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Abstract

We study the disconnected entanglement entropy, SD, of the Su-Schrieffer-Heeger model.
SD is a combination of both connected and disconnected bipartite entanglement en-
tropies that removes all area and volume law contributions and is thus only sensitive
to the non-local entanglement stored within the ground state manifold. Using analytical
and numerical computations, we show that SD behaves like a topological invariant, i.e.,
it is quantized to either 0 or 2 log(2) in the topologically trivial and non-trivial phases,
respectively. These results also hold in the presence of symmetry-preserving disorder.
At the second-order phase transition separating the two phases, SD displays a finite-
size scaling behavior akin to those of conventional order parameters, that allows us to
compute entanglement critical exponents. To corroborate the topological origin of the
quantized values of SD, we show how the latter remain quantized after applying unitary
time evolution in the form of a quantum quench, a characteristic feature of topological
invariants associated with particle-hole symmetry.
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1 Introduction

When a phase is topological, then its ground state(s) displays robust entanglement proper-
ties. The converse is more uncertain: to what extent are entanglement properties unique
to topological states? This attempt at understanding topological phases through the lens of
entanglement is recent [1]. It has been successful for (true) topological order that is now
characterized by the topological entanglement entropy (TEE) [2–4]. This quantity works both
in- [5–8] and out-of-equilibrium [9–11], and is included in the textbooks’ definition of these
phases [12,13]. It provides a useful discriminating characterization of topology for numerical
simulations [14–16] and it stimulated the search for corresponding experimental entangle-
ment probes [17–23].

Topological insulators and superconductors or, more generally, symmetry-protected topo-
logical phases (SPTP) also display characteristic entanglement features. Amongst these fea-
tures, the most used is the entanglement spectrum [24–26]. It serves as an entanglement-
based sine qua non signature of an SPTP. This spectrum corresponds to all the eigenvalues of
the bipartite reduced ground state’s density matrix of the system. The degeneracy of the ma-
trix’ few largest eigenvalues is imposed by the dimension of the possible representations of
the edge states [24,25,27,28]. Because the same spectrum may come from a non-topological
state, the diagnosis it provides is a necessary but not sufficient condition 1.

The disconnected entanglement entropy SD is another entanglement signature for SPTPs
of systems with open boundary conditions. SD was suggested and tested through simulations
for some examples of bosonic topological phases in Ref. [29]. Like the TEE, it extracts a
topological-exclusive contribution to the bipartite entanglement entropy. Unlike the TEE [4,
30], this contribution is not (yet) predicted by quantum field theory as it is related to short-
range or edge-edge entanglement. Ref. [31] used the Kitaev wire [32] to prove that SD is
also valid for 1D topological superconducting phases, where it is captured within a lattice
gauge theory framework. In the Kitaev wire, SD is traced back to the entanglement necessarily
present by construction between the only two fractional (Majorana) modes of the model, even
when the modes are localized on each edge of the chain.

1An example is the entanglement spectrum of the topological ground state of the Kitaev wire, which is identical
to the spectrum of the corresponding ground state of the non-topological ferromagnetic spin 1/2 Ising chain after
the Jordan-Wigner mapping.
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This paper aims at characterizing the properties of SD for the case of one-dimensional topo-
logical insulators, focusing on a simple, yet paradigmatic example: the Su-Schrieffer-Heeger
model [33, 34] (SSH). This model of spinless fermions displays a topologically trivial phase
and an SPTP with two edge modes. Each of these states is usually represented as one dan-
gling fermion unentangled with the bulk on either side of the chain. The bulk is short-range
entangled [35]. However, the finite size of the chain ensures a systematic maximal entangle-
ment between the two a priori independent edge states as predicted in bosonic topological
phases [36,37]. As we show below, SD is sensitive to this long-range entanglement and takes
the maximal possible value of 2 log2 in the SPTP 2. In contrast, this value is 0 in the triv-
ial phase. Therefore, our first claim is that SD can be a good signature of topology for SPTP
without fractional edge states like in the SSH model.

We also find that SD provides additional quantitative topological exclusive information on
the entanglement properties of the ground state. Indeed, SD displays a system-size scaling
behavior close to the critical phase transition, akin to the magnetization of an Ising chain. We
obtain the resulting critical exponents using exact numerical methods. Within the topological
phase, SD remains quantized on average in the presence of disorder. Such a scaling behavior
and critical exponents are different with respect to the Kitaev wire [31] (the only other oc-
currence of such an analysis for fermionic systems to our knowledge) and to bosonic cluster
models realized as instances of random unitary circuits (e.g., Ref. [39]). This indicates that
while scaling behavior is likely a generic feature of SD at criticality, the corresponding critical
entanglement exponents depend on the nature of the associated topological phase transition.

Finally, we apply unitary evolution to the system in the form of quantum quenches either
within the two phases or across the phase transition. After the quench, we observe that SD

keeps its initial value in the limit of an infinite chain, a behavior characteristic of a topological
invariant associated with particle-hole symmetry [40]. This set of observations mimics the
phenomenology observed for the TEE in the context of true topological order and allows us to
define SD as a valid entanglement order parameter.

This work is structured as follows. We introduce the SSH model and the disconnected
entanglement entropy in Sec. 2. In Sec. 3, we present the analytical computation of SD in the
topological phase, trace it back to the systematic maximal entanglement of the edge states,
and explain its exponential finite-size scaling. In Sec. 4, we present our numerical results for
the case of the ground state of a clean SSH chain. In Sec. 5, we investigate quantum quench
protocols, that provide a clear characterization of SD as a topological invariant. In Sec. 6, we
showcase one application of SD, by investigating the entanglement properties of disordered
SSH chains, and showing how the disconnected entropy recovers the predicted phase diagram.
We discuss the generality of our findings within the BDI and D classes of the tenfold-ways in
Sec. 7, and conclude the study in Sec. 8.

2 Model Hamiltonian and disconnected entropies

We briefly introduce the SSH model and both its topological and trivial phases in Sec. 2.1. We
introduce SD in Sec. 2.2. In Sec. 2.3, we confront the strengths and the limits of SD that become
apparent for the SSH model with periodic boundary conditions. We establish the equivalence
of using SD with either the von Neumann and Rényi-2 entanglement entropies for the SSH
model in Sec. 2.4.

