑

{Si}





∑

m,n

S x
mS x

n − β
∑

〈i j〉

∑

m,n

Hi jS
x
mS x

n +
1
2
β2
∑

〈i j〉

∑

〈kl〉

∑

m,n

Hi jHklS
x
mS x

n + permutations+O(β3)





=
∑

{Si}

(

N
4
−

3N
8
βJ± +

N − 2
16

β2
∑

〈i j〉

(
1
8

J2
zz + J2

± + J2
±± + J2

±z) +
1

64
β2J2

zz

∑

〈i j〉

νi(2, 0,2)ν j(0, 0,2)

+
1
32
β2(J2

± + J2
±±)

∑

〈i j〉

[νi(4,0, 0)ν j(2,0, 0) + νi(4, 0,0)ν j(0, 2,0) + νi(2, 2,0)ν j(2,0, 0)

+ νi(2,2, 0)ν j(0,2, 0)]

+
1
32
β2J2

±z

∑

〈i j〉

[νi(4, 0,0)ν j(0, 0,2) + νi(2,2, 0)ν j(0,0, 2) + νi(2,0, 2)ν j(2,0, 0)

+ νi(2,0, 2)ν j(0,2, 0)]
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+β2
∑

〈i j〉

∑

〈 jk〉

�

1
8

J2
± +

1
16

J2
±±(γi jγ

∗
jk + γ

∗
i jγ jk) +

1
32

J2
±z(γi jγ jk + γi jγ

∗
jk + c.c)

�

+O(β3)

)

=2N ·
N
4

�

1−
3
2
βJ± +

3N
8
β2(

1
8

J2
zz + J2

± + J2
±± + J2

±z)−
1

16
β2J2

zz +
5
4
β2J2

± − β
2J2
±± −

3
4
β2J2

±z

+O(β3)
�

.
(45)

One can similarly compute 〈
∑

m,n S x
mS x

n 〉0 and arrive at the same expression as above. The
cross terms 〈

∑

m,n S x
mS y

n 〉0 turn out to be zero.
The magnetotropic coefficient k can be computed using its relationship with the partition

function with non-zero external field,

k =
1
N
∂ 2F
∂ θ2

=
1
βN

�

1
Z2

�

∂ Z
∂ θ

�2

−
1
Z
∂ 2Z
∂ θ2

�

. (46)

The first term always give higher order terms compared with the second term, while the latter
reads,

∂ 2Z
∂ θ2

= −βµ0µB

∑

i

〈g⊥ cosθ (cosϕS x
i + sinϕS y

i ) + g‖ sinθSz
i 〉+ β

2µ2
0µ

2
B

∑

i, j

〈g2
⊥ sin2 θ cos2ϕS x

i S x
j

+ g2
⊥ sin2 θ sin2ϕS y

i S y
j + g2

‖ cos2 θSz
i Sz

j − g⊥g‖ sinθ cosθ cosϕ(Sz
i S x

j + S x
i Sz

j )

− g⊥g‖ sinθ cosθ sinϕ(Sz
i S y

j + S y
i Sz

j ) + g2
⊥ sin2 θ sinϕ cosϕ(S x

i S y
j + S y

i S x
j )〉+O(β3)

= µ2
0µ

2
Bβ

2 cos2θ (g2
‖ − g2

⊥) +
3µ2

0µ
2
B

4
β3 cos 2θ (2g2

⊥J± − g2
‖ Jzz)−

µ4
0µ

4
B

48
β4 cos 4θ (g2

⊥ − g2
‖ )

2

× (3N − 2)

−
µ2

0µ
2
B

192
β4 cos 2θ

¦

3N(g2
⊥ − g2

‖ )
�

4µ2
0µ

2
B(g

2
⊥ + g2

‖ ) + 3(J2
zz + 8J2

± + 8J2
±± + 8J2

±z)
�

− 4
�

2µ2
0µ

2
B(g

4
⊥ − g4

‖ )− 6g2
‖ (−3J2

zz + 4J2
± + 4J2

±± + 8J2
±z) + 3g2

⊥(J
2
zz − 20J2

± + 16J2
±±

+ 12J2
±z)
�	

. (47)

The expression above reduces to, in the limit g⊥ = g‖,

∂ 2Z
∂ θ2

�

�

g⊥=g‖
= 2N ·

N
4
β3µ2

0µ
2
B cos 2θ

�

−12Jzz + 24J± + β(7J2
zz − 28J2

± + 8J2
±± − 4J2

±z)
�

. (48)
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