2This result is consistent with a previous study of the spinfull interacting SSH model in Ref. [38]. Another
quantity is used then that also extracts the edge entanglement and coincides with SD for this model.
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2.1 The SSH model

The Su-Schrieffer-Heeger model [33,34] describes a one-dimensional spinless fermionic chain
with a staggered hopping between sites. The chain is composed of N unit cells. Each cell is
divided into one site A connected to one site B. The number of sites in a chain is, hence,
L = 2N . The Hamiltonian of the model with open boundary conditions is:

HSSH = −v
N
∑

i=1

�

c†
iAciB + h.c.

�

−w
N−1
∑

i=1

�

c†
i+1AciB + h.c.

�

, (1)

where c†
iX (ciX ) is the creation (annihilation) operator of a spinless fermion on the unit cell

i, site X = A, B. v > 0 (w > 0) is the intra-(inter-)cell hopping amplitude. The chain is
represented in Fig. 1a).

At half-filling, the model displays two phases. When v/w � 1, A and B within a unit
cell dimerize and the phase is topologically trivial. There is one particle per unit cell (box
in Fig. 1a)). The vanishing entanglement between the unit cells increases until v/w = 1
where the phase transition occurs. When v/w < 1, the phase is topological. The single-
particle spectrum displays two zero-mode edge states in the gap between two bands. When
v/w � 1, the density profile of each edge state shows one localized fermion in the leftmost
or rightmost site of the chain. The dynamics of this fermion is independent of symmetry-
preserving perturbations of the bulk. Since Pauli’s filling rule applies, at half-filling and zero
temperature, all the lower band is occupied. The ground state is unique and its bulk is short-
range entangled: one fermion forms a Bell pair on each strong link (darkest line in Fig. 1a) ).
When v = 0, the Bell pair on the link between cell i and i+1 is strictly localized. The Bell pair
can be expressed as:

(|0iB1i+1A〉+ |1iB0i+1A〉)/
p

2. (2)

For a finite chain with open boundary conditions, the ground state has one fermion populating
each strong link, and one extra fermion in the superposition of Eq. 2 of the two edge states
(see Sec. 3). This superposition entangles the two distant edges maximally. It is the only long-
range entanglement in the system and contributes to the entanglement entropy. We will show
that this is the contribution extracted by SD (Sec. 2.2). The topological and the trivial phases
are separated by a critical phase transition at v/w= 1.

The topological invariant of this model is the Zak phase [41], a quantity proportional to
the Berry phase [42]. By definition, a topological invariant is constant and quantized over the
whole phase and only changes across a phase transition. Here, the Zak phase distinguishes
the two regimes of v/w while the way their ground states at half-filling breaks the initial
symmetries can not. This situation is beyond the spontaneous symmetry breaking paradigm
and signals that at least one of the two phases is topological. For open boundary conditions,
the topological regime is the only one displaying edge states (and a non-zero Zak phase).
For periodic boundary conditions, the values of the Zak phase for the two regimes can be
exchanged with the renaming:

A→ B, v→ w, (3a)

B→ A, w→ v, (3b)

with unchanged values of the amplitudes. In this case, the Zak phase only ensures that the
two phases are topologically distinct.

The topological edge states are protected by charge conservation (U(1) symmetry), the
time-reversal T , the particle-hole C , and the chiral S (or rather, the sublattice) symmetry 3.

3There are several definitions of these symmetries, leading to several self-consistent 10-fold ways. We use the
definitions of Ref. [43].
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Figure 1: (Color online) The SSH chain and the partition used for SD. a) The SSH
chain is a spinless fermionic chain of sites A and B (blue and red on the figure)
connected with staggered hoppings v and w. A pair of sites A and B forms a unit
cell (a box on the figure). b) Partitions A (shaded, blue) and B (shaded, orange)
associated with the entanglement topological order parameter SD. For large systems,
the exact locations of the cuts εi , i = 1,2, 3,4, of each partition do change the value
of the bipartite entanglement entropy but do not change SD.

The phase is part of of the BDI-class of the Altland-Zimbauer ten-fold ways [44] leading to
a Z classification. This classification indicates that there are an infinite countable number of
distinct topological phases with unbroken T ,C and S in 1D. The classification will be Z8 if
symmetry-preserving interactions are allowed [45]. This latter classification means that there
are only seven non-trivial topological phases left. While the translation symmetry is needed to
compute some non-local topological order parameters such as the winding number in k space,
the topological phase is not protected by this last symmetry.

In simulations, the Zak phase, the winding number, the presence of edge states, or the
entanglement spectrum have all served as smoking guns for topology. In experiments, the
winding number was measured [46, 47] for the SSH model and its generalization [48]. In
these instances, the winding number is contained in the time evolution of the chiral mean
displacement observable. This observable quantifies the relative shift between the two projec-
tions of the tracked state onto the eigenstates of the chiral operator [47]. It follows a random
walker [47] or the entire atomic population after a sudden quench [46, 48]. The observable
is measured using chiral- and site-resolved imaging over several times. SD completes this list
of topological detectors. Amongst them, SD is the only probe that is both unambiguous and
entanglement-based 4. Thus, SD is the optimal tool to study the topological entanglement
properties of the SSH model.

2.2 The disconnected entanglement entropy SD

The disconnected entanglement entropy SD has been introduced in Ref. [29] as a generalization
of the topological entanglement entropy Stopo for all the topological phases (topological order
and SPTP). Stopo is an exclusive marker for topological orders. Both SD and Stopo aim to isolate
a constant topological-exclusive contribution in the bipartite entanglement entropy. Thus, they
are both built using the same linear combination of entropies but they differ in the partitioning
of the system. In both cases, the combinations are chosen to cancel volume law (linear in
system size) and area law (linear in the number of internal cuts) contributions in the bipartite
entanglement entropy. For Stopo, the leftover constant contribution is topological-exclusive,
as shown by topological quantum field theory arguments [4, 30]. A similar generic proof is
missing for SD. Instead, simulations, exact solutions, or a gauge theory analogy validate its
success for some examples [29,31,50].

The original definition of SD [29] uses the von Neumann entanglement entropy of a bipar-
tition of the system. For a chain divided into two complementary subsets A and Ā, the reduced
density matrix of the subset A is

ρA = TrĀρ.

4Another entanglement-based topological detecting quantity that applies to the SSH model would be the bound-
ary susceptibility [49].
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TrĀ stands for the partial trace on the subset Ā, and ρ is the full (pure) density matrix of the
system, always taken as a ground state in this study. A may be a collection of disconnected
sites of the chain. The von Neumann bipartite entanglement entropy follows:

SA = −TrAρA log (ρA) . (4)

SD uses the partitioning of the chain in Fig 1b), so that:

SD = SA+ SB − SA∪B − SA∩B. (5)

The lengths of A, B, and the disconnected subset D = A∪ B are respectively LA, LB, and LD.
The formula is best understood when comparing what happens for the other possible

gapped phases in 1D: disordered (paramagnetic) and ordered phases, the latter ones char-
acterized by some of form of spontaneous symmetry breaking (SSB) of a discrete symmetry.

A trivial phase always has one single ground state independently of its boundary conditions
and for both the thermodynamical limit (large number of particle) and finite (large) size.
When this state is a product state, any choice of partition leads to a bipartite entanglement
entropy of zero. An example of such a case is the ground state of a (quantum) spin-1/2 chain
with only a magnetic field. The ground state can also be short-range entangled: if C1 and C2
are two simply connected partition of the chain separated by a large distance, then

ρC1C2
∼ ρC1

⊗ρC2
. (6)

The trivial SSH phase is an example of this scenario. In that phase, the mutual information
I(C1 : C2) of two disjoint and distant partitions is zero, and so is SD for open boundary condi-
tions (the conditional mutual information in this context). Indeed, for large subsets in Fig. 1b),
Eq. 6 applies, such that :

SD = SA+
�

SA∩B + SB\A
�

−
�

SA+ SB\A
�

− SA∩B, (7a)

= 0, (7b)

for A and B the partitions in Fig. 1b), and where B\A means B without A∩ B. For periodic
boundary conditions, both A and B\A are connected such that SD = I(A : (B\A)). For these
conditions, SD may vary within a phase.

A SSB phase always has several ‘ground states’ independently of its boundary conditions.
A basis of these states may be expressed as product states. For a finite-size systems, the de-
generacy is lifted by corrections that are exponentially small in system size: the single ground
state has a GHZ-type of quantum entanglement [29]. An example of a SSB phase is the Ising
chain with a small transverse magnetic field. The true finite-size ground state is then the maxi-
mally entangled symmetric superposition between the state with all spin up and all spin down:
the GHZ-state. Any bipartite entanglement entropy of this state has the same non-zero value
such that all the entropies in Eq. 5 are equal and SD = 0 5. Like in the trivial case, additional
short-range entanglement in the ground state does not change SD.

For periodic boundary conditions, the ground state of an SPTP is unique. This state is short-
range entangled after defining the proper unit-cell. Like the periodic trivial case,
SD = I(A : (B\A)) then. Unlike the trivial case, the SPTP imposes neighboring unit cells to
be maximally entangled, saturating SD (cf Sec. 2.3) so that it will not vary within the same
phase. For open boundary conditions, an SPTP displays edge (zero)-modes. A basis of these
modes can sometimes be written as separable states, like the SSB case 6. Unlike the SSB case,

5When LD = 0, A∪ B spans over the whole system. In this case, the combination Eq. 5 reduces to the tripartite
entanglement entropy [29], and is non-zero for both SSB and SPT phases.

6If we define separable in terms of sites, the edge states are separable for the topological SSH, but they are not
separable for the topological Kitaev wire. In terms of Majorana fermions, both are separable. In terms of unit cells,
neither are separable. Interactions typically prevents separability.
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the edge modes all have the same bulk, and the superposition of the same bulk does not in-
crease the entanglement. For a SSH chain with two edges, the true ground state is a maximally
entangled superposition of these edge states. This superposition generates an additional satu-
rated contribution (i.e., of maximal possible value) to the entanglement entropy of a partition
that includes one edge without the second (like A and B in Fig. 1b)). SD then behaves like in
Eq. 7a, but with this extra edge contribution for SA and SB that is not compensated by SA∪B
and SA∩B.

Only this edge contribution sets SD to a quantized, non zero value. Similarly to Ref. [38],
the value of SD in the thermodynamical limit is fixed by the number of edge states D (or,
equivalently, by the dimension 2D of the Hilbert space they span):

lim
L→∞

SD = 2 logD. (8)

D is fixed by the bulk-edge correspondence outside of the accidental increase of global sym-
metry due to fine-tuning. Thus, D is almost a robust topological invariant, and so is SD. The
SSH topological phase fits in this scenario.

Thus, the SPTP case can be interpreted as a trivial gapped phase with saturated short-range
entanglement in the bulk, with an extra entanglement between the edge states for a finite open
system.

2.3 Periodic boundary conditions

Following the previous discussion, we will solely focus on open boundary conditions in the
rest of the text. We take a brief detour in this section to discuss the physical interpretation of
SD for close chains.

For periodic boundary conditions and at half-filling, SD only extracts the saturated entan-
glement of the cut between the connected partitions A and B\A of the single bulk ground-state.
The saturation comes from cutting the singlet between two neighboring projective representa-
tions on each side of the cut. This picture stems from the cohomology and supercohomology
classification [51, 52]. It means that if G is the unbroken symmetry group of the chain, then
cutting a chain between two unit cells leaves an edge state on each side of the cut. One edge
state transforms according to a projective representation of G, and the other transforms ac-
cording to the conjugate representation of the former edge. When connected back, the two
edge states form a singlet that is maximally entangled by construction. This topological pattern
repeats all along the chain and explains the saturation of the bulk short-range entanglement.

The projective representations involved in this internal cut also transforms the edge states
of the chain with open boundary conditions. SD has thus the same saturated value for both
boundary conditions in the topological phase. In contrast, SD is systematically zero only for the
trivial phase of a system with open boundaries. Therefore a sharp phase transition between
the two phases only exists for open boundary conditions.

This structure is explicit in the SSH model: the two phases for v/w < 1 and v/w > 1 are
a collection of coupled dimers between B and A or A and B (the order matters) respectively.
These dimers become uncoupled when v = 0 and w = 0 respectively. The contribution to the
entanglement entropy for any bipartition of the system then corresponds to the contribution
of each cut: log 2 for a cut in the middle of a dimer and 0 otherwise. Defining ε j = 1 when
the cut j = 1,2, 3,4 (see Fig. 1b)) separates a dimer and ε j = 0 when the cut is between two
of them, Eq. 5 becomes:

SD/ log2=
�

(ε1 + ε3) + (ε1 + ε2 + ε3 + ε4)− (ε3 + ε4)− (ε2 + ε3)
�

,

= 2ε1.
(9)
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Eq. 9 is not one-site translation-invariant for the two phases. This lack of invariance stems from
the ambiguity highlighted in Eq. 3 and is only lifted after defining the unit cell and always
cutting between two of them. Note that ε1 is exactly the quantity extracted by the “edge
entanglement entropy” of Ref. [38] when there are no volume nor GHZ-like contributions in
the bipartite entanglement entropy. ε1 is also the contribution in the value of the bipartite
entanglement entropy that is linked to the Zak phase in the small localization length and
thermodynamical limit [53]. Consequently both ε1 and the Zak phase change depending on
the definition of the unit cell.

2.4 Disconnected Rényi-2 entropy

Similarly to the bipartite entanglement entropy, it is possible to define and use the disconnected
entropy using the Rényi-α entanglement entropies [31]. These extensions are useful for two
reasons. First, for small values of α, the Rényi-α entanglement entropies are experimentally
measurable. Second, for α = 2 (and, with increasing complexity, for larger integer values of
α as well), they can be computed using Monte Carlo methods, providing a natural framework
to extend our methods to interacting systems.

The Rényi-α entanglement entropy [54] of a bipartition A, Ā of the chain is defined as:

SA,α =
1

1−α
logTrA

�

ραA
�

, (10)

where the case α→ 1 is the von Neumann entanglement entropy. The subsequent versions of
SD are:

SD
α = SA,α + SB,α − SA∪B,α − SA∩B,α, (11)

for the partition of the chain in Fig. 1b). To motivate and then support the relation between
SD and SD

α , we will make use of the following known properties:

1. For all α ∈]0,+∞[, Sα has the property of minimum value [55] (i.e., Sα(ρ) = 0 ⇔ ρ

is a pure state). Hence every individual bipartition in Eq. 5 and Eq. 11 are simultaneously
zero or non-zero, i.e., SX ,α 6= 0 ⇔ SX 6= 0.

2. For all α > 1, Sα has the property of monotonicity [56], i.e., for 1 < α1 ≤ α2,
Sα1
(ρ) ≥ Sα2

(ρ). This property can be extended to the von Neumann case α = 1. All
bipartite von Neumann entanglement entropy of 1D gapped isolated systems are finite,
and thus, by monotonicity, so will be their Rényi-α > 1 counterpart. Thus, there are no
divergent terms in Eq. 11 for the SSH model with w 6= v 7.

3. Despite open boundary conditions and for large enough subsets, translation invariance
imposes equality of finite entropies of simply connected subset, i.e., SA,α = SA\B,α = SB\A,α
and SA∩B,α = SD,α (the presence of exactly one edge matters). With additional homoge-
neous disorder, the equalities become 〈SA,α〉= 〈SA\B,α〉= 〈SB\A,α〉 and 〈SA∩B,α〉= 〈SD,α〉.
A corollary follows: if X and Y are simply connected large subsets that include the same
number of edges, then SX = SY ⇐⇒ SX ,α = SY,α. When the system is translation-
invariant every two sites (or more) instead, like the SSH model, the value of a con-
nected entropy changes depending on the position of its two cuts relatively to the unit
cells. These changes are compensated in SD, similarly to how internal cuts compensate
each others in Eq. 9. This difficulty can be bypassed by considering only the unit cells
instead of the sites, and only the cuts between unit cells.

7For α ∈]0,1[, we must assume that each term in Eq. 11 will also be finite for all bipartition of 1D gapped system.
Then, the rest of the demonstration applies, and SD

α
can also be used for α ∈]0,1[. The Rényi-1/2 entanglement

entropy is useful as it coincides with the logarithmic negativity for pure states.
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4. For allα > 1, Sα has the property of additivity. This property imposes SB,α = SA∩B,α+SB\A,α
for short-range entangled 1D systems.

The first point establishes the qualitative correspondence between the von Neumann and
the Rényi-α bipartite entanglement entropies: one of the two entropies is zero if and only if
the second is also zero. The von Neumann entanglement entropy never diverges for gapped
phases. As a consequence, the second point prevents the Rényi entropies to diverge as well.
The third point ensures that the considerations of Sec. 2.2 for the archetypal trivial phase
and SSB phase stay valid for SD

α . The fourth point extends this validity for the short-range
entangled variations around the archetypal cases and the SPTP. The value of SD and SD

α may
differ by a finite factor γα: SD = γαSD

α .
The von Neumann entanglement entropy is important in quantum information as it counts

the maximum amount of distillable entangled pair between a subset and its complementary.
Instead, the Rényi-2 entropy can be measured experimentally [19, 20, 57, 58] for all systems
in all dimensions, so that SD

2 is experimentally measurable for small subset sizes. The discon-
nected part can be large. The sizes of LA = 8 or 12 are both accessible experimentally [58]
and enough to reach the saturated value of SD

2 in the simulations Sec. 4 to 6. In practice,
measuring SD

2 is done by measuring each bipartite entanglement entropy in Eq. 5 successively
(using the same system if needed).

3 Analytical predictions on SD: long-range entanglement between
edges

In this section, we present an explicit calculation of SD for the SSH model to justify the cartoon
pictures of Sec. 2. In the topological phase, we show that the ground state always contains
the maximally entangled superposition of the two localized edge states. This superposition
ensures that SD = 2 log2 up to exponential corrections in the size of the system. SD = 0 for
the non-topological phase. This result is valid only when the chain has two edges, i.e., for a
finite chain of arbitrary large length.

We first show that the two edge states in the one-body spectrum are in the symmetric and
antisymmetric superposition when the chain is finite but of arbitrary large length. We obtain
the exact expressions of the two states for weak link hopping v = 0 (see Fig. 1a)) and track
their change when v increases [59]. This hopping v slightly spreads the localized edge states
and lifts the degeneracy between the two such that the symmetric superposition of the two is
lower in energy. We thus observe the exponential convergence of SD in L to 2 log 2. This result
is quantitatively consistent with the simulations (see Fig. 2b)) away from the phase transition
(v = w= 1) and for large system size. Ref. [60] provides an exact but more involved derivation
of the spectrum and eigenstates of the SSH chain for all v and w.

Ref. [59] provides the detailed derivation followed in this section. We remind here the
main steps and results. The SSH Hamiltonian with disorder is:

Hdis
SSH = −

N
∑

i=1

vi

�

c†
iAciB + h.c.

�

−
N−1
∑

i=1

wi

�

c†
i+1AciB + h.c.

�

. (12)

Since the Hamiltonian is non-interacting, a complete solution only requires the one-body spec-
trum and the corresponding eigenstates. At zero temperature, each state is filled in order of
increasing energy until the target filling fraction is reached. Because of chiral symmetry, the
spectrum is symmetric around E = 0, and when they exist, the edge states are the only states
at that energy. It follows that the ground state of the topological phase corresponds to the full
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lower band filled (i.e., all bulk dimers filled with one particle each), and one edge state pop-
ulated. To express the wave function of latter, we consider the most generic one-body wave
function:

|Ψ〉=
N
∑

i=1

�

aic
†
i,A+ bic

†
i,B

�

|0〉, (13)

where |0〉 is the particle vacuum and ai and bi are complex weights. This state is a zero-mode
of the Hamiltonian Eq. 12 for the infinite chain. For the finite chain (of arbitrarily large length),
the approximation Hdis

SSH |Ψ〉= 0 imposes (for vi , wi > 0):

For i = 2, ..., N , ai = a1Π
i−1
j=1

−v j

w j
, (14a)

For i = 1, ..., N − 1, bi = bN
−vL

wi
ΠN−1

j=i+1

−v j

w j
, (14b)

b1 = aN = 0. (14c)

In the limit N → ∞, Eqs. 14a and 14b reveals two states, |L〉 and |R〉. The two states are
exponentially localized on either the first site A or the last site B of the chain with (average)
localization length:

ξ=
N − 1

log
�

ΠN−1
i=1 |wi|/|vi|

� . (15)

The condition Eq. 14c is instead incompatible with the existence of zero-energy modes and
one must consider the (small) lift in the degeneracy between the two edge states. In this case,
the best approximations of the two edge states are the two orthogonal real equal-weighted
superpositions of |L〉 and |R〉. When the cuts in Fig. 1b) are far apart both from each other and
the boundaries, this superposition ensures SD = 2 log 2 approached exponentially.

When one vi = 0, the exponential tail of both localized edge state |L〉 and |R〉 is truncated
at site i. When instead one wi = 0, the exponential tails also stop and two new edge states
appear between the cells i and i + 1. Subsequent hybridization between the now four edge
states lifts the degeneracy. The “edge” states around i are not robust against the small local
perturbation of wi = 0 in contrast to the real boundary edge states that require a non-local
perturbation connecting the two ends. Hence, the system with one wi = 0 still belongs to the
regular topological phase of the SSH model. The value of SD is lower, however.

When two zero v’s or w’s are too close to each other, the approximation breaks down. More
generally, when the disorder is too strong, it induces a phase transition beyond which no zero
modes may exist anymore.

4 SD within a phase and scaling analysis at the phase transition

In this section and the next, we employ free fermion techniques to obtain SD for generic pa-
rameters of the system. This method is equivalent to exact diagonalization and relies on the
fact that the SSH model describes non-interacting fermions. We briefly review this technique
in Sec. 4.1. In Sec. 4.2, we obtain SD for a range of parameters around the phase transition
where SD displays a system-size scaling behavior.

4.1 Computing the entanglement spectra

The combination of analytical and numerical techniques reviewed in Ref. [61,62] allows direct
access to the spectrum and eigenvalues of any quadratic Hamiltonians. It computes efficiently
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the reduced density matrix’ entanglement spectra that are necessary to deduce SD in Eq. 5. The
technique is faster than direct exact diagonalization as its complexity grows only algebraically
in system size. The reader may also refer to Ref. [49] that also uses the same technique for
the SSH model to study entanglement at the phase transition. The scaling analysis realized
in Ref. [49] concerns the bipartite entanglement for increasing subset size for infinite or semi-
infinite chains. In contrast, we use the technique in Sec. 4.2 to study SD for increasing system
size.

The correlation matrix is related to the reduced density matrix. The many-body reduced
density matrix ρX of a subsystem X can be written as

ρX = Z−1
X e−HX , (16)

with ZX = TrX

�

e−HX
�

and where HX is the entanglement Hamiltonian of ρX . HX is a quadratic
Hamiltonian as long as the system’s Hamiltonian describes non-interacting fermions. The SSH
Hamiltonian Eq. 1 preserves the number of particles, so the technique provides the eigenvalues
of HX , i.e., the entanglement spectrum, using only the correlation matrix (CX )mn = 〈c†

mcn〉 of
the state of interest, where m, n are site indices belonging to X . Indeed, the entanglement
Hamiltonian and the correlation matrix are related [61]:

HX = log
1− CX

CX
. (17)

The one-body eigenstates of the initial Hamiltonian H, the {Φk}k, are obtained with ex-
act diagonalization (restricted to one-body states). The many-body ground state correlation
matrix CX follows:

(CX )mn =
∑

|k|<kF

Φ∗k(m)Φk(n), (18)

where kF is Fermi’s momentum. We then numerically diagonalize the matrix Eq. 18 (of the
same length of X ) using a computer. From the spectrum, we compute the entanglement en-
tropies in SD using Eqs. 17, 16 and 4.

The procedure is also useful to track a time-dependent state and its entanglement: Starting
from the ground state of H0 =

∑

i j h0
i jc

†
i c j for t < 0, the system evolves after a sudden quench

at t = 0. The Hamiltonian becomes H =
∑

i j hi jc
†
i c j for t > 0. Along with the state ρ(t), the

correlation matrix acquires a time dependence:

(CX )mn (t) = Tr
�

ρ(t)c†
m(0)cn(0)

�

= Tr
�

ρ(0) c†
m(t)cn(t)

�

=
∑

kk′,m′n′
Φ∗k(m)Φk′(n)e

−iEk′ teiEk t(CX )m′n′(0)Φ
∗
k′(n

′)Φk(m
′),

(19)

where Ek and Φk are the eigenvalues and the eigenvectors of H, c†
m(t) (resp. cm(t)) is the

Heisenberg representation of c†
m (resp. cm), (CX )mn(0) follows Eq. 18 for the ground state of

H0, and the sum over the k and k′ in Eq. 19 includes all the momenta. Eq. 19 is valid for any
reduced subsystem X . From the spectrum of CX (t) for any X = A, B, A∪B, and A∩B, we obtain
SD(t).

4.2 Phase diagram and scaling analysis

Using this technique, we compute SD and recover the expected phase diagram for the SSH
model with open boundary condition in Fig. 2a). SD fulfils its role as a “topological detector”
as it is non-zero in the topological phase (v/w < 1) and zero in the topological-trivial phase
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Figure 2: (Color online) a) SD as a function of the ratio v/w and the total length L
for L = 2LA = 2LB = 4LD. The critical point is at v/w = 1. SD is non-zero for the
topological phase, and zero outside: SD qualifies as a good topological detector. b)
Scaling behavior of SD towards its quantized convergence value. For the topological
phase (left y-axis; v/w = 0.1 and 0.5 resp. squares and dots), SD converges to
2 log2. For the non-topological phase (right y-axis; v/w= 2 and 10 resp. diamonds
and triangles), SD converges to zero. The increments on both the left and right y-axis
are the same. The scaling behavior of SD is exponential with the size of the chain
L = 2LA = 2LB = 4LD for parameters in both phases. The results of the simulations
(scattered points) agree with the analytic approximations of Sec. 3 (full lines). The
saw-teeth variations of the latter are due to the alternating sign in Eqs. 14a and 14b.

(v/w > 1). SD
2 (as in Eq. 11) is found identical, up to minor quantitative changes close to the

phase transition.
Both the correlation length and the localization length increase close to the transition. The

resulting spreading of the internal dimers and the edge states prevents a clean extraction of
the edge entanglement, damping the value of SD. In the large size limit (LA, LB, LD→∞), the
well-quantized plateau of SD = 2 log2 and SD = 0 extends over their whole respective phases
according to the scaling of Fig. 2b).

We observe a system-size scaling behavior for SD at the second-order phase transition as
in Ref. [31]. We use the following Ansatz, typical of an order parameter:

SD L
a
b = λ

�

L
1
b (α−αc)

�

, (20)

with fixed LA and LB so that L(LD) is the only scaling parameter left. α = v/w is the varying
parameter and αc is the critical value of this parameter at the phase transition. λ(x) is the
universal function at the phase transition, and a and b are entanglement critical exponents,
similar to β and ν for the 1D Ising chain at the paramagnetic/ferromagnetic phase transition.
λ(x) behaves asymptotically as:

λ(x)→∞ when x →−∞, (21a)

λ(x)→ 0 when x → +∞. (21b)

The curve intersection and curve collapse of Figs. 3 give the value αc = 0.958, a = 1.01, and
b = 0.81 for the best mean square fit. The exponents a and b are obtained as the optimal values
from a discrete mesh of spacing 0.01. It is not straightforward to assign a rigorous interval of
confidence to the values we have obtained. From the data shown in the inset of Fig. 3a, one can
observe a drift of order 1% in the crossing position between the curves representing the two
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Figure 3: (Color online) a) Curve intersection of SD L as a function of the ratio v/w
for LA = LB = 64. It extracts the critical point at the crossing, v/w = 0.958 here
(1 theoretically). b) Best curve collapse of the Ansatz Eq. 22 obtained for a = 1.01
and b = 0.81. The clear collapse in inset signals the universal behavior of λ at the
transitions.

smaller (blue and red line) and the two larger (yellow and violet) system sizes, respectively.
It is thus reasonable to assume that the relative error on αc is at the percent level.

The Ansatz Eq. 20 fails to describe the scaling behavior of SD close to quantized plateau
at 2 log(2) at α= αt(L). αt(L) gives an estimate of the transition region. With LA and LB still
fixed, we have, in general:

SD L
a
b = Θ

�

L, L
1
b (α−αc)

�

, (22)

such that, according to Fig. 3b:

Θ
�

L, L
1
b (α−αc)

�

=















L log2 when L
1
b (α−αc)< x∗(L),

λ
�

L
1
b (α−αc)

�

when L
1
b (α−αc)> x∗(L),

a non universal
regularization

when L
1
b (α−αc)∼ x∗(L),

(23)

where x∗(L) = L
1
b (αt(L)−αc)< 0 marks the end of the plateau and the start of the universal

regime. We find neither x∗(L) nor αt(L) to be universal, a result that is not unexpected as the
plateau is due to a UV property of the phase.

5 Invariance of SD after global quenches

In this section, we show that disconnected entanglement carries robust signatures of quanti-
zation after global quantum quenches, as expected for topological invariants associated with
particle-hole symmetry (PHS) [40].

In Sec. 5.1, we elaborate on two arguments discussed in Ref. [40]. These arguments pre-
dict the conservation of topological edge states over time, and thus, according to Eq. 8, the
conservation of SD. This prediction is consistent with our simulations in Sec. 5.2. Quantum
quenches are thus ideal test-bed to determine whether a given quantity is indeed a topological
invariant associated with particle-hole symmetry.
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5.1 Invariance of SD during unitary evolution: the role of particle-hole symme-
try

We provide here the two arguments explaining why topological invariants associated with PHS
are invariant to symmetry-preserving quenches that are presented in Ref. [40]. In particular,
we explicitely prove why the D classification applies to the Hamiltonian in the interaction
picture, which is an important step in one of the two arguments. We then use one of the
conclusion of Ref. [40]: the stability of the edge states after a quench, to prove the invariance
of SD. Thus, we argue that SD behaves like a topological invariant that keeps track of the initial
maximally entangled edge states.

Given a system, a quantized topological invariant associated with a symmetry is computed
from the ground state. If this state locally evolves in time without breaking the symmetry,
the topological invariant remains constant. To prove the statement for PHS, we denote as
Hi and H f the initial Hamiltonian (before quench) and the final Hamiltonian (after quench),
respectively. If |ψ(0)〉 is a ground state of Hi , then the state evolves after the quench as
|ψ(t)〉 = U(t)|ψ(0)〉, where the unitary evolution operator depends only on H f and t. Hi is
PHS if CH∗C† = −H, where C is the PHS operator and Hi =

∑

mlψ
†
mHmlψl . In that case,

ρ(0) = |ψ(0)〉〈ψ(0)| is also PHS, i.e., Cρ∗C† = 1−ρ. If H f is also PHS, so will ρ(t). So if a
topological invariant associated with PHS is initially fixed to a quantized value by ρ(0), this
value remains quantized along the PHS-preserving dynamics.

The second alternative argument consists in viewing the evolving state as the ground state
of the quenched Hamiltonian in the interaction picture. Time becomes a parameter of this
fictitious Hamiltonian on which we apply the topological insulator classification associated
with the PHS symmetry. Specifically, |ψ(t)〉 is a ground state of the fictitious Hamiltonian
Hfic(t):

Hfic(t) = U(t)HiU(t)†.

Hfic(t) is PHS if Hi and H f are PHS. The spectrum is invariant in time, so there is no gap
closing along the dynamics. Since Hi and H f are finite-ranged, we show explicitly that Hfic(t)
is short-ranged. Indeed, using the Baker-Campbell-Hausdorff formula,

Hfic(t) = H i +
∞
∑

n=1

(i t)n

n!
Cn(H

f , H i), (24)

where Cn(H f , H i) = [H f , [H f , ...[H f , H i]...]] where H f appears n times and [A, B] is the com-
mutator between A and B. Assuming that both H i and H f only involve nearest neighbors
hoping, we write n= 2l when n is even, n= 2l − 1 when n is odd. Thus:

C2l(H
f , H i) =

∑

k=0,l

αi,k(l)c
†
i ci+2k+1 +H.c. (25a)

C2l−1(H
f , H i) =

∑

k=1,l

α̃i,k(l)c
†
i ci+2k +H.c. , (25b)

where |αi,k| ≤ Λ2l+122lS l
k and |α̃i,k| ≤ Λ2l22l−1S l

k (for all i). Λ is the largest absolute value of
all the hopping amplitude in H i and H f and S l

k are obtained from the Catalan triangle [63]
such that (l ∈ N∗, 0≤ k ≤ l):

S l
k = Binomial(2l, l − k)− Binomial(2l, l − k− 1) if n is even, (26a)

S l
k = Binomial(2l − 1, l − k)− Binomial(2l − 1, l − k− 1) if n is odd, (26b)
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where by convention Binomial(n,−1)=0. Rewriting Hfic(t) as:

Hfic(t) =
∑

i,r

βi,r(t)
�

c†
i ci+r +H.c

�

.

We thus have:

|βi,r(t)| ≤
∞
∑

l=k

Λ2l+1 (2t)2l

(2l)!
S l

k if r = 2k− 1 using Eq. 26a, (27a)

|βi,r(t)| ≤
∞
∑

l=k

Λ2l (2t)2l−1

(2l − 1)!
S l

k if r = 2k using Eq. 26b. (27b)

Using Mathematica:

∞
∑

l=k

Λ2l+1 (2t)2l

(2l)!
S l

k =
(2k+ 1)I2k+1(4Λt)

2t
= o(1/k), (28a)

∞
∑

l=k

Λ2l (2t)2l−1

(2l − 1)!
S l

k =
2kI2k(4Λt)

2t
= o(1/k), (28b)

where In(x) is the modified Bessel function of the first kind such that I0(0) = 1. Thus,
βi,r(t) = o(1/r) on all sites and for all times: although the range of Hfic(t) increases with
time, the Hamiltonian is short range.

Hi and Hfic(t) are thus connected unitarily, continuously, locally and without closing the
gap, as if by an adiabatic connection [64–66] (no extra hypothesis of adiabaticity was imposed
in the reasoning). Therefore, unless the system experiences a dynamical phase transition, Hi

and Hfic(t) are in the same topological phase relative to the PHS, and if one has robust edge
states, so does the other. Consequently, the topological invariant associated with the PHS (like
the Zak phase modulo 2π) is also invariant. The reasoning extends to interacting systems
according to Ref. [40]. Note that, when the system is finite, and after a certain time t ∼ tc ,
U(t) effectively becomes an infinite-ranged (non-local) transformation such that the topology
associated with the state |ψ(t)〉 is not well-defined anymore. The topological invariant starts
then to vary.

We stress that these considerations concern PHS (a unitary symmetry leaving time invari-
ant) only, and not the time-reversal (TRS) or chirality symmetry (CS), which are broken by
time evolution in this reasoning. Hence, a topological invariant fixed by, e.g., TR, may vary in
time even when both Hi and H f are TRS. This means that, while there is an infinite amount
of topological phases in the BDI class that can be distinguished using the Zak phase (in πZ,
fixed by TRS, PHS, and CS), only two are distinguished by the Zak phase modulo 2π (fixed by
THS) as time evolves.

Thus, if SD is a topological invariant, then SD of a topological ground-state (at equilibrium)
is conserved when the state is time-evolved by any local, unitary, and symmetry-preserving
operator until a time tc fixed by the finite size of the chain. We argue that the quenches we
consider only induce such time-evolution. The conservation of the topological invariants of
the system implies the conservation of the associated bulk-boundary correspondence. The
conserved correspondence implies conserved edge states, and, thus, conserved SD. Indeed,
we observe this conservation of SD in Sec. 5.2. We conclude that SD is likely a topological
invariant.

The reasoning also shows that SD keeps track of the topology of the initial state while the
topological invariant associated with PHS, the Zak phase (modulo 2π), does not. Indeed, the
Zak phase in the topological phase of the SSH model is 2π = 0 modulo 2π (while the Zak
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phase of, e.g., the Kitaev model is π). Hence, the topological SSH phase and the trivial phase
are not expected to be topologically different in the dynamical context. Yet, SD distinguishes
between states with and without long-range edge entanglement, an observable feature that
we traced back to topology.

We conclude that SD is likely a topological invariant. Furthermore, SD keeps track of the
topology of the initial state, whereas another topological invariant like the Zak phase modulo
2π does not.

5.2 Invariance of SD after quenches: finite-size scaling analysis

We performed an extensive investigation of the evolution of SD after a quantum quench within
and across the topological phase. We used the procedure detailed in Sec. 4.1. Specifically,
we first derive the one-body eigenvalues of the desired initial Hamiltonian H0. Using these
eigenvalues and Eq. 18, we obtain the full correlation matrix CX (0) of the initial ground state.
Similarly, we derive both the one-body spectrum and the eigenvalues of the Hamiltonian post-
quench H. Using (CX )mn(0), the spectrum and eigenvalues of H, and Eq. 19, we obtain the
time-dependent full correlation matrix CX (t) of the quenched state. From CX (t), we finally
compute SD(t) like in the static case. Fig. 4a) gives the representative example of the time
evolution of SD(t) after a quench from the topological phase to the trivial phase. Instead,
Fig. 4c) corresponds to a quench from to trivial phase to the topological phase.

For both quenches and for quenches within the topological or within the trivial phase, we
observe the same phenomenology: SD sticks to its initial value until a certain timescale tc
that depends on the quench and the size of the system as in Ref. [31]. The corresponding
phenomenon in the bipartite entanglement entropy is a constant offset during the time evolu-
tion [67]. We define the timescale tc as the time when SD varies of 2 log 2/100 from its initial
value (dotted line in inset of Fig. 4a) and c)). We observe that tc ∼ L/η when L > 100 in
Fig. 4b) and d). η increases when the amplitude of the quench increases. When L → ∞,
tc →∞ showing that SD behaves like a topological invariant.

6 Robustness of SD to disorder

For 1D non-interacting systems, Anderson localization kicks in as soon as disorder is intro-
duced [68] (or reviewed in Ref. [69]). This localization is not antagonistic to topological
phases. Both can coexist. The disorder can even favor the topological phase, as known for the
case of quantum Hall effects in D > 1. In the SSH model, disorder can extend the topological
phase past v/w> 1. This extended regime is called a topological Anderson insulator [70–72].

Using SD we successfully reproduce the disorder-induced phase diagram of the SSH model,
see Fig. 5. This phase diagram is known and was partially measured for uniform disorder [46]
and is known for quasiperiodic potential [73]. The former work extrapolated the winding
number from measurements. This topological invariant stays well quantized to 1 or 0 (mod
2) despite the disorder for both the topological and the trivial phase. We observe a similar
behavior for SD. The robustness to disorder of SD follows the robustness of the edge states of
SPTP [74].

Specifically, we consider uniform, chirality-preserving disorder on the hoppings of Eq. 12:

wi = w+W1δi , (29a)

vi = v +W2∆i , (29b)

with w= 1 fixed, δi and∆i being random variables of uniform distribution in [−0.5,0.5]. We
then average SD over the realizations. For weak disorder, Fig. 5 (2W1 =W2 =W ) shows that
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Figure 4: (Color online) a) and c) Time evolution of SD after quenching the
Hamiltonian from a) v/w = 0.1 (topological phase) to v/w = 1.5 (trivial phase)
and c) v/w = 1.5 to v/w = 0.1 at t = 0 and for different total length L
with LA = LB = 2LD = L/2. SD remains at its initial value until finite-size ef-
fects change it at t ∼ tc . Insets: zoom on the graph around t ∼ t0 and for
|SD(t) − SD(0)| ® 2 log 2/100. b) and d) Scaling behaviour of tc after the sudden
quench a) and c) respectively. The point corresponding to smallest L in both b) and
d) is not included in the linear fit (orange line). In d), the fit includes the origin
within two standard deviation. Thus, when L→∞, tc diverges, demonstrating that
SD does not evolve after unitary evolution for large systems.

the topological phase is stable when SD = 2 log 2. The phase is trivial at strong disorder, and
SD = 0.

We also observe the topological Anderson insulator regime like in Ref. [46]. For W1 =W2 =W
(not shown), the phase transition line is monotonous with W . The locations of both transi-
tion lines we observe are compatible with the literature [46, 73]. Unlike the critical point
W1 =W2 = 0 of Sec. 4.2, SD is well-quantized at either 0 or 2 log 2 around the phase transi-
tion line. Its distribution is however a bimodal hence the damped value of the average at the
transition. It is unclear to us if such a distribution is a marker of first order phase transition.

7 Disconnected entropies in the BDI class

We now discuss the generality of our results in the context of the BDI class of the tenfold-
way [44,75,76].

The SSH can be mapped locally to a stack of two coupled Kitaev wires [77]. In the for-
malism of Ref. [78], this stack is called a 2-chain whereas the non-interacting Kitaev chain is
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Figure 5: (Color online) Phase diagram of the SSH model obtained with SD for the
uniform disorder of Eq. 29 with 2W1 =W2 =W . We set LA = LB = 2LD = 32. SD is
averaged over 400 realizations for each point. The “bump” of the topological phase
(in yellow) constitutes the topological Anderson insulator regime.

the 1-chain. Both the 1- and 2-chain can be understood with the same Z classification. The
topological phases they display belong to different classes within the BDI classification as they
have a different value for their topological invariant: the Zak phase. Specifically, the Zak phase
is π in the 1-chain and 2π in the 2-chain.

The edge states of the two chains are also different. Both chains have one (e.g., left) edge
mode protected by the time-reversal symmetry, while the other (right) mode is protected by
both the parity and the time-reversal symmetry [77]. In the 1-chain, the left and right parity
operators do not commute. It is impossible to write the left and right edge modes as linearly
independent in the same local basis. Thus, the ground state naturally requires a non-local
description due to these edge modes. This specific form of non-locality implies a non-zero
value for SD.

In the 2-chain, the left and right parity operators commute. The edge modes can be written
independently from each other in a local basis (cf Sec. 3), and are local. For an infinite chain,
the edge entanglement can thus be zero. As we showed in this paper, that is not the case, and
the edge entanglement remains quantized and is maximal (given the Hilbert space dimension
of the edge modes) for any finite chain.

We extend the conclusions shared between the 1-chain and the 2-chain to the whole BDI
classification. Indeed, all topological phases of BDI either have non-local (fractional) edge
states or local edge states, like in the 1- and the 2-chains respectively [77]. Only the association
between the protecting symmetry (time-reversal or the composition parity and time-reversal)
and the protected edge (left or right) varies. These variations should have no consequences to
SD that does not distinguish between left and right. We conclude that the validity of SD extends
to all BDI, as the phenomenology of edge modes is the same as the two models considered so
far.

While this is not directly relevant for the model discussed here, the generality of our con-
clusion likely extends to the D classification. Even without time-reversal symmetry, the Kitaev
wire displays a topological phase and a trivial phase. Both phases belong to the D classification
which is a Z2 classification associated with the only particle-hole symmetry. The edge states
of the topological Kitaev wire in the D class are the same as in the BDI class 8.

8although they are not protected by the same set of symmetries.
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8 Conclusions

We have shown how entanglement entropies distinguish topological and non-topological insu-
lating phases in the Su-Schrieffer-Heeger one-dimensional model with open boundary condi-
tions. This entanglement is quantified by the disconnected entanglement entropy SD computed
for the ground state of the system. It is 0 in the trivial phase and 2 log 2 for the topological
phase in the large system limit. We related SD to the number of zero-mode edge states, a
topological invariant. Thus, SD is quantized and enjoys robustness disorder. As the model is
particle-hole symmetric, SD is also invariant during local, unitary, and symmetry-preserving
time evolution for large system size. SD also displays a universal scaling behavior when cross-
ing the phase transition, akin to an order parameter. Numerical simulations show that modest
and experimentally accessible partition sizes are sufficient for SD to reach its quantized regime.
Finally, combining the present findings with older results on fermionic SD in the Kitaev chain,
we argued that our conclusions extend to the full BDI class of the topological insulators and
superconductors classification.

To complete the comparison of SD to a topological invariant, it would be interesting to
investigate the evolution of SD when the protecting symmetry is explicitly broken and the
maximal entanglement of the edge state is no more set topologically, such as in the Rice-
Mele model [79]. It would also be interesting to use entanglement topological invariants to
characterize the real-time dynamics of other instances of topological insulators in the presence
of a bath [66].
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